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ERRATUM TO “TOWARDS A HOMOTOPY THEORY OF HIGHER
DIMENSIONAL TRANSITION SYSTEMS”

PHILIPPE GAUCHER

Abstract. Counterexamples for Proposition 8.1 and Proposition 8.2 are given. They
are used in the paper only to prove Corollary 8.3. A proof of this corollary is given
without them. The proof of the fibrancy of some cubical transition systems is fixed.

1. Proposition. [Counterexample for Proposition 8.1] The canonical map

ψX : CSA1(Cub(X))→ Cub(CSA1(X))

is bijective on states, one-to-one on actions and one-to-one on transitions for all cubical
transition systems X. There exists a cubical transition system Z such that ψZ is not
surjective on actions and on transitions.

Proof. The map ψX : CSA1(Cub(X))→ Cub(CSA1(X)) is bijective on states and one-
to-one on actions: see the proof of [Gau11, Proposition 8.1]. Therefore, it is one-to-one
on transitions by a standard argument already used several times in this series of papers
(see also [Gau14, Proposition 4.4]): if (α, u1, . . . , vn, β) and (α, u′1, . . . , v

′
n′ , β) are two

transitions of CSA1(Cub(X)) such that

(ψX(α), ψX(u1), . . . , ψX(vn), ψX(β)) = (ψX(α), ψX(u′1), . . . , ψX(v′n′), ψX(β)),

then n = n′ and since ψX is one-to-one on states and actions, one has

(α, u1, . . . , vn, β) = (α, u′1, . . . , v
′
n′ , β).

We are now going to find a cubical transition system Z such that ψZ is not surjective on
actions and on transitions. Consider the quotient set

S =
(
{α, β, α1, β1, α2, β2, α3, β3} ∪ {0, 1}3 × {−,+}

)
/((0, 0, 0,±) = α and (1, 1, 1,±) = β),

i.e. with the identifications (0, 0, 0,−) = (0, 0, 0,+) = α and (1, 1, 1,−) = (1, 1, 1,+) = β.
Let L = {u1, u2, u3, u

′
1, u

′
2, u

′
3} be a set of actions with the labelling map defined by

µ(ui) = µ(u′i) = xi for i = 1, 2, 3. The cubical transition system Z is intuitively the
smallest one having the set of states S and the set of actions L such that there are the
following maps of cubical transition systems:
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1. The map C3[x1, x2, x3]→ Z taking the states (i, j) to (i, j,−) for all (i, j) ∈ {0, 1}3

and the actions xi to ui for i = 1, 2, 3 (the actions of C3[x1, x2, x3] are not denoted
by (x1, 1), . . . , (x3, 3) because it is already understood that x1, x2, x3 are distinct).

2. The map C3[x1, x2, x3]→ Z taking the states (i, j) to (i, j,+) for all (i, j) ∈ {0, 1}3

and the actions xi to u′i for i = 1, 2, 3.

3. The maps Cyl(C1[xi]) → Z for i = 1, 2, 3 taking the initial state to αi, the final
state to βi, the action (xi, 0) to ui and the action (xi, 1) to u′i.

It is defined rigorously as the final lift of a cone of maps like as follows, which always
exists since the functor ω : WHDTS→ Set{s}∪Σ forgetting the transitions is topological:

ω(C3[x1, x2, x3])→ ({0, 1}3 × {−}, {u1}, {u2}, {u3}) ⊂ W

ω(C3[x1, x2, x3])→ ({0, 1}3 × {+}, {u′1}, {u′2}, {u′3}) ⊂ W

ω(Cyl(C1[x1]))→ ({α1, β1}, {u1, u
′
1},∅,∅) ⊂ W

ω(Cyl(C1[x2]))→ ({α2, β2},∅, {u2, u
′
2},∅) ⊂ W

ω(Cyl(C1[x3]))→ ({α3, β3},∅,∅, {u3, u
′
3}) ⊂ W

with W = (S, {u1, u
′
1}, {u2, u

′
2}, {u3, u

′
3}). One has ω(Z) = W . The weak HDTS Z is

cubical since CTS is a coreflective subcategory of the category of weak HDTS. The key
fact is that Z contains the transitions (αi, ui, βi) and (αi, u

′
i, βi) for i = 1, 2, 3. Therefore

the canonical map φZ : Z → CSA1(Z) identifies the actions ui and u′i for i = 1, 2, 3:
φZ(ui) = φZ(u′i) = xi for i = 1, 2, 3. So CSA1(Z) contains the five transitions (remember
that φZ is bijective on states)

(α, x1, x2, x3, β), (α, x1, (1, 0,−)), ((1, 0,−), x2, x3, β), (α, x1, x2, (1, 1,+)), ((1, 1,+), x3, β).

By the composition axiom, CSA1(Z) contains the transition ((1, 0,−), x2, (1, 1,+)) which
corresponds to a unique map C1[x2] → CSA1(Z). Hence the cubical transition system
Cub(CSA1(Z)) contains a transition from (1, 0,−) to (1, 1,+) indexed by an action u′′2
labelled by x2 which is distinct from u2 and u′2. The point is that in Cub(Z), the tran-
sition (αi, ui, βi) becomes a transition (αi, vi, βi) and the transition (αi, u

′
i, βi) becomes

a transition (αi, v
′
i, βi) with µ(ui) = µ(vi) = µ(u′i) = µ(v′i) = xi for i = 1, 2, 3. So the

canonical map φCub(Z) : Cub(Z) → CSA1(Cub(Z)) does not identify the actions ui and
u′i for i = 1, 2, 3. Therefore the composition axiom cannot be applied in CSA1(Cub(Z))
to create a transition from (1, 0,−) to (1, 1,+). Hence the map ψZ : CSA1(Cub(Z)) →
Cub(CSA1(Z)) is not surjective on actions and on transitions.

2. Proposition. [Counterexample for Proposition 8.2] There exists a weak equivalence
of CTS (the left determined model structure) such that Cub(f) is not a weak equivalence
of CTS.
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Proof. Let f = φZ : Z → CSA1(Z) with Z as above. Then f is a weak equiva-
lence of CTS by [Gau11, Theorem 7.10] since CSA1(f) : CSA1(Z) → CSA1(CSA1(Z))
is an isomorphism. The source of CSA1(Cub(f)) is CSA1(Cub(Z)). The target of
CSA1(Cub(f)) is CSA1(Cub(CSA1(Z))) which is equal to Cub(CSA1(Z)) because the
latter satisfies CSA1 (see the beginning of the proof of [Gau11, Proposition 8.1]). There-
fore CSA1(Cub(f)) cannot be an isomorphism and Cub(f) is not a weak equivalence of
CTS by [Gau11, Theorem 7.10].

3. Proposition. [Corollary 8.3 fixed] Every weak equivalence of CTS belongs toWCub.

Proof. The class of maps WCub is, by definition, the localizer generated by the maps
of cubical transition systems f such that Cub(f) is a weak equivalence of CTS. This
localizer contains the smallest one, which is precisely the class of weak equivalences of the
left determined model structure CTS.

Let I be the set of generating cofibrations of CTS. Let S be an arbitrary set of maps
in CTS. It is claimed in [Gau11] that the class of fibrant objects of the Bousfield local-
ization by the set of maps S of the left determined model structure CTS is the class of
ΛCTS(V, S, I)-injective objects. Using Olschok’s theorems, it is only possible to say that
the class of fibrant objects is the class of ΛCTS(V, Scof , I)-injective objects where Scof is
a set of cofibrant replacements for the maps of S. Since ∅ = ∅cof , it is correct to say
that the class of fibrant objects of the left determined model structure of CTS is the class
of ΛCTS(V,∅, I)-injective objects. So the proof of Proposition 7.8 is correct. However,
“ΛCTS(V, S, I)-injective” must be replaced by “ΛCTS(V, Scof , I)-injective” page 318 be-
fore and in the proof of Theorem 6.3. And the proofs of Theorem 8.10 and Theorem 8.11
must be modified. More precisely, the proof of the following fact must be modified, and
without using Theorem 8.10 (the characterization of the weak equivalences of LS(CTS))
and Theorem 8.11 to avoid any vicious circle:

4. Proposition. [Proof of fibrancy fixed] Let S = {px : C1[x] t C1[x] →↑x↑| x ∈
Σ}. Then any S-injective cubical transition system is fibrant in the Bousfield localization
LS(CTS) of the left determined model structure of CTS by the set of maps S.

Proof. This is [Gau14, Proposition 8.4].
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