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EXTENDING OBSTRUCTIONS TO
NONCOMMUTATIVE FUNCTORIAL SPECTRA

BENNO VAN DEN BERG AND CHRIS HEUNEN

ABSTRACT. Any functor from the category of C*-algebras to the category of locales
that assigns to each commutative C*-algebra its Gelfand spectrum must be trivial on
algebras of n-by-n matrices for n > 3. This obstruction also applies to other spectra
such as those named after Zariski, Stone, and Pierce. We extend these no-go results
to functors with values in (ringed) topological spaces, (ringed) toposes, schemes, and
quantales. The possibility of spectra in other categories is discussed.

1. Introduction

The spectrum of a commutative ring is a leading tool of commutative algebra and algebraic
geometry. For example, a commutative ring can be reconstructed using (among other
ingredients) its Zariski spectrum, a coherent topological space. Spectra are also of central
importance to functional analysis and operator algebra. For example, there is a dual
equivalence between the category of commutative C*-algebras and compact Hausdorff
topological spaces, due to Gelfand.!

A natural question is whether such spectra can be extended to the noncommutative
setting. Indeed, many candidates have been proposed for noncommutative spectra. In
a recent article [23], M. L. Reyes observed that none of the proposed spectra behave
functorially, and proved that indeed they cannot, on pain of trivializing on the prototypical
noncommutative rings M, (C) of n-by-n matrices with complex entries. To be precise:
any functor F': Ring® — Set that satisfies F(C) = Spec(C') for commutative rings
C, must also satisfy F(M,(C)) = 0 for n > 3. 2 This result shows in a strong way
why the traditional notion of topological space is inadequate to host a good notion of
noncommutative spectrum. Its somewhat elaborate proof is based on the Kochen—Specker
Theorem [17]. It is remarkable that a theorem from mathematical physics would have
something to say about all possible rings.
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IFor convenience, we take all rings and C*-algebras to be unital, although that is not essential.
2The rings M., (C) and C are Morita-equivalent, and so behave similarly in many ways. But for our
purposes they are very different: for n = 3 the theorems hold, for n = 2 they do not.
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One could hope that less orthodox notions of space are less susceptible to this ob-
struction. In particular, there are notions of space, such as that of a locale or a topos, in
which the notion of point plays a subordinate role. In fact, one of the messages of locale
theory and topos theory is that one can have spaces with a rich topological structure,
but without any points whatsoever. Indeed, many of the proposed candidate spectra for
noncommutative C*-algebras have been, or could be, phrased in such terms.

The main result of this article is that the obstruction cannot be circumvented in
this way. We will rule out many candidates for categories of noncommutative Gelfand
spectra by deriving various no-go theorems for locales, toposes, ringed toposes, and even
quantales. Additionally, we prove similar limitative results for Zariski, Stone and Pierce
spectra. These results will all follow from two basic ingredients. The first is the Kochen—
Specker Theorem, as in [23]. The second is a general extension theorem, prompted by our
work in [6], that allows us both to significantly simplify and extend Reyes’ argument.

The basic obstruction is given by the Kochen—Specker Theorem. It relates Boolean
algebras to a certain noncommutative notion of Boolean algebra. More precisely, it can
be rephrased to say that any morphism of so-called partial Boolean algebras, from the
projections in M, (C) to a Boolean algebra, must trivialize when n > 3.

The general extension theorem, as its name suggests, uses some simple category theory
to extend this basic obstruction to far more general situations. To see how it works,
consider the following commuting diagram of functors and categories.

[
R
Here, R consists of a kind of rings, C is the full subcategory of commutative ones, the
functor S takes the spectrum, and S consists of the spectral spaces. The goal is to extend
S to the noncommutative setting. The extension theorem will state that, as long as
the functor on the right-hand side preserves limits, the bottom functor must degenerate.
Regarded this way, one could say that what the Kochen—Specker Theorem obstructs, is
transporting S along functors whose images have the same limit behaviour.

The paper is structured as follows. First, Section 2 motivates why it is a priori not
unreasonable to look to pointless topology for noncommutative spectra. Section 3 recalls
the Kochen—Specker Theorem and several variations. Section 4 then sets the stage with
the abstract results. After that, Sections 5-7 draw corollaries of interest from these main
theorems. This host of impossibility results does not mean that it is hopeless to search
for a good notion of noncommutative spectrum. We end the paper on a positive note by

discussing ways of circumventing the obstruction in Section 8, that will hopefully serve
as a guide towards the ‘right’ generalization of the notion of space.

S

_
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2. Pointfree topology

The idea of a form of topology in which the notion of an open (or a region in space) is
primary and the notion of a point plays a subordinate role dates back at least to Whitehead
[25, 26]. For a long time these ideas remained quite philosophical in nature and belonged
to the periphery of mathematics. But this changed with the work of Grothendieck [3].
The notion of a topos, which he seems to have regarded as his most profound idea, is really
a pointfree concept of a space. By now it is clear that a mathematically viable theory of
pointfree spaces is possible and with topos theory this has reached a considerable degree
of maturity and sophistication [16, 20].

Within the category of toposes the localic toposes play an important role. Here they
will be important because toposes that arise as spectra are localic. We will define these
toposes in Definition 2.8 below; we will have no need to consider toposes that are not
localic. To define these localic toposes, the crucial observation is that in the construction
of the category of sheaves over a topological spaces, the points of the space play no role.
Indeed, all that matters is the structure of the lattice of opens of the space. So, to define
a category of sheaves, one only needs a suitable lattice-theoretic structure. The precise
structure required is formalized by the concept of a locale, which is an important notion
of pointfree space in its own right [14, 15].

2.1. DEFINITION. A complete lattice is a partially ordered set of which arbitrary subsets
have a least upper bound. In a complete lattice every subset also has a greatest lower
bound. A locale is a complete lattice that satisfies the following infinitary distributive law:

\/(x/\yi) :a:/\\/yi.

The elements of a locale are called opens. A morphism K — L of locales is a function
[+ L — K that satisfies f(x Ny) = f(x) A f(y) and f(\/ z;) =\ f(z;). (Note the change
in direction!) This forms a category Loc.

The primary example of a locale is the collection of open subsets of a topological space.
Moreover, a continuous function between topological spaces induces a morphism between
the corresponding locales (in the same direction). Thus we have a functor Top — Loc.

As it happens, this functor has a right adjoint. To construct it, define a point of a
locale L as a morphism p: 1 — L. Here, 1 is the terminal object in the category of locales,
which coincides with the set of open sets of a singleton topological space. The set of points
of L may be topologized in a natural way, by declaring its open sets to be those of the
form {p | p~}(U) = 1} for opens U in L. This defines the right adjoint Loc — Top.

As usual, this adjunction becomes an equivalence if we restrict to the full subcategories
of those locales and spaces for which the unit and counit are isomorphisms. These are
called the spatial locales and sober spaces, respectively. For topological spaces, sobriety is
really a weak separation property (for example, any Hausdorff topological space is sober).
Thus, locales and topological spaces are closely related.

There are, however, a few subtle differences. One of the most important is that in
the category of locales, limits are computed differently than in the category of topological
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spaces. This is one of the reasons why one might suspect that a good pointfree notion
of spectrum may be possible. In fact, the following considerations may lead one to hope
that a suitable notion of a pointfree space could avoid the obstruction observed by Reyes:

1. Many notions of spectrum lend themselves quite naturally to a pointfree formula-
tion [14].

2. In many cases points correspond to maximal ideals. It is well-known that these
behave very poorly functorially.

3. Limits play an important role in Reyes’ result, and here as well. But limits are
computed differently in topological spaces and locales. (In fact, this aspect of locales
is emphasized in [15].)

But, as we will see below, the obstruction to nonfunctorial spectra is so fundamental that
it precludes suitable notions of spectra in locales and toposes as well.

The problem is with point (3). Although limits in Loc and Top are computed dif-
ferently in general, this is not what happens with limits of locales and topological spaces
that arise as spectra. There, the constructions move perfectly in tandem. This follows
from the fact that locales that arise as spectra are (i) closed under limits and (ii) spatial.
In fact, (i) alone already precludes the existence of suitable spectra in the category of
locales, as Section 4 below will make clear. For this reason, we will only explain (i) in
some detail here.

2.2. REMARK. Proving that locales that arise as spectra are spatial relies on noncon-
structive principles, such as the Prime Ideal Theorem (a consequence of the axiom of
choice). In fact, the arguments in this paper are mostly constructive: only the proofs in
Section 6 rely on results that might not be valid constructively. (That the locale-theoretic
analogues of nonconstructive results in topology often are constructively valid is another
aspect of locale theory emphasized in [15].)

For example, Gelfand duality concerns compact Hausdorff spaces. Being Hausdorff
is something which is rather hard to express in localic terms: but, fortunately, for com-
pact spaces being Hausdorff is equivalent to being regular, and regularity is more readily
expressed in localic terms [14, page 80].

2.3. DEFINITION. A locale L is called compact if any subset S C L whose least upper
bound is the top element has a finite subset whose least upper bound is also the top element.

If a and b are two elements of a locale L, then a is well inside b if c Aa = 0 and
cVb=1 for somec € L. A locale L is called regular if any a € L is the least upper bound
of the elements well inside it.

2.4. LEMMA. Compact regqular locales are closed under limits in Loc.

ProoF. This follows from the fact that the inclusion of the full subcategory KRLoc
of compact regular locales inside the category of locales has a left adjoint (namely the
Stone-Cech compactification, see [14, page 130 and page 88]). n
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Stone duality is a duality between Boolean algebras and Stone spaces. To define the
localic version of Stone spaces, observe that if D is a distributive lattice, then the collection
Idl(D) of ideals on D (ordered by inclusion) is a locale. In fact, this construction is part
of a functor

Idl: DLat® — Loc

sending ideals to the down closure of their direct images along maps of distributive lattices.
This functor is faithful, but not full.

2.5. DEFINITION. A coherent locale is one equivalent to one of the form 1dl(D). Any
coherent locale is compact; if it is also reqular, we call it a Stone locale. A map between
coherent locales that is isomorphic to one in the image of the functor Idl is called coherent.

2.6. LEMMA. If a diagram in Loc consists of coherent locales and coherent morphisms
between them, then its limit s again a coherent locale.

PRrOOF. This follows from the fact that Idl: DLat°® — Loc is faithful and right adjoint
to the forgetful functor [14, page 59]. =

2.7. LEMMA. Stone locales are closed under limits in Loc.

Proor. This follows from Lemmas 2.4 and 2.6, together with the fact that every map
between Stone locales is coherent [14, page 71]. [

As mentioned before, these results will preclude the existence of functorial spectra in
the category of locales. They will also preclude the existence of functorial spectra in the
category of toposes. Before we can explain that, let us first indicate how one can define
a category of sheaves on a locale.

2.8. DEFINITION. A presheaf on a locale L is a functor X : L°? — Sets. More concretely,
a presheaf consists of a family of sets (X (p))per together with for any g < p a restriction
operation

(=) Iqg:X(p) — X(q)

satisfying some natural compatibility conditions.

A presheaf X is a sheaf when for any family of elements {p; € L | i € I} and
{x; € X(pi) | i € I} withz; [ piAp; =x; [ p; Apj for alli,j € I there is a unique element
x € X(\V pi) with x | p; = x; for everyi € I.

For any locale L the sheaves on L, with natural transformations between them, form
a topos Sh(L). A topos which is equivalent to one of this form is called localic.

The construction of taking sheaves on a locale is functorial. The crucial result that
will preclude noncommutative spectra valued in toposes is the following.

2.9. LEMMA. There is a full and faithful functor Sh: Loc — Topos that assigns to every
locale the category of sheaves over that locale. It preserves limits.

PROOF. For the first statement, see [20, Proposition IX.5.2]. For the second, [16, C.1.4.8].
m
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3. The Kochen—Specker Theorem

The Kochen—Specker Theorem is a famous and important result from the foundations
of quantum mechanics. Its original intention was to preclude the possibility of hidden
variable theories, but there are interpretational debates about whether this conclusion is
valid. Its mathematical content is important to us as an example of an obstruction, as
will be defined in the next section. It was originally stated in terms of partial algebras,
which also form a convenient starting point for us.

The idea behind partial algebras is to break an algebra into parts; each part itself
is a (sub)algebra with particularly nice properties, but the cohesion between the parts
is lost. This lets us, for example, think about a (noncommutative) ring in terms of its
commutative parts. In general, of course, the partial algebra contains less information,
precisely because the whole algebra does have cohesion between the parts. The Kochen—
Specker theorem, and our results based on it, concern partial algebras; they do not analyse
how much “more cohesive” an algebra is than the sum of its parts.

A partial Boolean algebra consists of a set B with:

e a reflexive and symmetric binary (commeasurability) relation ® C B x B;
e clements 0,1 € B;

e a (total) unary operation —: B — B;

e (partial) binary operations A,V: ® — B;

such that every set S C B of pairwise commeasurable elements is contained in a set
T C B, whose elements are also pairwise commeasurable, and on which the above oper-
ations determine a Boolean algebra structure. A morphism of partial Boolean algebras
is a function that preserves commeasurability and all the algebraic structure, whenever
defined. More precisely, we have:

£(a) ® f(b) whenever a ® b;
F(0) = 0 and f(1) =
Flavb) = f(a)V f(b) and f(a Ab) = f(a) A f(b) whenever a ® b;
o f(=a) =—f(a) for a € B.

Examples of partial Boolean algebras are ordinary Boolean algebras, where the commea-
surability relation is total (we will also call these total Boolean algebras for that reason),
and projection lattices of Hilbert spaces. In fact, the collection of projections

Proj(A) ={pe A|p'p =p}

carries the structure of a partial Boolean algebra for every C*-algebra A (where we say that
two projections are commeasurable when they commute). The Kochen—Specker Theorem
now reads as follows.
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3.1. THEOREM. [Kochen—Specker Theorem| Let f: Proj(M,,(C)) — B be a morphism of
partial Boolean algebras for n > 3. If B is a (total) Boolean algebra, then it must be the
terminal one (in which 0 = 1).

PROOF. See [17, 22]. n

If B is a partial Boolean algebra and we write C(B) for the diagram of its total
subalgebras and inclusions between them, then we can rephrase the previous theorem as
follows (see also [4]).

3.2. COROLLARY. Ifn > 3, then the colimit of C(Proj(M.,,(C))) in the category of Boolean
algebras is the terminal Boolean algebra.

PROOF. Suppose we have a cocone from C(Proj(M,,(C))) to B in the category of Boolean
algebras. Clearly, it can also be considered as a cocone in the category of partial Boolean
algebras. But because the colimit of C(Proj(M,,(C))) in the category of partial Boolean
algebras exists and is precisely Proj(M,,(C)) (see [6]), it follows from Theorem 3.1 that B
is trivial. n

We will also need a variation for C*-algebras. First, we define the appropriate partial
notion. A partial C*-algebra is a set A with:

e a reflexive and symmetric binary (commeasurability) relation ©® C A x A;

elements 0,1 € A;

(partial) binary operations +,-: ® — A;
e a (total) involution x: A — A;

e a (total) function -: C x A — A;

e a (total) function |—| : A — R;

such that every set S C A of pairwise commeasurable elements is contained in aset T' C A,
whose elements are also pairwise commeasurable, and on which the above operations
determine the structure of a commutative C*-algebra. A morphism of partial C*-algebras
is a morphism f: A — B preserving the commeasurability relation and all the algebraic
structure, whenever defined. More precisely, we have:

e f(0)=0and f(1)=1;

o f(a)® f(b), fla+b) = f(a)+ f(b) and f(ab) = f(a)f(b) whenever a ® b;
e f(a)" = f(a*) for a € A4;

e f(za) =zf(a) for z € C and a € A.
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Any commutative C*-algebra is an example of a partial C*-algebra, on which the com-
measurability relation is total. Moreover, for any C*-algebra A, the normal elements

N(A)={a€ A|aa" =a"a}

carry the structure of a partial C*-algebra (where commeasurability means commutativ-
ity). Again, we write C(A) for the diagram of total subalgebras of a partial C*-algebra A
and inclusions between them.

3.3. COROLLARY. Ifn > 3, then the colimit of C(M,,(C)) in the category of commutative
C*-algebras is the terminal C*-algebra (in which 0 = 1).

PROOF. Suppose we have a cocone from C(M,,(C)) to A in the category of commutative
C*-algebras. Again, we consider this as a diagram in the category of partial C*-algebras,
where the colimit of C(M,(C)) is precisely N(M,,(C)) (see [6]). So we obtain a map
f: N(M,(C)) — A of partial C*-algebras. By restricting f to the projections we obtain a
map Proj(f) : Proj(M,,(C)) — Proj(A) to which Theorem 3.1 applies. Therefore A must
be the terminal C*-algebra. ]

4. Obstructions

This section develops a completely general way to extend obstructions like that of the
previous section. We start with the general extension theorem, and then formalize ob-
structions in suitable abstract terms.

4.1. PROPOSITION. Suppose given a commuting diagram of categories and functors
A-L-B
C — D
where B is complete, and K preserves limits. If
o A is a diagram in A,
e there is a cone from X to HA in C,
e Y =IlimFA,
then there ezists a morphism G(X) — K(Y) in D.

PROOF. Because K preserves limits, K(Y) = K(lim F'A) = lim K F A. The square above
commutes, therefore K(Y') = lim GH.A. By assumption, there is a cone from X to HA
in C. Hence, there is a cone from GX to GHA in D. But we already saw that K(Y) is
the target of the universal such cone. Hence there exists a unique mediating morphism

G(X) = K(Y). "
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Notice that the assumptions of the previous proposition were stronger than necessary:
B need not be complete, we only really need lim F' A to exist in B. Here is an illustration
of the situation (that will turn out not to be obstructed).

4.2. EXAMPLE. This illustration works best with colimits instead of limits, so we will
work in the opposite setting of the previous proposition. Let A be the category of finite
sets and injective functions, included in the category C of all sets and injections. Take
D to be the ordered class of cardinal numbers, regarded as a category, and let B be its
subcategory of at most countable cardinals, and K the inclusion. Finally, set F' and G to
be the functors that take cardinality. Then B is cocomplete, and K preserves colimits.

Clearly, every set X is the colimit in C of the directed diagram A in A of its
finite subsets and inclusions amongst them. If X is finite, then ¥ = colim F A =
sup ge 4 card(A) = card(X), giving a morphism K(Y) — G(X) in D. If X is infinite,
then Y = sup,. 4 card(A) is at most countable, and therefore there still is a morphism
Y < card(X) in D.

We can think of the previous proposition as saying that the existence of (universal)
cones to diagrams in A can be transported along the functors F' and GG. Next, we turn to
formalizing obstructions to such extensions in the language of the previous proposition.
(We are using obstruction here in the normal colloquial sense; no analogy with algebraic
topology is intended.)

4.3. DEFINITION. In the situation of Proposition 4.1, an obstruction to an object X in
C is a diagram A in A together with a cone from X to HA in C such that lim F'A is
witial in B. The object X is called obstructed if an obstruction to it exists.

As a final abstract result, we now consider what happens when we try to extend
obstructed objects using Proposition 4.1. An initial object is strict when any morphism
into it is an isomorphism.

4.4. THEOREM. In the situation of Proposition 4.1: if K preserves initial objects, and
initial objects in D are strict, then G maps obstructed objects to initial objects.

PROOF. Let X be an obstructed object in C. Then there are a diagram A in A and a
cone from X to HA in C such that Y = lim F' A is initial. Proposition 4.1 now provides a
morphism G(X) — K(Y) in D. But since K preserves initial objects, K(Y) is initial in
D, and in fact strictly so. Hence the morphism G(X) — K(Y) must be an isomorphism,
making G(X) into a (strict) initial object. "

The previous theorem provides an intuition behind Definition 4.3: whereas X supports
a cone to HA, this cone trivialises when transported along G.

5. Gelfand spectrum

This section is the first of several deriving no-go results. It shows that there can be no
nondegenerate functor extending Gelfand duality that takes values in locales, topological
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spaces, toposes, or quantales.

For us, Gelfand duality is best considered as a duality between the category cCstar
of commutative C*-algebras and the category KRLoc of compact regular locales. This
duality exhibits every commutative C*-algebra A as isomorphic to one of the form {f :
X — C : f continuous} for some compact regular locale X; the opens of the locale X can
be chosen to be the closed ideals of the commutative C*-algebra A, ordered by inclusion.

Combining the extension of Section 4 with the obstruction of Section 3, we now im-
mediately find that there can be no nondegenerate functor from C*-algebras to locales
that extends the Gelfand spectrum.

5.1. COROLLARY. Any functor G: Cstar®® — Loc that assigns to each commutative
C*-algebra its Gelfand spectrum trivializes on M., (C) for n > 3.

ProOF. We instantiate the setting of Proposition 4.1 by

cCstar® Spee_ KRLoc
K

Cstar®? —= Loc.

By Lemma 2.4, KRLoc is complete and K preserves limits. Considering X = M,,(C) in
CStar and C(M,,(C)) in cCStar, it follows from the fact that Spec is part of a duality,
and hence preserves limits, in combination with Corollary 3.3 that X is obstructed when
n > 3. Since the initial object in KRLoc and Loc is the locale of opens of the empty
topological space, which is a strict initial object in both categories, the statement follows
from Theorem 4.4. n

5.2. REMARK. In fact, any functor as in the previous corollary must trivialize on many
more objects than just M, (C) for n > 3. For example, one easily derives that any C*-
algebra A allowing a morphism M, (C) — A for n > 3 is also obstructed. These are
precisely those C*-algebras of the form M, (B) for n > 3 and any C*-algebra B [19,
Corollary 17.7]. Therefore, more generally, direct sums €, M, (B;) are also ruled out
when n; > 3 for each i. Any von Neumann algebra without direct summands C or My(C)
is obstructed, too [8]. This remark holds for all corollaries to follow.

Because of the aforementioned equivalence between the categories of compact Haus-
dorff spaces and compact regular locales, the previous corollary holds equally well for
topological spaces.

5.3. COROLLARY. Any functor G: Cstar®® — Top that assigns to each commutative
C*-algebra its Gelfand spectrum trivializes on M., (C) for n > 3.

Since M,,(C) and all its sub-C*-algebras are von Neumann algebras, the previous two
results also holds for von Neumann algebras:
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5.4. COROLLARY. Any functor G: Neumann®® — Loc or G: Neumann® — Top
that assigns to each commutative von Neumann algebra its Gelfand spectrum trivializes

on M,,(C) forn > 3.

Because a locale is a reasonably elementary geometric notion, one might hold out hope
for nondegenerate functorial extensions valued in categories of more involved geometric
objects. However, we can use Corollary 5.1 as a stepping stone to derive no-go results for
the more involved geometric notions of toposes and quantales.

5.5. COROLLARY. Any functor G: Cstar® — Topos that assigns to each commutative
C*-algebra its Gelfand spectrum trivializes on M, (C) for n > 3.

PROOF. Since both the inclusion KRLoc — Loc and Sh: Loc — Topos preserve limits
(see Lemmas 2.4 and 2.9, respectively), their composition does as well. Therefore, the
proof of Corollary 5.1 applies when we put Topos in the bottom right corner. [

The previous corollary might not have come as a surprise after Corollary 5.1. After
all, if locales are ‘not noncommutative enough’ to accommodate a good notion of noncom-
mutative Gelfand spectrum, then why would the ‘equally not noncommutative’ toposes
do so? We will now consider quantales, which were intended to be noncommutative ver-
sions of locales. In fact, quite some effort has gone into studying them as candidates
for Gelfand spectra of noncommutative C*-algebras [21, 18]. The proof of the previous
corollary shows that there is no nondegenerate extension of the Gelfand spectrum with
values in any category of which compact regular locales are a subcategory that is closed
under limits. We can use the same idea in the following.

A quantale is a partially ordered set () that has least upper bounds of arbitrary subsets,
and is equipped with an element e € () and an associative multiplication @) x ) — @
satisfying the following equations:

\/(xyz) = I(\/ Yi), \/(ylx) = (\/ Yi)x, ex = T = re.

A morphism @ — @ of quantales is a function f: Q' — @ satisfying f(e) = ¢,
f(Vx) =V f(x;), and f(xy) = f(z)f(y). Any locale is a quantale when we take meet as
multiplication and the top element as unit. Hence we can regard the Gelfand spectrum
as a functor cCstar®® — Quantale®”.

5.6. LEMMA. Compact reqular locales are closed under limits in Quantale®.
PROOF. See [18, Corollary 4.4]. =

5.7. COROLLARY. Any functor G: Cstar®® — Quantale® that assigns to each commu-
tative C*-algebra its Gelfand spectrum trivializes on M, (C) for n > 3.

PRrooOF. Using Lemma 5.6 instead of Lemma 2.4, the proof of Corollary 5.1 establishes
the statement. -
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At first sight the previous corollary might seem to contradict results of [18]: one can
reconstruct the original C*-algebra from its maximal spectrum, and the assignment which
sends a C*-algebra to its maximal spectrum is functorial. However, this functor does not
send a commutative C*-algebra to its Gelfand spectrum, but to something from which it
may be reconstructed (its so-called spatialization). Therefore the maximal spectrum does
not satisfy our specification square of Proposition 4.1.

6. Zariski spectrum

In this section we turn to the Zariski spectrum. This construction underlies algebraic
geometry by connecting commutative rings to coherent spaces via the prime ideals of the
ring [9, 14]; more precisely, the Zariski spectrum of a commutative ring A is the locale
whose opens are the radical ideals of A. Before we go on to extending obstructions to
noncommutative generalizations of this duality, we first consider the basic no-go result.
The abstract machinery from Sections 3 and 4 does not apply directly, because the Zariski
spectrum functor cRing® — Loc famously does not preserve (products and hence) limits.
Fortunately, it suffices to restrict to finite-dimensional complex algebras, where the Zariski
spectrum functor does preserve limits, and where our obstructed objects M, (C) for n > 3
live.

6.1. COROLLARY. Any functor G: Ring®® — Loc that assigns to each commutative ring
its Zariski spectrum trivializes on M., (C) for n > 3.

Proor. When a commutative algebra A over C is finite-dimensional, it is Artinian
as a ring, and therefore any prime ideal is maximal [9, Theorem 2.14]. In particu-
lar, every point in Spec(A) is closed. In turn, maximal ideals correspond bijectively,
and functorially, to algebra homomorphisms: a character f: A — C corresponds to its
kernel f~1(0). Thus, when restricted to finite-dimensional commutative complex alge-
bras, the Zariski spectrum functor is naturally isomorphic to a representable functor:
Spec = cRing(—,C): fcAlg¥ — Set. Moreover, in this case there are only finitely
many maximal ideals [9, Theorem 2.14], so Spec(A) must be discrete. Clearly discrete
locales are closed under limits in Loc (see also Lemma 2.6), so this restricted functor
preserves finite limits, and just as in Corollary 5.1, we see that any functor fAlg” — Loc
that assigns to each commutative algebra its Zariski spectrum must trivialize on M, (C)
for n > 3. Precomposing with the inclusion fAlg. — Ring finishes the proof. [

Reyes’ result [23] now follows directly from the previous, constructive, corollary.

This basic no-go result can be extended to values in categories of which coherent
locales are a subcategory that is closed under limits, as in Section 5. For example, we get
the following corollary.

6.2. COROLLARY. Any functor G: Ring®™ — Topos that assigns to each commutative
ring its Zariski spectrum trivializes on M., (C) for n > 3.
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In Section 5 we used closure under limits to extend the basic no-go result. Another
way is by postcomposing with functors that reflect initial objects, as in the rest of this
section. Incidentally, these limitations also apply to functorial extensions of Gelfand
duality discussed in Section 5.

Another generalized notion of space is that of a ringed topological space or ringed locale
[11]. These are topological spaces/locales together with a sheaf of commutative rings over
them, and are important in algebraic geometry. Every topological space/locale X can
be regarded as a ringed space by letting the structure sheaf be the sheaf of continuous
functions on opens of X. One can also consider the notion of a ringed topos: a topos
together with a commutative ring object in it. This notion generalizes those of ringed
topological spaces and ringed locales, because the category of sheaves over a ringed space
is a ringed topos almost by definition. The import lies in the fact that every commutative
ring is isomorphic to the ring of global sections of a sheaf of local rings. Thus we can regard
the Zariski spectrum as a functor cRing®® — RingedTop, cRing®® — RingedLoc, or
cRing®® — RingedTopos.

6.3. COROLLARY. Any functor G: Ring®® — RingedTopos that assigns to each com-
mutative ring its Zariski spectrum trivializes on M., (C) for n > 3. The same holds when
we replace RingedTopos by RingedTop or RingedLoc.

PRrOOF. The forgetful functor U: RingedTopos — Topos reflects initial objects. Since
UG is a functor satisfying the hypotheses of Corollary 6.2, UG(M,,(C)) is initial when
n > 3. But that means that G(M,,(C)) is initial. n

Actually, the main notion of interest in algebraic geometry is that of a scheme (see
[11]). A locally ringed space is a ringed space where each stalk of the structure sheaf is
not just a ring but a local ring. An affine scheme is a locally ringed space isomorphic
to the Zariski spectrum of some commutative ring. A scheme is a locally ringed space
admitting an open cover, such that the restriction of the structure sheaf to each covering
open is an affine scheme.

6.4. COROLLARY. Any functor G: Ring® — Scheme that assigns to each commutative
ring its Zariski spectrum trivializes on M.,,(C) for n > 3.

PRrROOF. The forgetful functor from the category of schemes to Top reflects initial objects,
so the proof of the previous corollary applies. [

7. Stone and Pierce spectra

In this section we will have a further look at some dualities related to the Stone spectrum,
where the Kochen—Specker Theorem also provides an obstruction to further extending
them to suitably noncommutative structures.

First we consider the Stone spectrum, that provides a duality between Boolean algebras
and Stone locales: given a Boolean algebra, the associated Stone locale has as opens
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the ultrafilters on B; and given a Stone locale L, the original Boolean algebra can be
reconstructed by taking the complemented elements in L.

7.1. COROLLARY. Any functor F': PBoolean®® — Loc that assigns to each Boolean
algebra its Stone spectrum trivializes on Proj(M,,(C)) for n > 3.

PROOF. If one considers the diagram

Boolean®” —— Stone

| l

PBoolean®® — Loc

and the object Proj(M,(C)) in PBoolean (together with its diagram of commutative
subalgebras in Boolean), we see that they are obstructed for every n > 3. Therefore
they will be sent to the initial object by F'. [

Traditional quantum logic, by which we mean the approach dating back to Birkhoff
and von Neumann [7], considers orthomodular lattices. A lattice L is called orthocomple-
mented, if it comes equipped with a map | : L — L satisfying:

e a<b=bt<at
 (a7)" =a;
e aNat=0and aVat=1.

We call at the orthocomplement of a, and say that a is commeasurable with b (and write
a®b),if
a=(aAb)V (aNbF).

This relation is clearly reflexive, but need not be symmetric; if it is, we will call the lattice
orthomodular.® With lattice homomorphisms preserving orthocomplements as morphisms,
orthomodular lattices form a category OrthoLat.

The previous no-go result extends to orthomodular lattices. This is due to several facts.
First of all, every Boolean algebra is an orthomodular lattice. In fact, these are precisely
the orthomodular lattices in which every two elements are commeasurable [5, Corollary
I1.4.6]. Furthermore, projections Proj(M,(C)) in n-dimensional complex Hilbert space
can be identified with the subspace of C" they project onto, and therefore form an or-
thomodular lattice [5, Section II1.4]: the order comes from subspace inclusion, and L
comes from orthocomplement. Now, the relation ® gives every orthomodular lattice the
structure of a partial Boolean algebra [5, Theorem I1.4.5]. Projection lattices thus obtain
partial Boolean algebra structure: projections p and ¢ commute if and only if the sub-
spaces p(C™) and ¢(C™) they project onto are commeasurable in the orthomodular lattice
of linear subspaces [5, Exercise II1.18]. Therefore also the two different notions of total
(or commeasurable) subalgebra agree.

3This is equivalent to the usual statement of the orthomodular law a < b = b =a V (b Aat) by [5,
Theorem 11.3.4].
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7.2. COROLLARY. Any functor OrthoLat®® — Loc that assigns to each Boolean algebra
its Stone spectrum trivializes on Proj(M,,(C)) for n > 3.

PROOF. Proved in the same way as the previous corollary, where this time we put
OrthoLat®® in the bottom left corner. n

Next, we turn to the Pierce spectrum, which assigns to a commutative ring the Stone
space of its Boolean algebra of idempotents.

7.3. COROLLARY. Any functor Ring® — Loc that assigns to each commutative ring its
Pierce spectrum trivializes on all ML, (C) for n > 3.

PROOF. Let F' : Ring® — Loc be as in the statement. Let C(M,,(C)) be the dia-
gram of commutative self-adjoint subalgebras of M,,(C). As usual, we will argue that
lim FC(ML,(C)) in Loc is initial. Consider the restriction F' of F' to cNeumann, and
denote G for the functor that sends a commutative von Neumann algebra to its Gelfand
spectrum. Since every projection is an idempotent, and the Gelfand spectrum of a com-
mutative von Neumann algebra is given by the Stone space on its projections, there is a
natural transformation F' = G. So if lim GC(M,,(C)) is the (strict) initial object in Loc,
the same must be true for lim FC(M,,(C)) = lim FC(M,,(C)). "

8. Circumventing obstructions

It might be tempting to conclude from the above impossibility results that it is hopeless
to look for a good notion of spectrum for noncommutative structures. But we strongly
believe that this is the wrong conclusion to draw. What our results show is merely that a
category of noncommutative spectra must have different limit behaviour from the known
categories of commutative spectra. One of the central messages of category theory is that
objects should be regarded as determined by their behaviour rather than by any internal
structure. In other words, it is not the internal structure of objects that dictates what
morphisms should preserve. It is the other way around: it is the morphisms connecting
an object to others that determine that object’s characteristics. Ideally, of course, both
viewpoints coincide. But the latter viewpoint is better precisely when it is unclear what
the objects should be. Historically, noncommutative spectra have almost always been
pursued by generalizing the internal structure of commutative spaces (as objects). We
believe the right, and optimistic, message to distill from our results is that one should let
the search for noncommutative spectra be guided by morphisms instead. Indeed, the few
proposals for noncommutative spectra that escape our obstructions have non-standard
morphisms between them:

e There is a notion of noncommutative spectrum due to Akemann, Giles and Kum-
mer [1, 10, 2]. It allows one to reconstruct the original C*-algebra, but the corre-
spondence is only functorial for certain morphisms of C*-algebras.
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e The so-called process of Bohrification gives a functor from the category of C*-

algebras to localed toposes [12]. It involves some loss of information, however: one
can only reconstruct the partial C*-algebra structure of the original C*-algebra [6].
Indeed the natural morphisms in this setting are partial *-~homomorphisms.

It is possible to construct a functor from the category of C*-algebras to the category
of so-called quantum frames [24]. These structures only take into account the Jordan
structure of the original C*-algebra, and this is reflected in the choice of morphisms.
Indeed, there is no nondegenerate functor between the categories of quantum frames
and that of quantales, so there is no contradiction with our results.

A recent paper by Heunen and Reyes proposes a new notion of spectrum for arbitrary
AW*-algebras [13]. It involves an action of the unitary group on the projection
lattice, and therefore the natural morphisms are quite unlike those of topological
spaces.
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