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ON THEORIES OF SUPERALGEBRAS OF DIFFERENTIABLE
FUNCTIONS

DAVID CARCHEDI AND DMITRY ROYTENBERG

Abstract. This is the first in a series of papers laying the foundations for a differential
graded approach to derived differential geometry (and other geometries in characteristic
zero). In this paper, we study theories of supercommutative algebras for which infinitely
differentiable functions can be evaluated on elements. Such a theory is called a super
Fermat theory. Any category of superspaces and smooth functions has an associated
such theory. This includes both real and complex supermanifolds, as well as algebraic
superschemes. In particular, there is a super Fermat theory of C∞-superalgebras. C∞-
superalgebras are the appropriate notion of supercommutative algebras in the world of
C∞-rings, the latter being of central importance both to synthetic differential geometry
and to all existing models of derived smooth manifolds. A super Fermat theory is a
natural generalization of the concept of a Fermat theory introduced by E. Dubuc and
A. Kock. We show that any Fermat theory admits a canonical superization, however
not every super Fermat theory arises in this way. For a fixed super Fermat theory, we
go on to study a special subcategory of algebras called near-point determined algebras,
and derive many of their algebraic properties.
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1. Introduction.

The purpose of this paper is to introduce super Fermat theories. This theory will form the
basis of our approach to differential graded models for derived manifolds. Super Fermat
theories are theories of supercommutative algebras in which, in addition to evaluating
polynomials on elements, one can evaluate infinitely differentiable functions. In particular,
they provide a unifying framework to study the rings of functions of various flavors of
smooth superspaces, e.g. regular functions on algebraic superschemes, smooth functions
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on smooth supermanifolds, and holomorphic functions on complex supermanifolds. The
basic idea is to take seriously the notion that every type of geometry must have its
own intrinsic version of commutative algebra associated to it (with the classical theory
of commutative rings corresponding to algebraic geometry). Of central importance is
the example of C∞-superalgebras which are the appropriate notion of supercommutative
algebras in the world of C∞-rings, the commutative algebras associated to differential
geometry.

A C∞-ring is a commutative R-algebra which, in addition to the binary operations of
addition and multiplication, has an n-ary operation for each smooth function

f : Rn → R,

subject to natural compatibility. They were introduced by W. Lawvere in his Chicago
lectures on categorical dynamics, but first appeared in the literature in [24] and [10]. Their
inception lies in the development of models for synthetic differential geometry [11, 22, 18,
8, 19, 12, 20, 15]; however, recently they have played a pivotal role in developing models
for derived differential geometry [25, 14, 7].

In [13], E. Dubuc and A. Kock introduce Fermat theories, which provide a unifying
framework for the algebraic study of polynomials using commutative rings, and the alge-
braic study of smooth functions using C∞-rings. Fermat theories are, in a precise way,
theories of rings of infinitely differentiable functions. Recall that for a smooth function
f (x, z1, . . . , zn) on Rn+1, there exists a unique smooth function ∆f

∆x
(x, y, z1, . . . , zn) on

Rn+2 – the difference quotient – such that for all x and y,

f (x, z)− f (y, z) = (x− y) · ∆f

∆x
(x, y, z) . (1.1)

Indeed, for x′ 6= y′,
∆f

∆x
(x′, y′, z) =

f (x′, z)− f (y′, z)

x′ − y′

but for x′ = y′,
∆f

∆x
(x′, x′, z) =

∂f

∂x
(x′) , (1.2)

a result known as Hadamard’s Lemma. In fact, if one took (1.2) as a definition of the
partial derivative, all of the classical rules for differentiation could be derived from (1.1)
using only algebra. The key insight of Dubuc and Kock in [13] is that equation (1.1)
makes sense in a more general setting, and one can consider algebraic theories extending
the theory of commutative rings whose operations are labeled by functions satisfying a
generalization of (1.1) called the Fermat property (since Fermat was the first to observe
that it holds for polynomials). For examples and non-examples of Fermat theories, see
Section 2.16.1. Many important properties of C∞-rings hold for any Fermat theory. For
example, if E is a Fermat theory, A an E-algebra, and I ⊂ A an ideal of the underlying
ring, then A/I has the canonical structure of an E-algebra. Moreover, the fact that the
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theory of C∞-rings satisfies the Fermat property is a key ingredient in many well-adapted
models of synthetic differential geometry.

In this paper, we show that the Fermat property is ideally suited to study superge-
ometry, as any Fermat theory admits a canonical superization. The superization of a
Fermat theory is a 2-sorted algebraic theory extending the theory of supercommutative
algebras, and satisfies a modified version of the Fermat property which we call the su-
per Fermat property. An important example of a super Fermat theory is the theory of
C∞-superalgebras, which is the superization of the theory of C∞-rings. However, super
Fermat theories are more general than Fermat theories, as not every super Fermat theory
arises as a superization.

Super Fermat theories are an essential ingredient to our development of a differential
graded approach to derived differential geometry. Of particular importance is the theory
of C∞-superalgebras. Our approach is based upon exploiting the connection between
supercommutativity and differential graded algebras. In [9], we define the concept of
a differential graded E-algebra for a super Fermat theory E, and develop homological
algebra in this setting.

In light of the history of C∞-rings and their role in synthetic differential geometry, it is
natural to believe that super Fermat theories should play a pivotal role in synthetic super-
geometry, but we do not pursue this in this paper. It is worth mentioning however, that
our notion of superization is different from that of Yetter’s [26], as his approach results
in a uni-sorted Lawvere theory, and also applies in a more restrictive context; the super-
ization of the theory of C∞-rings in Yetter’s sense embeds diagonally into our 2-sorted
superization. Our theory is also quite different from that of [21] as his theory concerns
itself with G∞-supermanifolds, whereas our approach is more in tune with supermanifolds
in the sense of [17].

1.1. Organization and main results. In Section 2, we begin by reviewing the concept
of a Fermat theory introduced in [13]. We then introduce the concept of a reduced Fermat
theory, which is a Fermat theory that is, in a precise sense, a “theory of functions.” We
go on to show that we can associate to any Fermat theory a reduced Fermat theory in
a functorial way; moreover, for every commutative ring K there is a maximal reduced
Fermat theory with K as the ground ring (for K = R, we recover the theory C∞ of
smooth functions).

Section 3 introduces the main subject of this paper, the concept of a super Fermat
theory. We show that any Fermat theory has associated to it a canonical super Fermat
theory called its superization, and conversely, any super Fermat theory has an underlying
Fermat theory. Moreover, we prove the following:

1.2. Theorem. (Corollary 3.14) The superization functor

S : FTh→ SFTh

from Fermat theories to super Fermat theories is left adjoint to the underlying functor

( )0 : SFTh→ FTh.
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We also develop some aspects of supercommutative algebra for algebras over a super
Fermat theory and prove a useful property of morphisms of super Fermat theories:

1.3. Theorem. 3.36 Let F : S→ S′ be a morphism of super Fermat theories. Then the
induced functor

F! : SAlg→ S′Alg

preserves finite products.

In Section 4, we begin the study of near-point determined algebras for a super Fermat
theory. This is a generalization of the notion near-point determined introduced in [20] for
finitely generated C∞-rings to the setting of not necessarily finitely generated algebras
over any super Fermat theory. We then prove that near-point determined algebras are
completely determined by their underlying K-algebra, where K is the ground ring of the
theory:

1.4. Theorem. (Corollary 4.38) If A and B are E-algebras and B is near-point deter-
mined, then any K-algebra morphism ϕ : A → B is a map of E-algebras.

This is a broad generalization of the result proven by Borisov in [6] in the case of
C∞-rings. Borisov uses topological methods in his proof, tailored specifically to the case
of C∞-rings. We show that this result holds in a much more general context, and follows
by completely elementary algebraic methods.

We go on to define what it means for a super Fermat theory to be super reduced, a subtle
generalization of the notion of a reduced Fermat theory suitable in the supergeometric
context, and show that any free algebra for a super reduced Fermat theory is near-point
determined. We end this section by investigating to what extent near-point determined
algebras over a super Fermat theory E whose ground ring K is a field are flat. Near-point
determined E-algebras are a reflective subcategory of E-algebras, and hence have their
own tensor product �◦ (coproduct). In particular, we prove the following:

1.5. Theorem. (Lemma 4.56 and Lemma 4.58) For any near-point determined E-algebra
A, the endofunctor

A �◦ ( ) : EAlgnpd → EAlgnpd

preserves finite products and monomorphisms, where EAlgnpd is the category of near-
point determined E-algebras.

Finally, in the appendices, we give a detailed introduction to algebraic theories and
multi-sorted Lawvere theories, mostly following [3, 5], and introduce many of the conven-
tions and notations concerning their use in this paper.
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seminar (formerly known as the “Derived Differential Geometry” seminar) at the Max
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2. Fermat Theories.

2.1. Examples of Lawvere Theories. A review of the basics of algebraic theories
and multi-sorted Lawvere theories, as well as many notational conventions concerning
them, is given in Appendices A and B.

Before presenting Fermat theories in general, we begin by introducing some instructive
motivating examples:

2.2. Example. Let Com be the opposite category of finitely generated free commutative
(unital, associative) rings. Up to isomorphism, its objects are of the form

Z[x1, · · · , xn] ∼= Z[x]⊗n.

Since we are in the opposite category, and the tensor product of commutative rings is the
coproduct, every object of Com is a finite product of the object Z[x]. With this chosen
generator, Com is a Lawvere theory.

It is sometimes useful to take the dual geometric viewpoint. We can consider the
category whose objects are finite dimensional affine spaces An

Z over Z, so their morphisms
are polynomial functions with integer coefficients. This category is canonically equivalent
to Com. Indeed, each affine space An

Z corresponds to the ring Z[x1, · · · , xn], and since
Z[x] is the free commutative ring on one generator, we have the following string of natural
isomorphisms:

Hom (An
Z,Am

Z ) ∼= Z[x1, · · · , xn]m

∼= Hom (Z[x],Z[x1, · · · , xn])m

∼= Hom
(
Z[x]⊗m,Z[x1, · · · , xn]

)
∼= Hom (Z[x1, · · · , xm],Z[x1, · · · , xn]) ,

where Z[x1, · · · , xn]m denotes the underlying set of the ring.
Notice that the affine line AZ is a commutative ring object in Com. Indeed, the

polynomial
m (x, y) = x · y ∈ Z[x, y]

is classified by a morphism
Z[x]→ Z[x, y]

which corresponds to a morphism

m : A2
Z → AZ,
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which is multiplication. Similarly, the polynomial

a (x, y) = x+ y

induces a map
a : A2

Z → AZ,

which is addition. Finally, the ring unit

1 ∈ Z[x]

induces a map
u : A0

Z → AZ

which is the unit map of this ring object.
Let A be a commutative ring. Then it induces a functor

Ã : Com → Set

Z[x1, · · · , xn] 7→ Hom (Z[x1, · · · , xn], A) ,

which is product preserving, hence a Com-algebra. Moreover, since Z[x] is the free
commutative ring on one generator, the underlying set of Ã is Ã (Z[x]) ∼= A, the underlying
set of A.

Conversely, suppose that B is a Com-algebra. Then, as it is a finite product preserving
functor, and the diagram expressing that an object in a category is a ring object only
uses finite products, it follows that the data

(B := B (AZ) ,B (m) ,B (a) ,B (u))

encodes a commutative ring (in Set.) Moreover, it can be checked that if

µ : B ⇒ B′

is a natural transformation between product preserving functors from Com to Set, that

µ (AZ) : B → B′

is a ring homomorphism, and conversely, if

ϕ : A→ A′

is a ring homomorphism,
µ (An

Z) = ϕn : An → A′
n

defines a natural transformation
Ã⇒ Ã′.

It follows that the category ComAlg is equivalent to the category of commutative rings.
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Using the notation (B.2), one has that

Com (n) = Z[x1, · · · , xn]

and its underlying set is given by

Z[x1, · · · , xn] = Com (n, 1) ∼= Hom (An
Z,AZ) .

One may succinctly say that Com is the Lawvere theory whose n-ary operations are
labeled by the elements of Z[x1, . . . , xn], and its algebras are commutative rings.

Notice that for a given commutative ring A, congruences of A are in bijection with
ideals. Indeed, given an ideal I, it defines a subring R (I) of A × A whose elements are
pairs (a, a′) such that

a− a′ ∈ I.

Conversely, given a congruence R � A× A, the subset

I := {a ∈ A | (a, 0) ∈ R.} ,

is an ideal of A.

2.3. Example. Let K be a commutative ring. Then one may consider ComK to be the
opposite category of finitely generated free K-algebras. Up to isomorphism, its objects
are of the form

K[x1, · · · , xn] ∼= K[x]⊗
n
K .

Since we are in the opposite category, tensoring over K corresponds to taking the product,
and this category is a Lawvere theory with generator

K[x] ∼= K⊗Z Z[x].

We see that this Lawvere theory is a particular instance of Remark B.17. Algebras for
this Lawvere theory are precisely K-algebras, and congruences are again ideals. One may
also view the category ComK as the category of finite dimensional affine planes An

K over
K.

2.4. Example. When K = R, one may view the category ComR as the category whose
objects are manifolds of the form Rn and whose morphisms are polynomial functions.
From the geometric view point, it is natural to ask what happens if one allows arbitrary
smooth functions instead. The resulting category, which is a full subcategory of the
category of smooth manifolds Mfd, is a Lawvere theory with generator R. We denote
this Lawvere theory by C∞. It is the motivating example for this paper. It may be
described succinctly by saying its n-ary operations are labeled by elements of

C∞(n,m) = C∞(Rn,Rm).
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Notice that, there is a canonically induced functor

ComR → C∞

sending each manifold to itself, and each polynomial to itself viewed as a smooth function.
This is a map of Lawvere theories, so there is an induced adjunction

ComRAlg
( )]

// C∞Alg,
̂( )

oo

where, for a C∞-algebra A, A] is its underlying R-algebra, and if R is an R-algebra, R̂ is
its C∞-completion. In particular,

̂R[x1, · · · , xn] ∼= C∞ (Rn) .

The functor ( )] is faithful and conservative, therefore one may regard a C∞-algebra as
an R-algebra with extra structure. This extra structure is encoded by a whole slew of
n-ary operations, one for each smooth function

f : Rn → R,

subject to natural compatibility. For example, if M is a smooth manifold, then it induces
a product preserving functor

C∞ (M) : C∞ → Set

Rn 7→ Hom (M,Rn) .

C∞ (M) is a C∞-algebra whose underlying R-algebra is the ordinary ring of smooth
functions C∞ (M) . Given a smooth function

f : Rn → R,

it induces an n-ary operation

C∞ (M) (f) : C∞ (M)n → C∞ (M) ,

defined by
C∞ (M) (f) (ϕ1, · · · , ϕn) (x) = f (ϕ1 (x) , · · · , ϕn (x)) .

C∞-algebras come with their own notion of tensor product (coproduct), and we denote
the C∞-tensor product of A and B by A ©∞ B. Unlike for the ordinary tensor product of
R-algebras, one has for (Hausdorff, second countable) smooth manifolds M and N, the
equality [20]:

C∞ (M) ©∞ C∞ (N) ∼= C∞ (M ×N) .

Hence, they are ideally suited for the theory of manifolds. At the same time, the theory
C∞-algebras closely resembles the theory of commutative rings, as it enjoys a very nice
property, namely the Fermat property, which is the subject of the next subsection.
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2.5. Fermat theories. A Fermat theory is an extension E of Com that has an intrinsic
notion of derivative obeying the expected rules (the chain rule, the Taylor formula, etc.).
Standard notions of differential calculus, such as derivations and differentials, can be
defined for E-algebras. The notion of Fermat theory was introduced and studied by
Dubuc and Kock in [13]. In what follows, we recall some key definitions and results from
that paper.

2.5.1. The Fermat Property. Let E be extension of Com, that is a Lawvere theory
E with a map of Lawvere theories τE : Com → E, i.e. an object of the undercategory
Com/LTh. The structure map τE induces an adjunction

ComAlg
τE!

//EAlg
τ∗Eoo .

Observe first that K = E(0), being the free E-algebra on the empty set, has an underlying
ring structure. Categorically, E(0) is a finite product preserving Set-valued functor, and
composition with τE induces a Com-algebra

Com
τE

−−−−−−−→ E
E(0)

−−−−−−−→ Set.

This Com-algebra is just τ ∗E (E(0)) , and since the underlying set of an algebra for a
Lawvere theory is determined by its value as a functor on the generator, and τE preserves
generators, τ ∗E (E(0)) has the same underlying set as E(0). Now that this is clear, we will
abuse notation and denote τ ∗E (A) , for an E-algebra A, simply by A. On one hand, since
E(0) is the initial E-algebra, there is a unique E-algebra map from K to E(n) for each n.
In particular, it is a map of rings. On the other hand, the unit of the adjunction τE! a τ ∗E
is map of rings

Com(n)→ E(n).

Hence, we have a map of rings

K[x1, . . . , xn] = ComK(n) = K⊗Z Com(n)→ E(n).

Since this is obviously compatible with compositions, we deduce that the structure map
τE : Com→ E factors through ComK. So every E-algebra has an underlying commuta-
tive K-algebra structure. Let us denote the corresponding forgetful functor by

( )] : EAlg −→ ComAlgK

and its left adjoint – the E-algebra completion – by

(̂ ) : ComAlgK −→ EAlg.

We shall refer to K as the ground ring of the theory E.
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2.6. Remark. The name completion should be taken with a grain of salt. For example,
the theory of C∞-algebras is an extension of Com with ground ring R. Consider C as an
R-algebra. We can present it as

C = R[x]/
(
x2 + 1

)
.

It follows that the C∞-completion of C is

Ĉ = C∞ (R) /
(
x2 + 1

)
,

however the function x2 + 1 is a unit in C∞ (R) , so we have that Ĉ = {0}, the terminal
algebra.

2.7. Notation. Denote by � the binary coproduct in EAlg. Denote the free E-algebra
on generators x1, . . . , xn by K{x1, . . . , xn} (or KE{x1, . . . , xn} when there are several the-
ories around and we need to be clear which one we mean). It is synonymous with E(n),
but with the generators named explicitly. If A ∈ EAlg, let

A{x1, . . . , xn} = A�K{x1, . . . , xn}.

It solves the problem of universally adjoining variables to an E-algebra.

2.8. Remark. The E-algebra completion of K[x1, . . . , xn] is K{x1, . . . , xn}.

2.9. Definition. [13] An extension E of Com is called a Fermat theory if for every
f ∈ K{x, z1, . . . , zn} there exists a unique

∆f

∆x
∈ K{x, y, z1, . . . , zn},

called the difference quotient, such that

f(x, z)− f(y, z) = (x− y) · ∆f

∆x
(x, y, z) (2.1)

where z = (z1, . . . , zn). A Fermat theory over Q is a Fermat theory whose structure map
factors through ComQ.

Let FTh (resp. FTh/Q, FThK) denote the full subcategory of Com/LTh (resp.
ComQ/LTh, ComK/LTh) consisting of the Fermat theories (resp. Fermat theories over
Q, Fermat theories with ground ring K).

For the rest of this subsection, let E denote a Fermat theory with ground ring K.

2.10. Note. The ground ring of a Fermat theory over Q always contains Q but is gen-
erally different from it, so the categories FThQ and FTh/Q are different.

An immediate consequence of the Fermat property is the following:
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2.11. Proposition. [13] For any f ∈ K{x1, . . . , xn}, there exist

gi ∈ K{x1, . . . , xn, y1, . . . , yn},

i = 1, . . . , n, such that

f (x1, . . . , xn)− f (y1, . . . , yn) =
n∑
i=1

(xi − yi) · gi (x1, . . . , xn, y1, . . . , yn) . (2.2)

The following corollary is the cornerstone of the theory of Fermat theories:

2.12. Corollary. [13] Let A be an E-algebra, I ⊂ A an ideal in the underlying ring.
Then the induced equivalence relation on A (a ∼ b modulo I iff a − b ∈ I) is an E-
congruence. Consequently, there is a unique E-algebra structure on A/I making the pro-
jection A → A/I a map of E-algebras.

Proof. It suffices to show that if I is an ideal of A, and

a1, . . . , an

and
b1, . . . , bn

are in A such that for each i,
ai − bi ∈ I,

then for each f ∈ E (n, 1) ,

A (f) (a1, . . . , an)− A (f) (b1, . . . , bn) ∈ I.

There exists a unique morphism

ϕ : K{x1, . . . , xn, y1, . . . , yn} → A

sending each xi to ai and each yi to bi. Note that by 2.11 there exists

g1, . . . , gn ∈ K{x1, . . . , xn, y1, . . . , yn}

such that (2.2) holds. Notice for any g ∈ K{x1, . . . , xn, y1, . . . , yn},

ϕ (g) = A (g) (ϕ (x1) , . . . , ϕ (xn) , ϕ (y1) , . . . , ϕ (yn)) .

It follows that

A (f) (a1, . . . , an)− A (f) (b1, . . . , bn) =
n∑
i=1

(ai − bi) · A (gi) (a1, . . . , an, b1, . . . , bn) ∈ I.



ON THEORIES OF SUPERALGEBRAS OF DIFFERENTIABLE FUNCTIONS 1033

2.12.1. Derivatives. Suppose we are given an f ∈ K{x1, . . . , xn}. Fix an i ∈ {1, . . . , n},
let x = xi and consider f as an element of R{x} with R = K{x1, . . . , x̂i, . . . , xn} (the hat
indicates omission). By the Fermat property (2.1), there is a unique ∆f

∆x
∈ R{x, y} such

that

f(x)− f(y) = (x− y) · ∆f

∆x
(x, y).

Define the partial derivative of f with respect to xi to be

∂if =
∂f

∂xi
=

∆f

∆x
(x, x) ∈ R{x} = K{x1, . . . , xn}.

When n = 1, we shall also write f ′(x) for ∂f/∂x1.

As expected, the partial derivatives satisfy the chain rule:

2.13. Proposition. [13] Let ϕ ∈ E(k, 1), f = (f 1, . . . , fk) ∈ E(n, k). Then for all
i = 1, . . . , n we have

∂i(ϕ ◦ f) =
k∑
j=1

(∂if
j)(∂jϕ ◦ f).

Here the partial derivatives can be interpreted as operators

∂i : E(n) −→ E(n)

on the E-algebra E(n), satisfying a “derivation rule” for every k-ary E-operation ϕ on
E(n) [13]. In particular, letting ϕ be addition (resp. the multiplication) we get the
familiar K-linearity (resp. Leibniz rule).

2.14. Remark. We have slightly abused notation since the partial derivative operators
∂i are not morphisms of E-algebras.

2.15. Proposition. (Clairaut’s theorem). The partial derivatives commute:

∂i∂j = ∂j∂i ∀i, j.

Proof. We shall give the proof in the two-variable case only; the general case is proven
in exactly the same way. Let f = f(x, y) ∈ E(2, 1). We obviously have

(f(x, y)− f(z, y))− (f(x,w)− f(z, w)) = (f(x, y)− f(x,w))− (f(z, y)− f(z, w)).

Applying the Fermat property on both sides we get

(x− z)(g(x, z, y)− g(x, z, w)) = (y − w)(h(x, y, w)− h(z, y, w))

for unique difference quotients g and h. Applying the Fermat property again, we get

(x− z)(y − w)φ(x, z, y, w) = (y − w)(x− z)ψ(x, z, y, w)
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for unique difference quotients φ and ψ. By uniqueness, x − z and y − w are not zero-
divisors, hence

φ(x, z, y, w) = ψ(x, z, y, w).

Now, setting x = z and y = w, we obtain the sought after

∂2∂1f(x, y) = ∂1∂2f(x, y).

2.16. Corollary. [13] (The Taylor formula). For any

f ∈ K{x1, . . . , xp, z1, . . . , zq},

n ≥ 0 and multi-indices α and β, there exist unique

hα ∈ K{x1, . . . , xp, z1, . . . , zq}

and (not necessarily unique) gβ ∈ K{x1, . . . , xp, y1, . . . , yp, z1, . . . , zq} such that

f(x + y, z) =
n∑
|α|=0

hα(x, z)yα +
∑
|β|=n+1

yβgβ(x,y, z). (2.3)

Furthermore, if K ⊃ Q, we have

hα(x, z) =
∂αx f(x, z)

α!
,

the usual Taylor coefficients.

2.16.1. Examples and non-examples.

2.17. Example. The theory Com of commutative algebras is itself a Fermat theory,
with ground ring Z. It is the initial Fermat theory. Similarly, ComK is the initial Fermat
theory over K.

2.18. Example. The theory C∞ of C∞-algebras, with

C∞(n,m) = C∞(Rn,Rm),

the set of real smooth functions is a Fermat theory. This is Example 2.4. The category
C∞ is the full subcategory of smooth manifolds spanned by those of the form Rn, and the
ground ring of this theory is R.

2.19. Example. The theory Cω of real analytic algebras, with
Cω(n,m) = Cω(Rn,Rm), the set of real analytic functions is a Fermat theory. It is
equivalent to the full subcategory of real analytic manifolds spanned by those of the form
Rn. The ground ring is again R.
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2.20. Example. The theory H of complex holomorphic algebras, with H(n,m) = H(Cn,Cm),
the set of complex holomorphic (entire) functions, is a Fermat theory. The category is
equivalent to the full subcategory of complex manifolds spanned by those of the form Cn.
The ground ring of this theory is C.

2.21. Example. The theory HR of real holomorphic algebras, with HR(n,m) = H(Rn,Rm),
the set of those entire functions which are invariant under complex conjugation, is a Fer-
mat theory. The ground ring is R.

2.22. Example. Let K be an integral domain, k its field of fractions. Let the theory RK

consist of global rational functions, i.e. rational functions with coefficients in K having
no poles in k. It is a Fermat theory with ground ring k.

2.23. Example. The theory C∞C with C∞C(n,m) = C∞(Cn,Cm), the set of functions
which are smooth when viewed as functions from R2n to R2m, is not a Fermat theory, as
the Fermat property for complex-valued functions implies the Cauchy-Riemann equations.
Likewise, the theory CωC, defined analogously, is not a Fermat theory.

2.24. Example. The theory Ck of k times continuously differentiable real functions is
not a Fermat theory for any 0 ≤ k < ∞: given an f of class Ck, the difference quotient
appearing in (2.1) is only of class Ck−1.

2.25. Example. As shown in [13], if E is a Fermat theory and A is any E-algebra, the
theory EA of E-algebras over A is also Fermat, with A as the ground ring. This gives
many examples of Fermat theories.

We have proper inclusions of Fermat theories

ComR ( HR ( Cω ( C∞, ComR ( ComC ( H and HR ( H,

making various diagrams commute.

2.26. Remark. As C is neither a C∞- nor Cω-algebra, and nor is R an H-algebra,
putting superscripts instead of subscripts in our notation for the theories C∞C, CωC and
HR avoids possible confusion. However, notice that C is an HR-algebra, and HR

C = H.

2.27. Example. Fermat theories have associated geometries. For instance, if X is a
smooth (resp. real analytic, complex) manifold, its structure sheaf OX is actually a sheaf
of C∞- (resp. Cω-, H-) algebras. If X is real analytic, XC its complexification, the Cω-
algebra structure on OX does not extend to OXC , but the underlying HR-structure does
extend to an HR

C = H-algebra structure on OXC .

2.27.1. Evaluations at K-points. Let E be an extension of Com. For the initial
E-algebra K, we can think of its E-algebra structure as a collection of evaluation maps

evn : K{x1, . . . , xn} −→ Set(Kn,K), n ≥ 0, (2.4)
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where, for f = f(x1, . . . , xn) ∈ K{x1, . . . , xn} and

p = (p1, . . . , pn) ∈ Kn,

we denote
f(p) = f(p1, . . . , pn) = ev(f)(p) = evp(f) ∈ K.

Notice that ev is in fact a map of E-algebras; in other words,

evp : K{x1, . . . , xn} → K

is a morphism of E-algebras for each p. Furthermore, Set(Kn,K) has a point-wise E-
algebra structure making evn into a E-algebra map.

The following proposition can be proved in several ways; the short proof below was
suggested by E. Dubuc.

2.28. Proposition. Let E be a Fermat theory, K = E(0). Then, given an arbitrary
E-algebra A, any K-algebra homomorphism φ : A → K is a morphism of E-algebras.

Proof. Let I = Kerφ. On one hand, by Corollary 2.12, there is a unique E-algebra
structure on A/I making the projection π : A → A/I an E-algebra homomorphism. On
the other hand, notice that φ is surjective (since it preserves units), hence it factors as
φ = φ̃ ◦ π, where

φ̃ : A/I → K
is a K-algebra isomorphism. However, since K is initial both as a K-algebra and as a E-
algebra, the E-algebra structure on K is uniquely determined by its K-algebra structure;
therefore, φ̃ is also an isomorphism of E-algebras. It follows immediately that φ is an
E-algebra homomorphism.

2.29. Corollary. Any K-algebra homomorphism

P : K{x1, . . . , xn} −→ K

is of the form evp for some p ∈ Kn.

Proof. P is in fact an E-algebra homomorphism by Proposition 2.28. The conclusion
follows by observing that K{x1, . . . , xn} is the free E-algebra on n generators.

2.29.1. Reduced Fermat theories. As the following examples show, the evaluation
maps (2.4) need not be injective.

2.30. Example. Let E = ComK, where K is a finite ring, with elements labeled k1, . . . , kN .
Then the polynomial

p(x) = (x− k1) · · · (x− kN)

evaluates to 0 on every k ∈ K, and yet is itself non-zero (being a monic polynomial of
degree N).

It is easy to see that this phenomenon cannot occur for ComK with K containing Q.
However, the next example illustrates that it can occur even for theories over Q.



ON THEORIES OF SUPERALGEBRAS OF DIFFERENTIABLE FUNCTIONS 1037

2.31. Example. Consider the C∞-algebra K = C∞(R)0 of germs of smooth functions of
one variable. It can be presented as the quotient of C∞(R) by the ideal mg

0 consisting of
those smooth functions f(x) which vanish on some neighborhood of 0. Let E = C∞K. It
follows (cf. [20], p. 49) that K{y} is the quotient of C∞(R2) by the ideal mtub

x=0 consisting
of those functions f(x, y) which vanish on some tubular neighborhood of the y-axis (i.e. a
set of the form (−ε, ε)×R for some ε > 0). If g is the germ at the origin of some function
g(x) and [f ] is the class modulo mtub

x=0 of some function f(x, y), then evg([f ]) is the germ
of f(x, g(x)) at the origin.

Now, let f(x, y) be a smooth function whose vanishing set contains some neighborhood
of the y-axis but does not contain any tubular neighborhood. Then the class [f ] ∈ K{y}
is non-zero, and yet evg([f ]) = 0 for all g.

2.32. Definition. A Fermat theory E is called reduced if all the evaluation maps (2.4)
are injective.

Thus, reduced theories are “theories of differentiable functions” in the sense that n-ary
operations are labeled by functions from Kn to K. For instance, ComK is reduced for
K ⊃ Q, as are the theories C∞, Cω, H and HR. Non-reduced theories, such as the ones in
Examples 2.30 and 2.31, can be viewed as pathological in some sense. We are now going
to describe a functorial procedure of turning any Fermat theory into a reduced one.

2.33. Definition. Given a Fermat theory E, define Ered by setting

Ered(n, 1) = Im evn = E(n, 1)/Ker(evn).

2.34. Remark. As a category, one can describe Ered as the opposite category of the full
subcategory of EAlg on algebras of the form E (n) /Ker(evn). As a consequence, one has
that the free Ered-algebra on n-generators is E (n) /Ker(evn).

2.35. Proposition. If E is a Fermat theory, Ered is a reduced Fermat theory. Moreover,
the assignment E 7→ Ered is functorial and is left adjoint to the inclusion

FThred ↪→ FTh

of the full subcategory of reduced Fermat theories. The same holds with FTh replaced
with FTh/Q or FThK

Proof. First, Ered is in fact a theory since ev = {evn}n∈N is a map of algebraic theories
from E to EndK (see Example B.19), and Ered = Im(ev), as in Remark B.18; obviously,
Ered is reduced.

To see that Ered remains a Fermat theory observe that, in the Fermat property (2.1)
for E, if f ∈ Ker(evn+1), then ∆f

∆x
∈ Ker(evn+2), and vice versa.

The functoriality and adjointness are clear (the latter follows immediately from the
presentation Ered = E/Ker(ev)).

Finally, the last statement is simply the observation that reduction does not change
the ground ring.
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2.36. Example. If E is as in Example 2.31, its reduction Ered can be described as
follows. Let R{x, y1, . . . , yn} = C∞(Rn+1), the free C∞-algebra on n+1 generators. Then
E(n) = R{x, y1, . . . , yn}/mtub

x=0 while Ered(n) = R{x, y1, . . . , yn}/mg
x=0, where mtub

x=0 is the
ideal of functions vanishing in some tubular neighborhood of the hyperplane x = 0, while
mg
x=0 consists of functions vanishing in some (not necessarily tubular) neighborhood of

x = 0. Clearly, mtub
x=0 ( mg

x=0; in fact, mg
x=0 is the germ-determined closure of mtub

x=0, hence,
viewed as C∞-algebras, Ered(n) is the germ-determined quotient of E(n). Specifically,
Ered(n) consists of germs of smooth functions on Rn+1 at the hyperplane x = 0. In fact,
the free Ered-algebras Ered(n) are formed by adjoining variables to K = C∞(R)0 using
the coproduct in the category of germ-determined C∞-algebras. We refer to [20] for the
appropriate definitions and discussion.

Let us conclude this section by constructing, for any ring K, the maximal reduced
Fermat theory F(K) with K as the ground ring. Indeed, the K-algebra structure on K
amounts to a map of Lawvere theories ComK → EndK, and any reduced Fermat theory
with ground ring K is a subtheory of EndK, as we have seen. F(K) will be the maximal
Fermat subtheory of EndK. More precisely, we have

2.37. Definition. Let f : Kn → K be a function. Given a k = 1, . . . , n, we say that f is
differentiable in the kth variable if there is a unique function ∆f

∆xk
: Kn+1 → K such that

f(. . . , x, . . .)− f(. . . , y, . . .) = (x− y) · ∆f

∆xk
(. . . , x, y, . . .).

This function is then called the difference quotient of f with respect to the kth variable.
Say that f is differentiable if it is differentiable in all the variables. Given N > 1, say
that f is N times differentiable if f is differentiable and all its difference quotients are
N − 1 times differentiable. Finally, say that f is smooth if it is N times differentiable
for all N .

2.38. Proposition-Definition. Let F(K)(n, 1) consist of all smooth functions

f : Kn → K.

Then F is the maximal reduced Fermat theory with ground ring K.

Proof. To see that F(K) is a subtheory of EndK, just observe that the superposition of
smooth functions is again smooth (the chain rule!). By construction, F(K) is a reduced
Fermat theory with ground ring K and for any other Fermat theory E with ground ring K,
the structure map E→ EndK for the E-algebra structure on K factors through F(K).

2.39. Example. F(R) = C∞, while F(C) = H. We do not know what F(Q) is but it
certainly contains RQ (= RZ).

2.40. Nilpotent extensions.
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2.41. Definition. Let K be a commutative ring, A a K-algebra. An extension of A
(over K) is a surjective K-algebra homomorphism

π : A′ → A.

A split extension of A (over K) is an extension

π : A′ → A

together with a section (splitting) ι of π which is also a K-algebra homomorphism. Such
a split extension is called a split nilpotent extension if additionally, the kernel Ker (π) is
a nilpotent ideal.

2.42. Remark. Warning: This notion of extension should not be confused with the
notion of extension used in Galois theory!

2.43. Remark. Notice that any K-algebra map

A → K

is automatically surjective and split in a canonical way; a section is provided by the unique
K-algebra homomorphism

K→ A.

2.44. Definition. A Weil K-algebra is a nilpotent extension of K (over K) which is
finitely generated as a K-module. A formal Weil K-algebra is a nilpotent extension of K
(over K).

2.45. Remark. When K is a field, any formal Weil K-algebra A′ has an underlying K-
algebra of the form K⊕m, with m a nilpotent maximal ideal. Moreover, from the direct
sum decomposition, every element of A′ can be expressed uniquely as a = k + m with
k ∈ K and m nilpotent. If k 6= 0, a is a unit. If k = 0, a is nilpotent. Hence, A′ is a local
K-algebra with the maximal ideal m, and residue field K.

2.46. Remark. By Nakayama’s lemma, if K is a field, it follows that A is a Weil K-
algebra if and only if there exists a surjection

π : A → K

whose kernel is a finitely generated K-module.

Let E be a Fermat theory with ground ring K.
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2.47. Proposition. Let A ∈ EAlg, and

A′
π // A]
ι

ff

be any split nilpotent extension of A] in ComAlgK. Then there is a unique E-algebra
structure on A′, consistent with its commutative algebra structure and making both the
projection

π : A′ → A

and the splitting ι : A → A′ into E-algebra maps. Furthermore, for any E-algebra B, we
have

1. Any K-algebra map Ψ : A′ → B such that the precomposition

ψ = Ψ ◦ ι : A → B

is a map of E-algebras, is a map of E-algebras;

2. Any K-algebra map Φ : B → A′ such that the composition φ = π ◦ Φ : B → A is a
split map of E-algebras, with splitting σ : A → B such that

Φ ◦ σ = ι,

is a map of E-algebras.

Proof. Any element of A′ can be written uniquely as a sum a′ = ι(a) + ã with a ∈ A
and ã ∈ N = Kerπ. Let n be the nilpotence degree of N (so N n+1 = 0). The Taylor
expansion (Corollary 2.16) now provides a unique evaluation of any operation in E on
any tuple of elements of A′. More precisely, let f ∈ E(k, 1) and

a′1 = ι(a1) + ã1, . . . , a
′
k = ι(ak) + ãk ∈ A′.

Use the Taylor formula (2.3) to write

f(x + y) =
n∑
|α|=0

hα(x)yα +
∑
|β|=n+1

yβgβ(x,y),

and define

f(a′1, . . . , a
′
k) = f(a′) =

n∑
|α|=0

ι(hα(a))ãα.

Since the Taylor expansion is compatible with compositions (the generalized chain rule),
this defines an E-algebra structure on A′. It is clearly compatible with its K-algebra
structure and makes both ι and π into E-algebra homomorphisms.
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Now let us prove the properties (1) and (2) of this structure. For (1), observe first
that the direct image ideal Ψ∗(N ) is also nilpotent of degree n. Using our assumptions,
we have

Ψ(f(a′1, . . . , a
′
k)) = Ψ(

n∑
|α|=0

ι(hα(a))ãα) =
n∑
|α|=0

ψ(hα(a))Ψ(ã)α

=
n∑
|α|=0

hα(ψ(a))Ψ(ã)α = f(ψ(a) + Ψ(ã))

= f(Ψ(a′1), . . . ,Ψ(a′k)).

To prove (2), let b ∈ B and decompose

Φ(b) = ιπΦ(b) + Φ̃(b) = ιφ(b) + Φ̃(b)

with
Φ̃(b) = Φ(b)− ιπΦ(b) ∈ N .

We can also decompose
b = σφ(b) + b̃

with
b̃ = b− σφ(b) ∈ Kerφ.

Since Φ is a K-algebra homomorphism, we have

Φ(b) = Φσφ(b) + Φ(b̃) = ιφ(b) + Φ(b̃).

Hence,

Φ̃(b) = Φ(b̃) ∈ N .
Now let f ∈ E(k, 1), b = (b1, . . . , bk) ∈ Bk. Using Taylor’s formula and our assumptions,
we have

Φ(f(b)) = Φ(f(σφ(b) + b̃))

= Φ(
n∑
|α|=0

hα(σφ(b))b̃α +
∑
|β|=n+1

b̃βgβ(σφ(b), b̃))

=
n∑
|α|=0

Φσφ(hα(b))Φ(b̃)α +
∑
|β|=n+1

Φ(b̃)βΦ(gβ(σφ(b), b̃))

=
n∑
|α|=0

ιφ(hα(b))Φ̃(b)
α

+
∑
|β|=n+1

Φ̃(b)
β

Φ(gβ(σφ(b), b̃))

=
n∑
|α|=0

ι(hα(φ(b)))Φ̃(b)
α

= f(ιφ(b) + Φ̃(b)) = f(Φ(b)).
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This has the following important consequences:

2.48. Corollary. Let W be a formal Weil K-algebra. Then there is a unique E-algebra
structure on W consistent with its K-algebra structure. Furthermore, it has the following
properties:

1. Given an arbitrary E-algebra A, any K-algebra homomorphism A →W or W → A
is an E-algebra homomorphism;

2. The algebraic tensor product A⊗W (over K) coincides with the coproduct A�W
of E-algebras;

3. The tensor product of finitely many formal Weil K-algebras is again a formal Weil
K-algebra. Similarly, the tensor product of finitely many Weil algebras is again a
Weil algebra.

Proof. To see thatW supports a unique E-algebra structure making any K-algebra map
to or from W a homomorphism of E-algebras, we invoke Propositions 2.47 and 2.28.

To see that A⊗W is the coproduct in E, observe first that since A⊗ ( ) is a functor,
A ⊗W is a split extension of A. Moreover, its kernel may naturally be identified with
A⊗N = (iW)∗ (N ) , where N is the kernel of the extension W → K, and

iW :W → A⊗W

is the canonical map. It follows that this kernel has nilpotency degree equal to that of
N , so that

A⊗W → A

is a split nilpotent extension. Hence A⊗W supports a unique E-algebra structure making
the canonical inclusions from A and W into E-algebra homomorphisms. Now, suppose
we are given an E-algebra B and maps of E-algebras f : A → B and g : W → B. Then
we get a unique K-algebra map f ⊗ g : A⊗W → B extending f and g. But then f ⊗ g
is an E-algebra map by Proposition 2.47.

For (3), notice that if

W ∼= K⊕m
π // K

σ

ee

and

W ′ ∼= K⊕m′
π′ // K

σ′

ee

are nilpotent extensions, then

W ′ ⊗W
π′′:=π′◦(idW′⊗π)

// K

σ′′:=(idW′⊗σ)◦σ′

ii
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is a split extension of K with

Ker (π′′) ∼= m⊕m′ ⊕ (m⊗m′) ,

which is finitely generated as a K-module if both m and m′ are. This implies (3) holds
for Weil algebras. For the case of general nilpotent extensions, note that if

i′W :W ′ ↪→W ′ ⊗W

and
iW :W ↪→W ′ ⊗W ,

are the canonical maps, then Ker (π′′) = (i′W)∗ (m′)+(iW)∗ (m) . If m is nilpotent of degree
m and m′ is nilpotent of degree n and, then it follows that Ker (π′′) is nilpotent of degree
m+ n− 1.

2.49. Corollary. For any formal Weil K-algebra W , the co-unit

Ŵ] →W

is an isomorphism.

Proof. This follows immediately from (1) of 2.48.

3. Super Fermat Theories

3.1. Superalgebras and superizations.

3.2. Definition. Let K be a commutative ring. A supercommutative superalgebra over
K (or supercommutative algebra) is a Z2-graded associative unital K-algebra

A = {A0,A1}

such that A0 is commutative and for every a ∈ A1,

a2 = 0.

We say that a is of (Grassman) parity ε if a ∈ Aε; we say it is even (resp. odd) if
ε = 0 (resp. ε = 1). Supercommutative superalgebras over K form a category, denoted by
SComKAlg, whose morphisms are parity-preserving K-algebra homomorphisms.

3.3. Remark. The definition implies that

a1a2 = (−1)ε1ε2a2a1

whenever ai ∈ Aεi , i = 1, 2, justifying the term “supercommutative”; if 1
2
∈ K, the

converse also holds.
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3.4. Remark. In our formulation, there is no such thing as elements of mixed parities
in a super commutative algebra A, as A lacks an underlying set. Instead, it has an
underlying Z2-graded set, that is a set of two sets {A0,A1}. Consequently, if a ∈ A0

and b ∈ A1, the expression a + b has no meaning. The advantage of this treatment
is that it behaves nicely with respect to the fact that supercommutative algebras are
algebras for a 2-sorted Lawvere theory. This viewpoint is not essential, as the category
of super commutative algebras as defined in Definition 3.2 is canonically equivalent to
the category non-commutative K-algebras A together with a grading A = A0 ⊕ A1,
making A supercommutative, where the morphisms are algebra morphisms respecting
the grading. If one would like, one may work entirely within the framework of uni-sorted
Lawvere theories as in [26], but this makes things unnecessarily complicated and yields
less flexibility.

There is a forgetful functor

u∗ : SComKAlg −→ Set{0,1}

to the category of Z2-graded sets, whose left adjoint u! assigns to a pair of sets P = (P0|P1)
the free supercommutative superalgebra on the set P0 of even and the set P1 of odd
generators.

3.5. Definition. Given a K-algebra R, the Grassmann (or exterior) R-algebra on n
generators is the free supercommutative R-superalgebra on n odd generators. In other
words, it is generated as an R-algebra by odd elements ξ1, . . . , ξn subject to relations

ξiξj + ξjξi = 0.

Denote this algebra by Λn
R (or simply Λn if R = K).

3.6. Remark. (Λn
R)0 is a Weil R-algebra.

It is easy to see that the free supercommutative K-superalgebra on m even and n odd
generators is nothing but Λn

R with R = K[x1, . . . , xm]. Denote this algebra by

K[x1, . . . , xm; ξ1, . . . , ξn].

Supercommutative superalgebras over K are algebras over a 2-sorted Lawvere theory
SComK, which we now describe. As a category, SComK is equivalent to the opposite of
the category of finitely generated supercommutative K-superalgebras:

SComK(m|n) = K[x1, . . . , xm; ξ1, . . . , ξn].

It is generated by the set {0, 1} of Grassmann parities; the product of m copies of 0 and
n copies of 1 will be denoted by (m|n). The morphisms are

SComK((m|n), (p|q)) = SComK(m|n)p0 × SComK(m|n)q1,
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and the composition is defined by substitution. Notice that the ground ring of SComK
is SCom(0|0) = K.

Observe that ComK sits inside SComK as the full subcategory of “purely even” objects
of the form (m|0), m ∈ N. Clearly, the embedding

ι : ComK −→ SComK, m 7→ (m|0),

is a morphism of algebraic theories, hence induces an adjunction

ComKAlg
ι!
//SComKAlg

ι∗oo ,

such that ι∗A = A0, while ι!A = {A, 0} (the superalgebra with even part equal to A and
trivial odd part).

We now observe that the 2-sorted Lawvere theory SComK satisfies a natural general-
ization of the Fermat property:

Suppose that f is an element of K[x, z1, . . . , zm; ξ1, . . . , ξn]. Then f can be expressed
uniquely in the form

f (x, z, ξ) =
∑

I⊂{1,...,n}

f IξI ,

where if I = {i1, . . . ik} ,
ξI = ξi1 . . . ξik ,

with each f I in K[x, z1, . . . , zm]. (If f is even, f I = 0 for all I with odd cardinality, and
vice-versa for f odd.) By the Fermat property for ComK, for each

I ⊂ {1, . . . , n} ,

there is a unique ∆fI

∆x
(x, y, z) ∈ K[x, y, z1, . . . , zm], such that

f I(x, z)− f I(y, z) = (x− y) · ∆f I

∆x
(x, y, z) .

Let
∆f

∆x
(x, y, z, ξ) :=

∑
I⊂{1,...,n}

∆f I

∆x
(x, y, z) ξI ∈ K[x, y, z1, . . . , zm; ξ1, . . . , ξn].

Then we have that

f (x, z, ξ)− f (y, z, ξ) = (x− y) · ∆f

∆x
(x, y, z, ξ) . (3.1)

Moreover, it is not hard to see that ∆f
∆x

(x, y, z, ξ) is unique with this property.
Suppose now that the role of x and y are played by odd generators. That is, suppose

f ∈ K[x1, . . . , xm; η, ξ1, . . . , ξn]. Then since η2 = 0, f can be uniquely expressed in the
form

f (x, η, ξ) =
∑

I⊂{1,...,n}

hIξI + η ·

 ∑
I⊂{1,...,n}

gIξI

 ,
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with hI and gI in K[x1, . . . , xm]. Let

h (x, ξ) :=
∑

I⊂{1,...,n}

hIξI

and
g (x, ξ) :=

∑
I⊂{1,...,n}

gIξI .

Then we have
f (x, η, ξ) = h (x, ξ) + η · g (x, ξ) .

Notice that h is the value of f at η = 0 while g is the (left) partial derivative ∂f
∂η

of f with
respect to η. Furthermore, we have the following:

f (x, η, ξ)− f (x, θ, ξ) = (η − θ) · g (x, ξ) . (3.2)

Regarding g (x, ξ) as g (x, η, θ, ξ) ∈ K[x1, . . . , xm; η, θ, ξ1, . . . , ξn], we have that

f (x, η, ξ)− f (x, θ, ξ) = (η − θ) · g (x, η, θ, ξ) . (3.3)

Note however that g (x, η, θ, ξ) is not unique with this property; one could also use

g (x, ξ) + (η − θ) · p (x, ξ)

for any p. However, by differentiating (3.3) with respect to η and θ, one sees immediately
that there is a unique such g (x, η, θ, ξ) such that

∂g

∂η
=
∂g

∂θ
= 0,

in other words there exists a unique g which is only a function of x and ξ.
This motivates the following definitions:

3.7. Definition. Let
τS : SCom→ S

be an extension of SCom as a 2-sorted Lawvere theory, where implicitly

SCom = SComZ.

Without loss of generality, assume the objects are given by pairs (m|n) with m and n
non-negative integers, such that τS is the identity on objects when SCom is equipped with
the usual sorting. Denote by

S (0|0) =: K
the initial S-algebra. The free S-algebra S (m|n) is called the free S-algebra on m even
and n odd generators, and is denoted by

K{x1, . . . xm; ξ1, . . . , ξn}.
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3.8. Definition. An extension S of SCom is called a super Fermat theory if for every

f ∈ K{x, z1, . . . , zn; ξ1, . . . , ξn}

there exists a unique ∆f
∆x
∈ K{x, y, z1, . . . , zn; ξ1, . . . , ξn} such that

f(x, z, ξ)− f(y, z, ξ) = (x− y) · ∆f

∆x
(x, y, z, ξ), (3.4)

and for every ϕ ∈ K{x1, . . . , xm; η, ξ1, . . . , ξn} there exists a unique

∆ϕ

∆η
∈ K{x1, . . . , xm; ξ1, . . . , ξn}

such that

ϕ (x, η, ξ)− ϕ (x, θ, ξ) = (η − θ) · ∆ϕ

∆η
(x, ξ) . (3.5)

Denote by SFTh the full subcategory of 2-sorted Lawvere theories under SCom consisting
of those which are super Fermat theories.

3.9. Proposition-Definition. Let E be a Fermat theory with ground ring K. There
exists an algebraic theory SE, the superization of E, with the set {0, 1} of Grassmann
parities as sorts, and with operations given by

SE((m|n), (p|q)) = SE(m|n)p0 × SE(m|n)q1,

where
SE(m|n) = E(m)⊗K Λn.

An E-superalgebra is a SE-algebra.

Proof. The only thing to check is that the composition by substitution is well-defined.
To this end we observe that, as Λn

0 is a Weil algebra,

SE(m|n)0 = E(m)⊗ Λn
0

has a canonical E-algebra structure by Corollary 2.48. Now let

f = f(x1, . . . , xp; ξ1, . . . , ξq) =
∑
k≥0

i1<···<ik

fi1...ik(x
1, . . . , xp)ξi1 · · · ξik

be an element of SE(p|q) (with fi1...ik ∈ E(p) = K{x1, . . . , xp}).
Let g1, . . . , gp ∈ SE(m|n)0, and γ1, . . . , γq ∈ SE(m|n)1. It follows that

f(g1, . . . , gp; γ1, . . . , γq) =
∑
k≥0

i1<···<ik

fi1...ik(g
1, . . . , gp)γi1 · · · γik

is a well-defined element of SE(m|n), of the same parity as f .
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3.10. Notation. Let
K{x1, . . . , xm; ξ1, . . . , ξn}

denote the free SE-algebra onm even generators x1, . . . , xn and n odd generators ξ1, . . . , ξn.

3.11. Proposition. If E is a Fermat theory, its superization SE is a super Fermat
theory.

Proof. The proof is nearly identical to the proof of the super Fermat property for
SComK, so we leave it to the reader.

3.12. Example. Let E = C∞ (Example 2.18). Its superization is the theory SC∞ of
C∞-superalgebras. The free C∞-superalgebra

R{x1, . . . , xm; ξ1, . . . , ξn}

on m even and n odd generators is known as the Berezin algebra. It is often denoted
by C∞(Rm|n) and thought of as the superalgebra of smooth functions on the (m|n)-
dimensional Euclidean supermanifold Rm|n. Thus, SC∞ is the category of real finite-
dimensional Euclidean supermanifolds and parity-preserving smooth maps between them.

Suppose that M is a smooth supermanifold. It induces a functor

C∞ (M) : SC∞ → Set

Rm|n 7→ Hom
(
M,Rm|n) ,

which preserves finite products. This SC∞-algebra is the C∞-superalgebra of smooth
functions on M. By construction, its even elements correspond to smooth functions into
R in the traditional sense:

M→ R = R1|0,

whereas its odd elements correspond to smooth functions into the odd line:

M→ R0|1.

The underlying supercommutative R-algebra of C∞ (M) is the global sections of its struc-
ture sheaf. More generally, the structure sheaf of any smooth supermanifoldM is in fact
canonically a sheaf of C∞-superalgebras.

We will now give a more categorical description of superization. Let S be any 2-sorted
Lawvere theory. Denote by S0 the full subcategory on the objects of the form (n|0) .
Notice that S0 is generated under finite products by (1|0) , so S0 is a Lawvere theory. As
the notation suggests, the free S0-algebra on n generators has underlying set

HomS0 (n, 1) = HomS ((n|0) , (1|0))
∼= S ((n|0))0 .
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This produces a functor
( )0 : LTh{0,1} → LTh

from 2-sorted Lawvere theories to Lawvere theories. By abuse of notation there is an
induced functor

( )0 : SCom/LTh{0,1} → Com/LTh.

Notice that if S is a super Fermat theory, then (3.4) implies that S0 is a Fermat theory.
Hence there is furthermore an induced functor

( )0 : SFTh→ FTh

from super Fermat theories to Fermat theories.
On one hand, the superization of ComK is obviously SComK so we have a map of

theories SComK → SE induced by the structure map ComK → E. On the other hand,
we also have a fully faithful embedding E→ SE sending m to (m|0). The diagram

ComK //

��

E

��

SComK // SE

(3.6)

commutes. Therefore, we have a map of theories

φ : C = SComK
∐

ComK

E −→ SE

3.13. Proposition. The map φ is an isomorphism.

Proof. Suppose that T is an algebraic theory fitting into a commutative diagram of
morphisms of theories

ComK //

��

E

θ

��

SComK
ϕ
// T.

Denote by (N |M) the image ϕ (n|m) in T. (Since θ and ϕ do not necessarily preserve
generators, these need not be unique objects.) The functor θ induces a map of E-algebras

E (n)→ θ∗T (N |0) ,

where θ∗T (N |0) denotes the underlying E-algebra corresponding to (N |0) under the iden-
tification of Top with finitely generated T-algebras. With similar notational conventions,
ϕ induces a map of supercommutative algebras

SComK (0|m) = Λm → ϕ∗T (0|M) .

Since there are canonical T-algebra maps from T (N |0) and T (0|M) to T (N |M) , there
is an induced map of supercommutative algebras

E (n)⊗ Λm → T (N |M)] .

These algebra maps assemble into a finite product preserving functor SE → T making
the diagram commute. It is easy to see that this functor is unique with this property.
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As a corollary, we get a categorical description of superization:

3.14. Corollary. The functor

S : FTh→ SFTh

is left adjoint to
( )0 : SFTh→ FTh.

3.15. Remark. For any super Fermat theory F, the obvious diagram

ComK //

��

F0

��

SComK // F

commutes, and the induced map SF0 → F is the co-unit of the adjunction. The unit of
S a ( )0 is always an isomorphism. Hence FTh is a coreflective subcategory of SFTh.
In particular, S is full and faithful.

3.16. Corollary. An E-superalgebra is a superalgebra with an additional E-algebra
structure on its even part; a morphism of E-superalgebras is a morphism of superalge-
bras whose even component is a morphism of E-algebras.

3.17. Remark. For any extension E of Com (not necessarily Fermat), we could simply
define SE to be the pushout C (3.6). However, this notion would not be very useful
since one would generally have too few interesting examples of SE-algebras unless E was
Fermat. For instance, if E = Ck for some k < ∞ (Example 2.24), even the Grassmann
algebras Λn are not E-superalgebras for n sufficiently larger than k.

One can draw the same conclusions from this “super” Fermat property as we did from
the Fermat property (2.1). For instance, we have

3.18. Theorem. Let S be a super Fermat theory, A ∈ SAlg,

I = {I0, I1}

a homogeneous ideal. Then I induces an S-congruence on A, so that the superalgebra
A/I is canonically an S-algebra and the projection A → A/I is an S-algebra map.

3.19. Remark. The ground ring K = S(0|0) of a super Fermat theory S is generally
a superalgebra, whereas for S = SE it is an algebra (i.e. has trivial odd part). This
indicates that not all super Fermat theories arise as superizations of Fermat theories.
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3.20. Example. Let A ∈ SEAlg. Then the theory SEA of A-algebras enjoys the super
Fermat property. If A has trivial odd part,

SEA = S(EA);

otherwise, SEA is not the superization of any Fermat theory.

Lastly, we comment on two ways of turning a superalgebra into an algebra. We already
mentioned the inclusion of theories

ι : E −→ SE, m 7→ (m|0)

inducing the adjunction (ι∗ ` ι!):

EAlg
ι!
//SEAlg

ι∗oo ,

with ι∗ taking an E-superalgebra A to its even part A0, while ι! takes an E-algebra B to
the E-superalgebra {B, 0}.

Now, observe that the inclusion ι has a right adjoint

π : SE→ E,

defined on objects by π(m|n) = m for all n, and on morphisms by setting all the odd
generators to 0. Since π is a right adjoint, it preserves products and is, therefore, a
morphism of algebraic theories (though not of Lawvere theories, as it fails to preserve
generators). Hence it induces an adjunction π∗ ` π!:

SEAlg
π!
//EAlg

π∗oo

Moreover, π∗ and ι! are naturally isomorphic (Remark A.41), so the inclusion ι! of algebras
into superalgebras has also a left adjoint, π!, sending a superalgebra A to the algebra
Ard = A/(A1) = A0/(A1)2. Here, (A1) denotes the homogeneous ideal generated by A1,
namely, (A1)1 = A1, (A1)0 = A2

1.
Observe that Ard is generally different from Ared obtained by setting all the nilpotents

to 0, since A0 may contain nilpotent elements which are not products of odd elements.
Moreover, although each element in A1 is nilpotent, the ideal A1 is not, unless A is finitely
generated as an A0-algebra: otherwise, one can have non-vanishing products of arbitrarily
many different odd elements.

3.21. Nilpotent Extensions of Superalgebras. The concepts of split nilpotent
extensions, and of Weil algebras, generalize readily to the setting of supercommutative
algebras:
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3.22. Definition. Let K be a supercommutative ring, A a K-algebra. A split nilpotent
extension of A is a K-algebra A′ together with a surjective K-algebra homomorphism

π : A′ → A

such that N = Ker π is a nilpotent ideal, and a section (splitting) σ of π which is also a
K-algebra homomorphism.

A (super) Weil K-algebra is an extension of K which is finitely generated as a K-
module.

3.23. Remark. When K is a purely even algebra (for instance, a field), the phrase “Weil
K-algebra” is ambiguous as it could either mean a Weil algebra when viewing K as a
commutative algebra, a Weil algebra viewing K as a supercommutative algebra. We shall
always mean the latter, and if we need to distinguish, we will call the former a purely
even Weil K-algebra. In this context, by Nakayama’s lemma, any Weil algebra is a split
nilpotent extension, but the converse is false.

3.24. Remark. When K is a field, any nilpotent extension A′ of K has an underlying
K-algebra of the form K ⊕ m, with m an nilpotent maximal ideal, and A′ is a local K-
algebra with unique maximal ideal m, and residue field K. Moreover, m must contain A1,
since K is purely even.

Let E be a super Fermat theory with ground ring K. Proposition 2.47, and its proof
readily generalizes to the supercommutative case:

3.25. Proposition. Let A ∈ EAlg, π : A′ → A] any split nilpotent extension of A]
in SComAlgK. Then there is a unique E-algebra structure on A′, consistent with its
supercommutative algebra structure and making both the projection

π : A′ → A

and the splitting σ : A → A′ into E-algebra maps. Furthermore, for any E-algebra B, we
have

1. Any K-algebra map Ψ : A′ → B such that the precomposition

ψ = Ψ ◦ ι : A → B

is a map of E-algebras, is a map of E-algebras;

2. Any K-algebra map Φ : B → A′ such that the composition φ = π ◦ Φ : B → A is a
split map of E-algebras, with splitting σ : A → B such that

Φ ◦ σ = ι,

is a map of E-algebras.
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3.26. Corollary. Let W be a split nilpotent extension of K in SComAlgK. Then there
is a unique E-algebra structure on W consistent with its super K-algebra structure. Fur-
thermore, it has the following properties:

1. Given an arbitrary E-algebra A, any super K-algebra homomorphism A → W or
W → A is an E-algebra homomorphism;

2. The algebraic tensor product A⊗W (over K) coincides with the coproduct A�W
of E-algebras;

3. The tensor product of finitely many (super) Weil algebras is again a Weil algebra.

3.27. Corollary. For any formal Weil K-algebra W , the co-unit

Ŵ] →W

is an isomorphism.

3.28. Remark. Proposition 3.25, Corollary 3.26, and Corollary 3.27 (as well as Proposi-
tion 2.47, Corollary 2.48, and Corollary 2.49) remain valid for a larger class of examples.
One can define a locally nilpotent extension in the same way as a nilpotent extension,
with the role of nilpotent ideals generalized to locally nilpotent ideals. Recall that an
ideal I is locally nilpotent if every finitely generated subideal of I is nilpotent. This is
equivalent to asking for each element of the ideal I to be nilpotent. The reason for this
is that the operations of E are finitary ; therefore, to evaluate an operation on a finite
tuple of elements, we need only use the Taylor expansion up to the nilpotence order of
the subideal generated by their nilpotent parts, rather than of the whole ideal, which may
be infinite.

An important example of a locally nilpotent but not globally nilpotent extension is an
infinitely generated Grassmann algebra.

3.29. Some constructions.

3.29.1. Ideals. Recall that, given a supercommutative superalgebraA and homogeneous
ideals I1, . . . , Ir of A, we can form their sum ΣkIk, product

∏
k Ik and intersection

⋂
k Ik,

which are again ideals of A. Two ideals I, J ⊂ A are called coprime if I + J = (1).
The following is a standard fact from commutative algebra (see [4], the proof given

there carries over verbatim to the super case).

3.30. Proposition. Let Ak = A/Ik, k = 1, . . . , r, let φk : A → Ak be the canonical
projections and let

φ = (φ1, . . . , φr) : A −→
∏
k

Ak.

1. If the ideals I1, . . . , Ir are mutually coprime, then
∏

k Ik =
⋂
k Ik;

2. The homomorphism φ is surjective iff the Ik’s are mutually coprime;
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3. In any case, Kerφ =
⋂
k Ik.

Let φ : A → B is a homomorphism of superalgebras and I ⊂ A is a (homogeneous)
ideal, we can form its direct image φ∗I ⊂ B as the ideal (φ(I)) generated by the image
of I under φ. It consists of finite sums of homogeneous elements of the form bφ(a) with
b ∈ B, a ∈ I (in other words,

φ∗I = B ⊗A I

as a B-module).

3.31. Proposition.

1. φ∗ preserves arbitrary sums and finite products of ideals;

2. if I, J ⊂ A are coprime, so are φ∗I and φ∗J .

Proof. Left to the reader.

Now let S be a super Fermat theory with ground ring K. Recall that S-congruences on
S-algebras are the same thing as homogeneous ideals in the underlying superalgebras. Let
A ∈ SAlg and let P = (P0|P1), where P0 ⊂ A0, P1 ⊂ A1 are subsets; let (P ) denote the
homogeneous ideal generated by P . Observe that the quotient A/(P ) is the coequalizer
of the pair of maps

S(P ) ⇒ A,

where the top map sends each generator xp to the corresponding element p ∈ A, while
the bottom one sends each xp to 0. The following is then immediate:

3.32. Proposition. Let F : S→ S′ be a map of super Fermat theories,

SAlg
F!

//S′Alg
F ∗oo

the corresponding adjunction, A ∈ SAlg, I ⊂ A a homogeneous ideal. Then

F!(A/I) = F!A/u∗I,

where
u : A −→ F ∗F!A

is the unit of the adjunction.

3.32.1. Completions, coproducts and change of base. Applying the above propo-
sition to the special case of the structure map SComK → S we get:
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3.33. Corollary. Let A ∈ SComKAlg, I ⊂ A a homogeneous ideal, Â ∈ SAlg the
S-algebra completion of A. Then

Â/I = Â/Î,

where Î = u∗I for u : A → (Â)] the unit of the adjunction.

Let now B ∈ SAlg. The map u : K → B induces a map of theories S → SB; the
corresponding adjunction takes the form

SAlg
B�K( )

// SBAlg
( )◦u

oo
= B/SAlg

where the right adjoint is simply precomposition with u, i.e. it is the functor assigning
the underlying S-algebra, while the left adjoint is the change of base. Notice that the unit
of the adjunction is the canonical inclusion into the coproduct:

ι : A −→ B �A.

3.34. Corollary. If A ∈ SAlg, I ⊂ A a homogeneous ideal, then

B � (A/I) = (B �A)/ι∗I

3.35. Corollary. Let Ai ∈ SAlg, Ii ⊂ Ai homogeneous ideals, i = 1, 2. Then

(A1/I1)� (A2/I2) = (A1 �A2)/(ι1,∗I1 + ι2,∗I2),

where ιi : Ai → A1 �A2 are the canonical inclusions. In particular, if

Ai = S(Pi)/Ii,

are presentations, then

A1 �A2 = S(P1 q P2)/(ι1,∗I1 + ι2,∗I2).

3.35.1. Products. As is the case for all algebraic theories, products of S-algebras are
computed “pointwise”, i.e. on underlying sets. What is quite remarkable is that, in sharp
contrast with general algebraic theories, finite products are preserved by the left adjoints
of algebraic morphisms between categories of algebras over (super) Fermat theories.

3.36. Theorem. Let F : S → S′ be a morphism of super Fermat theories. Then F! :
SAlg→ S′Alg preserves finite products.
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Proof. Let A1, . . . ,Ar be S-algebras, and

A =
∏
k

Ak

their product. Pick any presentation of A, i.e. a pair of sets

P = (P0, P1)

and a surjective homomorphism

φ : S(P ) −→ A.

Composing with the canonical projections, we get surjective homomorphisms

φk : S(P ) −→ Ak, k = 1, . . . , r,

so that
φ = (φ1, . . . , φr).

Let Ik = Kerφk for each k, and I = Kerφ, so that

Ak = S(P )/Ik and A = S(P )/I.

Since φ is surjective, the Ik’s are mutually coprime by Proposition 3.30. Therefore,

I =
⋂
k

Ik =
∏
k

Ik.

Now apply F!. We have
F!Ak = S′(P )/u∗Ik

by Proposition 3.32, and the ideals u∗Ik are mutually coprime by Proposition 3.31. There-
fore, the map

ψ = (F!φ1, . . . , F!φr) : S′(P ) −→
∏
k

F!Ak

is surjective by Proposition 3.30 and its kernel is

Kerψ =
⋂
k

u∗Ik =
∏
k

u∗Ik = u∗(
∏
k

Ik) = u∗I

by Propositions 3.30 and 3.31. Therefore,∏
k

F!Ak = S′(P )/u∗I = F!A = F!(
∏
k

Ak)

and ψ = F!φ.
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3.37. Corollary.

1. For any super Fermat theory S with ground ring K, the completion functor

(̂ ) : SComKAlg −→ SAlg

preserves finite products;

2. for any S-algebra B, the change of base functor

B � ( ) : SAlg −→ SBAlg

preserves finite products.

3.38. Remark. One can easily see by repeating the above arguments (or by restriction)
that the results of this subsection remain valid for morphisms of Fermat theories (not
super), and more generally, for morphisms of algebraic theories (over Com) between
Fermat theories and super Fermat theories.

3.39. Remark. In general, for a morphism F : T → T′ of algebraic theories, the left
adjoint F! seldom preserves products. For instance, the free T-algebra functor Set →
TAlg almost never does.

3.40. Remark. Although they preserve finite products, left adjoints of algebraic mor-
phisms of categories of algebras over (super) Fermat theories generally fail to preserve
other finite limits. For instance, consider the structure map ComR → C∞ and the corre-
sponding C∞-completion functor

(̂ ) : ComRAlg −→ C∞Alg.

The equalizer of the shift by 1 map

φ : R[x] −→ R[x], x 7→ x+ 1

and the identity is R, while the equalizer of

φ̂ : R{x} −→ R{x}

and the identity is isomorphic to C∞(S1): there are no non-constant periodic polynomials,
but lots of periodic smooth functions.

3.40.1. Localizations. We end this section by giving a brief account of localization in
the context of super Fermat theories. If Σ ⊂ A is any subset of a E-algebra A, with E
a (super) Fermat theory, one can form the localization of A with respect to Σ, A{Σ−1} .
There is a canonical E-algebra map

l : A → A
{

Σ−1
}
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which satisfies the following universal property:
Given any E-algebra B, any E-algebra map

ϕ : A → B

which send every element of Σ to a unit extends uniquely to a E-algebra map

A
{

Σ−1
}
→ B.

Even in the case where Σ is multiplicatively closed, the localization of A with respect
to Σ can not usually be computed by the methods customary to commutative algebra.
However, the universal properties of A{Σ−1} give rise to a canonical presentation. Let

A{Σ} = A�K {Σ} = A
{

(xs)s∈Σ

}
,

where K {Σ} is the free E-algebra on |Σ|-generators (or the free E-algebra on |Σ0|-even
generators and |Σ1|-odd generators, in the super case). Then

A
{

Σ−1
}

= A
{

(xs)s∈Σ

}
/ ((1− s · xs)) ,

where ((1− s · xs)) is the ideal generated by all elements of the form 1− s · xs, for some
s ∈ Σ.

3.41. Remark. Of course, if Σ1 is non-empty, A{Σ−1} = {0}.

For certain Fermat theories (besides those of the form ComK), e.g. the theory of C∞-
algebras, other descriptions of localizations are possible. For example, if f ∈ C∞ (Rn) ,
and Σ = {f} , then

C∞ (Rn)
{
f−1
} ∼= C∞ (U) ,

where
U = f−1 (R/ {0})

(c.f. [20]).

4. Near-point Determined Algebras

In this section, we introduce for a (super) Fermat theory E its subcategory of near-point
determined algebras. We then go on to prove many of their pleasant properties.

4.1. Radicals. In this subsection, let E be either a Fermat theory or a super Fermat
theory, and let Q be a full subcategory of EAlg.

4.2. Definition. Given an A ∈ EAlg and Q ∈ Q, a Q-point of A is a homomorphism
p : A → Q; a Q-point of A is a Q-point for some Q ∈ Q.
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4.3. Definition. An ideal P of a E-algebra A is said to be a Q-ideal if P is the kernel
of some Q-point p. Denote the set of Q-ideals by SpecQ (A) . Let I be an arbitrary ideal
of A. Define the Q-radical of I to be the ideal

RadQ (I) =
⋂
P⊇I

P∈SpecQ(A)

P.

We call RadQ (0) the Q-radical of A, and will denote it by RQ (A) .

4.4. Remark. Assume that E = Com. If Q is the subcategory of integral domains,
then a Q-ideal is the same as a prime ideal, so SpecQ (A) is the prime spectrum and the
Q-radical of A is the same thing as the nilradical. When Q is the subcategory of fields,
a Q-ideal is the same thing as a maximal ideal, SpecQ (A) is the maximal spectrum,
and the Q-radical of A is the same thing as the Jacobson radical. Another example is
the W-radical considered in [15], Section III.9, and is closely related to the concept of
near-point determined algebras discussed in Section 4.30.1 of this paper.

4.5. Proposition. For any ideal I of a E-algebra A, we have

1) RadQ (I) = π−1
I (RQ (A/I)) , where

πI : A → A/I

is the canonical projection.

2) RadQ (RadQ (I)) = RadQ (I) .

Proof. Condition 1) follows immediately from the lattice theory of ideals. For 2), observe
that for any Q-point p of A, such that

Ker (p) ⊇ I,

p (a) = 0 for all a ∈ RadQ (I) , by definition.

4.6. Corollary. For every E-algebra A, RadQ (RQ (A)) = RQ (A) .

4.7. Proposition. For a E-algebra A, the following conditions are equivalent:

1) RQ (A) = 0.

2) There is an embedding

A ↪→
∏
α

Qα

of A into a product of algebras in Q.

3) For any pair of maps f, g : B → A we have

∀Q ∈ Q, ∀ p : A → Q, p ◦ f = p ◦ g =⇒ f = g.

4) For any element a ∈ A, if p (a) = 0 for all Q-points p, then a = 0.
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Proof. Suppose 1) holds. Choose for each Q-ideal P a homomorphism A → QP with
QP ∈ Q whose kernel is P, and denote the associated embedding

A/P ↪→ QP

by ϕP . Denote

ϕ :=
∏

P∈SpecQ(A)

ϕP :
∏

P∈SpecQ(A)

A/P ↪→
∏

P∈SpecQ(A)

QP ,

and consider the canonical composite

A θ−→
∏

P∈SpecQ(A)

A/P ϕ−→
∏

P∈SpecQ(A)

QP .

The kernel of θ is RadQ (A) = 0, hence the composite is an embedding of A into a product
of algebras in Q. 2) =⇒ 3) is obvious. Now, suppose that 3) holds. For simplicity, we
will assume that E is Fermat as opposed to super Fermat, however the proof for the
super case is nearly identical. Suppose that a ∈ A has p (a) = 0 for every Q-point of A.
Consider the free E-algebra on one generator, K{x}. There is a natural bijection

Hom (K{x},A) ∼= A,

whereA is the underlying set ofA. Each element t ofA corresponds to a unique morphism
λAt : K{x} → A sending x to t. Now, p ◦ λAa = p ◦ λA0 , for all p : A → Q, with Q ∈ Q,
since both expressions are equal to λQ0 , the morphism

K{x} → Q

classifying the element 0 ∈ Q. Assuming 3), it follows that λAa = λA0 , hence a = 0.
4) =⇒ 1) is obvious.

4.8. Definition. If an E-algebra A satisfies either of the equivalent conditions of Propo-
sition 4.7, it is said to be Q-point determined. Denote the full subcategory of Q-point
determined algebras by EAlgQdet. An ideal I is said to be Q-point determined (or Q-
radical) if RadQ (I) = I.

4.9. Remark. If A is Q-point determined, then any sub-E-algebra B of A is also Q-point
determined.

4.10. Remark. Assume that E = Com. If Q is the subcategory of integral domains,
then a commutative ring is Q-point determined if and only if it is reduced. When Q is
the subcategory of fields, a commutative ring is Q-point determined if and only if it is
Jacobson semisimple (a.k.a semiprimitive).

4.11. Proposition. Let A be any E-algebra, and I an ideal. Then A/I is Q-point
determined if and only if I is.
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Proof. For any ideal J of A such that J ⊇ I, πI (J) = 0 if and only if J = I, where

πI : A → A/I

is the canonical projection. Hence

RQ (A/I) = πI (RadQ (I)) = 0

if and only if RadQ (I) = I.

4.12. Corollary. For any A, A/RQ (A) is Q-point determined.

4.13. Proposition. Let I be an ideal of A. Then I is Q-point determined if and only if
I is the kernel of a homomorphism f : A → B, with B a Q-point determined algebra.

Proof. Suppose that I is Q-point determined. Then by Proposition 4.11, A/I is Q-point
determined, and I is the kernel of

A → A/I.

Conversely, suppose that f : A → B and B is Q-point determined. Then A/Ker (f) is a
sub-E-algebra of B, so is Q-point determined. So by Proposition 4.11, Ker (f) is Q-point
determined.

4.14. Proposition. The assignment A 7→ A/RQ (A) extends to a functor

LQ : EAlg→ EAlgQdet

which is left adjoint to the inclusion, with the unit ηA : A → A/RQ (A) given by the
canonical projection.

Proof. If φ : A → B is a map and a ∈ RQ (A), then for every Q ∈ Q and every
g : B → Q we have g(φ(a)) = (g ◦ φ)(a) = 0, so

φ(a) ∈ RQ (B) ,

and thus LQ is indeed a functor. It is left adjoint to the inclusion with the described unit
since any map from an arbitrary A to a Q-point determined B must send the elements of
RQ (A) to 0, hence factors uniquely through ηA.

4.15. Remark. Given a subcategory Q of EAlg, we may consider its saturation Q with
respect to arbitrary products and subobjects, i.e. the smallest subcategory of EAlg which
is closed under arbitrary products and subobjects, which contains Q. On one hand, by
Proposition 4.7, the category of Q-point determined algebras is contained in Q. On the
other hand, by Proposition 4.14 the full subcategory EAlgQdet is reflective, hence closed
under arbitrary limits. In particular, it is closed under arbitrary products. Moreover, by
Remark 4.9, EAlgQdet is closed under subobjects. Hence, Q is contained in EAlgQdet.

Therefore the subcategory EAlgQdet of EAlg may be identified with the saturation Q.
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Notice that this notion of saturation makes sense in a much more general context, even
where many of the various equivalent conditions in Proposition 4.7 do not make sense.

Recall that the radical of an ideal I in a commutative ring A is given by

√
I = {a ∈ A| an ∈ I for some n ∈ Z+}.

This is the same as RadQ (I) , when Q is the subcategory of ComAlg consisting of
integral domains. An important property of the radical is that for any two ideals I and
J of A, √

I ∩ J =
√
I ∩
√
J. (4.1)

An analogous equation holds for the Jacobson radical of ideals. A natural question is, for
Q any subcategory of EAlg, when does (4.1) hold? The following proposition offers a
partial answer:

4.16. Proposition. If each Q in Q is an integral domain, then the following equation
is satisfied

RadQ (I ∩ J) = RadQ (I) ∩RadQ (J) (4.2)

for all A ∈ EAlg and all I and J ideals of A.

Proof. Suppose that each Q in Q is an integral domain. Notice that the inclusion

RadQ (I ∩ J) ⊆ RadQ (I) ∩RadQ (J)

is always true. It suffices to show the reverse inclusion. Let

p : A → Q

be a Q-point of A, such that p (I ∩ J) = 0. Notice that IJ ⊆ I ∩ J, so

p (ij) = p (i) p (j) = 0 (4.3)

for all i ∈ I and j ∈ J. Suppose that p (I) 6= 0. Then there exists i ∈ I such that
p (i) 6= 0. In this case, equation (4.3) holds in Q, which is an integral domain. It follows
that p (j) = 0, for all j ∈ J, i.e. p (J) = 0. So, for every Q-point p whose kernel contains
I ∩ J , either Ker (p) contains I or it contains J. It follows that

RadQ (I) ∩RadQ (J) ⊆ RadQ (I ∩ J) .
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This last proposition explains why (4.2) is satisfied in the case of prime and Jacobson
radicals. If Q does not consist entirely of integral domains, equation (4.2) may still be
satisfied for coprime ideals, as the following proposition shows:

4.17. Proposition. If every algebra Q in Q is a local E-algebra, then for all E-algebras
A and all coprime ideals I and J of A, equation (4.2) holds.

Proof. It suffices to show that if p : A → Q is a Q-point of A such that

p (I ∩ J) = 0,

then either p (I) = 0 or p (J) = 0. Since I and J are coprime, there exists ζ ∈ I and ω ∈ J
such that

ζ + ω = 1.

Hence
p (ζ) + p (ω) = 1.

Since Q is local, either p (ζ) or p (ω) is a unit, otherwise they would both be in the unique
maximal ideal m of Q, but this would imply that 1 ∈ m, which is absurd. Assume without
loss of generality that p (ζ) is a unit. Then, for all j ∈ J,

p (ζj) = p (ζ) p (j) = 0,

and since p (ζ) is a unit, this implies p (j) = 0, for all j ∈ J.

4.18. Corollary. If every algebra Q in Q is a local E-algebra, then the reflector

LQ : EAlg→ EAlgQdet

preserves finite products.

Proof. The reflector LQ always preserves the terminal algebra. Let A and B be E-
algebras. Consider the composite of surjections

A× B
pr1

−−−−−−−→ A
ηA

−−−−−−−→ A/RQ (A) ,

and similarly with the role of A and B exchanged. Their kernels are RadQ ({0} × B) and
RadQ (A× {0}) respectively. Notice that these two ideals are coprime since the former
contains (0, 1) and the latter contains (1, 0) . Hence, by Proposition 3.30, it follows that
the induced map

A× B → A/RQ (A)× B/RQ (B)

is surjective, with kernel RadQ ({0} × B) ∩RadQ (A× {0}) . Since every algebra Q in Q
is a local E-algebra, by Proposition 4.17, this kernel is equal to

RadQ (({0} × B) ∩ (A× {0})) = RadQ (0) = RQ (A× B) .
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By the first isomorphism theorem, it follows that

LQ (A× B) = (A× B) /RQ (A× B)
∼= A/RQ (A)× B/RQ (B)

= LQ (A)× LQ (B) .

4.19. Remark. By the same proof, LQ also preserves finite products if every algebra Q
in Q is an integral domain.

4.19.1. Relative Reduction. Let E be a super Fermat theory, and let Q be a full
subcategory of EAlg. Denote by

jQ : Q ↪→ EAlg

the full and faithful inclusion. Consider the forgetful functor

UE : EAlg→ Set{0,1}.

Denote the composite by
KQ := UE ◦ jQ.

The Z2-graded object
{
KQ

0
,KQ

1

}
of SetQ, may be regarded as a E-algebra in the topos

SetQ. For each Q ∈ Q, there is universal map of 2-sorted Lawvere theories

χQ : E→ EndUE(Q)

classifyingQ. (See Example B.19.) Hence, for all (n|m) and (p|q) , the functor χQ provides
natural maps

E ((n|m) , (p|q))→ Set
(
Qn0 ×Qm1 ,Q

p
0 ×Q

q
1

)
.

Pick f ∈ E ((n|m) , (p|q)) , then the maps (χQ (f))Q∈Q assemble into a natural transfor-

mation (i.e. a map in SetQ)

ev (f) : KQ
n

0
×KQ

m

1
→ KQ

p

0
×KQ

q

1
.

This yields functions

ev(n|m),(p|q) : E ((n|m) , (p|q))→ SetQ
(
KQ

n

0
×KQ

m

1
,KQ

p

0
×KQ

q

1

)
. (4.4)

Note that
E ((n|m) , (1|0)) ∼= K

{
x1, · · · , xn, ξ1, · · · , ξm

}
0

and
E ((n|m) , (0|1)) ∼= K

{
x1, · · · , xn, ξ1, · · · , ξm

}
1
.

Hence, we get even and odd evaluation maps:

ev
(n|m)
0 : K

{
x1, · · · , xn, ξ1, · · · , ξm

}
0
→ SetQ

(
KQ

n

0
×KQ

m

1
,KQ

0

)
and

ev
(n|m)
1 : K

{
x1, · · · , xn, ξ1, · · · , ξm

}
1
→ SetQ

(
KQ

n

0
×KQ

m

1
,KQ

1

)
.
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4.20. Remark. If E is a non-super Fermat theory, all of this construction carries through;
however, one only needs to use one sort.

4.21. Definition. The super Fermat theory E is Q-reduced if for all (n|m) the evalua-

tion maps ev
(n|m)
0 and ev

(n|m)
1 are injective.

4.22. Proposition. A super Fermat theory E is Q-reduced if and only if each finitely
generated free E-algebra is Q-point determined.

Proof. Suppose that for some n and m, K {x1, · · · , xn, ξ1, · · · , ξm} is not Q-point deter-
mined. Then there is a non-zero

f ∈ K
{
x1, · · · , xn, ξ1, · · · , ξm

}
such that ϕ (f) = 0 for all

ϕ : K
{
x1, · · · , xn, ξ1, · · · , ξm

}
→ Q,

with Q ∈ Q. So, for all Q-points ϕ, we have

ϕ (f) = Q (f)
((
ϕ
(
x1
)
, · · · , ϕ (xn)

)
,
(
ϕ
(
ξ1
)
, · · · , ϕ (ξm)

))
= 0. (4.5)

Since K {x1, · · · , xn, ξ1, · · · , ξm} is free, this implies for all Q and any collection

a1, · · · , an

of even elements of Q and
b1, · · · , bm

odd elements,
Q (f) ((a1, · · · , an) , (b1, · · · , bm)) = 0.

Hence, for all Q,
χQ (f) = χQ (0) .

In particular, this implies that the evaluation map ev(n|m) of the same parity as f is not
injective.

Conversely, suppose that each finitely generated free E-algebra is Q-point determined.
Suppose that f and g are in K {x1, · · · , xn, ξ1, · · · , ξm} , have the same parity, and

ev(n|m) (f) = ev(n|m) (g) .

By equation (4.5), this implies that for all Q-points ϕ, ϕ (f − g) = 0. By Proposition 4.7,
this implies that f = g, so that each evaluation map is injective.
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4.23. Corollary. A super Fermat theory E is Q-reduced if and only if each free E-
algebra is Q-point determined.

Proof. If every free E-algebra is Q-point determined, then E is Q-reduced by Proposition
4.22. Suppose that E is Q-reduced. By the same proposition, every finitely generated
E-algebra is Q-point determined. Let T be some Z2-graded set and let E (T) be the
free E-algebra on T. Suppose that f and g are two elements thereof and that for every
Q-point

p : E (T)→ Q,

p (f) = p (g) . Since E (T) is a filtered colimit of finitely generated free algebras, there
exists a finite Z2-graded subset T0 of T such that f and g are in the image of

i : E (T0)→ E (T) .

Say i
(
f̃
)

= f and i (g̃) = g. Let

q : E (T0)→ Q

be any Q-point. Then q can be extended along i to a Q-point p, for example, by setting

p (t) = q (t)

for all t ∈ T0, and by letting p be zero on all other generators. This implies that

q
(
f̃
)

= pi
(
f̃
)

= p (f) .

Hence q
(
f̃
)

= q (g̃) for every Q-point q, and hence f̃ = g̃, since E (T0) is finitely

generated, and hence Q-point determined. Therefore, f = g, and E (T) is also Q-point
determined.

4.24. Remark. A non-super Fermat theory E is reduced if and only if it is K-reduced,
where K is the full subcategory of E spanned by the initial E-algebra K.

4.25. Definition. Let E be a super Fermat theory, and let Λ denote the subcategory of
E consisting of the Grassman algebras (Definition 3.5.) The super Fermat theory E is
super reduced if it is Λ-reduced.

4.26. Proposition. If E is a reduced Fermat theory, SE is a super reduced super Fermat
theory.
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Proof. By Proposition 3.11, SE is a super Fermat theory. It suffices to show that it is
super reduced. By Proposition 4.22, it suffices to show that for all n and m, E (n)⊗ Λm

is Λ-point determined. Since E is reduced, by Proposition 4.22, each E (n) is K-point
determined, hence by Proposition 4.7, there is an embedding

ψ : E (n) ↪→
∏
α

K.

Consider now the composite

E (n)⊗ Λm →

(∏
α

K

)
⊗ Λm →

∏
α

Λm.

The first morphism is injective since Λm is free, hence flat as a K-module. The second is
always injective. Hence, we have an embedding of E (n)⊗ Λm into a copy of algebras in
Λ, so by Proposition 4.7, we are done.

Define a 2-sorted Lawvere theory EndKQ
by setting

EndKQ
((n|m) , (p|q)) = SetQ

(
KQ

n

0
×KQ

m

1
,KQ

p

0
×KQ

q

1

)
.

Notice that (4.4) yields a canonical map of theories evQ : E → EndKQ
. It is easy to see

that E is Q-reduced if and only if this map is faithful. Moreover, the Z2-graded set

SetQ
(
KQ

n

0
×KQ

m

1
,KQ

)
:=
{

SetQ
(
KQ

n

0
×KQ

m

1
,KQ

0

)
,SetQ

(
KQ

n

0
×KQ

m

1
,KQ

1

)}
has the point-wise structure of an E-algebra, and the morphisms ev

(n|m)
0 and ev

(n|m)
1 define

an E-algebra map

ev
(n|m)
Q : K

{
x1, · · · , xn, ξ1, · · · , ξm

}
→ SetQ

(
KQ

n

0
×KQ

m

1
,KQ

)
.

4.27. Definition. Given a super Fermat theory E, we define its Q-reduction EQred to
be the image of evQ. Explicitly, the finitely generated EQred-algebra on the sort (n|m) is
given by

EQred (n|m) = Im
(

ev
(n|m)
Q

)
= E (n|m) /Ker

(
ev

(n|m)
Q

)
.

4.28. Remark. By the proof of Proposition 4.22 one sees that

Ker
(

ev
(n|m)
Q

)
= RQ (E (n|m)) ,

so that EQred (n|m) = LQ (E (n|m)) .

The proof of Proposition 2.35 readily generalizes:
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4.29. Proposition. If E is a super Fermat theory, EQred is a Q-reduced super Fermat
theory. Moreover, the assignment E 7→ EQred is functorial and is left adjoint to the
inclusion

SFThQred ↪→ SFTh

of the full subcategory of Q-reduced super Fermat theories. In particular, super reduced
super Fermat theories are a reflective subcategory of super Fermat theories.

4.30. Near-point determined superalgebras.

4.30.1. Near-point determined superalgebras.

4.31. Definition. Let N denote the class of formal Weil K-algebras. An E-algebra
which is N-point determined is said to be near-point determined. Denote the associated
subcategory by EAlgnpd.

4.32. Remark. If one replaces the role of nilpotent extensions with that of locally nilpo-
tent extensions, (as in Remark 3.28), one arrives at an equivalent definition of near-point
determined. The reason is that if

A → K

is a locally nilpotent extension with kernel N, the natural map

A →
∞∏
n=0

A/Nn+1

is an embedding into a product of formal Weil algebras, hence A is near-point determined.

4.33. Remark. In light of Remark 2.45, from Corollary 4.18 it follows that, if K is a
field, each formal Weil K-algebra is local, so the reflector

LN : EAlg→ EAlgnpd

preserves finite products.

4.34. Proposition. If E is a super reduced super Fermat theory, then each free E-algebra
is near-point determined.

Proof. Since Λ ⊂ N, the result follows from Corollary 4.23.
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We will now give an alternate characterization of what it means to be near-point
determined. First, we will make some basic observations. Suppose that

p : A → K

is a K-point of an E-algebra A, where K is the ground ring. Let M denote the kernel of
p. For any k ≥ 0, there is a canonical factorization

A
π &&

p
// K

A/Mk+1
p .

p̃

88

If π (a1) , . . . π (ak+1) are arbitrary elements of Ker (p̃) , then each

ai ∈Mp,

so
π (a1) π (a2) · · · π (ak+1) = π (a1a2 · · · ak+1) = 0.

So, Ker (p̃) is nilpotent of degree k and therefore A/Mk+1
p is a formal Weil K-algebra. We

introduce the notation
A(k)
p := A/Mk+1

p .

We note that A(k)
p is universal among formal Weil K-algebras of nilpotency degree k cov-

ering the K-point p. I.e., if
ρ :W → K

is a formal Weil K-algebra with Ker (ρ)k+1 = 0, and

ϕ : A →W

is such that
ρ ◦ ϕ = p,

then there is a unique factorization

A
π
��

ϕ
////W

ρ

��

A(k)
p

ϕ̃

==

p̃
// K.

4.35. Proposition. An E-algebra A is near-point determined if and only if the canonical
map

A →
∏

p:A→K

∞∏
k=0

A(k)
p (4.6)

is injective.
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Proof. Since each A(k)
p is a formal Weil K-algebra, if (4.6) is injective, it is an embedding

of A into a product of formal Weil K-algebras, so A is near-point determined. Conversely,
suppose that A is near-point determined. Notice that the kernel of (4.6) is the intersection
over all K-points p of A and all k ≥ 1, of Ker(p)k. Let a be a non-zero element of A. Then
there exists a morphism φ : A →W to a formal Weil K-algebra such that φ (a) 6= 0. The
algebra W comes equipped with a surjection

ρ :W → K.

Let p := ρ ◦ φ and let Mp denote the kernel of p. Notice that

φ (Mp) ⊂ Ker (ρ) .

Let n be the nilpotency degree of Ker (ρ) . Then there is a unique factorization of φ of the
form

A λ−→ A/Mn+1
p = A(n)

p

φ̃−→W .

Since φ (a) 6= 0, λ (a) 6= 0, so a is not in Mn+1
p . Hence, a is not in the kernel of (4.6). It

follows that (4.6) is injective.

4.36. Remark. It follows that a C∞-algebra is near-point determined in the sense of
Definition 4.31 if and only if it is near-point determined in the sense of [6].

4.37. Lemma. Suppose that F : T′ → T is a morphism of S-sorted Lawvere theories. Let
D be the full subcategory of T-algebras on those algebras A with the property that for any
T-algebra B, any T′-algebra morphism

f : F ∗ (B)→ F ∗ (A)

is of the form F ∗ (g) for a unique T-algebra morphism

g : B → A.

Then D is closed under subobjects and arbitrary limits in TAlg.

Proof. The fact that D is closed under arbitrary limits is clear by universal properties,
since F ∗ is a right adjoint. Suppose that

j : C ↪→ A

is a sub-T-algebra of A, with A ∈ D. We wish to show that C is in D. Let

ϕ : F ∗ (B)→ F ∗ (C)

be a T′-algebra morphism. We wish to show that for all

f ∈ T ((ns) , (ms)) ,
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the following diagram commutes

∏
s

Bnss
∏
s
ϕnss

��

B(f)
//
∏
s

Bmss
∏
s
ϕmss

��∏
s

Cnss
C(f)

//
∏
s

Cmss .

(4.7)

Notice, however, that the following two diagrams commute since j and F ∗ (j) ◦ f are
T-algebra maps: ∏

s

Cnss
∏
s
jnss

��

C(f)
//
∏
s

Cmss

∏
s
jmss

��∏
s

Anss
A(f)

//
∏
s

Amss

∏
s

Bnss
∏
s
ϕnss

��

B(f)
//
∏
s

Bmss
∏
s
ϕmss

��∏
s

Cnss
∏
s
jnss

��

∏
s

Cmss

∏
s
jmss

��∏
s

Anss
A(f)

//
∏
s

Amss .

Since j is a monomorphism, this implies that diagram (4.7) commutes, so we are done.

4.38. Corollary. If A and B are E-algebras and B is near-point determined, then any
K-algebra morphism ϕ : A] → B] is a map of E-algebras.

Proof. This is true when B is a formal Weil algebra by Corollary 3.26. The result now
follows from Lemma 4.37, since by definition, any near-point determined E-algebra is a
subalgebra of a product of formal Weil algebras.

4.39. Remark. In case that E = C∞, Corollary 4.38 gives a completely algebraic proof
of [6], Proposition 8. (The proof in [6] uses topological methods.)

4.40. Remark. The near point determined condition in Corollary 4.38 is necessary. It
was shown in [23], that there is a counterexample in the case of C∞-algebras. In slightly
more detail, by Borel’s theorem (c.f. [20]), the canonical R-algebra map

T : C∞ (R)0 → R[[x]],
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from the algebra of germs of smooth functions at the origin, to the algebra of formal
power series, assigning the germ of a function f its Taylor polynomial, is surjective. By
Corollary 2.12, this endows R[[x]] with the canonical structure of a C∞-algebra, making
T a C∞-map. Reichard proves (assuming the axiom of choice) in [23] that there exists an
R-algebra map

φ : R[[x]]→ C∞ (R)0

splitting T , which sends x to the germ of the identity function. If φ were a C∞-algebra
map, φ ◦ T would be too, and since the latter sends the generator x to itself, one would
have to have that φ ◦ T = idC∞(R)0

. This is not possible, since the existence of non-zero
flat functions imply T is clearly not an isomorphism.

Suppose that E is super Fermat. Consider the composite of adjunctions

EAlgnpd
iN

// EAlg
LNoo

( )]

// SComAlgK.
̂( )

oo
(4.8)

By Corollary 4.38, the composite ( )] ◦ iN is full and faithful. Similarly for E Fermat.
Hence we have the following corollary:

4.41. Corollary. Suppose that E is super Fermat. The category EAlgnpd of near-point
determined E algebras is a reflective subcategory of SComAlgK. In particular, for each

near-point determined E-algebra A, A is isomorphic to LN applied to Â]. Similarly for E
Fermat.

4.41.1. Finitely generated near-point determined superalgebras.

4.42. Definition. Suppose that E is super Fermat. For each k ≥ 0, m,n ≥ 0 the
(n|m)-dimensional kth jet algebra is defined to be the supercommutative K-algebra J k

n|m =

K[x1, . . . , xn; ξ1, . . . , ξm]/mk+1
0 , where m0 = (x1, . . . , xn; ξ1, . . . , ξm). Similarly for E Fer-

mat, one has jet algebras J k
n .

4.43. Remark. Clearly, each J k
n|m is a Weil algebra.

4.44. Proposition. Each

J k
n|m
∼= K

{
x1, . . . , xn; ξ1, . . . , ξm

}
/mk+1

0

as an E-algebra for any super Fermat theory with ground ring K. (And similarly for J k
n

when E is not super.)

Proof. Notice that by Proposition 3.32, K {x1, . . . , xn; ξ1, . . . , ξm} /mk+1
0 can be identi-

fied with the E-completion of the Weil algebra

K[x1, . . . , xn; ξ1, . . . , ξm]/mk+1
0 ,

so we are done by Corollary 2.49.
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4.45. Proposition. Every Weil algebra is a quotient of some J k
n|m.

Proof. Let π :W → K be a Weil K-algebra. As a K-module,

W ∼= K⊕N ,

with N finitely generated. Let a1, . . . , an be generators of N0 and b1, . . . , bm be generators
of N1. Then there exists a surjective K-algebra map

φ : K[x1, . . . , xn; ξ1, . . . , ξm]→W

sending each xi to ai and each ξj to bj. Let k be the nilpotency degree of N = Ker (π).
Then I := Ker (φ) ⊇ mk+1

0 , hence W is a quotient of J k
n|m.

4.46. Remark. Both Proposition 4.44 and Proposition 4.45 have non-finitely generated
analogues; one may introduce jet algebras with infinitely many generators, and then
Proposition 4.44 holds and Proposition 4.45 holds for formal Weil K-algebras. The proofs
are the same.

4.47. Proposition. If A is a finitely generated E-algebra and

p : A → K

is a K-point of A, then each A(k)
p , is a Weil algebra.

Proof. Since A is finitely generated, there exists a surjection

ϕ : K
{
x1, . . . , xn; ξ1, . . . , ξm

}
→ A.

If p : A → K is a K-point of A, then by composition there is an induced K-point q of
K {x1, . . . , xn; ξ1, . . . , ξm} . Denote by

u : K
{
x1, . . . , xn; ξ1, . . . , ξm

}
→ K

the unique K-point sending each of the generators to zero. For every K-point t of
K {x1, . . . , xn; ξ1, . . . , ξm} , consider the automorphism

θt : K
{
x1, . . . , xn; ξ1, . . . , ξm

}
→ K

{
x1, . . . , xn; ξ1, . . . , ξm

}
xi 7→ xi − t

(
xi
)

ξj 7→ ξj − t
(
ξj
)
,

with inverse θ−t. Let Mp denote the kernel of p. Notice that the following diagram com-
mutes

K {x1, . . . , xn; ξ1, . . . , ξm} ϕθq
//

u

��

A
p

uu

π

��

K A/Mk+1
p .

p̃
oo
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Hence, the image of each generator under πϕθq is in Ker (p̃) , which has nilpotency degree
k. It follows from Proposition 4.44 that there is a commutative diagram

J k
n|m

ϕ̃
//

ũ ��

A/Mk+1
p

p̃
}}

K

such that ϕ̃ is surjective. Since J k
n|m is a Weil algebra, Ker (ũ) is finitely generated as a

K-module. Notice that we have a canonical isomorphism of K-modules

Ker (p̃) ∼= Ker (ũ) /Ker (ϕ̃) ,

so hence Ker (p̃) is also finitely generated and A(k)
p is a Weil algebra.

4.48. Notation. Let W denote the full subcategory of EAlg spanned by Weil K-
algebras and their homomorphisms.

4.49. Corollary. If A is a finitely generated E-algebra which is near-point determined,
it is W-point determined.

Proof. This follows immediately from Proposition 4.35 and Proposition 4.47.

4.50. Remark. From Corollary 4.49, it follows that if A is a finitely generated C∞-
algebra, then it is near-point determined in the sense of Definition 4.31 if and only if it is
near-point determined in the sense of [20].

4.51. Remark. Since W ⊂ N, if A is a W-point determined E-algebra, then it is also
near-point determined. By Corollary 4.49, the converse is true provided that A is finitely
generated. However, the converse is not true in general, as the following example shows.
It was suggested to us by Pierre Lairez:

Let E = ComK, K a field. Let

A := K [u, x1, x2, · · · ] /
(
u2, (xixj − δiju) |i,j

)
.

Let ū and x̄i denote the images of u and each xi in A, respectively. Consider the canonical
projection to K with kernel

m = (ū, x̄1, x̄2, · · · ) .
Notice that m4 = 0, so that A is a nilpotent extension of K.

Suppose that ϕ : A → W is a morphism to a Weil algebra which does not annihilate
ū. The image of ϕ is a subalgebra of a Weil algebra. By [20], Corollary 3.21 b), the image
of ϕ is also a Weil algebra. Hence, we may assume without loss of generality that ϕ is
surjective. Hence

A →W → K

(where the latter map is the one defining W as an extension of K) is also surjective, and
its kernel must be m. This means, that A→W → K and π : A → K can only differ by an
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automorphism of K- but this automorphism must be an automorphism of K-algebras, so
must be the identity. Hence, we have that the natural diagram commutes. This implies
that Ker(ϕ) = I must be a subideal of m which does not contain ū, and such that m/I is
a finitely generated K-module.

If no finite K-linear combination of x̄1, x̄2, . . . is in I, then the images of all the x̄i in
m/I would be linearly independent, so m/I would be infinite dimensional. Hence, there
exists some

y =
∞∑
i=1

aix̄i ∈ I,

with all but finitely many ai zero, and at least one ai non-zero. Without loss of generality,
assume that a1 is nonzero. Then

x1y =
∞∑
i=1

aix̄1x̄i

=
∞∑
i=1

aiδi1ū

= a1ū ∈ I,

and hence ū ∈ I, which is a contradiction.

Finally, we note that Weil (super) algebras enjoy the following useful property ([13],
remark directly preceding Section 2.)

4.52. Proposition. For any W ∈W, the functor

W �− : EAlg→ EAlg

has a left adjoint, ( )W : EAlg → EAlg. The same holds in ComAlgK. In particular,
W-points of an algebra A are in bijection with K-points of AW . Moreover ([16], Theorem
9.3.1) if A is free (respectively finitely generated) so is AW .

4.53. Remark. This property corresponds to exponentiability in EAlgop: if A corre-

sponds to A, W to W , then AW = AW in EAlgop.

4.54. Flatness of near-point determined superalgebras. In this subsection,
E will be a fixed (possibly super) Fermat theory whose ground ring K is a field. We
will investigate the properties of the intrinsic tensor product of near-point determined
E-algebras and derive some important properties of it. These properties seem to suggest
that every near-point determined E-algebra is flat with respect to this intrinsic tensor
product, which we state as a conjecture at the end of this subsection.

Recall that the inclusion
EAlgnpd ↪→ EAlg

admits a left-adjoint LN (Proposition 4.14). In particular, since EAlg is both complete
and cocomplete, EAlgnpd also enjoys both of these properties. However, as with all
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reflective subcategories, colimits are computed by first computing the colimit in the larger
category, in this case EAlg, and then applying the reflector LN. In particular, from this
observation, there is an intrinsic notion of tensor product (i.e. coproduct) of near-point
determined E-algebras, which we shall denote by the binary operation �◦ , and may not
agree a priori with �.

4.55. Definition. A near-point determined E-algebra is flat if the endofunctor

A �◦ ( ) : EAlgnpd → EAlgnpd

preserves finite limits (i.e. is left exact.)

4.56. Lemma. For any near-point determined E-algebra A, the endofunctor

A �◦ ( ) : EAlgnpd → EAlgnpd

preserves finite products.

Proof. The endofunctor in question factors as

EAlgnpd ↪→ EAlg
A�( )

−−−−−−−→ EAAlg
( )◦u

−−−−−−−→ EAlg
LN

−−−−−−−→ EAlgnpd.

By Corollary 3.37, A � ( ) preserves finite products, and by Remark 4.33, LN does as
well. The rest of the functors are right adjoints, so it follows that the composite preserves
finite products.

We have the following extension of Corollary 2.48:

4.57. Proposition. LetW be a formal Weil K-algebra. ThenW viewed as an E-algebra
(as in Corollary 2.48) is near-point determined. Moreover, if A is any other near-point
determined E-algebra, the natural map A] ⊗ W → (A �◦ W)] is an isomorphism. In
particular, A⊗W is near-point determined as an E-algebra.

Proof. By Proposition 4.7, W is clearly near-point determined. It suffices to show that
A] ⊗W with its canonical structure of an E-algebra is near-point determined. Let

j : A ↪→
∏
α

Wα

be an embedding into a product of formal Weil algebras, whose existence is ensured by
Proposition 4.7. Then, since K is a field, the tensor product of K-algebras is left exact
(and hence also preserves monomorphisms), and we have an embedding

j ⊗ idW : A⊗W ↪→ (
∏
α

Wα)⊗W .

The canonical map

(
∏
α

Wα)⊗W →
∏
α

(Wα ⊗W)

is also a monomorphism, as this is a property of vector spaces over K. By Corollary
2.48, each Wα ⊗ W is a formal Weil algebra. So, A ⊗ W embeds into a product of
formal Weil algebras, and hence is near-point determined, again by Proposition 4.7.
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4.58. Lemma. Let A be a near-point determined E-algebra. Then the endofunctor

A �◦ ( ) : EAlgnpd → EAlgnpd

preserves monomorphisms.

Proof. Let i : B ↪→ C be a monomorphism of near-point determined E-algebras. Suppose
that

idA �◦ i : A �◦ B → A �◦ C

is not a monomorphism. Then there exists non-zero element k ∈ A �◦ B in its kernel.
So, there exists a homomorphism φ : A �◦ B → W to a formal Weil algebra, such that
φ (k) 6= 0. Denote by

iA : A → A �◦ B

the canonical morphism, and similarly for B. Notice that the following diagram commutes:

A �◦ B φiA�◦ idB //

idA�◦ i
��

W �◦ B = //

idW �◦ i
��

W ⊗B

idW⊗i

��

A �◦ C φiA�◦ idC //W �◦ C = //W ⊗ C.

The homomorphism
idW ⊗ i :W ⊗B →W ⊗ C

is a monomorphism since tensoring with K-algebras preserves monomorphisms, since K
is a field. Notice that φ factors as

A �◦ B
φiA�◦ idB
−−−−−−−→W �◦ B

idW �◦ φiA
−−−−−−−→W �◦ W

∇
−−−−−−−→W ,

hence
(φiA �◦ idB) (k) 6= 0.

It follows that
(idW ⊗ i) (φiA �◦ idB) (k) 6= 0,

whereas
(φiA �◦ idC) (idA �◦ i) (k) = 0

since k is in the kernel. This is a contradiction.
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Note that any left exact functor preserves monomorphisms. In particular, in order for
taking the �◦ -tensor product with a near-point determined E-algebra to be left exact, it is
necessary that it preserve monomorphisms. In fact, for commutative rings, the converse is
true. That is, for R a commutative ring and A an R-algebra, one has the following result:

A is flat if and only if the endofunctor A⊗R( ) ComR → ComR preserves monomor-
phisms.

(This can be proven by using square-zero extensions to show that if tensoring with A
preserves monomorphisms ofR-algebras, it also preserves monomorphisms ofR-modules.)
In light of Lemma 4.58, the following conjecture seems plausible:

4.59. Conjecture. Every near-point determined E-algebra is flat.

In light of Lemma 4.56, to show that Conjecture 4.59 is true, it suffices to show that
for any near-point determined E-algebra A, the endofunctor

A �◦ ( ) : EAlgnpd → EAlgnpd

preserves pullbacks, or equalizers; either would suffice1. We offer the following partial
result:

4.60. Lemma. Let
P

��

// C
g

��

B f
// D

be a pullback diagram of near-point determined E-algebras, and consider the pullback
diagram

P ′

��

// A �◦ C
idA�◦ g
��

A �◦ B idA�◦ f // A �◦ D.
The canonical map

A �◦ P → P ′

is a monomorphism.

Proof. Consider the canonical monomorphism

P → B × C.

By Lemma 4.58 and Lemma 4.56, the induced morphism

A �◦ P → (A �◦ B)× (A �◦ C)

is a monomorphism, and this map factors through A �◦ P → P ′.

1In fact, one would only need to show it preserves coreflexive equalizers.
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A. Algebraic theories

In this appendix, we give a rapid introduction to the formalism of abstract algebraic
theories. Nearly all the material may be found in [3] and we claim no originality for it.
This appendix is included merely as a convenience to the reader.

A.1. Definition. [5, 3] An (abstract) algebraic theory is a small category T with finite
products.

A.2. Remark. Any algebraic theory T has a terminal object; it is the empty product.

We adjoined the parenthetical adjective abstract since we have not provided the data
of a chosen set of generators. Much of the theory of algebraic theories works well at this
level of generality, but for many applications, it is important to consider the generators
as part of the data. This is precisely what one needs to consider algebras as a (family of)
sets with extra structure. We discuss this in Section B. For now, we will simply give the
following definition:

A.3. Definition. A set
S ⊂ Ob(T)

of objects of T is said to generate T as an algebraic theory if very object of T is isomorphic
to the product of finitely many objects from S.

A.4. Remark. Since any algebraic theory T is small, the set of all objects of T is in
particular (a very redundant) set of generators.

A.5. Definition. [5, 3] Given an algebraic theory T, a T-algebra (in Set) is defined to
be a finite product preserving functor

A : T→ Set.

T-algebras form a category TAlg, with natural transformations as morphisms; they span
a full subcategory of the functor category SetT. A category C is said to be algebraic if it
is equivalent to TAlg for some algebraic theory.

A.6. Remark. A T-algebra
A : T→ Set

must send the terminal object in T to the singleton set.

A.7. Remark. Suppose that T has a chosen generating set S. This enables us to describe
an algebra A by a collection of sets

A = {As = A(s)|s ∈ S}

together with finitary operations

A(f) :
N∏
i=1

Anisi −→ As, s1, . . . , sN , s ∈ S, ni ∈ N
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for each morphism f of T, satisfying coherence conditions following from functoriality
and preservation of products. Indeed, since S generates T, then every object t is of the
form

t ∼=
∏
s∈S

sns

for some integers ns ≥ 0, with only finitely many non-zero. It follows that

A (t) ∼=
∏
s∈S

A (s)ns .

When the set S is a singleton, up to equivalence, we can assume that T has the non-
negative integers as objects, with product given by addition, 0 as the terminal object,
and with 1 as the generator. In this case a T-algebra is the same thing as a set A = A(1)
together with finitary operations A(f) : An → A corresponding to the morphisms f ∈
T(n, 1) and satisfying structure equations coming from the composition of morphisms. In
general, we may replace T, up to equivalence, by a category whose objects are S-indexed
families of non-negative integers. We will discuss this in detail in Section B.

A.8. Remark. The Yoneda embedding

YTop : Top −→ SetT

actually factors through TAlg (since representable functors preserve all limits, hence
in particular, finite products) and identifies Top with the full subcategory of finitely-
generated free T-algebras (see Remark B.14).

A.9. Remark. Let Z be any set, and let A : T → Set be an algebra for an algebraic
theory T. Notice that the functor

( )Z : Set → Set

X 7→ XZ = Hom (Z,X)

is right adjoint to the functor X 7→ X × Z, so preserves all limits. In particular, the
functor

AZ := ( )Z ◦ A : T→ Set

is a T-algebra. If k is a generator of T, we have

AZk = AZ(k) = AZk = Hom(Z,Ak),

with the operations applied “pointwise”.

A.10. Sifted Colimits.
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A.11. Definition. A category D is said to be sifted if for every finite set X, (regarded
as a discrete category) and every functor

F : D×X → Set,

the canonical morphism (
lim−→

∏
x∈X

F (d, x)

)
−→

∏
x∈X

lim−→F (d, x)

is an isomorphism. A sifted colimit in C is a colimit of a diagram

F : D→ C,

with D a sifted category.

A.12. Remark. Sifted colimits commute with finite products in Set (by definition).
Notice the similarity between sifted colimits, and filtered colimits, which commute with
all finite limits in Set. In particular, filtered colimits are a special case of sifted colimits.

A.13. Definition. Let lim−→ (R ⇒ A) be a coequalizer in a category C. It is a reflexive
coequalizer if for all objects C, the induced map

HomC (C,R)→ HomC (C,A)× HomC (C,A)

is injective, and hence determines a relation on the set HomC (C,A) , and moreover, this
relation is reflexive.

In Set, one can easily check that reflexive coequalizers commute with finite products.
The following proposition follows:

A.14. Proposition. Reflexive coequalizers are sifted colimits.

A.15. Proposition. [3] A category C is cocomplete if and only if it has all sifted colimits,
and binary coproducts. Similarly, a functor preserves all small colimits if and only if it
preserves all sifted colimits and binary coproducts.

Proof. The standard proof that all colimits can be constructed out of arbitrary coprod-
ucts and coequalizers only uses reflexive coequalizers. The result now follows since any
coproduct is a filtered colimit of finite coproducts.

The following proposition is standard:

A.16. Proposition. [2] A category D is sifted if and only if its diagonal functor is final.

A.17. Corollary. [2] Any category D with finite coproducts is sifted.

Recall that for a small category C, one can construct a category Ind (C) of Ind-
objects of C, that is formal filtered colimits of objects of C. Formally, Ind (C) is the free
cocompletion of C with respect to filtered colimits. One can also do the analogous thing
for sifted colimits:
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A.18. Definition. Let C be a small category. We define Sind (C) to be the free cocom-
pletion of C with respect to sifted colimits. It is a category under C,

YSind : C→ Sind (C)

determined uniquely up to equivalence by the property that the functor YSind satisfies the
following universal property:

For all categories B with sifted colimits, composition with YSind induces an equivalence
of categories

Funsift (Sind (C) ,B)
∼

−−−−−−−→ Fun (C,B) ,

where Funsift (Sind (C) ,B) is the full subcategory of the functor category
Fun (Sind (C) ,B) spanned by those functors which preserve sifted colimits.

A.19. Proposition. [3] For a small category C, Sind (C) may be constructed as the
full subcategory of the presheaf category SetC

op

- the free cocompletion of C- spanned by
those presheaves which are sifted colimits of representables, and YSind may be taken as the
codomain-restricted Yoneda embedding.

A.20. Proposition. The functor

YSind : C→ Sind (C)

preserves any finite coproducts that exist in C.

Proof. Let C and D be objects of C for which C
∐
D exists. By Proposition A.19, we

can identify Sind (C) with a subcategory of SetC
op

and YSind with the Yoneda embedding.
Let

X = lim−→Y (Eγ)

be a sifted colimit. This represents an arbitrary object of Sind (C) . We have the following
chain of natural isomorphisms:

Hom
(
Y (C

∐
D),lim−→Y (Eγ)

) ∼= (
lim−→Y (Eγ)

)
(C
∐
D)

∼= lim−→Hom
(
C
∐

D,Eγ

)
∼= lim−→ (Hom (C,Eγ)× Hom (D,Eγ))

∼=
(
lim−→Hom (C,Eγ)

)
×
(
lim−→Hom (D,Eγ)

)
∼= lim−→Y (Eγ) (C)× lim−→Y (Eγ) (D)

∼= Hom
(
C, lim−→Y (Eγ)

)
× Hom

(
D, lim−→Y (Eγ)

)
.
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A.21. Corollary. If C has binary coproducts, then Sind (C) is cocomplete.

Proof. By Proposition A.15, it suffices to show that Sind (C) has binary coproducts.
However, by Proposition A.20, coproducts of objects in the essential image of YSind exist
in Sind (C). Since every object of Sind (C) is a sifted colimit of representables, the result
follows.

A.22. Corollary. If C has binary coproducts, then for any cocomplete category B,
composition with YSind induces an equivalence of categories

Funcocont . (Sind (C) ,B)
∼

−−−−−−−→ Fun∐ (C,B) ,

where Funcocont . (Sind (C) ,B) is the full subcategory of the functor category
Fun (Sind (C) ,B) spanned by those functors which preserve all colimits, and
Fun∐ (C,B) is the full subcategory of Fun (C,B) spanned by those functor which preserve
binary coproducts.

A.23. Corollary. If C has binary coproducts, Sind (C) is reflective in SetC
op

.

Proof. It is easily checked that the left Kan extension LanY (YSind) of YSind along the
Yoneda embedding, which exists by virtue of the cocompleteness of Sind (C), is a left
adjoint to the inclusion

Sind (C) ↪→ SetC
op

.

A.24. Corollary. If C has binary coproducts, Sind (C) is locally finitely presentable, so
in particular is complete and cocomplete. Moreover, limits and sifted (and hence filtered)
colimits are computed pointwise.

Proof. The inclusion
Sind (C) ↪→ SetC

op

preserves sifted colimits by construction, hence in particular, filtered colimits, so is ac-
cessible. Since Sind (C) is fully reflective in SetC

op

, it follows from [1], Proposition 1.46,
that Sind (C) is locally finitely presentable. The final statement is true by construction,
from Proposition A.19.

A.25. Theorem. [3] Let T be an algebraic theory. Then its category of algebras, TAlg,
is equivalent to Sind (Top) .

Proof. Any representable presheaf is clearly an algebra, and therefore so is any sifted
colimit of representables. Hence every functor

F : T = (Top)op → Set

in
Sind (Top) ⊆ SetT
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is a T-algebra. It suffices to show that if A is a T-algebra, then it is a sifted colimit of
representable presheaves. The functor

A : (Top)op → Set

is canonically the colimit of ∫
Top

A → Set(Top)op = SetT,

where

( ∫
Top

A
)

is Grothendieck construction of the presheaf A. It therefore suffices to

show that

( ∫
Top

A
)

is sifted. By Corollary A.17, it suffices to show that

( ∫
Top

A
)op

has

binary products. The objects of

( ∫
Top

A
)op

can be described as pairs (t, α) such that

t ∈ T and α ∈ A (t) . Arrows
(t, α)→ (t′, α′)

are morphisms
g : t′ → t

such that
A (g) (α′) = α.

It follows that

(t, α)× (t′, α′) = (t× t′, (α, α′) ∈ A (t)×A (t′) = A (t× t′)) .

A.26. Corollary. For an algebraic theory T, its category of algebras TAlg is locally
finitely presentable, so in particular is complete and cocomplete. Moreover, limits and
sifted (and hence filtered) colimits are computed pointwise.

A.27. Morphisms of Theories.

A.28. Definition. Algebraic theories naturally form a 2-category ATh. A morphism
of algebraic theories

T→ T′

is a finite product preserving functor. A 2-morphism is simply a natural transformation
of functors. We will mostly be concerned only with truncation ATh to a 1-category in
this paper, and denote it by ATh.
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A.29. Remark. Any morphism of algebraic theories must preserve the terminal object,
since it is the empty product.

We will now show that any morphism F : T → T′ of algebraic theories induces an
adjunction F! a F ∗ between the corresponding categories of algebras:

TAlg
F!

//T′Alg
F ∗oo , (A.1)

To construct these, observe that the functor F op : Top → T′op induces three adjoint
functors F! a F ∗ a F∗

SetT //
//
SetT

′
oo .

The adjunction with which we will be concerned is

F! a F ∗.

Indeed, F! is given as the left Kan extension LanYTop (YT′op ◦ F op)

SetT
F!

// SetT
′

Top
?�

YTop

OO

F op
// T′op
?�

YT′op

OO (A.2)

of YT′op ◦ F op along the Yoneda embedding YTop : Top ↪→ SetT, so that F! is the unique
colimit preserving functor which agrees with F op along representables. By the Yoneda
Lemma, it follows that if X ∈ SetT

′
,

F ∗ (X) (t) ∼= Hom (YTop (t) , F ∗ (X))
∼= Hom (F! (YTop (t)) , X)
∼= Hom (YT′op (F (t)) , X)
∼= (X ◦ F ) (t) ,

so that F ∗ is given simply by precomposition with F. It follows that if X preserves finite
products, so does F ∗ (X). So there is an induced functor

F ∗ : T′Alg→ TAlg.

The functor
F ∗ : SetT

′ → SetT

has a right adjoint F∗, which by the Yoneda Lemma is given by the formula

F∗ (X) (t′) = Hom (F ∗YT′op (t′) , X) .

If X happened to be a T-algebra, there is no guarantee that F∗ (X) is a T′-algebra, so
there is in general no right adjoint to F ∗ at the level of algebras.
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A.30. Remark. Indeed,
F ∗ : SetT

′ → SetT,

since it is a left adjoint, preserves all colimits, and these colimits are computed pointwise.
It follows that

F ∗ : T′Alg→ TAlg

at least preserves sifted colimits, as these are also computed pointwise. In fact, since
both TAlg and T′Alg are locally presentable, it follows by the Adjoint Functor Theorem
([1] Theorem 1.66), that F ∗ has a right adjoint at the level of algebras, if and only if it
preserves all small colimits. Since F ∗ preserves sifted colimits, by Proposition A.15, it
follows that F ∗ has a right adjoint if and only if it preserves finite coproducts.

Since F! ` F ∗, by the universal property of left Kan extensions, another characteriza-
tion of F! is that F! (Z) is itself the left Kan extension of Z along F , that is

F! = LanF ( ) : Z 7→ LanF (Z) .

Notice that if Z is in fact a T-algebra, then Z is a sifted colimit of representables,

Z ∼= lim−→YTop (tα) .

It follows that,
F! (Z) = LanF

(
lim−→YTop (tα)

) ∼= lim−→YT′op (F (tα))

is a sifted colimit of representables, hence a T′-algebra. Therefore, F! restricts to a functor

F! : TAlg→ T′Alg.

In summary:

From a morphism of theories F : T→ T′ ones gets an adjunction

TAlg
F!

//T′Alg
F ∗oo ,

such that F ∗ preserves sifted colimits.
This suggests the following notion of a morphism of algebraic categories:

A.31. Definition. An algebraic morphism from one algebraic category C to another D,
is an adjunction

C
f!
//D

f∗
oo ,

such that the right adjoint f ∗ preserves sifted colimits. With this notion of morphism, alge-
braic categories naturally form a 2-category AlgCat, whose 2-morphisms between (f ∗, f!)
and (g∗, g!) are given by natural transformations

α : f ∗ ⇒ g∗.

We similarly denote its 1-truncation by the 1-category AlgCat.
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A.32. Remark. This definition of morphism is dual to that of [3].

A.33. Remark. By [3], Theorem 8.19, a limit preserving functor

f : C→ D

between algebraic categories preserves sifted colimits if and only if it preserves filtered
colimits and regular epimorphisms. Hence, one may equivalently say a morphism of
algebraic theories

F : T→ T′

induces an adjunction

TAlg
F!

//T′Alg
F ∗oo ,

such that F ∗ preserves filtered colimits and regular epimorphisms.

A.34. Remark. There are some size issues with 2-category AlgCat in Definition A.31;
morphisms may form a proper class. However, there is no cause for concern as AlgCat is
at least essentially small, as guaranteed by the duality theorem [3], Theorem 8.14. Indeed,
AlgCat is equivalent to a full subcategory of ATh.

A.35. Remark. The morphisms in AlgCatop may be described as limit preserving func-
tors which preserve sifted colimits. The existence (and uniqueness) of a left adjoint follow
from the Adjoint Functor Theorem ([1] Theorem 1.66).

A.36. Remark. If F : C→ D is an essentially surjective functor, then

F ∗ : SetD
op → SetC

op

is faithful and conservative. In particular, if

F : T→ T′

is an essentially surjective morphism of algebraic theories, then

F ∗ : T′Alg→ TAlg

is faithful and conservative. Moreover, it preserves and reflects all limits and sifted col-
imits.

A.37. Remark. The construction outlined in the subsection naturally extends to a 2-
functor

ATh → AlgCat

which sends a morphism
F : T→ T′

to the algebraic morphism (F ∗, F!) .
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A.38. Definition. When F is faithful, one calls T as a sub-theory of T′; in this case,
F ∗(A′) can be thought of as the underlying T-algebra of a T′-algebra A′, while F!(A) is
the free T′-algebra generated by a T-algebra A, or its T′-completion.

A.39. Notation. When T is a sub-theory of T′, we shall often neglect to mention the
inclusion functor and denote the underlying T-algebra functor by ( )] and its left adjoint,

the T′-completion, by (̂ ).

A.40. Remark. By general considerations, it follows that if F is full and faithful, so is
F!.

A.41. Remark. It may happen that F : T → T′ has a right adjoint G : T′ → T (so
Gop is left adjoint to F op). Since G is a right adjoint, it automatically preserves products.
Hence G induces an adjunction

(G! a G∗)

between the categories of algebras. Notice that for t′ ∈ T′ and t ∈ T,

Hom (t, G∗YT′op (t′)) ∼= Hom (G!YTop (t) , YT′op (t′))
∼= Hom (YT′op (G (t)) , YT′op (t′))
∼= HomT′op (G (t) , t′)
∼= HomT′ (t

′, G (t))
∼= HomT (F (t′) , t)
∼= HomTop (t, F (t′)) .

Hence
G∗ : SetT

′ → SetT

is colimit preserving (since it has a right adjoint G∗) and for all t′,

G∗ ◦ YT′op (t′) = YTop (F (t′)) .

It follows that G∗ = F!, hence F! acquires a further left adjoint, namely G!. These then
restrict to a triple of adjunctions G! a F! a F ∗ :

TAlg // T′Alg
oo
oo .

B. Multisorted Lawvere Theories

We now go on to describe the extra data needed to attach to an abstract algebraic theory
in order to give a good sense of underlying set (or family of sets) to its algebras. Again,
most of this material can be found in [3], however this appendix also contains some
examples and notation important in this paper.
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B.1. Definition. An S-sorted Lawvere theory is an algebraic theory T together with a
injection

ϕT : S ↪→ T0

whose image generates T in the sense of definition A.3. A morphism of S-sorted Lawvere
theories

(T, ϕT)→ (T′, ϕT′)

is a (natural equivalence class of a) morphism of algebraic theories

F : T→ T′

such that for all s ∈ S,
F (ϕT (s)) = ϕ′T (s) .

We denote the associated category SLTh. When S is a singleton set, we call an S-sorted
Lawvere theory simply a Lawvere theory, and denote the corresponding category by LTh.

B.2. Remark. Up to equivalence, one can regard an S-sorted Lawvere theory as a cate-
gory whose objects are S-indexed families of non-negative integers. This allows us to refer
to a theory T without reference to its structural map ϕT.

B.3. Remark. One can expand this definition by removing the injectivity of the map
ϕT and nothing is lost. We will refer to such a pair (T, ϕ) with ϕ not necessarily injective
as an S-indexed Lawvere theory.

B.4. Remark. Let f : T → T′ be a morphism of S-sorted Lawvere theories. Then, up
to equivalence, f is a bijection on objects.

B.5. Remark. If F : T→ T′ is a full and faithful morphism of S-sorted Lawvere theories,
then it is an equivalence.

B.6. Definition. An algebra for an S-sorted Lawvere theory T is simply an algebra for
its underlying algebraic theory.

B.7. Proposition. A morphism F : T→ T′ of Lawvere theories induces an adjunction

TAlg
F!

//T′Alg
F ∗oo ,

such that F ∗ preserves and reflects all limits and sifted colimits (equivalently all limits,
filtered colimits, and regular epimorphisms).

Proof. This follows from Remark A.36 and Remark B.4. The parenthetical remark
follows from Remark A.33.
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B.8. Example. [3] Let S be any set viewed as a discrete category. Let TS be the free
completion of S with respect to finite products. Concretely, the objects of TS are finite
families

(si ∈ S)i∈I

and morphisms
(si ∈ S)i∈I → (tj ∈ S)j∈J

are functions of finite sets
f : J → I

such that
sf(j) = tj

for all j ∈ J. There is a canonical functor

Y∏ : S→ TS,

sending each element s ∈ S to (s) viewed as a finite family with one element. The universal
property of this functor is that for any category D with finite products, composition with
Y∏ induces an equivalence of categories

χ : Fun∏ (TS,D)
∼−→ Fun (S,D) = DS, (B.1)

where Fun∏ (TS,D) is the full subcategory of the functor category on those functors
which preserve finite products. It follows that T is an algebraic theory whose category of
algebras is equivalent to SetS. Moreover, the functor Y∏ gives TS the canonical structure
of an S-sorted Lawvere theory.

B.9. Remark. When S is a singleton, TS is equivalent to FinSetop, the opposite category
of finite sets.

By construction, we have the following proposition:

B.10. Proposition. The S-sorted Lawvere theory TS is an initial object.

Let (T, ϕT) be an S-sorted Lawvere theory. From Proposition B.10, we know that
there is a unique morphism of S-sorted Lawvere theories

σT : TS → T.

From Proposition B.7, we have the following Corollary:

B.11. Corollary. [3] With
σT : TS → T

as above, the functor
UT := (σT)∗ : TAlg→ SetS

is faithful and conservative. In particular, it preserves and reflects limits, sifted colimits,
monomorphisms, and regular epimorphisms.
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B.12. Remark. The above Corollary only needs that σT is essentially surjective, so it
holds true for S-indexed Lawvere theories too.

B.13. Remark. In particular, for an S-sorted Lawvere theory

σT : TS → T,

the adjunction

SetS
(σT)!

// TAlg
(σT)∗

oo

is monadic.

B.14. Remark. The left adjoint

(σT)! : SetS → TAlg

is the functor assigning an S-indexed family of sets G = (Gs)s∈S the free T-algebra
on G, whereas the right adjoint (σT)∗ assigns a T-algebra its underlying S-indexed set.
Explicitly, if

A : T→ Set

is a T-algebra, then the underlying S-indexed set is

(As = A (σT (s))){s∈S} .

The diagram (A.2) becomes in this case

Set u!
// SetT

TS
?�

OO

σop
T // Top.

?�

YTop

OO

It follows that YTop establishes an equivalence of categories between Top and the full
subcategory of TAlg consisting of finitely generated free T-algebras.

B.15. Remark. Since every algebra is a sifted colimit of representables, which by the
previous remark are precisely the finitely generated free algebras, by Remark A.30, it
follows that for a map of Lawvere theories

F : T→ T′,

the functor
F ∗ : T′Alg→ TAlg

has a right a adjoint if and only if for each pair A,B of finitely generated free T′-algebras,

F ∗
(
A
∐

B
)

= F ∗ (A)
∐

F ∗ (B) .
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B.16. Notation. For a Lawvere theory T, denote the free T-algebra on n generators by
T(n). As discussed above, T(n) can be identified with the representable functor YTop (n) .
Since the underlying set is given by evaluation at the generator, 1, it follows that the
underlying set is

YTop (n) (1) = HomTop (1, n) = HomT (n, 1) . (B.2)

We will use the notation T(n, 1) for this set of morphisms to emphasize that it encodes the
n-ary operations of the theory T. In the S-sorted case, we adopt the notation T({ns}s∈S)
for the free algebra with ns generators of sort s, for each s ∈ S. The underlying S-indexed
set of such a free algebra is then

(T (ϕT (s)ns , ϕT (s)))s∈S .

B.17. Remark. Let T be an S-sorted Lawvere theory. Given an

A ∈ TAlg,

anA-algebra is, by definition, an object of the undercategoryA/TAlg. Given a morphism
of theories F : T→ T′, for each

A ∈ T′Alg

we have an induced adjunction of undercategories

A/T′Alg
F ∗A

//F ∗A/TAlg.
FA!oo

To see this, observe that A-algebras are algebras over the theory TA whose operations
are labeled by elements of free finitely generated A-algebras, i.e.

TA({ns}s∈S) = AqT({ns}s∈S).

The above adjunction is induced by the morphism of theories

FA : TF ∗A −→ T′A.

Notice that there is also canonical morphisms of theories

uA : T′ → T′A

and
uF ∗A : T→ TF ∗A,

such that the following diagram commutes:

T F //

uF∗A

��

T′

uA

��

TF ∗A FA
// T′A.
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It follows that F ∗A maps A → A′ to F ∗A → F∗A′ and that FA! takes any F ∗A-algebra of
the form

F ∗A → F ∗A
∐
B,

for a T-algebra B, to

A → A
∐

F!B.

B.18. Remark. Let f : T → T′ be a morphism of S-sorted Lawvere theories. The
category Cat of small categories carries a factorization system. Faithful functors are
right orthogonal to functors which are both essentially surjective and full. It turns out
that if f is a morphism of S-sorted Lawvere theories, if

T→ C→ T′

is the unique factorization by an essentially surjective and full functor, followed by a
faithful one, then C is an S-sorted Lawvere theory, and all the functors are maps of S-
sorted Lawvere theories. In this case, we denote C by Im (f) , and call it the image of
f.2

We now proceed to construct Im (f) . We may assume without loss of generality that
f is a bijection on objects. Consider for each pair of objects (x, y) ∈ T0 the induced
function

fx,y : HomT (x, y)→ Hom′T (x, y) .

Then one can define a new category Im (f) with the same objects as T′ but whose mor-
phisms are given by

Hom (x, y) := Im (fx,y) ,

the image of the function fx,y. Since f preserves limit diagrams for finite products, it
follows that T′ has finite products and the induced functor

Im (f)→ T′

preserves them. One hence gets a factorization of f

T→ Im (f)→ T′ (B.3)

by algebraic functors, each of which is a bijection on objects. In particular, the structure
map for T, σT, gives Im (f) the canonical structure of a S-sorted Lawvere theory in such
a way that the factorization (B.3) consists of morphisms of S-sorted Lawvere theories.
We refer to the theory Im (f) as the image of f . It is clear that the induced map

Im (f)→ T′

is faithful. We conclude, that the factorization system determined by essentially surjective
and full functors and faithful ones descends to a factorization system on SLTh.

2The more traditional notion of image of a functor, uses the factorization system determined by
essentially surjective functors, and full and faithful functors. This factorization is ill suited for Lawvere
theories due to Remark B.5.
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B.19. Example. Let A be any set. Define the Lawvere theory EndA to be the full
subcategory of Set generated by the finite Cartesian powers of A, i.e.

EndA(n, 1) = Set(An, A).

Picking out A as the generator makes EndA into a Lawvere theory. Notice that the full
and faithful inclusion

EndA ↪→ Set

preserves finite products, so that given a morphism of Lawvere theories

F : T→ EndA,

by composition, one gets an T-algebra in Set. Since F preserves the generator, this
induced T-algebra will have underlying set A. It follows that a T-algebra structure on A
for a Lawvere theory T is the same thing as a morphism of Lawvere theories

F : T→ EndA.

In the same way, given an S-indexed family of sets A = (As)s∈S ∈ SetS, one obtains a
S-sorted Lawvere theory EndA, such that for all S-sorted Lawvere theories T, morphisms
of S-sorted Lawvere theories

T→ EndA

are in bijection with T-algebras whose underlying S-indexed set is A. Explicitly EndA is
the full subcategory of Set generated by the collection of sets (As) for each s; these are
also the sorts.

B.20. Congruences.

B.21. Definition. Let C be a category with finite products. An equivalence relation on
an object A ∈ C is a subobject

R � A× A
such that for all objects C,

HomC (C,R) � HomC (C,A)× HomC (C,A)

is an equivalence relation on the set HomC (C,A) .

B.22. Definition. Given an equivalence relation

R � A× A,

one may consider the induced pair of maps

R ⇒ A. (B.4)

If the coequalizer of this diagram exists, it is called the quotient object A/R of A by the
equivalence relation R.
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B.23. Remark. In the case that C = Set, one recovers the usual notion of the quotient
of a set by an equivalence relation.

B.24. Remark. A coequalizer of the form (B.4) is a reflexive coequalizer, hence in par-
ticular, a sifted colimit.

B.25. Definition. Let T be an S-sorted Lawvere theory. An equivalence relation in
TAlg is called a congruence.

B.26. Definition. A quotient A 7→ A/R by an equivalence relation is called an effective
quotient if the canonical map

A→ A/R

is an effective epimorphism, i.e.

A/R ∼= lim−→
(
A×A/R A⇒ A

)
.

B.27. Proposition. Suppose that T is an S-sorted Lawvere theory, then every quotient
in TAlg is effective.

Proof. For any equivalence relation with a quotient, by definition, the map

A→ A/R

is a regular epimorphism. However, since TAlg has pullbacks, every regular epimorphism
is an effective epimorphism, so we are done.

B.28. Corollary. Suppose that T is an S-sorted Lawvere theory, then every regular
epimorphism is of the form

A→ A/R

for some congruence R on A.

Proof. Maps of the form A→ A/R are regular by definition. Conversely, suppose that

A→ B

is a regular epimorphism. Then, since TAlg has pullbacks, it is an effective epimorphism,
and hence the map is induced by a colimiting cocone witnessing B as the colimit of

A×B A⇒ B.

This coequalizer is the quotient for the equivalence relation

R := A×B A� A× A,

hence is of the form
A→ A/R.
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B.29. Proposition. Suppose that T is an S-sorted Lawvere theory, and R is a con-
gruence on a T-algebra A. Then the quotient A/R exists. In particular, the underlying
S-indexed set of A/R is the quotient of the underlying S-indexed set of A by the equivalence
relation induced by R.

Proof. From Corollary B.11, the functor

UT : TAlg→ SetS

assigning an algebra its underlying S-indexed set, preserves and reflects reflexive coequal-
izers. In particular, it preserves and reflects quotients by equivalence relations. Since
SetS is a topos, it has quotients by equivalence relations, so we are done.
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[3] Jǐŕı Adámek, Jǐŕı Rosický, and Enrico M. Vitale. Algebraic theories, volume 184 of
Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2011.
A categorical introduction to general algebra, With a foreword by F. W. Lawvere.

[4] Michael F. Atiyah and Ian G. Macdonald. Introduction to commutative algebra.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[5] Francis Borceux. Handbook of categorical algebra. 2, volume 51 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.
Categories and structures.

[6] Dennis Borisov. Topological characterization of various types of rings of smooth
functions. arXiv:1108.5885, 2011.

[7] Dennis Borisov and Justin Noel. Simplicial approach to derived differential manifolds.
arXiv:1112.003, 2011.

[8] Marta Bunge and Eduardo J. Dubuc. Archimedian local C∞-rings and models of syn-
thetic differential geometry. Cahiers Topologie Géom. Différentielle Catég., 27(3):3–
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