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CATEGORIES ENRICHED OVER A QUANTALOID: ISBELL
ADJUNCTIONS AND KAN ADJUNCTIONS

LILI SHEN AND DEXUE ZHANG

Abstract. Each distributor between categories enriched over a small quantaloid Q
gives rise to two adjunctions between the categories of contravariant and covariant
presheaves, and hence to two monads. These two adjunctions are respectively general-
izations of Isbell adjunctions and Kan extensions in category theory. It is proved that
these two processes are functorial with infomorphisms playing as morphisms between
distributors; and that the free cocompletion functor of Q-categories factors through
both of these functors.

1. Introduction

A quantaloid [Ros1996, Stu2005] is a category enriched over the symmetric monoidal
closed category consisting of complete lattices and join-preserving functions. Since a
quantaloid Q is a closed and locally complete bicategory, one can develop a theory of
categories enriched over Q [Ben1967]. It should be stressed, that for such categories,
coherence issues will not be a concern in most cases. For an overview of this theory the
reader is referred to [Hey2010, HS2011, Stu2005, Stu2006].

This paper is concerned with an extension of Isbell adjunctions and Kan extensions
for Q-categories. In order to state the question clearly, we recall here Isbell adjunctions
and Kan extensions in category theory.

Let A be a small category. The Isbell adjunction (or Isbell conjugacy) refers to the
adjunction between SetA

op

and (SetA)op arising from the Yoneda embedding Y : A −→
SetA

op

and the co-Yoneda embedding Y† : A −→ (SetA)op. Given a functor F : A −→ B
between small categories, composition with F induces a functor −◦F : SetB

op −→ SetA
op

.
The functor − ◦ F has both a left and a right adjoint, called respectively the left and
the right Kan extension of F . Isbell adjunctions and Kan extensions have also been
considered for categories enriched over a symmetric monoidal closed category [Bor1994,
DL2007, Kel1982, KS2005, Law1973, Law1986].

In this paper, it is shown that for a small quantaloidQ, eachQ-distributor φ : A −◦−→ B
between Q-categories induces two adjunctions:

φ↑ a φ↓ : PA⇀ P†B (1)
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and
φ∗ a φ∗ : PB⇀ PA, (2)

where PA and P†A are the counterparts of SetA
op

and (SetA)op, respectively.
If φ is the identity distributor on A, then the adjunction φ↑ a φ↓ reduces to the Isbell

adjunction in [Stu2005]. Given a Q-functor F : A −→ B, consider the graph F\ : A −◦−→ B
and the cograph F \ : B −◦−→ A. Then it holds that (Theorem 5.4)

(F \)∗ a (F \)∗ = F← = (F\)
∗ a (F\)∗,

where F← : PB −→ PA is the counterpart of the functor − ◦ F for Q-categories.
Therefore, the adjunctions (1) and (2) extend the fundamental construction of Isbell

adjunctions and Kan extensions, so, they will be called Isbell adjunctions and Kan ad-
junctions by abuse of language. This paper is mainly concerned with the functoriality of
these constructions.

For each Q-distributor φ : A −◦−→ B, the related Isbell adjunction and Kan adjunction
give rise to a monad φ↓ ◦ φ↑ on PA (called a closure operator on A in this paper) and a
monad φ∗ ◦ φ∗ on PB, respectively. The correspondence

(φ : A −◦−→ B) 7→ (A, φ↓ ◦ φ↑)

is functorial from the category of Q-distributors and infomorphisms (defined below) to
that of Q-closure spaces (a Q-category together with a closure operator) and continuous
functors; and the correspondence

(φ : A −◦−→ B) 7→ (B, φ∗ ◦ φ∗)

defines a contravariant functor from the category of Q-distributors and infomorphisms to
that of Q-closure spaces. Furthermore, the fixed points of the closure operator φ↓ ◦ φ↑ :
PA −→ PA (or equivalently, all the algebras if we consider φ↓ ◦φ↑ as a monad) constitute
a complete Q-categoryM(φ); the fixed points of the closure operator φ∗◦φ∗ : PB −→ PB
also constitute a complete Q-category K(φ). Thus, each distributor φ : A −◦−→ B generates
two complete Q-categories: M(φ) and K(φ). It will be shown that M is functorial and
K contravariant functorial from the category of Q-distributors and infomorphisms to that
of complete Q-categories and left adjoints. Moreover, the free cocompletion functor P of
Q-categories factors through both M and K.

It should be pointed out that some conclusions in this paper have been proved, in the
circumstance of concept lattices, in [SZ2013] for discrete Q-categories in the case that Q
is an one-object quantaloid, i.e., a unital quantale. The situation dealt with here is much
more involved, and the method developed here allows for a wide range of applicability.

2. Categories enriched over a quantaloid

The theory of categories enriched over a quantaloid has been studied systematically in
[Stu2005, Stu2006]. In this section, we recall some basic concepts and fix some notations
that will be used in the sequel.
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Complete lattices and join-preserving functions constitute a symmetric monoidal closed
category Sup. A quantaloid Q is a Sup-enriched category [Ros1996, Stu2005]. Explicitly,
a quantaloid Q is a category with a class of objects Q0 such that Q(A,B) is a complete
lattice for all A,B ∈ Q0, and the composition ◦ of morphisms preserves joins in both
variables, i.e.,

g ◦
(∨

i

fi

)
=
∨
i

(g ◦ fi) and
(∨

j

gj

)
◦ f =

∨
j

(gj ◦ f)

for all f, fi ∈ Q(A,B) and g, gj ∈ Q(B,C). The complete lattice Q(A,B) has a top
element >A,B and a bottom element ⊥A,B.

In this paper, Q is always assumed to be a small quantaloid, i.e., Q0 is a set.
For each X ∈ Q0 and f ∈ Q(A,B), both functions

− ◦ f : Q(B,X) −→ Q(A,X) : g 7→ g ◦ f,

f ◦ − : Q(X,A) −→ Q(X,B) : g 7→ f ◦ g

have respective right adjoints:

− ↙ f : Q(A,X) −→ Q(B,X) : g 7→ g ↙ f,

f ↘ − : Q(X,B) −→ Q(X,A) : g 7→ f ↘ g.

The operators ↙ and ↘ are respectively the left and right implications.
A Q-category [Stu2005] A consists of a set A0 equipped with a map t : A0 −→ Q0 :

x 7→ tx (tx is called the type of x and A0 is called a Q-typed set) and hom-arrows
A(x, y) ∈ Q(tx, ty) such that

(1) 1tx ≤ A(x, x) for all x ∈ A0;

(2) A(y, z) ◦ A(x, y) ≤ A(x, z) for all x, y, z ∈ A0.

A Q-functor [Stu2005] F : A −→ B between Q-categories is a map F : A0 −→ B0 such
that

(1) F is type-preserving in the sense that ∀x ∈ A0, tx = t(Fx);

(2) ∀x, x′ ∈ A0, A(x, x′) ≤ B(Fx, Fx′).

A Q-functor F : A −→ B is fully faithful if A(x, x′) = B(Fx, Fx′) for all x, x′ ∈ A0.
Bijective fully faithful Q-functors are exactly the isomorphisms in the category Q-Cat of
Q-categories and Q-functors.

A Q-category B is a (full) Q-subcategory of A if B0 is a subset of A0 and B(x, y) =
A(x, y) for all x, y ∈ B0.

Given a Q-category A, there is a natural underlying preorder ≤ on A0. For x, y ∈ A0,
x ≤ y if and only if they are of the same type tx = ty = A and 1A ≤ A(x, y). Two objects
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x, y in A are isomorphic if x ≤ y and y ≤ x, written x ∼= y. A is skeletal if no two different
objects in A are isomorphic.

The underlying preorders on Q-categories induce an order between Q-functors:

F ≤ G : A −→ B ⇐⇒ ∀x ∈ A0, Fx ≤ Gx in B0.

We denote F ∼= G : A −→ B if F ≤ G and G ≤ F .
A pair of Q-functors F : A −→ B and G : B −→ A form an adjunction [Stu2005],

written F a G : A⇀ B, if 1A ≤ G ◦ F and F ◦G ≤ 1B, where 1A and 1B are respectively
the identity Q-functors on A and B. In this case, F is called a left adjoint of G and G a
right adjoint of F .

A Q-distributor [Stu2005] φ : A −◦−→ B between Q-categories is a map that assigns to
each pair (x, y) ∈ A0 × B0 a morphism φ(x, y) ∈ Q(tx, ty) in Q, such that

(1) ∀x ∈ A0, ∀y, y′ ∈ B0, B(y′, y) ◦ φ(x, y′) ≤ φ(x, y);

(2) ∀x, x′ ∈ A0, ∀y ∈ B0, φ(x′, y) ◦ A(x, x′) ≤ φ(x, y).

Q-categories and Q-distributors constitute a quantaloid Q-Dist [Stu2005] in which

• the local order is defined pointwise, i.e., for Q-distributors φ, ψ : A −◦−→ B,

φ ≤ ψ ⇐⇒ ∀x ∈ A0, ∀y ∈ B0, φ(x, y) ≤ ψ(x, y);

• the composition ψ ◦ φ : A −◦−→ C of Q-distributors φ : A −◦−→ B and ψ : B −◦−→ C is
given by

∀x ∈ A0,∀z ∈ C0, (ψ ◦ φ)(x, z) =
∨
y∈B0

ψ(y, z) ◦ φ(x, y);

• the identity Q-distributor on a Q-category A is the hom-arrows of A and will be
denoted by A : A −◦−→ A;

• for Q-distributors φ : A −◦−→ B, ψ : B −◦−→ C and η : A −◦−→ C, the left implication
η ↙ φ : B −◦−→ C and the right implication ψ ↘ η : A −◦−→ B are given by

∀y ∈ B0,∀z ∈ C0, (η ↙ φ)(y, z) =
∧
x∈A0

η(x, z)↙ φ(x, y)

and
∀x ∈ A0,∀y ∈ B0, (ψ ↘ η)(x, y) =

∧
z∈C0

ψ(y, z)↘ η(x, z).

An adjunction [Stu2005] in a quantaloid Q, f a g : A ⇀ B in symbols, is a pair of
morphisms f : A −→ B and g : B −→ A in Q such that 1A ≤ g ◦ f and f ◦ g ≤ 1B.
In this case, f is a left adjoint of g and g a right adjoint of f . In particular, a pair of
Q-distributors φ : A −◦−→ B and ψ : B −◦−→ A form an adjunction φ a ψ : A ⇀ B in the
quantaloid Q-Dist if A ≤ ψ ◦ φ and φ ◦ ψ ≤ B.
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Every Q-functor F : A −→ B induces an adjunction F\ a F \ : A ⇀ B in Q-Dist
with F\(x, y) = B(Fx, y) and F \(y, x) = B(y, Fx) for all x ∈ A0 and y ∈ B0. The Q-
distributors F\ : A −◦−→ B and F \ : B −◦−→ A are called the graph and cograph of F ,
respectively.

2.1. Proposition. [Hey2010] If f a g : A ⇀ B in a quantaloid Q, then the following
identities hold for all Q-arrows h, h′ whenever the compositions and implications make
sense:

(1) h ◦ f = h↙ g, g ◦ h = f ↘ h.

(2) (f ◦ h)↘ h′ = h↘ (g ◦ h′), (h′ ◦ f)↙ h = h′ ↙ (h ◦ g).

(3) (h↘ h′) ◦ f = h↘ (h′ ◦ f), g ◦ (h′ ↙ h) = (g ◦ h′)↙ h.

(4) g ◦ (h↘ h′) = (h ◦ f)↘ h′, (h′ ↙ h) ◦ f = h′ ↙ (g ◦ h).

The identities in Proposition 2.1 will be frequently applied in the next sections to the
adjunction F\ a F \ : A⇀ B induced by a Q-functor F : A −→ B.

2.2. Proposition. [Stu2005] Let F : A −→ B and G : B −→ A be a pair of Q-functors.
The following conditions are equivalent:

(1) F a G : A⇀ B.

(2) F\ = B(F−,−) = A(−, G−) = G\.

(3) G\ a F\ : B⇀ A in Q-Dist.

(4) G\ a F \ : A⇀ B in Q-Dist.

2.3. Proposition. Let F : A −→ B be a Q-functor.

(1) If F is fully faithful, then F \ ◦ F\ = A.

(2) If F is essentially surjective in the sense that there is some x ∈ A0 such that Fx ∼= y
in B for all y ∈ B0, then F\ ◦ F \ = B.

Proof. (1) If F is fully faithful, then for all x, x′ ∈ A0,

(F \ ◦ F\)(x, x′) =
∨
y∈B0

B(y, Fx′) ◦ B(Fx, y) = B(Fx, Fx′) = A(x, x′).

(2) If F is essentially surjective, then for all y, y′ ∈ B0, there is some x ∈ A0 such that
Fx ∼= y. Thus

(F\ ◦ F \)(y, y′) =
∨
a∈A0

B(Fa, y′) ◦ B(y, Fa)

≥ B(Fx, y′) ◦ B(y, Fx)

= B(y, y′) ◦ B(y, y)

≥ B(y, y′).

Since F\ ◦ F \ ≤ B holds trivially, it follows that F\ ◦ F \ = B.



582 LILI SHEN AND DEXUE ZHANG

Following [Stu2005], for each X ∈ Q0, write ∗X for the Q-category with only one
object ∗ of type t∗ = X and hom-arrow 1X .

A contravariant presheaf [Stu2005] on a Q-category A is a Q-distributor µ : A −◦−→ ∗X
with X ∈ Q0. Contravariant presheaves on a Q-category A constitute a Q-category PA
in which

tµ = X and PA(µ, λ) = λ↙ µ

for all µ : A −◦−→ ∗X and λ : A −◦−→ ∗Y in (PA)0.
Dually, a covariant presheaf on a Q-category A is a Q-distributor µ : ∗X −◦−→ A.

Covariant presheaves on A constitute a Q-category P†A in which

tµ = X and P†A(µ, λ) = λ↘ µ

for all µ : ∗X −◦−→ A and λ : ∗Y −◦−→ A.
In particular, we denote P(∗X) = PX and P†(∗X) = P†X for each X ∈ Q0.

2.4. Remark. For each Q-category A, it follows from the definition that the underlying
preorder in PA coincides with the local order in Q-Dist, while the underlying preorder
in P†A is the reverse local order in Q-Dist. That is to say, for all µ, λ ∈ P†A, we have

µ ≤ λ in (P†A)0 ⇐⇒ λ ≤ µ in Q-Dist.

In order to get rid of the confusion about the symbol ≤, from now on we make the
convention that the symbol ≤ between Q-distributors always denotes the local order in
Q-Dist if not otherwise specified.

Given a Q-category A and a ∈ A0, write Ya for the Q-distributor

A −◦−→ ∗ta, x 7→ A(x, a);

write Y†a for the Q-distributor

∗ta −◦−→ A, x 7→ A(a, x).

The following lemma implies that both Y : A −→ PA, a 7→ Ya and Y† : A −→
P†A, a 7→ Y†a are fully faithful Q-functors (hence embeddings if A is skeletal). Thus, Y
and Y† are called respectively the Yoneda embedding and the co-Yoneda embedding.

2.5. Lemma. [Yoneda] [Stu2005] PA(Ya, µ) = µ(a) and P†A(λ,Y†a) = λ(a) for all
a ∈ A0, µ ∈ PA and λ ∈ P†A.

For each Q-distributor φ : A −◦−→ B and x ∈ A0, y ∈ B0, write φ(x,−) for the Q-
distributor φ ◦ Y†Ax : ∗tx −◦−→ A −◦−→ B; and write φ(−, y) for the Q-distributor YBy ◦ φ :
A −◦−→ B −◦−→ ∗ty. Then the Yoneda lemma can be phrased as the commutativity of the
following diagrams:

PA ∗tµ
PA(−,µ) //PA

A

OO

Y\

∗tµ

A

??

µ

��
��
��
��
��
��

◦

◦ ◦

P†A ∗tλooP
†A(λ,−)P†A

A

(Y†)\

��

∗tλ

A

λ

����
��
��
��
��
��
�

◦

◦ ◦
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That is, µ = PA(Y−, µ) and λ = P†A(λ,Y†−).

2.6. Remark. Given Q-distributors φ : A −◦−→ B, ψ : B −◦−→ C and η : A −◦−→ C, one can
form Q-distributors such as φ(x,−), η ↙ φ, η ↘ ψ(y,−), etc. We list here some basic
formulas related to these Q-distributors that will be used in the sequel.

∀x ∈ A0,∀z ∈ C0, (ψ ◦ φ)(x, z) = ψ(−, z) ◦ φ(x,−);

∀x ∈ A0, (ψ ◦ φ)(x,−) = ψ ◦ φ(x,−);

∀y ∈ B0, (η ↙ φ)(y,−) = η ↙ φ(−, y);

∀x ∈ A0, ∀y ∈ B0, (ψ ↘ η)(x, y) = ψ(y,−)↘ η(x,−).

For a Q-functor F : A −→ B between Q-categories, define Q-functors F→ : PA −→
PB and F← : PB −→ PA by F→(µ) = µ ◦ F \ and F←(λ) = λ ◦ F\. Then

F→ a F← : PA⇀ PB

in Q-Cat. For all λ ∈ PB and x ∈ A0, it can be verified that

F←(λ)(x) = λ(Fx) ∈ Q(tx, tλ). (3)

Dually, we may also define Q-functors F→ : P†A −→ P†B and F← : P†B −→ P†A by
F→(µ) = F\ ◦ µ and F←(λ) = F \ ◦ λ. Then

F← a F→ : P†B⇀ P†A

in Q-Cat. For all λ ∈ P†B and x ∈ A0, it can be verified that

F←(λ)(x) = λ(Fx) ∈ Q(tλ, tx). (4)

Note that the symbol F→ is used for both of the Q-functors PA −→ PB and P†A −→
P†B. This should cause no confusion since it can be easily detected from the context
which one it stands for. So is the symbol F←.

We would like to stress that

µ ≤ F← ◦ F→(µ) and F→ ◦ F←(λ) ≤ λ (5)

for all µ ∈ PA and λ ∈ PB; whereas

ν ≤ F← ◦ F→(ν) and F→ ◦ F←(γ) ≤ γ (6)

for all ν ∈ P†A and γ ∈ P†B by Remark 2.4.
For a Q-functor F : A −→ B and a contravariant presheaf µ ∈ PA, the colimit of F

weighted by µ [Stu2005] is an object colimµF ∈ B0 (necessarily of type tµ) such that

B(colimµF,−) = F\ ↙ µ.



584 LILI SHEN AND DEXUE ZHANG

Dually, for a covariant presheaf λ ∈ P†A, the limit of F weighted by λ is an object
limλ F ∈ B0 (necessarily of type tλ) such that

B(−, limλF ) = λ↘ F \.

A Q-category B is cocomplete (resp. complete) if colimµF (resp. limλ F ) exists for
each Q-functor F : A −→ B and µ ∈ PA (resp. λ ∈ P†A).

In particular, for a Q-category A and µ ∈ PA (resp. λ ∈ P†A), the colimit colimµ1A
(the limit limλ1A, resp.) exists if there is some a ∈ A0 such that

A(a,−) = A↙ µ (resp. A(−, a) = λ↘ A).

In this case, we say that a is a supremum of µ (resp. an infimum of λ), and denote it
by supµ (resp. inf λ). Note that for any Q-functor F : A −→ B and µ ∈ PA (resp.
λ ∈ P†A),

colimµF = supBF
→(µ) (resp. limλF = infBF

→(λ))

when it exists.
Let A be a Q-category. For x ∈ A0 and f ∈ P(tx) (resp. f ∈ P†(tx)), the tensor

(resp. cotensor) [Stu2006] of f and x, denoted by f ⊗ x (resp. f�x), is an object in A0

of type t(f ⊗ x) = tf (resp. t(f�x) = tf) such that

A(f ⊗ x,−) = A(x,−)↙ f (resp. A(−, f�x) = f ↘ A(−, x)).

For x ∈ A0 and f ∈ P(tx), it is easily seen that the tensor f ⊗ x is exactly the
supremum of f ◦ Yx ∈ PA if it exists. Dually, for y ∈ A0 and g ∈ P†(ty), the cotensor
g�y is the infimum of Y†y ◦ g ∈ P†A if it exists.

A Q-category A is said to be tensored (resp. cotensored) if the tensor f ⊗ x (resp. the
cotensor f�x) exists for all choices of x and f .

2.7. Example. Let A be a Q-category.

(1) PA is a tensored and cotensored Q-category in which

f ⊗ µ = f ◦ µ, g�µ = g ↘ µ

for all µ ∈ PA and f ∈ P(tµ), g ∈ P†(tµ).

(2) P†A is a tensored and cotensored Q-category in which

f ⊗ λ = λ↙ f, g�λ = λ ◦ g

for all λ ∈ P†A and f ∈ P(tλ), g ∈ P†(tλ).
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Let A be a Q-category and X ∈ Q0. The objects in A with type X constitute a subset
of the underlying preordered set A0 and we denote it by AX . A Q-category A is said to
be order-complete [Stu2006] if each AX admits all joins in the underlying preorder.

For each subset {xi} ⊆ AX , if the join (resp. meet) of {xi} in AX exists, then∨
i

xi = sup
∨
i

Yxi
(

resp.
∧
i

xi = inf
∧
i

Y†xi
)
,

where
∨
i

xi and
∧
i

xi denote respectively the join and the meet in AX ;
∨
i

Yxi denotes

the join in (PA)X and
∧
i

Y†xi the meet in (P†A)X .

2.8. Theorem. [Stu2005, Stu2006] For a Q-category A, the following conditions are
equivalent:

(1) A is complete.

(2) A is cocomplete.

(3) A is tensored, cotensored, and order-complete.

(4) Each µ ∈ PA has a supremum.

(5) Y has a left adjoint in Q-Cat, given by sup : PA −→ A.

(6) Each λ ∈ P†A has an infimum.

(7) Y† has a right adjoint in Q-Cat, given by inf : P†A −→ A.

In this case, for each µ ∈ PA and λ ∈ P†A,

supµ =
∨
a∈A0

(µ(a)⊗ a), inf λ =
∧
a∈A0

(λ(a)�a),

where
∨

and
∧

denote respectively the join in Atµ and the meet in Atλ.

2.9. Example. Let A be a Q-category.

(1) PA is a complete Q-category in which

sup Φ =
∨
µ∈PA

Φ(µ) ◦ µ = Φ ◦ (YA)\

PA ∗tΦΦ //PA

A

OO

(YA)\

∗tΦ

A

??

sup Φ

��
��
��
��
��
��
�

◦

◦ ◦
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for all Φ ∈ P(PA) [Stu2005] and

inf Ψ =
∧
µ∈PA

Ψ(µ)↘ µ = Ψ↘ (YA)\

∗tΨ PA
Ψ

//

A

∗tΨ

inf Ψ

��

A

PA

(YA)\

��?
??

??
??

??
??

??

◦

◦ ◦;C����

for all Ψ ∈ P†(PA), i.e., inf Ψ is the largest Q-distributor µ : A −◦−→ ∗tΨ such that
Ψ ◦ µ ≤ (YA)\.

(2) P†A is a complete Q-category in which

sup Φ = (Y†A)\ ↙ Φ and inf Ψ = (Y†A)\ ◦Ψ

for all Φ ∈ P(P†A) and Ψ ∈ P†(P†A).

In particular, PX and P†X are both complete Q-categories for all X ∈ Q0.

2.10. Proposition. [Stu2006] Let F : A −→ B be a Q-functor between Q-categories,
with A complete, then F is a left (resp. right) adjoint in Q-Cat if and only if

(1) F preserves tensors (resp. cotensors) in the sense that F (f ⊗A x) = f ⊗B Fx (resp.
F (f�Ax) = f�BFx) for all x ∈ A0 and f ∈ P(tx) (resp. f ∈ P†(tx)).

(2) For all X ∈ Q0, F : AX −→ BX preserves arbitrary joins (resp. meets).

2.11. Corollary. [Stu2006] Let F : A −→ B be a Q-functor between Q-categories, with
A complete, then F : A −→ B is a left (resp. right) adjoint if and only if F preserves
supremum (resp. infimum) in the sense that F (supA µ) = supB F

→(µ) for all µ ∈ PA
(resp. F (infA µ) = infB F

→(µ) for all µ ∈ P†A).

Thus, left (resp. right) adjoint Q-functors between complete Q-categories are exactly
suprema-preserving (resp. infima-preserving) Q-functors. Complete Q-categories and left
adjoint Q-functors constitute a subcategory of Q-Cat which will be denoted by Q-CCat.

The forgetful functor Q-CCat −→ Q-Cat has a left adjoint P : Q-Cat −→ Q-CCat
that sends a Q-functor F : A −→ B to the left adjoint Q-functor F→ : PA −→ PB. This
implies that PA is the free cocompletion of A [Stu2005].

Now, we introduce the crucial notion in this paper, that of infomorphisms between
Q-distributors. An infomorphism between Q-distributors is what a Chu transform be-
tween Chu spaces [Bar1991, Pra1995]. The terminology ”infomorphism” is from [BS1997,
Gan2007].
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2.12. Definition. Given Q-distributors φ : A −◦−→ B and ψ : A′ −◦−→ B′, an infomor-
phism (F,G) : φ −→ ψ is a pair of Q-functors F : A −→ A′ and G : B′ −→ B such that
G\ ◦ φ = ψ ◦ F\, or equivalently, φ(−, G−) = ψ(F−,−).

A′ B′
ψ

//

A

A′

F\

��

A Bφ // B

B′

G\

��
◦

◦

◦ ◦

An adjunction F a G : A⇀ B in Q-Cat is exactly an infomorphism from the identity
Q-distributor on A to the identity Q-distributor on B. Thus, infomorphisms are an
extension of adjoint Q-functors.
Q-distributors and infomorphisms constitute a category Q-Info. The primary aim of

this paper is to show that the constructions of Isbell adjunctions and Kan adjunctions are
functors defined on Q-Info.

2.13. Proposition. Let F : A −→ B be a Q-functor, then

(F, F←) : ((YA)\ : A −◦−→ PA) −→ ((YB)\ : B −◦−→ PB)

is an infomorphism.

Proof. For all x ∈ A0 and λ ∈ PB,

(YA)\(x, F
←(λ)) = PA(YA(x), F←(λ))

= F←(λ)(x) (by Yoneda lemma)

= λ(Fx) (by Equation (3))

= PB(YB(Fx), λ) (by Yoneda lemma)

= (YB)\(Fx, λ).

Hence the conclusion holds.

The above proposition gives rise to a fully faithful functor Y : Q-Cat −→ Q-Info
that sends each Q-category A to the graph (YA)\ of the Yoneda embedding.

2.14. Proposition. Y : Q-Cat −→ Q-Info is a left adjoint of the forgetful functor
U : Q-Info −→ Q-Cat that sends an infomorphism

(F,G) : (φ : A −◦−→ B) −→ (ψ : A′ −◦−→ B′)

to the Q-functor F : A −→ A′.
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Proof. It is clear that U ◦ Y = idQ-Cat, the identity functor on Q-Cat. Thus {1A}
is a natural transformation from idQ-Cat to U ◦ Y. It remains to show that for each
Q-category A, Q-distributor ψ : A′ −→ B′ and Q-functor H : A −→ A′, there is a unique
infomorphism

(F,G) : Y(A) −→ (ψ : A′ −◦−→ B′)
such that the diagram

A U ◦Y(A)
1A //A

A′
H

$$H
HH

HH
HH

HH
HH

HH
HH

HH U ◦Y(A)

A′

U(F,G)

��

is commutative. By definition, Y(A) is the graph (YA)\ : A −◦−→ PA and U(F,G) = F .
Thus, we only need to show that there is a unique Q-functor G : B′ −→ PA such that

(H,G) : ((YA)\ : A −◦−→ PA) −→ (ψ : A′ −◦−→ B′)
is an infomorphism.

Let G = H← ◦ ψ : B′ −→ PA, where ψ : B′ −→ PA′ is the Q-functor assigning each
y′ ∈ B′0 to ψ(−, y′) in PA. Then

(H,G) : ((YA)\ : A −◦−→ PA) −→ (ψ : A′ −◦−→ B′)
is an infomorphism since

(YA)\(x,Gy
′) = (Gy′)(x) = H← ◦ ψ(y′)(x) = ψ(y′)(Hx) = ψ(Hx, y′)

for all x ∈ A0 and y′ ∈ B′0. This proves the existence of G.
To see the uniqueness of G, suppose that G′ : B′ −→ PA is another Q-functor such

that
(H,G′) : ((YA)\ : A −◦−→ PA) −→ (ψ : A′ −◦−→ B′)

is an infomorphism. Then for all x ∈ A0 and y′ ∈ B′0,

(G′y′)(x) = (YA)\(x,G
′y′) = ψ(Hx, y′) = ψ(y′)(Hx) = H← ◦ ψ(y′)(x) = (Gy′)(x),

hence G′ = G.

Similar to Proposition 2.13, one can check that sending a Q-functor F : A −→ B to
the infomorphism

(F←, F ) : ((Y†B)\ : P†B −◦−→ B) −→ ((Y†A)\ : P†A −◦−→ A)

induces a fully faithful functor Y† : Q-Cat −→ (Q-Info)op.

2.15. Proposition. Y† : Q-Cat −→ (Q-Info)op is a left adjoint of the contravariant
forgetful functor (Q-Info)op −→ Q-Cat that sends each infomorphism

(F,G) : (φ : A −◦−→ B) −→ (ψ : A′ −◦−→ B′)
to the Q-functor G : B′ −→ B.

Proof. Similar to Proposition 2.14.
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3. Q-closure spaces

3.1. Definition. Let A be a Q-category.

(1) An isomorphism-closed Q-subcategory B of A is a Q-closure system (resp. Q-
interior system) of A if the inclusion Q-functor I : B −→ A is a right (resp. left)
adjoint.

(2) A Q-functor F : A −→ A is a Q-closure operator (resp. Q-interior operator) on A
if 1A ≤ F (resp. F ≤ 1A) and F 2 ∼= F .

3.2. Example. Let F a G : A ⇀ B be an adjunction in Q-Cat. Then G ◦ F : A −→ A
is a Q-closure operator and F ◦G : B −→ B is a Q-interior operator.

3.3. Proposition. Let A be a Q-category, B an isomorphism-closed Q-subcategory of
A. The following conditions are equivalent:

(1) B is a Q-closure system (resp. Q-interior system) of A.

(2) There is a Q-closure operator (resp. Q-interior operator) F : A −→ A such that
B0 = {x ∈ A0 : Fx ∼= x}.

Proof. (1)⇒ (2): If the inclusion Q-functor I : B −→ A has a left adjoint G : A −→ B,
let F = I ◦ G, then F : A −→ A is a Q-closure operator. Since Fx = Gx ∈ B0 for all
x ∈ A0 and B is isomorphism-closed, it is clear that {x ∈ A0 : Fx ∼= x} ⊆ B0. Conversely,
for all x ∈ B0,

B(Fx, x) = B(Gx, x) = A(x, Ix) = A(x, x) ≥ 1tx,

and B(x, Fx) ≥ 1tx holds trivially, hence x ∼= Fx, as required.
(2)⇒ (1): We show that the inclusion Q-functor I : B −→ A is a right adjoint. View

F as a Q-functor from A to B, then 1A ≤ I ◦F . Since F 2 ∼= F , it follows that F ◦ I ∼= 1B.
Thus F a I : A⇀ B, as required.

3.4. Remark. For a Q-category A, a Q-closure operator (resp. Q-interior operator)
F : A −→ A is exactly a monad (resp. comonad) [Mac1998] on A. The above proposition
states that a Q-closure system (resp. Q-interior system) of A is exactly the category of
algebras (resp. coalgebras) for a monad (resp. comonad) on A. The terminology ”Q-
closure operator” (resp. ”Q-interior operator”) comes from its similarity to closure (resp.
interior) operators in topology.

3.5. Proposition. Each Q-closure system (resp. Q-interior system) of a complete Q-
category is itself a complete Q-category.
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Proof. Let B be a Q-closure system of a complete Q-category A. By Proposition 3.3,
there is a Q-closure operator F : A −→ A such that B0 = {x ∈ A0 : Fx ∼= x}. View F as
a Q-functor from A to B, then F is essentially surjective and F a I : A ⇀ B, where I is
the inclusion Q-functor. For all µ ∈ PB,

F (supAI
→(µ)) = supBF

→ ◦ I→(µ) (by Corollary 2.11)

= supBµ ◦ I\ ◦ F \ (by the definition of F→ and I→)

= supBµ ◦ F\ ◦ F \ ◦ I\ ◦ F \ (by Proposition 2.3(2))

= supBµ ◦ F\ ◦ (F ◦ I ◦ F )\

= supBµ ◦ F\ ◦ F \ (since F a I : A⇀ B)

= supBµ. (by Proposition 2.3(2))

Then it follows from Proposition 2.8 that F (A) is a complete Q-category.

3.6. Proposition. Let A be a complete Q-category with tensor ⊗ and cotensor � , B an
isomorphism-closed Q-subcategory of A. Then B is a Q-closure system (resp. Q-interior
system) of A if and only if

(1) for every subset {xi} ⊆ B0 of the same type X, the meet
∧
i

xi (resp. the join
∨
i

xi)

in AX belongs to B0.

(2) for each x ∈ B0 and f ∈ P†(tx) (resp. f ∈ P(tx)), the cotensor f� x (resp. the
tensor f ⊗ x) in A belongs to B0.

Proof. Follows immediately from Proposition 2.10.

An immediate consequence of Proposition 3.6 is that the infimum (resp. supremum)
in a Q-closure system (resp. Q-interior system) B of a complete Q-category A can be
calculated as

infBλ =
∧
b∈B0

(λ(b)�b),
(

resp. supBµ =
∨
b∈B0

(µ(b)⊗ b)
)

(7)

for λ ∈ P†B (resp. µ ∈ PB), where the cotensors and meets (resp. tensors and joins) are
calculated in A.

3.7. Definition. A Q-closure space is a pair (A, C) that consists of a Q-category A and
a Q-closure operator C : PA −→ PA. A continuous Q-functor F : (A, C) −→ (B, D)
between Q-closure spaces is a Q-functor F : A −→ B such that F→ ◦ C ≤ D ◦ F→. The
category of Q-closure spaces and continuous Q-functors is denoted by Q-Cls.
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3.8. Remark. If C,D are viewed as monads on PA,PB respectively, then a Q-functor
F : (A, C) −→ (B, D) between Q-closure spaces is continuous if and only if F→ : PA −→
PB is a lax map of monads from C to D in the sense of [Lei2004].

Note that for a Q-closure space (A, C), the Q-closure operator C is idempotent since
PA is skeletal. Let C(PA) denote the Q-subcategory of PA consisting of the fixed points
of C. Since PA is a complete Q-category, C(PA) is also a complete Q-category. A
contravariant presheaf A −◦−→ ∗X is said to be closed in the Q-closure space (A, C) if it
belongs to C(PA). The following lemma states that continuous Q-functors behave in a
manner similar to the continuous maps between topological spaces: the inverse image of
a closed contravariant presheaf is closed.

3.9. Lemma. A Q-functor F : (A, C) −→ (B, D) between Q-closure spaces is continuous
if and only if F←(λ) ∈ C(PA) whenever λ ∈ D(PB).

Proof. It suffices to show that F→ ◦ C ≤ D ◦ F→ if and only if C ◦ F← ◦D ≤ F← ◦D.
Suppose F→ ◦ C ≤ D ◦ F→, then

F→ ◦ C ◦ F← ◦D ≤ D ◦ F→ ◦ F← ◦D ≤ D ◦D = D,

and consequently C ◦ F← ◦D ≤ F← ◦D.
Conversely, suppose C ◦ F← ◦D ≤ F← ◦D, then

C ≤ C ◦ F← ◦ F→ ≤ C ◦ F← ◦D ◦ F→ ≤ F← ◦D ◦ F→,

and consequently F→ ◦ C ≤ D ◦ F→.

Thus a continuous Q-functor F : (A, C) −→ (B, D) between Q-closure spaces induces
a pair of Q-functors

F . = D ◦ F→ : C(PA) −→ D(PB) and F / = F← : D(PB) −→ C(PA).

3.10. Proposition. If F : (A, C) −→ (B, D) is a continuous Q-functor between Q-
closure spaces, then F . a F / : C(PA) ⇀ D(PB).

Proof. It is sufficient to check that

PB(D ◦ F→(µ), λ) = PB(F→(µ), λ)

for all µ ∈ C(PA) and λ ∈ D(PB) since it holds that PA(µ, F←(λ)) = PB(F→(µ), λ).
Indeed, since D is a Q-closure operator,

PB(F→(µ), λ) ≤ PB(D ◦ F→(µ), D(λ))

= PB(D ◦ F→(µ), λ)

= λ↙ (D ◦ F→(µ))

≤ λ↙ F→(µ)

= PB(F→(µ), λ),

hence PB(D ◦ F→(µ), λ) = PB(F→(µ), λ).
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Skeletal complete Q-categories constitute a full subcategory of Q-CCat and we denote
it by (Q-CCat)skel. The above proposition gives rise to a functor

T : Q-Cls −→ (Q-CCat)skel

that maps a continuous Q-functor F : (A, C) −→ (B, D) to a left adjoint Q-functor
F . : C(PA) −→ D(PB) between skeletal complete Q-categories.

For each complete Q-category A, it follows from Theorem 2.8 and Example 3.2 that
CA = Y ◦ sup : PA −→ PA is a Q-closure operator, hence (A, CA) is a Q-closure space.

3.11. Proposition. If F : A −→ B is a left adjoint Q-functor between complete Q-
categories, then F : (A, CA) −→ (B, CB) is a continuous Q-functor.

Proof. For all µ ∈ PA,

F→ ◦ CA(µ) = CA(µ) ◦ F \

= A(−, supAµ) ◦ F \

≤ B(F−, F (supAµ)) ◦ F \

= F\(−, F (supAµ)) ◦ F \

≤ B(−, F (supAµ)) (since F\ a F \ : A⇀ B in Q-Dist)

= B(−, supBF
→(µ)) (by Corollary 2.11)

= CB ◦ F→(µ).

Hence F : (A, CA) −→ (B, CB) is continuous.

The above proposition gives a functor D : (Q-CCat)skel −→ Q-Cls.
For each Q-category A, it is clear that CA(PA) = {YAa | a ∈ A0}. So, for a skeletal

Q-category A, if we identify A with the Q-subcategory CA(PA) of PA, then the functor
T : Q-Cls −→ (Q-CCat)skel is a left inverse of D : (Q-CCat)skel −→ Q-Cls since
T ◦ D(A) = CA(PA).

3.12. Theorem. T : Q-Cls −→ (Q-CCat)skel is a left inverse and left adjoint of D :
(Q-CCat)skel −→ Q-Cls.

Proof. It remains to show that T is a left adjoint of D . Given a Q-closure space (A, C),
denote C(PA) by X, then D ◦ T (A, C) = (X, CX). Let η(A,C) = C ◦ YA : A −→ X. We
show that η = {η(A,C)} is a natural transformation from the identity functor to D◦T and
it is the unit of the desired adjunction.

Step 1. η(A,C) : (A, C) −→ (X, CX) is a continuous Q-functor, i.e. η→(A,C) ◦ C ≤
CX ◦ η→(A,C).
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Firstly, we show that C(µ) = supX ◦η→(A,C)(µ) for all µ ∈ PA. Consider the diagram:

PX XsupX
//

P(PA)

PX

C→

��

P(PA) PAsupPA // PA

X

C

��

PA P(PA)
Y→A //PA

PX

η→
(A,C)

""D
DD

DD
DD

DD
DD

DD
D

The commutativity of the left triangle follows from η(A,C) = C ◦ YA. Since C : PA −→
X is a left adjoint in Q-Cat (obtained in the proof of Proposition 3.3), it preserves
supremum (Corollary 2.11), thus the right square commutes. The whole diagram is then
commutative. For each µ ∈ PA, we have that

µ = µ ◦ A = µ ◦ Y\A ◦ (YA)\ = Y→A (µ) ◦ (YA)\ = supPA ◦ Y→A (µ), (8)

where the second equality comes from the fact that the Yoneda embedding YA is fully
faithful and Proposition 2.3(1), while the last equality comes from Example 2.9. Conse-
quently,

C(µ) = C ◦ supPA ◦ Y→A (µ) = supX ◦ η→(A,C)(µ)

for all µ ∈ PA.
Secondly, we show that η→(A,C)(µ) ≤ YX(µ) = X(−, µ) for each µ ∈ X. Indeed,

η→(A,C)(µ) = µ ◦ η\(A,C)

= µ ◦ (C ◦ YA)\

= PA(YA−, µ) ◦ Y\A ◦ C
\ (by Yoneda lemma)

= (YA)\(−, µ) ◦ Y\A ◦ C
\

≤ PA(−, µ) ◦ C\ (since (YA)\ a Y\A : A⇀ PA in Q-Dist)

≤ X(C−, µ) ◦ C\ (since C is a Q-functor and C(µ) = µ)

= C\(−, µ) ◦ C\

≤ X(−, µ). (since C\ a C\ : PA⇀ X in Q-Dist)

Therefore, for all µ ∈ PA,

η→(A,C) ◦ C(µ) ≤ YX ◦ supX ◦ η→(A,C)(µ) = CX ◦ η→(A,C)(µ),

as desired.
Step 2. η = {η(A,C)} is a natural transformation. Let F : (A, C) −→ (B, D) be a

continuous Q-functor, we must show that

D ◦ YB ◦ F = η(B,D) ◦ F = D ◦ T ◦ F ◦ η(A,C) = D ◦ F→ ◦ C ◦ YA.



594 LILI SHEN AND DEXUE ZHANG

Firstly, we show that
YB ◦ F = F→ ◦ YA (9)

for each Q-functor F : A −→ B. Indeed, for all x ∈ A0,

YB ◦ Fx = F \(−, x) (by the definition of F \)

= (A ◦ F \)(−, x)

= A(−, x) ◦ F \ (by Remark 2.6)

= F→ ◦ YAx. (by the definition of F→)

Secondly, since C is a Q-closure operator,

YB ◦ F = F→ ◦ YA ≤ F→ ◦ C ◦ YA,

and consequently D ◦ YB ◦ F ≤ D ◦ F→ ◦ C ◦ YA.
Thirdly, the continuity of F leads to

F→ ◦ C ◦ YA ≤ D ◦ F→ ◦ YA = D ◦ YB ◦ F,

hence D ◦ F→ ◦ C ◦ YA ≤ D ◦ YB ◦ F .
Step 3. η(A,C) : (A, C) −→ (X, CX) is universal in the sense that for any skeletal

complete Q-category B and continuous Q-functor F : (A, C) −→ (B, CB), there exists a
unique left adjoint Q-functor F : X −→ B that makes the following diagram commute:

(A, C) (X, CX)
η(A,C) //(A, C)

(B, CB)

F

""D
DD

DD
DD

DD
DD

DD
(X, CX)

(B, CB)

F

��

(10)

Existence. Let F = supB ◦F→ : X −→ B be the following composition of Q-functors

X ↪→ PA F→ // PB supB // B.

First, F : X −→ B is a left adjoint inQ-Cat. Indeed, F has a right adjoint G : B −→ X
given by G = F / ◦ YB. G is well-defined since YBb is a closed in (B, CB) for each b ∈ B0.
For all µ ∈ X0 and y ∈ B0, it holds that

B(F (µ), y) = B(−, y)↙ F→(µ)

= B(−, y)↙ (µ ◦ F \)

= (B(−, y) ◦ F\)↙ µ (by Proposition 2.1(2))

= F\(−, y)↙ µ (by Remark 2.6)

= PA(µ, F / ◦ YBy) (by the definition of F\ and F /)

= X(µ,Gy),
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hence F is a left adjoint of G.
Second, F = F ◦ η(A,C). Note that for all x ∈ A0,

B(Fx,−) = F\(x,−)

= (B↙ F \)(x,−) (by Proposition 2.1(1))

= B↙ F \(−, x)

= B↙ (YB ◦ Fx)

= B↙ (F→ ◦ YAx), (by Equation (9))

thus F = supB ◦F→ ◦ YA. Consequently

F ◦ η(A,C) = supB ◦ F→ ◦ C ◦ YA

≤ supB ◦ CB ◦ F→ ◦ YA (since F is continuous)

= supB ◦ YB ◦ supB ◦ F→ ◦ YA

= supB ◦ F→ ◦ YA (since supB a YB : PB⇀ B)

= F.

Conversely, since C is a Q-closure operator, it is clear that

F = supB ◦ F→ ◦ YA ≤ supB ◦ F→ ◦ C ◦ YA = F ◦ η(A,C),

hence F ∼= F ◦ η(A,C), and consequently F = F ◦ η(A,C) since B is skeletal.
Uniqueness. Suppose H : X −→ B is another left adjoint Q-functor that makes

Diagram (10) commute. For each µ ∈ X, since C : PA −→ X is a left adjoint in Q-Cat,
we have

µ = C(µ) = C(µ ◦ A) = C
( ∨
x∈A0

µ(x) ◦ YAx
)

=
∨
x∈A0

µ(x)⊗X C(YAx),

where the last equality follows from Example 2.7 and Proposition 2.10. It follows that

H(µ) = H
( ∨
x∈A0

µ(x)⊗X C(YAx)
)

=
∨
x∈A0

µ(x)⊗B (H ◦ η(A,C)(x)) (by Proposition 2.10)

=
∨
x∈A0

µ(x)⊗B Fx.
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Consequently,

B(H(µ),−) = B
( ∨
x∈A0

µ(x)⊗B Fx,−
)

=
∧
x∈A0

(
B(Fx,−)↙ µ(x)

)
= F\ ↙ µ

= B↙ (µ ◦ F \) (by Proposition 2.1(2))

= B↙ F→(µ).

Since B is skeletal, it follows that H(µ) = supB ◦F→(µ). Therefore, H = supB ◦F→ = F .

4. Isbell adjunctions

Given a Q-distributor φ : A −◦−→ B, define a pair of Q-functors

φ↑ : PA −→ P†B and φ↓ : P†B −→ PA

by
φ↑(µ) = φ↙ µ and φ↓(λ) = λ↘ φ.

It should be warned that φ↑ and φ↓ are both contravariant with respect to local orders in
Q-Dist by Remark 2.4, i.e.,

∀µ1, µ2 ∈ PA, µ1 ≤ µ2 =⇒ φ↑(µ2) ≤ φ↑(µ1) (11)

and
∀λ1, λ2 ∈ P†B, λ1 ≤ λ2 =⇒ φ↓(λ2) ≤ φ↓(λ1). (12)

4.1. Proposition. φ↑ a φ↓ : PA⇀ P†B in Q-Cat.

Proof. For all µ ∈ PA and λ ∈ P†B,

P†B(φ↑(µ), λ) = λ↘ φ↑(µ)

= λ↘ (φ↙ µ)

= (λ↘ φ)↙ µ

= φ↓(λ)↙ µ

= PA(µ, φ↓(λ)).

Hence the conclusion holds.



CATEGORIES ENRICHED OVER A QUANTALOID: ISBELL AND KAN ADJUNCTIONS 597

Letting B = A and φ = A in Proposition 4.1 gives the following

4.2. Corollary. [Stu2005] A↙ (−) a (−)↘ A : PA⇀ P†A.

The adjunction in Corollary 4.2 is known as the Isbell adjunction in category theory.
So, the adjunction φ↑ a φ↓ : PA ⇀ P†B is a generalization of the Isbell adjunction. As
we shall see, all adjunctions between PA and P†B are of this form, and will be called
Isbell adjunctions by abuse of language.

Each Q-functor F : A −→ P†B corresponds to a Q-distributor pFq : A −◦−→ B given
by pFq(x, y) = F (x)(y) for all x ∈ A0 and y ∈ B0, and each Q-functor G : B −→ PA
corresponds to a Q-distributor pGq : A −◦−→ B given by pGq(x, y) = G(y)(x) for all x ∈ A0

and y ∈ B0.

4.3. Proposition. Let φ : A −◦−→ B be a Q-distributor, then pφ↑ ◦YAq = φ = pφ↓ ◦Y†Bq.

Proof. For all x ∈ A0 and y ∈ B0,

pφ↑ ◦ YAq(x, y) = (φ↑ ◦ YAx)(y)

= (φ↙ (YAx))(y)

= φ(−, y)↙ A(−, x)

= φ(x, y)

= B(y,−)↘ φ(x,−)

= ((Y†By)↘ φ)(x)

= (φ↓ ◦ Y†By)(x)

= pφ↓ ◦ Y†Bq(x, y),

showing that the conclusion holds.

4.4. Theorem. The correspondence φ 7→ φ↑ is an isomorphism of posets

Q-Dist(A,B) ∼= Q-CCatco(PA,P†B),

where the ”co” means reversing order in the hom-sets.

Proof. Let F : PA −→ P†B be a left adjoint Q-functor. We show that the correspon-
dence F 7→ pF ◦ YAq is an inverse of the correspondence φ 7→ φ↑, and thus they are both
isomorphisms of posets between Q-Dist(A,B) and Q-CCatco(PA,P†B).

Firstly, we show that both of the correspondences are order-preserving. Indeed,

φ ≤ ψ in Q-Dist(A,B)

⇐⇒ ∀µ ∈ PA, φ↑(µ) = φ↙ µ ≤ ψ ↙ µ = ψ↑(µ) in Q-Dist

⇐⇒ ∀µ ∈ PA, φ↑(µ) ≥ ψ↑(µ) in (P†B)0

⇐⇒ φ↑ ≤ ψ↑ in Q-CCatco(PA,P†B)
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and

F ≤ G in Q-CCatco(PA,P†B)

⇐⇒ ∀µ ∈ PA, F (µ) ≥ G(µ) in (P†B)0

⇐⇒ ∀µ ∈ PA, F (µ) ≤ G(µ) in Q-Dist(A,B)

=⇒ ∀x ∈ A0, pF ◦ YAq(x,−) = F ◦ YAx ≤ G ◦ YAx = pG ◦ YAq(x,−) in Q-Dist(A,B)

⇐⇒ pF ◦ YAq ≤ pG ◦ YAq in Q-Dist(A,B).

Secondly, F = (pF ◦ YAq)↑. For all µ ∈ PA, since F is a left adjoint in Q-Cat, by
Example 2.7 and Proposition 2.10 we have

F (µ) = F (µ ◦ A)

= F
( ∨
x∈A0

µ(x) ◦ YAx
)

=
∧
x∈A0

(F ◦ YAx)↙ µ(x)

= pF ◦ YAq↙ µ

= (pF ◦ YAq)↑(µ).

Finally, φ = pφ↑ ◦ YAq. This is obtained in Proposition 4.3.

For a Q-distributor φ : A −◦−→ B, one obtains two Q-functors φ : A −→ P†B and

φ : B −→ PA by letting φx = φ(x,−) for all x ∈ A0 and φy = φ(−, y) for all y ∈ B0.
Stubbe [Stu2005] shows that the maps φ 7→ φ and F 7→ pFq establish an isomorphism of

posets between Q-Dist(A,B) and Q-Catco(A,P†B), while the maps φ 7→ φ and F 7→ pFq
establish an isomorphism of posets between Q-Dist(A,B) and Q-Cat(B,PA). Together
with Theorem 4.4, we have the following isomorphisms of posets

Q-Dist(A,B) ∼= Q-Catco(A,P†B) ∼= Q-Cat(B,PA) ∼= Q-CCatco(PA,P†B). (13)

Given a Q-distributor φ : A −◦−→ B, it follows from Example 3.2 that φ↓ ◦ φ↑ : PA −→
PA is a Q-closure operator and φ↑ ◦ φ↓ : P†B −→ P†B is a Q-interior operator. For each
y ∈ B0, since

φy = φ(−, y) = φ↓ ◦ Y†By = φ↓ ◦ φ↑ ◦ φ↓ ◦ Y†By, (14)

it follows that φy = φ(−, y) is closed in the Q-closure space (A, φ↓ ◦ φ↑). Dually, for all
x ∈ A0,

φx = φ(x,−) = φ↑ ◦ YAx = φ↑ ◦ φ↓ ◦ φ↑ ◦ YAx (15)

is a fixed point of the Q-interior operator φ↑ ◦ φ↓. These facts will be used in the proofs
of Theorem 4.6 and Theorem 4.16.

4.5. Proposition. Let (F,G) : φ −→ ψ be an infomorphism between Q-distributors
φ : A −◦−→ B and ψ : A′ −◦−→ B′. Then F : (A, φ↑ ◦ φ↓) −→ (A′, ψ↑ ◦ ψ↓) is a continuous
Q-functor.
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Proof. Consider the following diagram:

PA′ P†B′
ψ↑
//

PA

PA′

F→

��

PA P†B
φ↑ // P†B

P†B′

G←

��
P†B′ PA′

ψ↓
//

P†B

P†B′

P†B PAφ↓ // PA

PA′

F→

��

We must prove F→ ◦ φ↓ ◦ φ↑ ≤ ψ↓ ◦ ψ↑ ◦ F→. To this end, it suffices to check that
(a) the left square commutes if and only if (F,G) : φ −→ ψ is an infomorphism; and
(b) F→ ◦ φ↓ ≤ ψ↓ ◦G← if and only if G\ ◦ φ ≤ ψ ◦ F\.
For (a), suppose G← ◦ φ↑ = ψ↑ ◦ F→, then for all x ∈ A0,

G\ ◦ φ(x,−) = G←(φ(x,−)) (by the definition of G←)

= G←(φ↑ ◦ YAx) (by Proposition 4.3)

= ψ↑(F
→ ◦ YAx)

= ψ↑(YAx ◦ F \) (by the definition of F→)

= ψ ↙ (YAx ◦ F \) (by the definition of ψ↑)

= (ψ ◦ F\)↙ A(−, x) (by Proposition 2.1(2))

= ψ ◦ F\(x,−).

Conversely, if (F,G) : φ −→ ψ is an infomorphism, then for all µ ∈ PA,

G← ◦ φ↑(µ) = G\ ◦ (φ↙ µ) (by the definition of G← and φ↑)

= (G\ ◦ φ)↙ µ (by Proposition 2.1(3))

= (ψ ◦ F\)↙ µ

= ψ ↙ (µ ◦ F \) (by Proposition 2.1(2))

= ψ↑ ◦ F→(µ).

For (b), suppose F→ ◦ φ↓ ≤ ψ↓ ◦G←, then for all y′ ∈ B′0,

G\(−, y′) ◦ φ = G\(y
′,−)↘ φ (by Proposition 2.1(1))

= φ↓(G\(y
′,−)) (by the definition of φ↓)

≤ F← ◦ F→ ◦ φ↓(G\(y
′,−)) (since F→ a F← : PA⇀ PA′)

≤ F← ◦ ψ↓ ◦G←(G\(y
′,−))

= F← ◦ ψ↓ ◦G← ◦G→ ◦ Y†B′y
′ (by the definition of G→)

≤ F← ◦ ψ↓ ◦ Y†B′y
′ (by Inequality (6) and (12))

= F←(ψ(−, y′)) (by Proposition 4.3)

= ψ(−, y′) ◦ F\. (by the definition of F←)
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Conversely, if G\ ◦ φ ≤ ψ ◦ F\, then for all λ ∈ P†B,

F→ ◦ φ↓(λ) = (λ↘ φ) ◦ F \ (by the definition of F→ and φ↓)

≤ ((G\ ◦ λ)↘ (G\ ◦ φ)) ◦ F \

≤ ((G\ ◦ λ)↘ (ψ ◦ F\)) ◦ F \

≤ (G\ ◦ λ)↘ (ψ ◦ F\ ◦ F \)

≤ (G\ ◦ λ)↘ ψ (since F\ a F \ : A⇀ B in Q-Dist)

= ψ↓ ◦G←(λ). (by the definition of ψ↓ and G←)

This completes the proof.

By virtue of Proposition 4.5 we obtain a functor U : Q-Info −→ Q-Cls that sends an
infomorphism

(F,G) : (φ : A −◦−→ B) −→ (ψ : A′ −◦−→ B′)

to a continuous Q-functor

F : (A, φ↓ ◦ φ↑) −→ (A′, ψ↓ ◦ ψ↑).

Given a Q-closure space (A, C), define a Q-distributor ζC : A −◦−→ C(PA) by

ζC(x, µ) = µ(x)

for all x ∈ A0 and µ ∈ C(PA). It is clear that ζC is obtained by restricting the domain
and the codomain of the Q-distributor

P†A −◦−→ PA, (λ, µ) 7→ µ ◦ λ.

Given a continuous Q-functor F : (A, C) −→ (B, D) between Q-closure spaces, con-
sider the Q-functor F / : D(PB) −→ C(PA) that sends each closed contravariant presheaf
λ to F /(λ) = F←(λ). Then similar to Proposition 2.13 one can check that

(F, F /) : (ζC : A −◦−→ C(PA)) −→ (ζD : B −◦−→ D(PB))

is an infomorphism. Thus, we obtain a functor F : Q-Cls −→ Q-Info.

4.6. Theorem.F : Q-Cls −→ Q-Info is a left adjoint and right inverse of U : Q-Info −→
Q-Cls.

Proof. Step 1. F is a right inverse of U .
For each Q-closure space (A, C), by the definition of the functor F , F(A, C) is the

Q-distributor ζC : A −◦−→ C(PA), where ζC(x, µ) = µ(x) for all x ∈ A0 and µ ∈ C(PA).
In order to prove U ◦ F(A, C) = (A, C), we show that C = ζ↓C ◦ (ζC)↑.

For all µ ∈ PA and λ ∈ C(PA), since C is a Q-functor,

λ↙ µ = PA(µ, λ) ≤ PA(C(µ), λ) = λ↙ C(µ),
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and consequently C(µ) ≤ (λ↙ µ)↘ λ. Since C is a Q-closure operator, we have

(C(µ)↙ µ)↘ C(µ) ≤ 1tµ ↘ C(µ) = C(µ),

hence

C(µ) =
∧

λ∈C(PA)

(λ↙ µ)↘ λ

=
∧

λ∈C(PA)

(ζC(−, λ)↙ µ)↘ ζC(−, λ)

=
∧

λ∈C(PA)

(ζC)↑(µ)(λ)↘ ζC(−, λ)

= ζ↓C ◦ (ζC)↑(µ),

as required.
Step 2. F is a left adjoint of U .
For eachQ-closure space (A, C), id(A,C) : (A, C) −→ U◦F(A, C) is clearly a continuous

Q-functor and {id(A,C)} is a natural transformation from the identity functor on Q-Cls
to U ◦ F . Thus, it remains to show that for each Q-distributor ψ : A′ −◦−→ B′ and each
continuous Q-functor H : (A, C) −→ (A′, ψ↓ ◦ ψ↑), there is a unique infomorphism

(F,G) : F(A, C) −→ (ψ : A′ −◦−→ B′)

such that the diagram

(A, C) U ◦ F(A, C)
id(A,C) //(A, C)

(A′, ψ↓ ◦ ψ↑)

H

$$H
HH

HH
HH

HH
HH

HH
H

U ◦ F(A, C)

(A′, ψ↓ ◦ ψ↑)

U(F,G)

��

is commutative.
By definition, F(A, C) = ζC : A −◦−→ C(PA) and U(F,G) = F , where ζC(x, µ) = µ(x).

Thus, we only need to show that there is a unique Q-functor G : B′ −→ C(PA) such that

(H,G) : (ζC : A −◦−→ C(PA)) −→ (ψ : A′ −◦−→ B′)

is an infomorphism.
Let G = H/ ◦ ψ : B′ −→ C(PA). That G is well-defined follows from the fact that

ψy′ ∈ ψ↓ ◦ ψ↑(PA′) for all y′ ∈ B′0 by Equation (14) and that H : (A, C) −→ (A′, ψ↓ ◦ ψ↑)
is continuous. Now we check that

(H,G) : (ζC : A −◦−→ C(PA)) −→ (ψ : A′ −◦−→ B′)

is an infomorphism. This is easy since

ζC(x,Gy′) = (Gy′)(x) = H/ ◦ ψ(y′)(x) = ψ(y′)(Hx) = ψ(Hx, y′)
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for all x ∈ A0 and y′ ∈ B′0. This proves the existence of G.
To see the uniqueness of G, suppose that G′ : B′ −→ C(PA) is another Q-functor

such that
(H,G′) : (ζC : A −◦−→ C(PA)) −→ (ψ : A′ −◦−→ B′)

is an infomorphism. Then for all x ∈ A0 and y′ ∈ B′0,

(G′y′)(x) = ζC(x,G′y′) = ψ(Hx, y′) = ψ(y′)(Hx) = H/ ◦ ψ(y′)(x) = (Gy′)(x),

hence G′ = G.

4.7. Corollary. The category Q-Cls is a coreflective subcategory of Q-Info.

The composition
M = T ◦ U : Q-Info −→ (Q-CCat)skel

sends aQ-distributor φ : A −◦−→ B to a completeQ-category φ↓◦φ↑(PA). Conversely, since
F is a right inverse of U (Theorem 4.6) and T is a left inverse of D (up to isomorphism,
Theorem 3.12), we have the following

4.8. Theorem. Every skeletal complete Q-category is isomorphic to M(φ) for some Q-
distributor φ.

The following proposition shows that the free cocompletion functor of Q-categories
factors through the functor M.

4.9. Proposition. The diagram

Q-Cat Q-InfoY //Q-Cat

Q-CCat

P
$$H

HH
HH

HH
HH

HH
HH

HH
Q-Info

Q-CCat

M

��

commutes.

Proof. First, M((YA)\) = ((YA)\)
↓ ◦ ((YA)\)↑(PA) = PA for each Q-category A. To see

this, it suffices to check that

µ = ((YA)\)
↓ ◦ ((YA)\)↑(µ) = ((YA)\ ↙ µ)↘ (YA)\

for all µ ∈ PA. On one hand, by Yoneda lemma we have

(YA)\ ↙ µ = (YA)\ ↙ (YA)\(−, µ) ≥ PA(µ,−),

thus
((YA)\ ↙ µ)↘ (YA)\ ≤ PA(µ,−)↘ (YA)\ = (YA)\(−, µ) = µ.

On the other hand, µ ≤ ((YA)\ ↙ µ)↘ (YA)\ holds trivially.
Second, it is trivial that for each Q-functor F : A −→ B,

M◦Y(F ) = F→ = P(F ).

Therefore, the conclusion holds.
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Corollary 4.7 says that the category Q-Cls is a coreflective subcategory of Q-Info.
In the following we show that Q-Cls is equivalent to a subcategory of Q-Info. This
equivalence is a generalization of that between closure spaces and state property systems
in [ACVS1999].

4.10. Definition. A Q-state property system is a triple (A,B, φ), where A is a Q-
category, B is a skeletal complete Q-category and φ : A −◦−→ B is a Q-distributor, such
that

(1) φ(−, infBλ) = λ↘ φ for all λ ∈ P†B,

(2) B(y, y′) = φ(−, y′)↙ φ(−, y) for all y, y′ ∈ B0.

Q-state property systems and infomorphisms constitute a category Q-Sp, which is a
subcategory of Q-Info.

4.11. Example. For each Q-closure space (A, C), (A, C(PA), ζC) is a Q-state property
system. First, for all Ψ ∈ P†(C(PA)), it follows from Example 2.9 and Equation (7) that

ζC(−, infC(PA)Ψ) = infC(PA)Ψ

=
∧

µ∈C(PA)

Ψ(µ)↘ µ

=
∧

µ∈C(PA)

Ψ(µ)↘ ζC(−, µ)

= Ψ↘ ζC .

Second, it is trivial that

C(PA)(µ, λ) = λ↙ µ = ζC(−, λ)↙ ζC(−, µ)

for all µ, λ ∈ C(PA).

Therefore, the codomain of the functor F : Q-Cls −→ Q-Info can be restricted to
the subcategory Q-Sp.

4.12. Theorem. The functors F : Q-Cls −→ Q-Sp and U : Q-Sp −→ Q-Cls establish
an equivalence of categories.

Proof. It is shown in Theorem 4.6 that U ◦ F = idQ-Cls, so, it suffices to prove that
F ◦ U ∼= idQ-Sp.

Given a Q-state property system (A,B, φ), we have by definition

F ◦ U(A,B, φ) = (A, φ↓ ◦ φ↑(PA), ζφ↓◦φ↑).

By virtue of Equation (14), the images of the Q-functor φ : B −→ PA are contained in
φ↓ ◦ φ↑(PA), so, it can be viewed as a Q-functor φ : B −→ φ↓ ◦ φ↑(PA). Since for any
x ∈ A0 and y ∈ B0,

φ(x, y) = (φy)(x) = ζφ↓◦φ↑(x, φy),
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it follows that ηφ = (1A, φ) is an infomorphism from ζφ↓◦φ↑ : A −◦−→ φ↓ ◦ φ↑(PA) to
φ : A −◦−→ B. Hence ηφ is a morphism from F ◦U(A,B, φ) to (A,B, φ) in Q-Sp. We claim
that η is a natural isomorphism from F ◦ U to the identity functor idQ-Sp.

Firstly, ηφ is an isomorphism. It suffices to show that

φ : B −→ φ↓ ◦ φ↑(PA)

is an isomorphism between Q-categories.
Since

B(y, y′) = φ(−, y′)↙ φ(−, y) = PA(φy, φy′)

for all y, y′ ∈ B0, it follows that φ is fully faithful. For each µ ∈ PA, let y = infB φ↑(µ),
then

φy = φ(−, y) = φ(−, infBφ↑(µ)) = φ↑(µ)↘ φ = φ↓ ◦ φ↑(µ),

hence φ is surjective. Since B is skeletal, we deduce that φ : B −→ φ↓ ◦ φ↑(PA) is an
isomorphism.

Secondly, η is natural. For this, we check the commutativity of the following diagram
for any infomorphism (F,G) : (A,B, φ) −→ (A′,B′, ψ) between Q-state property systems:

F ◦ U(A′,B′, ψ) (A′,B′, ψ)
(1A′ ,ψ)

//

F ◦ U(A,B, φ)

F ◦ U(A′,B′, ψ)

(F,F /)

��

F ◦ U(A,B, φ) (A,B, φ)
(1A,φ) // (A,B, φ)

(A′,B′, ψ)

(F,G)

��

In fact, the equality F ◦ 1A = 1A′ ◦ F is clear; and for all x ∈ A0 and y′ ∈ B′0,

φ ◦G(y′)(x) = φ(x,Gy′) = ψ(Fx, y′) = ψ(y′)(Fx) = F / ◦ ψ(y′)(x),

thus the conclusion follows.

Together with Theorem 3.12 we have

4.13. Corollary. The composition

T ◦ U : Q-Sp −→ (Q-CCat)skel

is a left adjoint of
F ◦ D : (Q-CCat)skel −→ Q-Sp.

We end this section with a characterization of the complete Q-category M(φ) for a
Q-distributor φ : A −◦−→ B.

Given a Q-distributor φ : A −◦−→ B, let Mφ(A,B) denote the set of pairs (µ, λ) ∈
PA × P†B such that λ = φ↑(µ) and µ = φ↓(λ). Mφ(A,B) becomes a Q-typed set if we
assign t(µ, λ) = tµ = tλ. For (µ1, λ1), (µ2, λ2) ∈Mφ(A,B), let

Mφ(A,B)((µ1, λ1), (µ2, λ2)) = PA(µ1, µ2) = P†B(λ1, λ2), (16)
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Then Mφ(A,B) becomes a Q-category.
The projection

π1 :Mφ(A,B) −→ PA, (µ, λ) 7→ µ

is clearly a fully faithful Q-functor. Since the image of π1 is exactly the set of fixed points
of the Q-closure operator φ↓ ◦ φ↑ : PA −→ PA, we obtain that Mφ(A,B) is isomorphic
to the complete Q-category M(φ) = φ↓ ◦ φ↑(PA).

Similarly, the projection

π2 :Mφ(A,B) −→ P†B, (µ, λ) 7→ λ

is also a fully faithful Q-functor and the image of π2 is exactly the set of fixed points of
the Q-interior operator φ↑ ◦φ↓ : P†B −→ P†B. HenceMφ(A,B) is also isomorphic to the
complete Q-category φ↑ ◦ φ↓(P†B), which is a Q-interior system of the skeletal complete
Q-category P†B.

Equation (16) shows that

φ↑ : φ↓ ◦ φ↑(PA) −→ φ↑ ◦ φ↓(P†B)

and
φ↓ : φ↑ ◦ φ↓(P†B) −→ φ↓ ◦ φ↑(PA)

are inverse to each other. Therefore, M(φ)(= φ↓ ◦ φ↑(PA)), φ↑ ◦ φ↓(P†B) and Mφ(A,B)
are isomorphic to each other.

4.14. Definition. A Q-functor F : A −→ B is sup-dense (resp. inf-dense) if for any
y ∈ B0, there is some µ ∈ PA (resp. λ ∈ P†A) such that y = supB F

→(µ) (resp.
y = infB F

→(λ)).

4.15. Example. For each Q-category A, the Yoneda embedding Y : A −→ PA is sup-
dense in PA. Indeed, we have that µ = supPA ◦Y→(µ) for all µ ∈ PA (see Equation
(8) in the proof of Theorem 3.12). Dually, the co-Yoneda embedding Y† : A −→ P†A is
inf-dense.

The following characterization of Mφ(A,B) (hence M(φ)) extends Theorem 4.8 in
[LZ2009] to the general setting.

4.16. Theorem. Given a Q-distributor φ : A −◦−→ B, a skeletal complete Q-category X
is isomorphic to Mφ(A,B) if and only if there exist a sup-dense Q-functor F : A −→ X
and an inf-dense Q-functor G : B −→ X such that φ = G\ ◦ F\ = X(F−, G−).

Proof. Necessity. It suffices to prove the case X = Mφ(A,B). Define Q-functors
F : A −→ X and G : B −→ X by

Fa = (φ↓ ◦ φa, φa), Gb = (φb, φ↑ ◦ φb),
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then F,G are well defined by equations (14) and (15). It follows that

X(F−, G−) = PA(φ↓ ◦ φ−, φ−)

= PA(φ↓ ◦ φ−, φ↓ ◦ Y†B−) (by Equation (14))

= P†B(φ↑ ◦ φ↓ ◦ φ−,Y†B−) (by Proposition 4.1)

= P†B(φ−,Y†B−) (by Equation (15))

= (φ−)(−) (by Yoneda lemma)

= φ.

Now we show that F : A −→ X is sup-dense. For all (µ, λ), (µ′, λ′) ∈ X0,

X((µ, λ), (µ′, λ′)) = λ′ ↘ λ

= λ′ ↘ φ↑(µ)

= λ′ ↘ (φ↙ µ)

= (λ′ ↘ φ)↙ µ

= P†B(φ−, λ′)↙ µ

= X(F−, (µ′, λ′))↙ µ (by Equation (16))

= (X(−, (µ′, λ′)) ◦ F\)↙ µ

= X(−, (µ′, λ′))↙ (µ ◦ F \) (by Proposition 2.1(2))

= X(−, (µ′, λ′))↙ F→(µ),

thus (µ, λ) = supX ◦ F→(µ), as desired.
That G : B −→ X is inf-dense can be proved similarly.
Sufficiency. We show that the type-preserving function

H : X −→Mφ(A,B), Hx = (F\(−, x), G\(x,−))

is an isomorphism of Q-categories.
Step 1. X = F\ ↙ F\ = G\ ↘ G\.
For all x ∈ X0, since F : A −→ X is sup-dense, there is some µ ∈ PA such that

x = supX F
→(µ), thus

X(x,−) = X↙ F→(µ) = X↙ (µ ◦ F \) = (X ◦ F\)↙ µ = F\ ↙ µ, (17)

where the third equality follows from Proposition 2.1(2). Consequently

X(x,−) ≤ F\ ↙ F\(−, x)

≤ (F\ ↙ F\(−, x)) ◦ X(x, x)

= (F\ ↙ F\(−, x)) ◦ (F\(−, x)↙ µ) (by Equation (17))

≤ F\ ↙ µ

= X(x,−), (by Equation (17))
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hence X(x,−) = F\ ↙ F\(−, x) = (F\ ↙ F\)(x,−).
Since G : B −→ X is inf-dense, similar calculations lead to X = G\ ↘ G\.
Step 2. Hx ∈Mφ(A,B) for all x ∈ X0, thus H is well defined. Indeed,

φ↑(F\(−, x)) = φ↙ F\(−, x)

= (G\ ◦ F\)↙ F\(−, x) (since φ = G\ ◦ F\)
= G\ ◦ (F\ ↙ F\(−, x)) (by Proposition 2.1(3))

= G\ ◦ X(x,−) (by Step 1)

= G\(x,−).

Similar calculation shows that φ↓(G\(x,−)) = F\(−, x). Hence, Hx ∈Mφ(A,B).
Step 3. H is a fully faithful Q-functor. Indeed, for all x, x′ ∈ X0, by Step 1,

X(x, x′) = F\(−, x′)↙ F\(−, x) = PA(F\(−, x), F\(−, x′)) =Mφ(A,B)(Hx,Hx′).

Step 4. H is surjective. For each pair (µ, λ) ∈Mφ(A,B), we must show that there is
some x ∈ X0 such that F\(−, x) = µ and G\(x,−) = λ. Indeed, let x = supX F

→(µ), then

G\(x,−) = G\ ◦ X(x,−)

= G\ ◦ (F\ ↙ µ) (by Equation (17))

= (G\ ◦ F\)↙ µ (by Proposition 2.1(3))

= φ↙ µ (since φ = G\ ◦ F\)
= φ↑(µ)

= λ,

and it follows that F\(−, x) = φ↓(G\(x,−)) = φ↓(λ) = µ.

4.17. Remark. (1) If the quantaloid Q has only one object, i.e., Q is a unital quantale
(in particular the 2-element Boolean algebra), then a Q-distributor φ : A −◦−→ B between
discrete Q-categories is exactly a Q-valued relations between two sets.1 In this case an
element (µ, λ) in Mφ(A,B) is a formal concept of the formal context (A,B, φ) in the
sense of [Bel2004, GW1999, SZ2013] and Mφ(A,B) is the (fuzzy) formal concept lattice
of (A,B, φ). So, the construction of M(φ) provides an extension of Formal Concept
Analysis [Bel2004, GW1999].

(2) If the quantaloidQ degenerates to a unital commutative quantale, thenQ-categories
have been treated as quantitative (fuzzy) ordered sets, e.g. [Bel2004, Wag1994]. In this
case, for each Q-category A, M(A) is the enriched MacNeille completion of A given
in [Bel2004, Wag1994]. Thus, the construction of M(φ) also generalizes the MacNeille
completion of (quantitative) ordered sets.

1A Q-category A is discrete if A(x, x) = 1tx for all x ∈ A0 and A(x, y) = ⊥tx,ty whenever x 6= y.
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5. Kan adjunctions

Given a Q-distributor φ : A −◦−→ B, composing with φ yields a Q-functor

φ∗ : PB −→ PA

defined by
φ∗(λ) = λ ◦ φ.

for all λ ∈ PB. Define another Q-functor

φ∗ : PA −→ PB

by
φ∗(µ) = µ↙ φ.

The following propositions 5.1 and 5.2 can be verified in a way similar to that for
propositions 4.1 and 4.3.

5.1. Proposition. φ∗ a φ∗ : PB⇀ PA in Q-Cat.

5.2. Proposition. Let φ : A −◦−→ B be a Q-distributor, then pφ∗ ◦ YBq = φ.

If φ : A ⇀ B is itself a left adjoint Q-distributor, then φ∗ is not only a left adjoint
Q-functor, but also a right adjoint Q-functor as asserted in the following

5.3. Proposition. φ a ψ : A ⇀ B in Q-Dist if and only if ψ∗ a φ∗ : PA ⇀ PB in
Q-Cat.

Proof. Necessity. By Proposition 2.1(2), for all µ ∈ PA and λ ∈ PB,

PB(ψ∗(µ), λ) = λ↙ (µ ◦ ψ) = (λ ◦ φ)↙ µ = PA(µ, φ∗(λ)).

Sufficiency. We must show that A ≤ ψ ◦φ and φ ◦ψ ≤ B. Indeed, for all x ∈ A0 and
y ∈ B0, by Proposition 5.2,

ψ(−, x) ◦ φ = φ∗(ψ(−, x)) = φ∗ ◦ ψ∗ ◦ YAx ≥ 1PA ◦ YAx = A(−, x),

φ(−, y) ◦ ψ = ψ∗(φ(−, y)) = ψ∗ ◦ φ∗ ◦ YBy ≤ 1PB ◦ YBy = B(−, y).

This completes the proof.
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Therefore, for a left adjoint Q-distributor φ, φ∗ has both a right adjoint φ∗ and a left
adjoint ψ∗, where ψ is the right adjoint of φ in Q-Dist. In particular, given a Q-functor
F : A −→ B, since the cograph F \ : B −◦−→ A of F is a right adjoint of the graph
F\ : A −◦−→ B of F , it follows that both (F \)∗ and (F\)

∗ are right adjoints of (F \)∗, hence
equal to each other. Since F← : PB −→ PA is the counterpart of the functor − ◦ F
for Q-categories, we arrive at the following conclusion which asserts that the adjunction
φ∗ a φ∗ generalizes Kan extensions in category theory.

5.4. Theorem. For each Q-functor F : A −→ B, it holds that

(F \)∗ a (F \)∗ = F← = (F\)
∗ a (F\)∗.

5.5. Remark. (1) The left Kan extension (F \)∗ : PA −→ PB of aQ-functor F : A −→ B
given in Theorem 5.4 is exactly the pointwise left Kan extension of YB ◦ F : A −→ PB
along YA : A −→ PA in Stubbe [Stu2005]. Indeed, it can be verified that if the pointwise
left Kan extension 〈F,G〉 of a Q-functor F : A −→ B along G : A −→ C exists, then for
each c ∈ C0,

〈F,G〉(c) = B↙ (F \)∗(G\(−, c)).
(2) Consider the Boolean algebra 2 = {0, 1} as an one-object quantaloid. Then every

set can be regarded as a discrete 2-category. Given sets X and Y , a distributor F : X −◦−→
Y is essentially a relation from X to Y , or a set-valued map X −→ 2Y . If we write F op

for the dual relation of F , then both F∗ and (F op)∗ are maps from 2Y to 2X . Explicitly,
for each V ⊆ Y ,

F∗(V ) = {x ∈ X | F (x) ⊆ V } and (F op)∗(V ) = {x ∈ X | F (x) ∩ V 6= ∅}.

If both X and Y are topological spaces, then the upper and lower semi-continuity of
F (as a set-valued map) [Ber1963] can be phrased as follows: F is upper (resp. lower)
semi-continuous if F∗(V ) (resp. (F op)∗(V )) is open in X whenever V is open in Y . In
particular, if F is the graph of some map f : X −→ Y , then (F op)∗(V ) = F∗(V ) = f−1(V )
for all V ⊆ Y , hence f is continuous iff F is lower semi-continuous iff F is upper semi-
continuous [Ber1963].

The following corollary shows that for a fully faithful Q-functor F : A −→ B, both
(F \)∗ and (F\)∗ can be regarded as extensions of F [Law1973].

5.6. Corollary. If F : A −→ B is a fully faithful Q-functor, then for all µ ∈ PA, it
holds that (F \)∗(µ) ◦ F\ = µ and (F\)∗(µ) ◦ F\ = µ.

Proof. The first equality is a reformulation of Proposition 2.3(1). For the second equality,

(F\)∗(µ) ◦ F\ = (µ↙ F\) ◦ F\
= µ↙ (F \ ◦ F\) (by Proposition 2.1(4))

= µ↙ A (by Proposition 2.3(1))

= µ.

This completes the proof.
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Adjunctions of the form φ∗ a φ∗ : PB⇀ PA will be called Kan adjunctions by abuse
of language. The following theorem states that all adjunctions between PB and PA are
of this form.

5.7. Theorem. The correspondence φ 7→ φ∗ is an isomorphism of posets

Q-Dist(A,B) ∼= Q-CCat(PB,PA).

Proof. The proof is similar to Theorem 4.4. The correspondence G 7→ pG ◦ YBq is an
inverse of the correspondence φ 7→ φ∗.

Theorem 5.7 adds one more isomorphism of posets to (13):

Q-Dist(A,B) ∼= Q-Catco(A,P†B) ∼= Q-Cat(B,PA)

∼= Q-CCatco(PA,P†B) ∼= Q-CCat(PB,PA).

Since φ∗ ◦φ∗ : PB −→ PB is a Q-closure operator for each Q-distributor φ : A −◦−→ B,
it follows that (B, φ∗ ◦ φ∗) is a Q-closure space.

5.8. Proposition. Let (F,G) : (φ : A −◦−→ B) −→ (ψ : A′ −◦−→ B′) be an infomorphism.
Then G : (B′, ψ∗ ◦ ψ∗) −→ (B, φ∗ ◦ φ∗) is a continuous Q-functor.

Proof. Consider the following diagram:

PB PA
φ∗

//

PB′

PB

G→

��

PB′ PA′ψ∗ // PA′

PA

F←

��
PA PB

φ∗
//

PA′

PA

PA′ PB′ψ∗ // PB′

PB

G→

��

One must show that G→ ◦ψ∗ ◦ψ∗ ≤ φ∗ ◦ φ∗ ◦G→. We leave it to the reader to check that
the left square commutes if and only if (F,G) : φ −→ ψ is an infomorphism and that if
G\ ◦ φ ≤ ψ ◦ F\ then G→ ◦ ψ∗ ≤ φ∗ ◦ F←.

By virtue of Proposition 5.8 we obtain a functor V : (Q-Info)op −→ Q-Cls that sends
an infomorphism

(F,G) : (φ : A −◦−→ B) −→ (ψ : A′ −◦−→ B′)

to a continuous Q-functor

G : (B′, ψ∗ ◦ ψ∗) −→ (B, φ∗ ◦ φ∗).

The composition of
V : (Q-Info)op −→ Q-Cls

and
T : Q-Cls −→ (Q-CCat)skel
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gives a functor
K = T ◦ V : (Q-Info)op −→ (Q-CCat)skel

that sends each Q-distributor φ : A −◦−→ B to the complete Q-category φ∗ ◦ φ∗(PB).
The following conclusion asserts that the free cocompletion functor of Q-categories

factors through K.

5.9. Proposition. If F : A −→ B is a fully faithful Q-functor, then K(F \) = PA. In
particular, the diagram

Q-Cat (Q-Info)opY† //Q-Cat

Q-CCat

P
$$H

HH
HH

HH
HH

HH
HH

HH
(Q-Info)op

Q-CCat

K

��

commutes.

Proof. In order to see that K(F \) = (F \)∗ ◦ (F \)∗(PA) = PA, it suffices to check that
(F \)∗ ◦ (F \)∗(µ) = µ for all µ ∈ PA. Indeed,

(F \)∗ ◦ (F \)∗(µ) = (F\)
∗ ◦ (F \)∗(µ) (by Theorem 5.4)

= (F \ ◦ F\)∗(µ)

= A∗(µ) (by Proposition 2.3(1))

= µ.

Furthermore, it is easy to verify that K ◦ Y†(G) = G→ = P(G) for each Q-functor
G : A −→ B. Thus, the conclusion follows.

Theorem 4.8 shows that every skeletal complete Q-category is of the form M(φ). It
is natural to ask whether every complete Q-category can be written of the form K(φ)
for some Q-distributor φ. A little surprisingly, this is not true in general. This fact was
pointed out in [LZ2009] in the case that Q is a unital commutative quantale. However,
the answer is positive for a special kind of quantaloids.

Let D = {dA : A −→ A | A ∈ Q0} be a family of morphisms in a quantaloid Q. D is
called a cyclic family [Ros1996] if dA ↙ f = f ↘ dB for all f ∈ Q(A,B). D is called a
dualizing family [Ros1996] if (dA ↙ f)↘ dA = f = dB ↙ (f ↘ dB) for all f ∈ Q(A,B).

A Girard quantaloid [Ros1996] is a quantaloid with a cyclic dualizing family D of
morphisms.

5.10. Proposition. [Ros1996] Suppose Q has a dualizing family

D = {dA : A −→ A | A ∈ Q0}.

Then for all Q-arrows f, ft : A −→ B, g : B −→ C, h : A −→ C:

(1) g ◦ f = dC ↙ (f ↘ (g ↘ dC)) = ((dA ↙ f)↙ g)↘ dA.
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(2) (h↙ f)↘ dC = f ◦ (h↘ dC), dA ↙ (g ↘ h) = (dA ↙ h) ◦ g.

(3) (dB ↙ g)↘ f = g ↙ (f ↘ dB).

Let Q be a Girard quantaloid with a cyclic dualizing family

D = {dA : A −→ A | A ∈ Q0}.

For all f ∈ Q(A,B), let

¬f = dA ↙ f = f ↘ dB : B −→ A.

Then ¬¬f = f since D is a dualizing family. For each Q-category A, set

(¬A)(y, x) = ¬A(x, y)

for all x, y ∈ A0. It is easy to verify that ¬A : A −◦−→ A is a Q-distributor and

D′ = {¬A : A −◦−→ A | A ∈ Q-Dist}

is a cyclic dualizing family of Q-Dist. Thus

5.11. Proposition. [Ros1996] If Q is a Girard quantaloid, then Q-Dist is a Girard
quantaloid.

Therefore, by assigning ¬φ = ¬A↙ φ = φ↘ ¬B for each Q-distributor φ : A −◦−→ B,
we obtain a functor ¬ : Q-Info −→ (Q-Info)op that sends an infomorphism

(F,G) : (φ : A −◦−→ B) −→ (ψ : A′ −◦−→ B′)

to
(G,F ) : (¬ψ : B′ −◦−→ A′) −→ (¬φ : B −◦−→ A).

It is clear that ¬ ◦ ¬ = 1Q-Info. We leave it to the reader to check that (¬φ)(y, x) =
¬φ(x, y) for any distributor φ : A −◦−→ B and x ∈ A0, y ∈ B0.

5.12. Lemma. Suppose Q is a Girard quantaloid. Then for any Q-distributor φ : A −◦−→
B, it holds that φ∗ = ¬ ◦ (¬φ)↑ and φ∗ = (¬φ)↓ ◦ ¬.

Proof. For all λ ∈ PB and µ ∈ PA, we have

φ∗(λ) = λ ◦ φ
= λ ◦ (¬φ↘ ¬A) (by Proposition 5.11)

= (¬φ↙ λ)↘ ¬A (by Proposition 5.10(2))

= ¬ ◦ (¬φ)↑(λ)
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and

φ∗(µ) = µ↙ φ

= µ↙ (¬φ↘ ¬A) (by Proposition 5.11)

= (¬A↙ µ)↘ ¬φ (by Proposition 5.10(3))

= ¬µ↘ ¬φ (by Proposition 5.11)

= (¬φ)↓ ◦ ¬µ.

The conclusion thus follows.

5.13. Proposition. Suppose Q is a Girard quantaloid. Then V = U ◦ ¬ and it has a
left adjoint right inverse given by

G = ¬ ◦ F : Q-Cls −→ (Q-Info)op.

Therefore, every skeletal complete Q-category is isomorphic to K(φ) for some Q-distributor
φ.

Proof. This is an immediate consequence of Theorem 4.6 and Lemma 5.12.

6. Concluding remarks and questions

Isbell adjunctions and Kan extensions are fundamental constructions in category theory,
both of them can be viewed as adjunctions between categories of (contravariant) func-
tors. This paper investigates the functoriality of these constructions in a special setting:
categories enriched over a small quantaloid Q. To this end, infomorphisms (an extension
of adjunctions between categories) are introduced to play the role of morphisms between
distributors. It is shown that each distributor between categories enriched over a small
quantaloid gives rise to two adjunctions (which are respectively generalizations of Isbell
adjunctions and Kan extensions), hence to two monads; and that these two processes
are functorial from the category of distributors and infomorphisms to the category of
complete Q-categories and left adjoints.

This paper is a first step (in a very special setting) to the functoriality of the construc-
tions of Isbell adjunctions and Kan extensions, many things remain to be discovered. We
end this paper with two questions.

The definition of infomorphisms is meaningful for distributors between small cate-
gories. The first question is: Is it possible to establish similar results for distributors
between small categories?

The infomorphisms between distributors introduced here can be composed vertically,
but not horizontally. So, the second question is: Is it possible to find a certain kind of
morphisms between distributors that can be composed in both directions and behave in
a nice way with respect to the construction of Kan extension and Isbell adjunction?
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