
Theory and Applications of Categories, Vol. 28, No. 18, 2013, pp. 541–551.

SUBGROUPOIDS AND QUOTIENT THEORIES

HENRIK FORSSELL

Abstract. Moerdijk’s site description for equivariant sheaf toposes on open topo-
logical groupoids is used to give a proof for the (known, but apparently unpublished)
proposition that if H is a subgroupoid of an open topological groupoid G , then the
topos of equivariant sheaves on H is a subtopos of the topos of equivariant sheaves
on G . This proposition is then applied to the study of quotient geometric theories and
subtoposes. In particular, an intrinsic characterization is given of those subgroupoids
that are definable by quotient theories.

1. Introduction

In [2], Butz and Moerdijk showed that a topos with enough points can be represented as
the topos of equivariant sheaves on an open topological groupoid constructed from points
of the topos. In ‘logical’ terms, this can be rephrased as saying that for any geometric
theory T with enough models, there exists an open topological groupoid G consisting of
T-models and isomorphisms such that the classifying topos of T is equivalent to the topos
of equivariant sheaves on G

Set[T] ' ShG1(G0) (1)

Conversely, any equivariant sheaf topos ShG1(G0) classifies a geometric theory with enough
models, and G can be regarded as consisting of T-models and isomorphisms. Considering
the displayed equivalence (1), there is on the ‘theory’ side a correspondence between
subtoposes of Set[T] and quotient theories of T (see [3, Theorem 3.6]). On the groupoid
side, it is known to specialists (Moerdijk in particular) that a subgroupoid of an open
topological groupoid induces a subtopos of equivariant sheaves, but this fact appears not
to have been published. As a first outline of the connection between subgroupoids of G
and quotient theories of T, this paper first fills in a proof of that fact and points out
the resulting Galois connection between subgroupoids of G and subtoposes of ShG1(G0)
(and thus quotient theories of T), and then characterizes the subgroupoids of G that are
definable by quotient theories. The whole investigation is carried out using Moerdijk’s
site description for equivariant sheaf toposes given in [8], and a brief introduction to that
construction is given first.
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2. Subgroupoids and subtoposes

2.1. Groupoids and equivariant sheaves. This section briefly recalls from [7], [8], [9]
the topos of equivariant sheaves on a topological groupoid and Moerdijk’s site description
for such toposes (written out here for topological rather than localic groupoids and writing
out a few additional details, cf. especially [8, §6], a more detailed and self-contained
presentation can be found in the online note [5]). Let G be a topological groupoid, fully
written out as a groupoid object in the category Sp of topological spaces and continuous
maps as

G1 ×G0 G1 G1m // G1 G0

d //
G1 G0
oo eG1 G0

c
//G1

i

��

with m the composition, e the mapping to identities, and i the mapping to inverses. This
notation will be mixed with the usual notation g ◦ f , 1x, f

−1. G is called open if the
domain and codomain maps are open. It follows that composition of arrows must also
be open. The objects of the category of equivariant sheaves, ShG1(G0), on G are pairs
〈r : R→ G0, ρ〉 where r is a local homeomorphism—i.e. an object of Sh (G0)—and ρ is a
continuous action, i.e. a continuous map

ρ : G1 ×G0 R //R

with the pullback being along the domain map and such that r(ρ(f, x)) = c(f), satisfying
the expected unit and composition axioms. If G is an open topological groupoid then it
follows that the action ρ is an open map. A morphism of equivariant sheaves is a morphism
of sheaves (local homeomorphisms) commuting with the actions. The category, ShG1(G0),
of equivariant sheaves on G is a (Grothendieck) topos. The forgetful functors of forgetting
the action, u :ShG1(G0) // Sh (G0), and of forgetting the topology, v :ShG1(G0) // SetG ,
are both conservative inverse image functors. A continuous functor, or morphism of
topological groupoids, f : H // G , i.e. a morphism of groupoid objects in Sp induces
a geometric morphism f : ShH1(H0) // ShG1(G0) where f ∗ pulls a sheaf back along f0
and equips it with an action using f1 in the expected way (both u∗ and v∗ above are
examples).

Let G be an open topological groupoid. Let N ⊆ G1 be an open subset closed under
composition and inverse, and let U = d(N) = c(N). Refer to such a pair (U,N) as an open
subgroupoid. Form the quotient space d−1(U) � d−1(U)/∼N

by f ∼N g iff c(f) = c(g)
and g−1 ◦ f ∈ N . The quotient map q is then an open surjection, the codomain map
c : d−1(U)/∼N

→ G0 is a local homeomorphism, and composition defines a continuous
action on d−1(U)/∼N

, so that we have an equivariant sheaf denoted 〈G , U,N〉. Objects
of the form 〈G , U,N〉 form a generating set for ShG1(G0). Briefly, given an equivariant
sheaf 〈r : R→ G0, ρ〉 and a continuous section t : U → R, we get an open set of arrows

Nt =
{
f ∈ d−1(U) ∩ c−1(U) ρ(f, t(d(f))) = t(c(f))

}
(by pullback of the open set t(U) along an appropriate continuous map) which is closed
under composition and inverse, and such that d(N) = c(N) = U . There is a canonical
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continuous section e : U → d−1(U)/∼N
defined by x 7→ [1x]∼Nt

, and the section t lifts to

a morphism, t̂ : 〈G , U,Nt〉 → R, of ShG1(G0),

d−1(U)/∼Nt

U

dd
e HHH
HH

d−1(U)/∼Nt
Rt̂ // R

U

::

tvv
vv
vv
v

= (2)

such that t̂([f ]) = ρ(f, t(d(f))). One easily sees that t̂ is 1-1. For reference:

2.2. Proposition. Any object A ∈ ShG1(G0) is the join of its subobjects of the form
〈G , U,N〉� A for open subgroupoids (U,N).

The full subcategory of ShG1(G0) consisting of objects of the form 〈G , U,N〉 is, ac-
cordingly, a site for ShG1(G0) when equipped with the canonical coverage. Refer to this as
the Moerdijk site for ShG1(G0), and denote it SG

� � // ShG1(G0). Moerdijk sites are closed
under subobjects. For consider an object 〈G , U,N〉 and let V ⊆ U be an open subset
closed under N , that is, such that x ∈ V and f : x→ y in N implies y ∈ V . Then

d−1(V )/∼N�V
= m(G1 ×G0 e(V )) ⊆ d−1(U)/∼N

is an open subset closed under the action, and so a subobject. All subobjects are of this
form:

2.3. Lemma. Let 〈G , U,N〉 be an object of SG . Then V 7→ d−1(V )/∼N�V
defines an

isomorphism between the frame of open subsets of U that are closed under N and the
frame of subobjects of 〈G , U,N〉.
Proof. The inverse is given by pulling back along the canonical section e : U → d−1(U)/∼N

.

The morphisms in the Moerdijk site can be described in a manner similar to the
objects in it. Consider a morphism t̂ : 〈G , U,N〉 → 〈G , V,M〉. It is easily seen that such
a morphism determines and is determined by a section t : U → d−1(V )/∼M

with the
property that for any f : x → y in N , we have that f ◦ t(x) = t(y). And such a section
can be described as an open set:

2.4. Lemma. Given two objects 〈G , U,N〉 and 〈G , V,M〉 in ShG1(G0), morphisms t̂ :
d−1(U)/∼N

→ d−1(V )/∼M
between them are in one-to-one correspondence with open sub-

sets T ⊆ d−1(V ) that satisfy the following properties:

i) m(T ×G0 M) ⊆ T , i.e., T is closed under ∼M ;

ii) c(T ) = U ;

iii) m(T−1 ×G0 T ) ⊆ M , i.e., if two arrows in T share a codomain then they are ∼M -
equivalent;

iv) m(N ×G0 T ) ⊆ T , i.e., if f : x→ y is in T and g : y → z is in N then g ◦ f ∈ T .

Moreover, t̂ can be thought of as ‘precomposing with T ’, in the sense that t̂([f ]∼N
) =

[f ◦ g]∼M
for some (any) g ∈ T such that c(g) = d(f).
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Proof. Straightforward.

The following corollary will be useful.

2.5. Corollary. Given two objects of G, 〈G , U,N〉 and 〈G , V,M〉, and suppose T ⊆
d−1(V ) is an open subset satisfying conditions (i), (iii), and (iv) of Lemma 2.4 and such
that ii′) c(T ) ⊆ U Then T determines a morphism from the subobject 〈G , c(T ), N �c(T )〉
of 〈G , U,N〉 to 〈G , V,M〉.

Proof. c(T ) is closed under N by condition (iv), and the rest is straightforward.

For a morphism f :H // G of open topological groupoids, the induced inverse image
f ∗ does not necessarily restrict to a functor between the respective Moerdijk-sites. The
following condition (somewhat simplified from [8], cf. Lemma 6.2 there, so a proof is
included here) ensures that it does.

2.6. Definition. A morphism f :H // G of open topological groupoids is a fibration if
for all (h : x → f0(y)) ∈ G1 there exists g ∈ H1 such that c(g) = y and f1(g) = h. If
the component continuous functions of f are, moreover, subspace inclusions, then we say
that H is a replete subgroupoid of G and that f is a replete subgroupoid inclusion.

Thus a replete subgroupoid is a full subcategory closed under isomorphisms and
equipped with subspace topologies. Now, if f : H → G is a morphism of open topo-
logical groupoids and (U,N) is an open subgroupoid of G , then one readily sees that
(f−10 (U), f−11 (N)) is an open subgroupoid of H . Moreover:

2.7. Lemma. Let f :H //G be a fibration of open topological groupoids, and let 〈G , U,N〉
be an object of the Moerdijk-site of ShG1(G0). Then

〈H , f−10 (U), f−11 (N)〉 ∼= f ∗(〈G , U,N〉)

Moreover, if
t̂ : 〈G , U1, N1〉 → 〈G , U2, N2〉

is a morphism in the Moerdijk-site of ShG1(G0) corresponding to an open set T ⊆ G1.
Then

f ∗(t̂) : 〈H , f−10 (U1), f
−1
1 (N1)〉 → 〈H , f−10 (U2), f

−1
1 (N2)〉

corresponds to the open set f−11 (T ) ⊆ H1.

Proof. Consider the diagram

V = f−10 (U) H0⊆ //

d−1(f−10 (U))/∼Nt

V = f−10 (U)

OO

e

d−1(f−10 (U))/∼Nt
H0 ×G0 d

−1(U)/∼N

t̂ // H0 ×G0 d
−1(U)/∼N

H0

��
V = f−10 (U)

H0 ×G0 d
−1(U)/∼N

t

44jjjjjjjjjjjjjjjjjj
H0 G0f0

//

H0 ×G0 d
−1(U)/∼N

H0

��

H0 ×G0 d
−1(U)/∼N

d−1(U)/∼N
// d−1(U)/∼N

G0

c

��
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where t is the section obtained by pulling back the canonical section e : U → d−1(U)/∼N
—

so that t(v) = 〈v, [1f0(v)]∼N
〉—and Nt ⊆ H1 and t̂ are the induced open subgroupoid and

morphism as in (2) and Proposition 2.2. Now, we have

Nt =
{
g ∈ d−1(V ) ∩ c−1(V ) f1(g) ◦ [1f0(d(g))]∼N

= [1f0(c(g))]∼N

}
=
{
g ∈ d−1(V ) ∩ c−1(V ) f1(g) ∈ N

}
= f−11 (N)

and so 〈H , f−10 (U), f−11 (N)〉 = 〈H , f−10 (U), Nt〉, and by Proposition 2.2, t̂ is injective.
Remains to show that it is also surjective. Let 〈x, [g : u→ f0(x)]∼N

〉 be given. Since
f : H // G is a fibration, there exist (h : y → x) ∈ H1 such that f1(h) = g, and since,
accordingly, f0(y) = u we have h ∈ d−1(f−10 (U)). But then

t̂([h]∼Nt
) = 〈x, f1(h) ◦ [1f0(y)]∼N

〉 = 〈x, [f1(h)]∼N
〉 = 〈x, [g]∼N

〉.

The second claim is a similar computation using Lemma 2.4.

2.8. Subgroupoids and subtoposes. Let G be an open topological groupoid and
ι : H � � // G a replete subgroupoid, that is, H is a topological groupoid consisting of
subspaces H1 ⊆ G1 and H0 ⊆ G0 such that H0 is closed under isomorphisms in G
and the inclusions form a morphism of groupoids which is full as a functor. It follows
that H is an open groupoid. By Lemma 2.7, the induced inverse image functor ι∗ :
ShG1(G0) // ShH1(H0) restricts to a functor between the respective Moerdijk sites I :
SG

// SH . It is shown in this section that this functor is essentially full and essentially
surjective, whence the geometric morphism f is an inclusion of toposes.

Say, for present purposes, that a functor F :C // D is essentially full if for any B,C
in C and morphism f : F (B)→ F (C) in D, there exists in C an object B′ with a zig-zag
between B and B′, and object C ′ with a zig-zag between C and C ′, and a morphism
f ′ : B′ → C ′ such that: i) F sends the morphisms in both zig-zags to isomorphisms;
and ii) the resulting isomorphisms F (B) ∼= F (B′) and F (C) ∼= F (C ′) form a commuting
square with f and F (f):

F (B) F (C)′
f
//

F (B′)

F (B)

∼=
��

F (B′) F (C ′)
F (f ′) // F (C ′)

F (C)′

∼=
��

The following lemma will be useful.

2.9. Lemma. Let H � � //G be a replete subgroupoid of an open groupoid, and let V,W ⊆
G1 be open sets. Then m(V ×G0 W ) is open and

m(V ×G0 W ) ∩H1 = m(V ∩H1 ×H0 W ∩H1)

Proof. Composition of arrows is an open map for all open groupoids (see [8]). The rest
is a straightforward consequence of the inclusion being a fibration.
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2.10. Lemma. Let ι : H � � // G be a replete subgroupoid inclusion of open topological
groupoids. Then the induced functor I :SG

//SH of Moerdijk sites is essentially surjective
and essentially full.

Proof. Consider an object 〈H , V,M〉. With M an open set in the subspace H1 ⊆ G1,
we have the open sets

N :=
⋃
{K ∈ O(G1) K ∩H1 ⊆M} ⊆ G1

(where O(G1) is the frame of open subsets of G1) and U := d(N) ∪ c(N). Using Lemma
2.9, it is straightforward to verify that (U,N) is an open subgroupoid of G , and clearly
I(〈G , U,N〉) = 〈H , U ∩H0, N ∩H1〉 = 〈H , V,M〉. Thus this construction results in a
right inverse J to the object function I0.

Next, let 〈G , U,N〉 be given. There is a canonical morphism 〈G , U,N〉 → J(I(〈G , U,N〉))
such that I sends this morphism to the identity: Write

〈H , U,N〉 := 〈H , U ∩H0, N ∩H1〉 = I(〈G , U,N〉)
〈G , U,N〉 := J(〈H , U,N〉)

Then N ⊆ N and, consequently, U ⊆ U . Compose the canonical section e : U → d−1(U)
with the inclusion U ⊆ U ,

U G0⊆
//

d−1(U)/∼N

U

::

e
uu
uu
uu
uu
u

d−1(U)/∼N

G0

c
��

d−1(U)/∼N
d−1(U)/∼N

v̂ //d−1(U)/∼N

U

c

��

d−1(U)/∼N

U

55
v

jjjj
jjjj

jjjj
jjjj

j

U U⊆
//

(3)

For any f : x→ y in N , we have that

f ◦ v(x) = f ◦ e(x) = f ◦ [1x]∼N
= [f ]∼N

= [1y]∼N
= v(y)

since N ⊆ N . So v induces the morphism v̂([f ]∼N
) = [f ]∼N

in (3). By Lemma 2.7, v̂ is
sent to the identity by I.

Now, given objects 〈G , U,N〉, 〈G , V,M〉 and a morphism t̂ : 〈H , U,N〉 → 〈H , V ,M〉,
write T ⊆ d−1(V ) for the corresponding open subset of arrows and v̂ : 〈G , V,M〉 →
〈G , V ,M〉 for the morphism of the preceding paragraph. Consider the open set

S := c−1(U) ∩
⋃
{P ∈ O(G1) P ∩H1 ⊆ T} .

It is straightforward to verify that S satisfies the conditions of Corollary 2.5 so that S
corresponds to a morphism ŝ : 〈G , c(S), N �c(S)〉 → 〈G , V ,M〉,

〈G , U,N〉 〈G , V,M〉

〈G , c(S), N �c(S)〉

〈G , U,N〉
⊆
��

〈G , c(S), N �c(S)〉 〈G , V ,M〉ŝ // 〈G , V ,M〉

〈G , V,M〉

OO
v̂

where (by inspection and the proof of Lemma 2.10, respectively) I sends both vertical
arrows to identities. Moreover, S ∩H1 = T and so by Lemma 2.7, I(ŝ) = t̂.



SUBGROUPOIDS AND QUOTIENT THEORIES 547

In conclusion:

2.11. Theorem. Let G be an open groupoid and ι :H // G a replete subgroupoid inclu-
sion. Then the induced geometric morphism

ι :ShH1(H0) // ShG1(G0)

is an inclusion.

Proof. By Lemma 2.10 the inverse image ι∗ : ShG1(G0) // ShH1(H0) restricts to an
essentially surjective and essentially full functor I : SG

// SH . Consider the surjection-
inclusion factorization

Sh (H )

I
e %% %%LL

LLL
LLL

L
Sh (H ) Sh (G )ι // Sh (G )

I

99

m
+ � rrr

rrr
rrr

of ι. The full subcategory SI
� � // I consisting of the objects that are in m∗(SG ) is a site

for I when equipped with the canonical coverage inherited from I. The inverse image e∗

restricts to a conservative functor E : SI // SH such that a family of morphisms in SI
is covering if and only if the image of it under E is covering in SG . But now E is also
essentially surjective, because I is, and full, because it reflects isomorphisms and F is
essentially full. So e is an equivalence.

Note that in the special case where H0 is an open subset of G0 (equivalently, H1 is
an open subset of G1) the theorem follows from [8, Prop. 5.13] or from observing that in
that case H can be considered as a subterminal object of ShG1(G0). We shall return to
this special case in Proposition 3.7 below.

3. Quotient Theories and Subgroupoids

3.1. Subtoposes, Quotient Theories, and Subgroupoids. Let Σ be a (first-order)
signature. A geometric formula over Σ is one constructed with the logical constants >,
⊥, ∧, ∃, and

∨
(where the latter is infinitary disjunction of formulas that together have

only finitely many free variables). See Part D of [7] for further details and a calculus for
geometric sequents, i.e. sequents consisting of geometric formulas. Strictly speaking, there
is a proper class of geometric formulas over Σ, but every geometric formula is provably
equivalent, in the empty theory, to a disjunction of regular formulas (built from >, ∧,
and ∃). We will therefore allow ourselves to speak of e.g. the collection L of all sequents
over Σ as set instead of a class. It is convenient for our purposes to stipulate that theories
are always closed under consequence, so by a geometric theory is meant a deductively
closed set of geometric sequents. For theories T and T′ over the same signature Σ, say
that T′ is a quotient of T and write T ⊆ T′ if T is contained in T′ as a set of sequents.
Quotient theories of a theory T correspond to subtoposes of the classifying topos Set[T]
(see [3, Theorem 3.6]). Specifically, let T be a geometric theory. Recall from e.g. [7] that its
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classifying topos can be constructed by taking sheaves on the (essentially small) geometric
syntactic category of T equipped with the coverage consisting of all sieves generated by
small covering families

Set[T] := Sh (CT, J)

The subtoposes of Set[T] are then in 1–1 correspondence with the coverages on CT con-
taining J . Ordering coverages by inclusion, this is an order reversing isomorphism of
posets. Furthermore, the coverages containing J are in 1–1 correspondence with the quo-
tient theories of T, forming an isomorphism of posets when ordering quotient theories by
inclusion. More details and further analysis regarding this correspondence can be found
in [3].

On the ‘geometric’ side of things, consider an open topological groupoid G and its
equivariant sheaf topos ShG1(G0). If Sub(ShG1(G0)) is the poset of subtoposes of ShG1(G0)
and Sub(G ) is the poset of replete subgroupoids of G (isomorphic to the set of replete
subsets of G0 ordered by inclusion), then Theorem 2.11 yields a morphism of posets

sh :Sub(G ) // Sub(ShG1(G0)).

Now, suppose F is a subtopos of ShG1(G0). Since every element x of G0 induces a point
px :Set // ShG1(G0) (and every element of G1 an invertible geometric transformation of
points), we can form the (replete) subset H0 ⊆ G0 of those elements that induce points
that factor through F . This yields a morphism

pt:Sub(ShG1(G0)) // Sub(G ).

There is, accordingly, a connection between quotients of the theory classified by ShG1(G0)
and subgroupoids of G , which we state next together with a characterization of the sub-
groupoids in the image of pt. For more on the general method of using the various ways
in which toposes can be viewed and presented to mediate between different structures and
theories see [4].

3.2. Groupoids of Models and Definable Subsets. Let G be a topological group-
oid, ShG1(G0) the topos of equivariant sheaves on it. Then (see [7]) there exists a geometric
theory, T, such that

ShG1(G0) ' Set[T] ' Sh (CT, J) (4)

Since an element of G0 induces a point of this topos, and an element of G1 induces an
invertible geometric transformation of points, we can, by the equivalence between the
category of T-models and the category of points of Set[T], regard G as a topological
groupoid of T-models and isomorphisms. G0 is then a space of enough models for T, in
the sense that is a sequent is true in all models in G0 then it is in T. This follows since the
points induced by elements of G0 are enough for ShG1(G0) in the sense that the inverse
image functors of the induced points are jointly conservative (see [7]). Conversely, given a
theory T with enough models, [2] constructs an open topological groupoid of models and
isomorphisms such that ShG1(G0) ' Set[T]. (More direct—in logical terms—variations
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of this construction for geometric and classical first-order theories respectively can also
be found in [6] and the [1].)

Fix an open topological groupoid G , a theory T over a signature Σ, and an equivalence
as displayed in (4) above, and regard G as a groupoid of T-models and isomorphisms
accordingly. We shall write elements as M,N ∈ G0 and f ,g ∈ G1 when we want to
emphasize this perspective.

3.3. Lemma. (i) Let T′ be a quotient theory of T and Set[T′] the corresponding subtopos
of ShG1(G0). Then pt(Set[T′]) = H where

H0 = {M ∈ G0 M � T′} ⊆ G0.

(ii) Let H be a subgroupoid of G . Then sh(H ) classifies the quotient theory

T′ = {σ ∈ L M � σ, for all M ∈ H0} ⊇ T

where L is the set of all geometric sequents over Σ.

Proof. (i) A point pM :Set // ShG1(G0) induced by M ∈ G0 factors through the subtopos
Set[T′] if and only if M � T′.
(ii) Let T′ be the quotient theory classified by sh(H ). Clearly, M � T′ for all M ∈ H0.
Since the points induced by elements of H0 are enough for ShH1(H0), it is also the case
that if σ is a sequent true in all models in H0, then σ ∈ T′. Thus the quotient T′ is
determined by the subset H0 as the set of sequents true in all models in H0.

3.4. Proposition. Let G be an open topological groupoid. The morphisms of posets
pt : Sub(ShG1(G0)) � Sub(G ) : sh form a Galois connection

sh(H ) ≤ F

H ≤ pt(F)

between subtoposes of ShG1(G0) and subgroupoids of G .

Proof. By the subtopos-quotient theory correspondence, since it is clear from Lemma 3.3
that the quotient theory classified by F ↪→ ShG1(G0) is contained in the quotient theory
classified by sh(pt(F)).

Say that an open topological groupoid G is saturated (with apologies for overloading
that term) if every subtopos of ShG1(G0) with enough points is of the form ShH1(H0) for
a subgroupoid H � � // G ; equivalently, if every subtopos with enough points has enough
points induced by elements of G0. In logical terms, with respect to a classified theory T
as in (4), this is saying that for any quotient theory T′ of T, if T′ has enough models, the
models in the set G0 are already enough. Since the groupoids of models and isomorphisms
constructed in [2] (and [6] and [1]) are by their construction saturated in this sense, we
restrict attention to saturated groupoids. Say that a subgroupoid is definable if it is in the
image of pt, or from a logical perspective, if it is of the form {M ∈ G0 M � T′} ⊆ G0

for a quotient theory T′ of T. We proceed to characterize the definable subgroupoids of a
saturated groupoid G directly in terms of the groupoid.
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3.5. Definition. For an open topological groupoid G , an element x ∈ G0 and a subset
H0 ⊆ G0, say that x (geometrically) dominates H0, written x �GD H0, if for all open
subgroupoids (U,N) of G and all open subsets V,W ⊆ U that are closed under N we have

c−1(H0) ∩ d−1(V ) ⊆ d−1(W )

⇒ c−1(x) ∩ d−1(V ) ⊆ d−1(W )

3.6. Theorem. Let G be an open topological groupoid, and H a replete subgroupoid.
Then H is definable iff H0 is closed under domination, in the sense that for any x ∈ G0

if x�GD H0 then x ∈ H0.

Proof. Let T be a geometric theory such that ShG1(G0) ' Set[T]. Then, corresponding
to the generic model, we can choose a small, geometric, full subcategory T of ShG1(G0)
(closed under subobjects) the objects of which form a generating set. On the other hand, SG

is a small, full subcategory (closed under subobjects) the objects of which form a generating
set. Write px for the point induced by x ∈ G0. Then saying that H0 is definable comes
to saying that for all x ∈ G0, if for all objects A ∈ T and subobjects P,Q � A, if
p∗x(P ) ≤ p∗x(Q) whenever p∗y(P ) ≤ p∗y(Q) for all y ∈ H0, then x ∈ H0. Similarly, by Lemma
2.3, saying that H0 is closed under domination comes to saying that for all x ∈ G0, if for
all objects A ∈ SG and subobjects P,Q � A, if p∗x(P ) ≤ p∗x(Q) whenever p∗y(P ) ≤ p∗y(Q)
for all y ∈ H0, then x ∈ H0. Since T and SG are generating, this is equivalent.

Lemma 3.3, Proposition 3.4, and Theorem 3.6 open up the possibility of extending
the analysis of the correspondence between quotient theories and subtoposes to include
subgroupoids. For instance, [3] contains detailed proofs that open subtoposes correspond
to quotient theories obtained by adding a single geometric sentence as an axiom, and
closed subtoposes to quotient theories obtained by adding a single sequent of the form
φ ` ⊥ where φ is a geometric sentence. In terms of subgroupoids, we have the following.

3.7. Proposition. Let H be a definable subgroupoid of an open, saturated topological
groupoid G , and fix T such that ShG1(G0) classifies T.

1. ShH1(H0) classifies a quotient T′ such that T′ can be obtained from T by adding a
single geometric sentence as an axiom if and only if H0 ⊆ G0 is an open subset.

2. ShH1(H0) classifies a quotient T′ such that T′ can be obtained from T by adding a
single geometric sequent φ ` ⊥ as an axiom where φ is a geometric sentence if and
only if H0 ⊆ G0 is a closed subset.

Proof. (1) As noted, ShH1(H0) classifies a quotient T′ such that T′ can be obtained from
T by adding a single geometric sentence if and only if ShH1(H0) is an open subtopos. If
H0 ⊆ G0 is open and closed under G1, we can consider H0 as a subterminal object, slicing
over which produces the (inverse image part of) the induced geometric inclusion, which is
thereby open. Conversely, the (inverse image part of) the induced geometric inclusion is
up to equivalence obtained by slicing over a subterminal object, and a subterminal object
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can be considered as an open subset U ⊆ G0 closed under G1. Now, U must be definable—
i.e. closed under domination—for if x�GD U then

c−1(U) ∩ d−1(G0) ⊆ d−1(U)

⇒ c−1(x) ∩ d−1(G0) ⊆ d−1(U)

implies that x ∈ U . But then U = H0 since both are definable and they classify the same
theory.

(2) By the above, H0 ⊆ G0 is closed if and only if there exists a single geometric
sentence φ such that H0 is the set of T-models (in G0) where φ is false if and only if
H0 is defined by the theory (generated by) T ∪ {φ ` ⊥} for a geometric sentence φ (note
that if a theory has enough models, then so does any quotient obtained by adding a single
sequence of the form φ ` ⊥ for a sentence φ).
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