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DESCENT IN MONOIDAL CATEGORIES

BACHUKI MESABLISHVILI

Abstract. We consider a symmetric monoidal closed category V = (V ,⊗, I, [−,−])
together with a regular injective object Q such that the functor [−, Q] : V → V op is
comonadic and prove that in such a category, as in the monoidal category of abelian
groups, a morphism of commutative monoids is an effective descent morphism for mod-
ules if and only if it is a pure monomorphism. Examples of this kind of monoidal cat-
egories are elementary toposes considered as cartesian closed monoidal categories, the
module categories over a commutative ring object in a Grothendieck topos and Barr’s
star-autonomous categories.

1. Introduction

Grothendieck’s descent theory for modules in a symmetric monoidal category V = (V ,⊗, I)
is the study of which morphisms ι : A → B of commutative V -monoids are effec-
tive descent morphisms in the sense that the corresponding extension-of-scalars functor
B ⊗A − : AV → BV from the category of (left) A-modules to the category of (left)
B-modules is comonadic. In [10], [11] and [12], we looked at the case where V is the
monoidal category of abelian groups, or a star-autonomous category in the sense of Barr
[1] and proved that a morphism ι : A → B of commutative V -monoids is an effective
descent morphism for modules if and only if it is a pure morphism in AV (that is, for any
A-module V , the morphism

ι⊗A V : V = A⊗A V → B ⊗A V

is a regular monomorphism). The aim of this paper is to provide a unifying categorical
approach to these results. Explicitly the setting in which we work is a symmetric monoidal
closed category V = (V ,⊗, I, [−,−]) together with a regular injective object Q such that
the functor [−, Q] : V → V op is comonadic. Our approach is based on the observation
that the proof given in [10] makes heavy use of the description of purity by means of the
functor HomZ(−,Q/Z) : Ab→ Abop which is conservative and preserves all coequalizers,
and thus is, in particular, comonadic. In the case of Barr’s star-autonomous categories,
the corresponding functor is an equivalence of categories.
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In the first section, we recall some elementary facts about modules in a symmetric
monoidal closed category. In section 2, we prove our main result, and in Section 3, we
apply it to elementary toposes, the module categories over a commutative ring object in
a Grothendieck topos and Barr’s star-autonomous categories.

As background to the subject, we refer to S. Mac Lane [7] for generalities on category
theory and to G. Janelidze and W. Tholen [3], [4] and [5] for descent theory.

2. Preliminaries

We begin by recalling from [7] and [13] some elementary facts about modules in a sym-
metric monoidal closed category.

Suppose that V is a fixed symmetric monoidal closed category with tensor product ⊗,
unit object I, and internal-hom [−,−]; recall that V is closed means that each functor
V ⊗ − : V → V has a right adjoint [V,−] : V → V . Recall further that the adjunction
V ⊗− a [V,−] is internal, in the sense that one has natural isomorphisms

[V ⊗W,Y ] ' [W, [V, Y ]] (1)

For simplicity of exposition we treat ⊗ as strictly associative and I as a strict unit,
which is justified by Mac Lane’s coherence theorem [7] asserting that every monoidal
category is equivalent to a strict one.

A monoid in V (or V -monoid) consists of an object A of V endowed with a multi-
plication mA : A ⊗ A → A and unit morphism eA : I → A such that the usual identity
and associative conditions are satisfied. A monoid is called commutative if the multipli-
cation map is unchanged when composed with the symmetry. We write Mon(V ) for the
category of V -monoids.

Recall further that, for any V -monoid A = (A, eA,mA), a left A-module is a pair
(V, ρV ), where V is an object of V and ρV : A⊗V → V is a morphism in V , called the
action (or the A-action) on V , such that ρV (mA ⊗ V ) = ρV (A⊗ρV ) and ρV (eA⊗V ) = 1.

For a given V -monoid A, the left A-modules are the objects of a category AV . A
morphism f : (V, ρV )→ (W, ρW ) is a morphism f : V → W in V such that ρW (A⊗f) =
fρV . Analogously, one has the category VA of right A-modules.

The forgetful functor AU : AV → V that takes a left A-module (V, ρV ) to the object
V has a left adjoint AF : V → AV sending an object V ∈ V to the ”free” A-module
(A⊗V,A⊗ρV ).

There is another way of representing the category of left A-modules that involves
algebras over the monad associated to the V -monoid A.

Every V -monoid A = (A, eA,mA) defines a monad L(A) = (T, η, µ) on V by

• T(V ) = A⊗ V ,

• ηV = eA ⊗ V : V → A⊗ V ,

• µV = mA ⊗ V : A⊗ A⊗ V → A⊗ V .
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It is well known that the corresponding Eilenberg-Moore category V L(A) of L(A)-algebras
is exactly the category AV of left A-modules, and that AU a AF is the familiar forgetful-
free adjunction between V L(A) and V . This gives in particular that the forgetful functor

AU : AV → V is monadic. Hence the functor AU creates those limits that exist in V .
Moreover, since the functor A⊗− : V → V admits as a right adjoint the functor [A,−]− :
V → V , the forgetful functor AU has a right adjoint sending an object V ∈ V to the
object [A, V ], where [A, V ] is an object of AV via the transpose A⊗[A, V ] → [A, V ] of

the composite A⊗A⊗[A, V ]
mA⊗[A,V ]−−−−−−→ A⊗[A, V ]

evV−−→ V , where evV : A⊗[A, V ] → V is
the V -component of the counit of the adjunction A⊗− a [A,−]. In particular, AU creates
those colimits that exist in V .

If V admits coequalizers, A is a V -monoid, (V, %V ) ∈ VA a right A-module, and
(W, ρW ) ∈ AV a left A-module, then their tensor product (over A) is the object part of
the following coequalizer

V ⊗A⊗W
%V ⊗W //

V⊗ρW
// V ⊗W // V ⊗AW.

When A is commutative, then for any (V, ρV ) ∈ AV , the composite ρ′V = ρV τV,A :
V⊗A → V , where τ is the symmetry for V , defines a right A-action on V . Similarly,
if (W, %V ) ∈ VA, then %′W = %V τW,A : W⊗A → W defines a left A-action on W . These
two constructions establish an equivalence between AV and VA, and thus we do not have
to distinguish between left and right A-modules. In this case, the tensor product of two
A-modules is another A-module, and tensoring over A makes AV (as well as VA) into a
symmetric monoidal category with unit A. If, in addition, V admits equalizers, then this
monoidal structure on AV is closed: The internal Hom-object A[V,W ] of two A-modules
defined to be the equalizer in V of

[V,W ] //// [A⊗ V,W ],

where one of the morphisms is induced by the action of A on V , and the other is the
composition of A ⊗ − : [V,W ] → [A ⊗ V,A ⊗W ] followed by the morphism induced by
the action of A on W .

In what follows, V denotes a fixed symmetric monoidal closed category with equalizers
and coequalizers.

3. Descent theory in monoidal categories

3.1. Let us recall that a morphism in a category A is a regular monomorphism if it is an
equalizer of some pair of morphisms. Recall also that a regular injective object in A is an
object X ∈ A which has the extension property with respect to regular monomorphisms;
that is, if every extension problem
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A

f
��

� � m // B

f̄~~
X

with m a regular monomorphism has a solution f̄ : B → X extending f along m, i.e.,
satisfying f̄m = f .

3.2. A pointed V –endofunctor on V is a pair (T, η), where T : V → V is a V –
endofunctor on V and η : 1→ T is a V –natural transformation. Let (T, η) be a pointed
V – endofunctor on V . For an object Q of V , we get from T a functor

[T (−), Q] : V → V op,

and we can consider the natural transformation

[η−, Q] : [T (−), Q]→ [−, Q].

3.3. Proposition [12] The natural transformation [η−, Q] is a split epimorphism if and
only if the morphism ηQ : Q → T (Q) is a split monomorphism. In particular, if Q is a
regular injective object in V , then the natural transformation [η−, Q] is a split epimorphism
if and only if ηQ is a regular monomorphism in V .

Recall [8] that a monad T on a category A is called of descent type if the free T-algebra
functor FT : A → AT is precomonadic, and T is called of effective descent type if FT is
comonadic.

3.4. Theorem Let V have a regular injective object Q such that the functor

[−, Q] : V → V op

is comonadic. For any commutative monoid A = (A, eA,mA) in V , the following are
equivalent:

(i) the morphism eA : I → A is pure; that is, for any object V ∈ V , the morphism

eA ⊗ V : V → A⊗ V

is a regular monomorphism;

(ii) the morphism eA⊗Q : Q→ A⊗Q is a regular monomorphism;

(iii) the natural transformation [eA⊗−, Q] is a split epimorphism;

(iv) the morphism [eA, Q] : [A,Q]→ [I,Q] is a split epimorphism;

(v) the monad L(A) is of descent type;

(vi) the monad L(A) is of effective descent type.
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Proof. Clearly, (i) always implies (ii), while (ii) and (iii) are equivalent by Proposition
3.3, since the pair (A⊗−, eA⊗−) is a pointed V –endofunctor on V .

Since the I-component of the natural transformation [eA⊗−, Q] is just the morphism
[eA, Q] : [A,Q]→ [I,Q], (iii) implies (iv).

To see that (iv) implies (vi), note first that to say that the natural transformation
[eA⊗−, Q] is a split epimorphism is to say that the monad L(A) is [−, Q]–separable [8].
Next, observe that the diagram

V
A⊗− //

[−,Q]

��

V

[−,Q]

��
V op

[A,−]op
// V op

commutes up to natural isomorphism by (1). Now, since V op admits equalizers (and
hence is Cauchy complete) and since the functor V (−, Q) : V → V op is comonadic, one
can apply [8, Theorem 3.22] to the diagram to conclude that the monad L(A) is of effective
descent type.

(vi) trivially implies (v), while the implication (v) ⇒ (i) follows from [8, Theorem 2.3
(i)].

3.5. Lemma Let V have an object Q such that the functor

V (−, Q) : V → V op

is comonadic, and let A = (A, eA,mA) be a commutative monoid in V . Write QA for the
object [A,Q] of V . Then QA ∈ AV and the functor

A[−, QA] : AV → (AV )op

is comonadic. Moreover, if Q is regular injective in V , then QA is regular injective in

AV .

Proof. We have already seen that the functor AU : AV → V is left adjoint, with right
adjoint [A,−] : V → AV . Hence, every [A, V ] (in particular, [A,Q]) is an object of the
category AV . Thus QA ∈ AV .

Since for any V ∈ AV , A[V, [A,Q]] ' [A⊗A V,Q] ' [V,Q] (see, for instance, [13]), one
has commutativity (up to isomorphism) in

AV
A[−,QA] //

AU
��

(AV )op

(AU)op

��
V

[−,Q] // V op

and since
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• the functor A[−, QA] : AV → (AV )op admits as a right adjoint the functor A[−, QA] :
(AV )op → AV ,

• the functor AU : AV → V preserves all small limits, and thus, in particular, equal-
izers of A[−, QA]–split pairs;

• the functor [−, Q] : V → V op, being comonadic, preserves equalizers of [−, Q]–split
pairs;

• the functor AU (and hence also (AU)op) is conservative,

it follows from the dual of [9, Theorem 5.5] that the functor

A[−, QA] : AV → (AV )op

is comonadic.
Now, using that

• the functor [A,−] : V → AV is right adjoint to the functor AU : AV → V ;

• AU preserves regular monomorphisms;

• Q is regular injective in V ,

it is easy to show that the object QA = [A,Q] is regular injective in AV . This completes
the proof.

3.6. For any symmetric monoidal closed category V , we denote the category of commu-
tative monoids in V by CMon(V ). It is well-known that for any commutative V -monoid
A, the co-slice category A/CMon(V ) is equivalent to the category CMon(AV ). In other
words, to give a commutative monoid B in the symmetric monoidal closed category AV
is to give a morphism A→ B of commutative monoids in V . The latter morphism serves
as the unit morphism of the AV -monoid B. If ι : A → B is a morphism in CMon(V ),
then the corresponding commutative monoid in VA will be denoted by Bι.

One says that a morphism ι : A → B of commutative V -monoids is an (effective)
descent morphism if the functor B⊗A− : AV → BV is precomonadic (comonadic).

Identifying the morphism ι : A → B with the monoid Bι in the monoidal category

AV and considering the monad L(Bι) = (Tι, ηι, µι) on AV induced by Bι (thus, Tι =
B ⊗A −, ηι = ι ⊗A − and µι = m′B ⊗A −, where m′B : B ⊗A B → B is the unique
morphism through which mB factors), the category BV can be seen as the Eilenberg-
Moore category of L(Bι)-algebras. Hence the category Bι(AV ) can be identified with the
category BV . Modulo this identification, the functor B⊗A− : AV → BV corresponds to
the functor Bι⊗A− : AV → Bι(AV ). Thus the problem of effectiveness of ι is equivalent to
the one of the monad L(Bι). Using this, and the fact that there is a natural isomorphism

A[−, QA] ' [−, Q], we get from Lemma 3.5 and Theorem 3.4:
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3.7. Theorem Let V have a regular injective object Q such that the functor

[−, Q] : V → V op

is comonadic, and let ι : A → B be a morphism of commutative monoids in V . The
following are equivalent:

(i) ι : A→ B is an effective descent morphism;

(ii) ι : A→ B is a pure morphism in AV ; that is, for any A-module V , the morphism

ι⊗A V : V = A⊗A V → B ⊗A V

is a regular monomorphism;

(iii) the morphism [ι, Q] : [B,Q]→ [A,Q] is a split epimorphism in AV ;

(iv) the monad L(Bι) is of descent type;

(v) the monad L(Bι) is of effective descent type.

4. Applications

4.1. Monoid modules in an elementary topos Let E be an elementary topos,
considered as a cartesian monoidal category. It is well-known [6] that the functor

Ω(−) : Eop → E ,

where Ω is the subobject classifier for E , is monadic. Hence Ω(−), seen as a functor
E → Eop, is comonadic. Moreover, since Ω is an injective object in E (e.g., [6]) and
since in E regular monomorphisms coincide with monomorphisms, Theorem 3.7 gives the
following result:

4.2. Theorem Let E be an elementary topos. A morphism ι : A → B of commutative
monoids in E is an effective descent morphism (or, equivalently, the functor B ⊗A − :

AE → BE is comonadic) if and only if ι : A→ B is a pure morphism in AE.

4.3. The case of the topos of sets Specialize now to the case where E is the topos
of sets, Set, so that Set-monoids are ordinary monoids, and if A such a monoid, then
(left and right) A-modules are more commonly called A-actions. Recall that for any left
A–action X, the set Set(X,2), where 2 = {0, 1}, is a right A–action under the definition
(f · a)(x) = f(a · x) for all a ∈ A, f ∈ Set(X,2) and x ∈ X (see Section 2). Moreover,
for any morphism f : X → Y of left A–actions, the function

Set(f,2) : Set(Y,2)→ Set(X,2)
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is a morphism of right A–actions. It is well-known (e.g., [7]) that, when f is injective,
then there exists a map

∃f : Set(X,2)→ Set(Y,2)

of sets such that Set(f,2) · ∃f = 1. Recall that, for any map χ : X → 2, the map
∃f (χ) : Y → 2 is defined as follows:

(∃f (χ))(y) =

{
1, if there is x ∈ X such that χ(x) = 1 and f(x) = y,

0, otherwise.

4.4. Proposition Let A be a group. Then, for any injective morphism f : X → Y of
left A–actions, the map ∃f : Set(X,2)→ Set(Y,2) is a morphism of right A–actions.

Proof. We have to show that ∃f (χ) · a = ∃f (χ · a) for all χ ∈ Set(X,2) and all a ∈ A.
If y ∈ Y is an arbitrary element, then (∃f (χ) · a)(y) = (∃f (χ))(a · y), and we have

(∃f (χ) · a)(y) =


1, if there is x ∈ X such that χ(x) = 1

and f(x) = a · y,
0, otherwise.

which, since A is a group and since f is a morphism of left A–actions, may be written as

(∃f (χ) · a)(y) =


1, if there is x ∈ X such that χ(x) = 1

and f(a−1 · x) = y,

0, otherwise.

On the other hand, we have

(∃f (χ · a))(y) =


1, if there is x ∈ X such that (χ · a)(x) = 1

and f(x) = y,

0, otherwise.

and hence

(∃f (χ · a))(y) =


1, if there is x ∈ X such that χ(a · x) = 1

and f(x) = y,

0, otherwise.

Comparing (∃f (χ) · a)(y) with (∃f (χ · a))(y), we find that they are equal. So ∃f (χ) · a =
∃f (χ · a), and hence f is a morphism of right A–actions.
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Since Set(f,2) · ∃f = 1, a corollary follows immediately:

4.5. Corollary Let A be a group and f : X → Y an injective morphism of left A–
actions. Then the map

Set(f,2) : Set(X,2)→ Set(Y,2)

is a split epimorphism of right A–actions.

We are now ready to state and prove the following

4.6. Theorem Let ι : A→ B be a morphism of ordinary commutative monoids. If A is
an (abelian) group, then ι is an effective descent morphism if and only if it is an injective
map.

Proof. One direction is immediate from Theorem 3.7. Conversely, if ι is injective, then
the map

Set(ι,2) : Set(B,2)→ Set(A,2)

is a split epimorphism of right A–actions by Corollary 4.5. But according to Theorem 3.7,
ι is an effective descent morphism if and only if the map Set(ι,2) : Set(B,2)→ Set(A,2)
is a split epimorphism in ASet, or equivalently (by the commutativity of A), in SetA.
Thus, ι is an effective descent morphism.

4.7. The category of internal modules over a Grothendieck topos In order
to proceed we need the following easy consequence of a variation of Duskin’s theorem (see
[2, Theorem 1.3 of Section 9.1]).

4.8. Theorem A left adjoint additive functor F : A → B between abelian categories is
comonadic if and only if F is conservative and F preserves those monomorphisms whose
cokernel-pairs are F -split.

A monoidal category (V ,⊗, I) is called abelian monoidal if V is abelian and the tensor
product is an additive bifunctor. An object V of such a category V is said to be flat if
the functor V ⊗− : V → V preserves monomorphisms.

4.9. Proposition Let V = (V ,⊗, I, τ, [−,−]) be a symmetric monoidal closed abelian
category. Suppose V has a generating family formed by flat objects. If Q ∈ V is an
injective cogenerator, then the functor

[−, Q] : V → V op

is comonadic.

Proof. We first observe that the functor [−, Q] : V → V op admits as a right adjoint the
functor [−, Q] : V op → V .

Next, if f is a morphism in V such that the morphism [f,Q] is an isomorphism, then
the map V (I, [f,Q]) is bijective. Because of the following chain of bijections V (I, [f,Q]) '
V (I ⊗ f,Q) ' V (f,Q), it follows that the map V (f,Q) is also bijective. But since Q
is an injective cogenerator, the functor V (−, Q) : V op → Set is faithful; thus, it reflects
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epimorphisms and monomorphisms, and hence isomorphisms. Therefore, f is also an
isomorphism. Consequently, the functor [−, Q] is conservative.

We next show that functor [−, Q] preserves monomorphisms. Indeed, if V has a
generating family {Gα} such that each Gα is flat and if f : V → V ′ is a monomorphism
in V , then so also is each Gα ⊗ f . Then, since Q is injective in V , the map

V (Gα ⊗ f,Q) : V (Gα ⊗ V ′, Q)→ V (Gα ⊗ V,Q),

and hence also the map

V (Gα, [f,Q]) : V (Gα, [V
′, Q])→ V (Gα, [V,Q]),

is surjective for all α. But {Gα} is a generating family for V , i.e. the family of functors
{V (Gα,−) : V → Set} is collectively faithful; in particular, this family collectively
reflects epimorphisms. Therefore, the morphisms [f,Q] is an epimorphism in V . Applying
now the dual of Theorem 4.8 gives that the functor [−, Q] is comonadic.

We now consider the symmetric monoidal closed category Ab(E) of internal abelian
groups in a Grothendieck topos E . It is well-known that (commutative) monoids in
Ab(E) are internal (commutative) rings in E , and that AAb(E), A ∈ Mon(Ab(E)), is
the category ModA(E) of internal left A-modules in E . Since Ab(E) is an Ab5 category
with generators and sufficiently many injective objects (e.g., [6]), it also has an injective
cogenerator, say, Q (see, for example, [14, Lemma 7.12]). Now, since free abelian groups
in E are flat in Ab(E) and since Ab(E) has a generator that is a free abelian group
(see, [6]), one can combine Proposition 4.9 with Theorem 3.7 to conclude the following
generalization of the main result of [10] (see also [11]):

4.10. Theorem A morphism ι : A→ B of internal commutative rings in a Grothendieck
topos E is an effective descent morphism (or, equivalently, the functor B⊗A− : ModA(E)→
ModA(E) is comonadic) if and only if ι : A → B is a pure morphism of internal (left)
A-modules.

4.11. ?-autonomous categories Let now V be a ∗-autonomous category in the sense
of Barr [1]. Then V is a symmetric monoidal closed category together with a so-called
dualizing object Q such that the adjunction

[−, Q] a [−, Q] : V op → V

is an adjoint equivalence. Quite obviously, the functor [−, Q] : V → V op is then comonadic.
Moreover, it is proved in [12] that any dualizing object is regular injective in V if and
only if the tensor unit I is regular projective in V . Thus, when the tensor unit is regular
projective in a ∗-autonomous category, Theorem 3.7 applies (see [12], for more on the
descent morphisms in ∗-autonomous categories).
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