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INTERNAL CATEGORIES, ANAFUNCTORS AND LOCALISATIONS

In memory of Luanne Palmer (1965-2011)

DAVID MICHAEL ROBERTS

Abstract.

In this article we review the theory of anafunctors introduced by Makkai and Bartels,
and show that given a subcanonical site S, one can form a bicategorical localisation
of various 2-categories of internal categories or groupoids at weak equivalences using
anafunctors as 1-arrows. This unifies a number of proofs throughout the literature,
using the fewest assumptions possible on S.

1. Introduction

It is a well-known classical result of category theory that a functor is an equivalence (that
is, in the 2-category of categories) if and only if it is fully faithful and essentially surjective.
This fact is equivalent to the axiom of choice. It is therefore not true if one is working
with categories internal to a category S which doesn’t satisfy the (external) axiom of
choice. This is may fail even in a category very much like the category of sets, such as
a well-pointed boolean topos, or even the category of sets in constructive foundations.
As internal categories are the objects of a 2-category Cat(S) we can talk about internal
equivalences, and even fully faithful functors. In the case S has a singleton pretopology
J (i.e. covering families consist of single maps) we can define an analogue of essentially
surjective functors. Internal functors which are fully faithful and essentially surjective are
called weak equivalences in the literature, going back to [Bunge-Paré 1979]. We shall call
them J-equivalences for clarity. We can recover the classical result mentioned above if we
localise the 2-category Cat(S) at the class WJ of J-equivalences.

We are not just interested in localising Cat(S), but various full sub-2-categories C ↪→
Cat(S) which arise in the study of presentable stacks, for example algebraic, topological,
differentiable, etc. stacks. As such it is necessary to ask for a compatibility condition
between the pretopology on S and the sub-2-category we are interested in. We call this
condition existence of base change for covers of the pretopology, and demand that for any
cover p : U //X0 (in S) of the object of objects of X ∈ C, there is a fully faithful functor
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in C with object component p.

1.1. Theorem. Let S be a category with singleton pretopology J and let C be a full sub-
2-category of Cat(S) which admits base change along arrows in J . Then C admits a
calculus of fractions for the J-equivalences.

Pronk gives us the appropriate notion of a calculus of fractions for a 2-category in
[Pronk 1996] as a generalisation of the usual construction for categories [Gabriel-Zisman
1967]. In her construction, 1-arrows are spans and 2-arrows are equivalence classes of
bicategorical spans of spans. This construction, while canonical, can be a little unwieldy
so we look for a simpler construction of the localisation.

We find this in the notion of anafunctor, introduced by Makkai for plain small cat-
egories [Makkai 1996] (Kelly described them briefly in [Kelly 1964] but did not develop
the concept further). In his setting an anafunctor is a span of functors such that the
left (or source) leg is a surjective-on-objects, fully faithful functor.1 For a general cat-
egory S with a subcanonical singleton pretopology J [Bartels 2006], the analogon is a
span with left leg a fully faithful functor with object component a cover. Composition of
anafunctors is given by composition of spans in the usual way, and there are 2-arrows be-
tween anafunctors (a certain sort of span of spans) that give us a bicategory Catana(S, J)
with objects internal categories and 1-arrows anafunctors. We can also define the full
sub-bicategory Cana(J) ↪→ Catana(S, J) analogous to C, and there is a strict inclusion
2-functor C ↪→ Cana(J). This gives us our second main theorem.

1.2. Theorem. Let S be a category with subcanonical singleton pretopology J and let C
be a full sub-2-category of Cat(S) which admits base change along arrows in J , Then
C ↪→ Cana(J) is a localisation of C at the class of J-equivalences.

So far we haven’t mentioned the issue of size, which usually is important when con-
structing localisations. If the site (S, J) is locally small, then C is locally small, in the
sense that the hom-categories are small. This also implies that Cana(J) and hence any
C[W−1

J ] has locally small hom-categories i.e. has only a set of 2-arrows between any pair
of 1-arrows. To prove that the localisation is locally essentially small (that is, hom-
categories are equivalent to small categories), we need to assume a size restriction axiom
on the pretopology J , called WISC (Weakly Initial Sets of Covers).

WISC can be seen as an extremely weak choice principle, weaker than the existence
of enough projectives, and states that for every object A of S, there is a set of J-covers
of A which is cofinal in all J-covers of A. It is automatically satisfied if the pretopology
is specified as an assignment of a set of covers to each object.

1.3. Theorem. Let S be a category with subcanonical singleton pretopology J satisfying
WISC, and let C be a full sub-2-category of Cat(S) which admits base change along arrows
in J . Then any localisation of C at the class of J-equivalences is locally essentially small.

1Anafunctors were so named by Makkai, on the suggestion of Pavlovic, after profunctors, in analogy
with the pair of terms anaphase/prophase from biology. For more on the relationship between anafunctors
and profunctors, see below.
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Since a singleton pretopology can be conveniently defined as a certain wide subcat-
egory, this is not a vacuous statement for large sites, such as Top or Grp(E) (group
objects in a topos E). In fact WISC is independent of the Zermelo-Fraenkel axioms
(without Choice) [van den Berg 2012, Roberts 2013]. It is thus possible to have the
theorem fail for the topos S = Set¬AC with surjections as covers.

Since there have been many very closely related approaches to localisation of 2-
categories of internal categories and groupoids, we give a brief sketch in the following
section. Sections 3 to 6 of this article then give necessary background and notation on
sites, internal categories, anafunctors and bicategories of fractions respectively. Section
7 contains our main results, while section 8 shows examples from the literature that are
covered by the theorems from section 7. A short appendix detailing superextensive sites
is included, as this material does not appear to be well-known (they were discussed in the
recent [Shulman 2012], Example 11.12).

This article started out based on the first chapter of the author’s PhD thesis, which
only dealt with groupoids in the site of topological spaces and open covers. Many thanks
are due to Michael Murray, Mathai Varghese and Jim Stasheff, supervisors to the author.
The patrons of the n-Category Café and nLab, especially Mike Shulman and Toby Bartels,
provided helpful input and feedback. Steve Lack suggested a number of improvements,
and the referee asked for a complete rewrite of this article, which has greatly improved
the theorems, proofs, and hopefully also the exposition. Any delays in publication are
due entirely to the author.

2. Anafunctors in context

The theme of giving 2-categories of internal categories or groupoids more equivalences
has been approached in several different ways over the decades. We sketch a few of them,
without necessarily finding the original references, to give an idea of how widely the results
of this paper apply. We give some more detailed examples of this applicability in section
8.

Perhaps the oldest related construction is the distributors of Bénabou, also known as
modules or profunctors [Bénabou 1973] (see [Johnstone 2002] for a detailed treatment
of internal profunctors, as the original article is difficult to source). Bénabou pointed
out [Bénabou 2011], after a preprint of this article was released, that in the case of the
category Set (and more generally in a finitely complete site with reflexive coequalisers
that are stable under pullback, see [MMV 2012]), the bicategory of small (resp. internal)
categories with representable profunctors as 1-arrows is equivalent to the bicategory of
small categories with anafunctors as 1-arrows. In fact this was discussed by Baez and
Makkai [Baez-Makkai 1997], where the latter pointed out that representable profunctors
correspond to saturated anafunctors in his setting. The author’s preference for anafunctors
lies in the fact they can be defined with weaker assumptions on the site (S, J), and in fact
in the sequel [Roberts B], do not require the 2-category to have objects which are internal
categories. In a sense this is analogous to [Street 1980], where the formal bicategorical
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approach to profunctors between objects of a bicategory is given, albeit still requiring
more colimits to exist than anafunctors do.

Bénabou has pointed out in private communication that he has an unpublished distri-
butor-like construction that does not rely on existence of reflexive coequalisers; the author
has not seen any details of this and is curious to see how it compares to anafunctors.

Related to this is the original work of Bunge and Paré [Bunge-Paré 1979], where
they consider functors between indexed categories associated to internal categories, that
is, the externalisation of an internal category and stack completions thereof. This was
one motivation for considering weak equivalences in the first place, in that a pair of
internal categories have equivalent stack completed externalisations if and only if they are
connected by a span of internal functors which are weak equivalences.

Another approach is constructing bicategories of fractions à la Pronk [Pronk 1996].
This has been followed by a number of authors, usually followed up by an explicit construc-
tion of a localisation simplifying the canonical one. Our work here sits at the more general
end of this spectrum, as others have tailored their constructions to take advantage of the
structure of the site they are interested in. For example, butterflies (originally called
papillons) have been used for the category of groups [Noohi 2005b, Aldrovandi-Noohi
2009, Aldrovandi-Noohi 2010], abelian categories [Breckes 2009] and semiabelian cate-
gories [AMMV 2010, MMV 2012]. These are similar to the meromorphisms of [Pradines
1989], introduced in the context of the site of smooth manifolds; though these only use a
1-categorical approach to localisation.

Vitale [Vitale 2010], after first showing that the 2-category of groupoids in a regular
category has a bicategory of fractions, then shows that for protomodular regular categories
one can generalise the pullback congruences of Bénabou in [Bénabou 1989] to discuss
bicategorical localisation. This approach can be applied to internal categories, as long
as one restricts to invertible 2-arrows. Similarly, [MMV 2012] give a construction of
what they call fractors between internal groupoids in a Mal’tsev category, and show that
in an efficiently regular category (e.g. a Barr-exact category) fractors are 1-arrows in a
localisation of the 2-category of internal groupoids. The proof also works for internal
categories if one considers only invertible 2-arrows.

Other authors, in dealing with internal groupoids, have adopted the approach pi-
oneered by Hilsum and Skandalis [Hilsum-Skandalis 1987], which has gone by various
names including Hilsum-Skandalis morphisms, Morita morphisms, bimodules, bibundles,
right principal bibundles and so on. All of these are very closely related to saturated
anafunctors, but in fact no published definition of a saturated anafunctor in a site other
than Set ([Makkai 1996]) has appeared, except in the guise of internal profunctors (e.g.
[Johnstone 2002], section B2.7). Note also that this approach has only been applied to
internal groupoids. The review [Lerman 2010] covers the case of Lie groupoids, and in par-
ticular orbifolds, while [Mrčun 2001] treats bimodules between groupoids in the category
of affine schemes, but from the point of view of Hopf algebroids.

The link between localisation at weak equivalences and presentable stacks is considered
in (of course) [Pronk 1996], as well as more recently in [Carchedi 2012], [Schäppi 2012], in
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the cases of topological and algebraic stacks respectively, and for example [TXL-G 2004]
in the case of differentiable stacks.

A third approach is by considering a model category structure on the 1-category of
internal categories. This is considered in [Joyal-Tierney 1991] for categories in a topos,
and in [EKvdL 2005] for categories in a finitely complete subcanonical site (S, J). In the
latter case the authors show when it is possible to construct a Quillen model category
structure on Cat(S) where the weak equivalences are the weak equivalences from this
paper. Sufficient conditions on S include being a topos with nno, being locally finitely
presentable or being finitely complete regular Mal’tsev – and additionally having enough
J-projective objects. If one is willing to consider other model-category-like structures,
then these assumptions can be dropped. The proof from [EKvdL 2005] can be adapted
to show that for a finitely complete site (S, J), the category of groupoids with source and
target maps restricted to be J-covers has the structure of a category of fibrant objects, with
the same weak equivalences. We note that [Colman-Costoya 2009] gives a Quillen model
structure for the category of orbifolds, which are there defined to be proper topological
groupoids with discrete hom-spaces.

In a similar vein, one could consider a localisation using hammock localisation [Dwyer-
Kan 1980a] of a category of internal categories, which puts one squarely in the realm of
(∞, 1)-categories. Alternatively, one could work with the (∞, 1)-category arising from a
2-category of internal categories, functors and natural isomorphisms and consider a local-
isation of this as given in, say [Lurie 2009a]. However, to deal with general 2-categories
of internal categories in this way, one needs to pass to (∞, 2)-categories to handle the
non-invertible 2-arrows. The theory here is not so well-developed, however, and one could
see the results of the current paper as giving toy examples with which one could work.
This is one motivation for making sure the results shown in this paper apply to not just
2-categories of groupoids. Another is extending the theory of presentable stacks from
stacks of groupoids to stacks of categories [Roberts A].

3. Sites

The idea of surjectivity is a necessary ingredient when talking about equivalences of
categories—in the guise of just essential surjectivity—but it doesn’t generalise in a straight-
forward way from the category Set. The necessary properties of the class of surjective
maps are encoded in the definition of a Grothendieck pretopology, in particular a singleton
pretopology. This section gathers definitions and notations for later use.

3.1. Definition. A Grothendieck pretopology (or simply pretopology) on a category S is
a collection J of families

{(Ui // A)i∈I}A∈Obj(S)

of morphisms for each object A ∈ S satisfying the following properties

1. (A′
∼ // A) is in J for every isomorphism A′ ' A.
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2. Given a map B //A, for every (Ui //A)i∈I in J the pullbacks B ×A Ai exist and
(B ×A Ai //B)i∈I is in J .

3. For every (Ui // A)i∈I in J and for a collection (V i
k

// Ui)k∈Ki
from J for each

i ∈ I, the family of composites

(V i
k

// A)k∈Ki,i∈I

are in J .

Families in J are called covering families. We call a category S equipped with a pretopol-
ogy J a site, denoted (S, J) (note that often one sees a site defined as a category equipped
with a Grothendieck topology).

The pretopology J is called a singleton pretopology if every covering family consists
of a single arrow (U // A). In this case a covering family is called a cover and we call
(S, J) a unary site.

Very often, one sees the definition of a pretopology as being an assignment of a set
covering families to each object. We do not require this, as one can define a singleton
pretopology as a subcategory with certain properties, and there is not necessarily then
a set of covers for each object. One example is the category of groups with surjective
homomorphisms as covers. This distinction will be important later.

One thing we will require is that sites come with specified pullbacks of covering families.
If one does not mind applying the axiom of choice (resp. axiom of choice for classes) then
any small site (resp. large site) can be so equipped. But often sites that arise in practice
have more or less canonical choices for pullbacks, such as the category of ZF-sets.

3.2. Example. The prototypical example is the pretopology O on Top, where a covering
family is an open cover. The class of numerable open covers (i.e. those that admit a
subordinate partition of unity [Dold 1963]) also forms a pretopology on Top. Much of
traditional bundle theory is carried out using this site; for example the Milnor classifying
space classifies bundles which are locally trivial over numerable covers.

3.3. Definition. A covering family (Ui //A)i∈I is called effective if A is the colimit of
the following diagram: the objects are the Ui and the pullbacks Ui×A Uj, and the arrows
are the projections

Ui ← Ui ×A Uj // Uj.

If the covering family consists of a single arrow (U // A), this is the same as saying
U // A is a regular epimorphism.

3.4. Definition. A site is called subcanonical if every covering family is effective.

3.5. Example. On Top, the usual pretopology O of opens, the pretopology of numerable
covers and that of open surjections are subcanonical.
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3.6. Example. In a regular category, the class of regular epimorphisms forms a sub-
canonical singleton pretopology.

In fact we can make the following definition.

3.7. Definition. For a category S, the largest class of regular epimorphisms of which
all pullbacks exist, and which is stable under pullback, is called the canonical singleton
pretopology and denoted c.

This is a to be contrasted to the canonical topology on a category, which consists of
covering sieves rather than covers. The canonical singleton pretopology is the largest
subcanonical singleton pretopology on a category.

3.8. Definition. Let (S, J) be a site. An arrow P //A in S is called a J-epimorphism
if there is a covering family (Ui // A)i∈I and a lift

P

��
Ui

??

// A

for every i ∈ I. A J-epimorphism is called universal if its pullback along an arbitrary
map exists. We denote the singleton pretopology of universal J-epimorphisms by Jun.

This definition of J-epimorphism is equivalent to the definition in III.7.5 in [Mac Lane-
Moerdijk 1992]. The dotted maps in the above definition are called local sections, after
the case of the usual open cover pretopology on Top. If J is a singleton pretopology, it
is clear that J ⊂ Jun.

3.9. Example. The universal O-epimorphisms for the pretopology O of open covers on
Diff form Subm, the pretopology of surjective submersions.

3.10. Example. In a finitely complete category the universal triv-epimorphisms are the
split epimorphisms, where triv is the trivial pretopology where all covering families consist
of a single isomorphism. In Set with the axiom of choice there are all the epimorphisms.

Note that for a finitely complete site (S, J), Jun contains trivun, hence all the split
epimorphisms.

Although we will not assume that all sites we consider are finitely complete, results
similar to ours have, and so in that case we can say a little more, given stronger properties
on the pretopology.

3.11. Definition. A singleton pretopology J is called saturated if whenever the com-

posite A
h // B

g
// C is in J , then g ∈ J .

The concept of a saturated pretopology was introduced by Bénabou under the name
calibration [Bénabou 1975]. It follows from the definition that a saturated singleton
pretopology contains the split epimorphisms (take h to be a section of the epimorphism
g).
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3.12. Example. The canonical singleton pretopology c in a regular category (e.g. a
topos) is saturated.

3.13. Example. Given a pretopology J on a finitely complete category, Jun is saturated.

Sometimes a pretopology J contains a smaller pretopology that still has enough covers
to compute the same J-epimorphisms.

3.14. Definition. If J and K are two singleton pretopologies with J ⊂ K, such that
K ⊂ Jun, then J is said to be cofinal in K.

Clearly J is cofinal in Jun for any singleton pretopology J .

3.15. Lemma. If J is cofinal in K, then Jun = Kun.

We have the following lemma, which is essentially proved in [Johnstone 2002], C2.1.6.

3.16. Lemma. If a pretopology J is subcanonical, then so any pretopology in which it is
cofinal. In particular, J subcanonical implies Jun subcanonical.

As mentioned earlier, one may be given a singleton pretopology such that each object
has more than a set’s worth of covers. If such a pretopology contains a cofinal pretopology
with set-many covers for each object, then we can pass to the smaller pretopology and
recover the same results (in a way that will be made precise later). In fact, we can get
away with something weaker: one could ask only that the category of all covers of an
object (see definition 3.18 below) has a set of weakly initial objects, and such set may not
form a pretopology. This is the content of the axiom WISC below. We first give some
more precise definitions.

3.17. Definition. A category C has a weakly initial set I of objects if for every object
A of C there is an arrow O // A from some object O ∈ I.

For example the large category Fields of fields has a weakly initial set, consisting of
the prime fields {Q,Fp|p prime}. To contrast, the category of sets with surjections for
arrows doesn’t have a weakly initial set of objects. Every small category has a weakly
initial set, namely its set of objects.

We pause only to remark that the statement of the adjoint functor theorem can be
expressed in terms of weakly initial sets.

3.18. Definition. Let (S, J) be a site. For any object A, the category of covers of
A, denoted J/A has as objects the covering families (Ui // A)i∈I and as morphisms
(Ui // A)i∈I // (Vj // A)j∈J tuples consisting of a function r : I // J and arrows
Ui // Vr(i) in S/A.

When J is a singleton pretopology this is simply a full subcategory of S/A. We
now define the axiom WISC (Weakly Initial Set of Covers), due independently to Mike
Shulman and Thomas Streicher.
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3.19. Definition. A site (S, J) is said to satisfy WISC if for every object A of S, the
category J/A has a weakly initial set of objects.

A site satisfying WISC is in some sense constrained by a small amount of data for each
object. Any small site satisfies WISC, for example, the usual site of finite-dimensional
smooth manifolds and open covers. Any pretopology J containing a cofinal pretopology
K such that K/A is small for every object A satisfies WISC.

3.20. Example. Any regular category (for example a topos) with enough projectives,
equipped with the canonical singleton pretopology, satisfies WISC. In the case of Set
‘enough projectives’ is the Presentation Axiom (PAx), studied, for instance, by Aczel
[Aczel 1978] in the context of constructive set theory.

3.21. Example. [Shulman] (Top,O) satisfies WISC, using AC in Set.

Choice may be more than is necessary here; it would be interesting to see if weaker
choice principles in the site (Set, surjections) are enough to prove WISC for (Top,O)
or other concrete sites.

3.22. Lemma. If (S, J) satisfies WISC, then so does (S, Jun).

It is instructive to consider an example where WISC fails in a non-artificial way. The
category of sets and surjections with all arrows covers clearly doesn’t satisfy WISC, but is
contrived and not a ‘useful’ sort of category. For the moment, assume the existence of a
Grothendieck universe U with cardinality λ, and let SetU refer to the category of U-small
sets. Clearly we can define WISC relative to U, call it WISCU. Let G be a U-large group
and BG the U-large groupoid with one object associated to G. The boolean topos SetBGU
of U-small G-sets is a unary site with the class epi of epimorphisms for covers. One could
consider this topos as being an exotic sort of forcing construction.

3.23. Proposition. If G has at least λ-many conjugacy classes of subgroups, then the
site (SetBGU , epi) does not satisfy WISCU.

Alternatively, one could work in foundations where it is legitimate to discuss a proper
class-sized group, and then consider the topos of sets with an action by this group. If
there is a proper class of conjugacy classes of subgroups, then this topos with its canonical
singleton pretopology will fail to satisfy WISC. Simple examples of such groups are ZU

(given a universe U) and ZK (for some proper class K).
Recently, [van den Berg 2012] (relative to a large cardinal axiom) and [Roberts 2013]

(with no large cardinals) have shown that the category of sets may fail to satisfy WISC.
The models constructed in [Karaglia 2012] are also conjectured to not satisfy WISC.

Perhaps of independent interest is a form of WISC with a bound: the weakly initial
set for each category J/A has cardinality less than some cardinal κ (call this WISCκ).
Then one could consider, for example, sites where each object has a weakly initial finite
or countable set of covers. Note that the condition ‘enough projectives’ is the case κ = 2.
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4. Internal categories

Internal categories were introduced in [Ehresmann 1963], starting with differentiable and
topological categories (i.e. internal to Diff and Top respectively). We collect here the
necessary definitions, terminology and notation. For a thorough recent account, see [Baez-
Lauda 2004] or the encyclopedic [Johnstone 2002].

Fix a category S, referred to as the ambient category.

4.1. Definition. An internal category X in a category S is a diagram

X1 ×X0 X1 ×X0 X1 ⇒ X1 ×X0 X1
m−→ X1

s,t

⇒ X0
e−→ X1

in S such that the multiplication m is associative (we demand the limits in the diagram
exist), the unit map e is a two-sided unit for m and s and t are the usual source and
target. An internal groupoid is an internal category with an involution

(−)−1 : X1
//X1

satisfying the usual diagrams for an inverse.

Since multiplication is associative, there is a well-defined map X1×X0X1×X0X1
//X1,

which will also be denoted by m. The pullback in the diagram in definition 4.1 is

X1 ×X0 X1
//

��

X1

s

��
X1 t

// X0 .

and the double pullback is the limit of X1
t→ X0

s← X1
t→ X0

s← X0. These, and pullbacks
like these (where source is pulled back along target), will occur often. If confusion can
arise, the maps in question will be explicitly written, as in X1×s,X0,tX1. One usually sees
the requirement that S is finitely complete in order to define internal categories. This is
not strictly necessary, and not true in the well-studied case of S = Diff , the category of
smooth manifolds.

Often an internal category will be denoted X1 ⇒ X0, the arrows m, s, t, e (and (−)−1)
will be referred to as structure maps and X1 and X0 called the object of arrows and the
object of objects respectively. For example, if S = Top, we have the space of arrows and
the space of objects, for S = Grp we have the group of arrows and so on.

4.2. Example. If X // Y is an arrow in S admitting iterated kernel pairs, there is
an internal groupoid Č(X) with Č(X)0 = X, Č(X)1 = X ×Y X, source and target are
projection on first and second factor, and the multiplication is projecting out the middle
factor in X ×Y X ×Y X. This groupoid is called the Čech groupoid of the map X // Y .
The origin of the name is that in Top, for maps of the form

∐
I Ui

// Y (arising from an
open cover), the Čech groupoid Č(

∐
I Ui) appears in the definition of Čech cohomology.
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4.3. Example. Let S be a category with binary products. For each object A ∈ S there
is an internal groupoid disc(A) which has disc(A)1 = disc(A)0 = A and all structure
maps equal to idA. Such a category is called discrete. There is also an internal groupoid
codisc(A) with

codisc(A)0 = A, codisc(A)1 = A× A
and where source and target are projections on the first and second factor respectively.
Such a groupoid is called codiscrete.

4.4. Definition. Given internal categoriesX and Y in S, an internal functor f : X // Y
is a pair of maps

f0 : X0
// Y0 and f1 : X1

// Y1

called the object and arrow component respectively. Both components are required to
commute with all the structure maps.

4.5. Example. If A // C and B // C are maps admitting iterated kernel pairs, and
A //B is a map over C, there is a functor Č(A) // Č(B).

4.6. Example. If (S, J) is a subcanonical unary site, and U // A is a cover, a functor
Č(U) // disc(B) gives a unique arrow A // B. This follows immediately from the fact
A is the colimit of the diagram underlying Č(U).

4.7. Definition. Given internal categories X, Y and internal functors f, g : X //Y , an
internal natural transformation (or simply transformation)

a : f ⇒ g

is a map a : X0
//Y1 such that s◦a = f0, t◦a = g0 and the following diagram commutes

X1
(g1,a◦s) //

(a◦t,f1)

��

Y1 ×Y0 Y1

m

��
Y1 ×Y0 Y1

m // Y1

(1)

expressing the naturality of a.

Internal categories (resp. groupoids), functors and transformations in a locally small
category S form a locally small 2-category Cat(S) (resp. Gpd(S)) [Ehresmann 1963].
There is clearly an inclusion 2-functor Gpd(S) // Cat(S). Also, disc and codisc, de-
scribed in example 4.3, are 2-functors S //Gpd(S), whose underlying functors are left
and right adjoint to the functor

Obj : Cat(S)≤1
// S, (X1 ⇒ X0) 7→ X0.

Here Cat(S)≤1 is the 1-category underlying the 2-category Cat(S). Hence for an internal
category X in S, there are functors disc(X0) // X and X // codisc(X0), the arrow
component of the latter being (s, t) : X1

//X2
0 .
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We say a natural transformation is a natural isomorphism if it has an inverse with
respect to vertical composition. Clearly there is no distinction between natural trans-
formations and natural isomorphisms when the codomain of the functors is an internal
groupoid. We can reformulate the naturality diagram (1) in the case that a is a natural
isomorphism. Denote by −a the inverse of a. Then the diagram (1) commutes if and only
if the diagram

X0 ×X0 X1 ×X0 X0
−a×f1×a //

'
��

Y1 ×Y0 Y1 ×Y0 Y1

m

��
X1 g1

// Y1

(2)

commutes, a fact we will use several times.

4.8. Example. If X is a category in S, A is an object of S and f, g : X // codisc(A)
are functors, there is a unique natural isomorphism f

∼⇒ g.

4.9. Definition. An internal or strong equivalence of internal categories is an equiva-
lence in the 2-category of internal categories. That is, an internal functor f : X //Y such
that there is a functor f ′ : Y //X and natural isomorphisms f ◦ f ′ ⇒ idY , f ′ ◦ f ⇒ idX .

4.10. Definition. For an internal category X and a map p : M // X0 in S the base
change of X along p is any category X[M ] with object of objects M and object of arrows
given by the pullback

M2 ×X2
0
X1

//

��

X1

(s,t)

��
M2

p2
// X2

0

If C ⊂ Cat(S) denotes a full sub-2-category and if the base change along any map in
a given class K of maps exists in C for all objects of C, then we say C admits base change
along maps in K, or simply admits base change for K.

4.11. Remark. In all that follows, ‘category’ will mean object of C and similarly for
‘functor’ and ‘natural transformation/isomorphism’.

The strict pullback of internal categories

X ×Y Z //

��

Z

��
X // Y

when it exists, is the internal category with objects X0 ×Y0 Z0, arrows X1 ×Y1 Z1, and all
structure maps given componentwise by those of X and Z. Often we will be able to prove
that certain pullbacks exist because of conditions on various component maps in S. We
do not assume that all strict pullbacks of internal categories exists in our chosen C.
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It follows immediately from definition 4.10 that given maps N //M and M //X0,
there is a canonical isomorphism

X[M ][N ] ' X[N ]. (3)

with object component the identity map, when these base changes exist.

4.12. Remark. If we agree to follow the convention that M ×N N = M is the pullback
along the identity arrow idN , then X[X0] = X. This also simplifies other results of this
paper, so will be adopted from now on.

One consequence of this assumption is that the iterated fibre product

M ×M M ×M . . .×M M,

bracketed in any order, is equal to M . We cannot, however, equate two bracketings of a
general iterated fibred product; they are only canonically isomorphic.

4.13. Lemma. Let Y //X be a functor in S and j0 : U //X0 a map. If the base change
along j0 exists, the following square is a strict pullback

Y [Y0 ×X0 U ] //

��

X[U ]

j
��

Y // X

assuming it exists.

Proof. Since base change along j0 exists, we know that we have the functor Y [Y0 ×X0

U ] // Y , we just need to show it is a strict pullback of j. On the level of objects this is
clear, and on the level of arrows, we have

(Y0 ×X0 U)2 ×Y 2
0
Y1 ' U2 ×X2

0
Y1

' (U2 ×X2
0
X1)×X1 Y1

' X[U ]1 ×X1 Y1

so the square is a pullback.

We are interested in 2-categories C which admits base change for a given pretopology
J on S, which we shall cover in more detail in section 8.

Equivalences in Cat—assuming the axiom of choice—are precisely the fully faithful,
essentially surjective functors. For internal categories, however, this is not the case. In
addition, we need to make use of a pretopology to make the ‘surjective’ part of ‘essentially
surjective’ meaningful.
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4.14. Definition. Let (S, J) be a unary site. An internal functor f : X // Y in S is
called

1. fully faithful if

X1
f1 //

(s,t)
��

Y1

(s,t)
��

X0 ×X0 f0×f0
// Y0 × Y0

is a pullback diagram;

2. J-locally split if there is a J-cover U // Y0 and a diagram

Y [U ]

f̄
��

u

��
X

f
// Y

��

commuting up to a natural isomorphism;

3. a J-equivalence if it is fully faithful and J-locally split.

The class of J-equivalences will be denoted WJ . If mention of J is suppressed, they will
be called weak equivalences.

4.15. Remark. There is another definition of full faithfulness for internal categories,
namely that of a functor f : Z // Y being representably fully faithful. This means that
for all categories Z, the functor

f∗ : Cat(S)(Z,X) //Cat(S)(Z, Y )

is fully faithful. It is a well-known result that these two notions coincide, so we shall use
either characterisation as needed.

4.16. Lemma. If f : X // Y is a fully faithful functor such that f0 is in J , then f is
J-locally split.

That is, the canonical functor X[U ] //X is a J-equivalence whenever the base change
exists. Also, we do not require that J is subcanonical. We record here a useful lemma.

4.17. Lemma. Given a fully faithful functor f : X //Y in C and a natural isomorphism
f ⇒ g, the functor g is also fully faithful. In particular, an internal equivalence is fully
faithful.

Proof. This is a simple application of the definition of representable full faithfulness and
the fact that the result is true in Cat.
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The first definition of weak equivalence of internal categories along the lines we are
considering appeared in [Bunge-Paré 1979] for S a regular category, and J the class of
regular epimorphisms (i.e. c), in the context of stacks and indexed categories. This was
later generalised in [EKvdL 2005] to more general finitely complete sites to discuss model
structures on the category of internal categories. Both work only with saturated singleton
pretopologies.

Note that when S is finitely complete, the object X iso
1 ↪→ X1 of isomorphisms of a

category X can be constructed as a finite limit [Bunge-Paré 1979], and in the case when
X is a groupoid we have X iso

1 ' X1.

4.18. Definition. [Bunge-Paré 1979, EKvdL 2005] For a finitely complete unary site
(S, J) with J saturated, a functor f is called essentially J-surjective if the arrow labelled
~ below is in J .

X0 ×Y0 Y iso
1

yy ~

��

��
X0

f0
��

Y iso
1

s
yy

t
%%

Y0 Y0

A functor is called a Bunge-Paré J-equivalence if it is fully faithful and essentially J-
surjective. Denote the class of such maps by WBP

J .

Definition 4.14 is equivalent to the one in [Bunge-Paré 1979, EKvdL 2005] in the
sites they consider but seems more appropriate for sites without all finite limits. Also,
definition 4.14 makes sense in 2-categories other than Cat(S) or sub-2-categories thereof.

4.19. Proposition. Let (S, J) be a finitely complete unary site with J saturated. Then
a functor is a J-equivalence if and only if it is a Bunge-Paré J-equivalence.

Proof. Let f : X // Y be a Bunge-Paré J-equivalence, and consider the J-cover given
by the map U := X0×Y0 Y iso

1
//Y0. Denote by ι : U //Y iso

1 the projection on the second
factor, by −ι the composite of ι with the inversion map (−)−1 and by s0 : U // X0 the
projection on the first factor. The arrow s0 will be the object component of a functor
s : Y [U ] //X, we need to define the arrow component s1. Consider the composite

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
(s,ι)×id×(−ι,s)−−−−−−−−−→ (X0 ×Y0 Y iso

1 )×Y0 Y1 ×Y0 (Y iso
1 ×Y0 X0)

↪→ X0 ×Y0 Y3 ×Y0 X0
id×m×id−−−−−→ X0 ×Y0 Y1 ×Y0 X0 ' X1

where the last isomorphism arises from f being fully faithful. It is clear that this commutes
with source and target, because these are given by projection on the first and last factor
at each step. To see that it respects identities and composition, one can use generalised
elements and the fact that the ι component will cancel with the −ι = (−)−1◦ι component.
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We define the natural isomorphism f ◦ s ⇒ j (here j : Y [U ] // Y is the canonical
functor) to have component ι as denoted above. Notice that the composite f1 ◦ s1 is just

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−→ Y iso

1 ×Y0 Y1 ×Y0 Y iso
1 ↪→ Y3

m−→ Y1.

Since the arrow component of Y [U ] // Y is U ×Y0 Y1 ×Y0 U
pr2−−→ Y1, ι is indeed a natural

isomorphism using the diagram (2). Thus a Bunge-Paré J-equivalence is a J-equivalence.
In the other direction, given a J-equivalence f : X //Y , we have a J-cover j : U //Y0

and a map (f, a) : U //X0 × Y iso
1 such that j = (t ◦ pr2) ◦ (f, a). Since J is saturated,

(t ◦ pr2) ∈ J and hence f is a Bunge-Paré J-equivalence.

We can thus use definition 4.14 as we like, and it will still refer to the same sorts of
weak equivalences that appear in the literature.

5. Anafunctors

We now let J be a subcanonical singleton pretopology on the ambient category S. In
this section we assume that C ↪→ Cat(S) admits base change along arrows in the given
pretopology J . This is a slight generalisation of what is considered in [Bartels 2006],
where only C = Cat(S) is considered.

5.1. Definition. [Makkai 1996, Bartels 2006] An anafunctor in (S, J) from a category
X to a category Y consists of a J-cover (U //X0) and an internal functor

f : X[U ] // Y.

Since X[U ] is an object of C, an anafunctor is a span in C, and can be denoted

(U, f) : X−7→ Y.

5.2. Example. For an internal functor f : X // Y in S, define the anafunctor (X0, f) :
X−7→ Y as the following span

X
=←− X[X0]

f−→ Y.

We will blur the distinction between these two descriptions. If f = id : X // X, then
(X0, id) will be denoted simply by idX .

5.3. Example. If U // A is a cover in (S, J) and BG is a groupoid with one object in
S (i.e. a group in S), an anafunctor (U, g) : disc(A)−7→ BG is the same thing as a Čech
cocycle.
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5.4. Definition. [Makkai 1996, Bartels 2006] Let (S, J) be a site and let

(U, f), (V, g) : X−7→ Y

be anafunctors in S. A transformation

α : (U, f)⇒ (V, g)

from (U, f) to (V, g) is a natural transformation

X[U ×X0 V ]

xx &&
X[U ]

f
&&

α⇒ X[V ]

g
xx

Y

If α is a natural isomorphism, then α will be called an isotransformation. In that case
we say (U, f) is isomorphic to (V, g). Clearly all transformations between anafunctors
between internal groupoids are isotransformations.

5.5. Example. Given functors f, g : X // Y between categories in S, and a natural
transformation a : f ⇒ g, there is a transformation a : (X0, f) ⇒ (X0, g) of anafunctors,
given by the component X0 ×X0 X0 = X0

a−→ Y1.

5.6. Example. If (U, g), (V, h) : disc(A)−7→ BG are two Čech cocycles, a transformation
between them is a coboundary on the cover U ×A V // A.

5.7. Example. Let (U, f) : X−7→ Y be an anafunctor in S. There is an isotransfor-
mation 1(U,f) : (U, f) ⇒ (U, f) called the identity transformation, given by the natural
transformation with component

U ×X0 U ' (U × U)×X2
0
X0

id2U×e−−−→ X[U ]1
f1−→ Y1 (4)

5.8. Example. [Makkai 1996] Given anafunctors (U, f) : X //Y and (V, f ◦k) : X //Y
where k : V // U is a cover (over X0), a renaming transformation

(U, f)⇒ (V, f ◦ k)

is an isotransformation with component

1(U,f) ◦ (k × id) : V ×X0 U // U ×X0 U // Y1.

(We also call its inverse for vertical composition a renaming transformation.) If k is an
isomorphism, then it will itself be referred to as a renaming isomorphism.
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We define (following [Bartels 2006]) the composition of anafunctors as follows. Let

(U, f) : X−7→ Y and (V, g) : Y−7→ Z

be anafunctors in the site (S, J). Their composite (V, g) ◦ (U, f) is the composite span
defined in the usual way. It is again a span in C:

X[U ×Y0 V ]

xx

fV

&&
X[U ]

|| f
&&

Y [V ]

xx

g

!!
X Y Z

The square is a pullback by lemma 4.13 (which exists because V //Y0 is a cover), and the
resulting span is an anafunctor because V // Y0, hence U ×Y0 V //X0, are covers, and
using the isomorphism (3). We will sometimes denote the composite by (U ×Y0 V, g ◦ fV ).

Here we are using the fact we have specified pullbacks of covers in S. Without this
we would not end up with a bicategory (see theorem 5.16), but what [Makkai 1996] calls
an anabicategory. This is similar to a bicategory, but composition and other structural
maps are only anafunctors, not functors.

Consider the special case when V = Y0, so that (Y0, g) is just an ordinary functor.
Then there is a renaming transformation (the identity transformation!) (Y0, g) ◦ (U, f)⇒
(U, g ◦ f), using the equality U ×Y0 Y0 = U (by remark 4.12). If we let g = idY , then
we see that (Y0, idY ) is a strict unit on the left for anafunctor composition. Similarly,
considering (V, g) ◦ (Y0, id), we see that (Y0, idY ) is a two-sided strict unit for anafunctor
composition. In fact, we have also proved

5.9. Lemma. Given two functors f : X // Y , g : Y // Z in S, their composition as
anafunctors is equal to their composition as functors:

(Y0, g) ◦ (X0, f) = (X0, g ◦ f).

As a concrete and relevant example of a renaming transformation we can consider the
triple composition of anafunctors

(U, f) : X−7→ Y,

(V, g) : Y−7→ Z,

(W,h) : Z−7→ A.

The two possibilities of composing these are(
(U ×Y0 V )×Z0 W,h ◦ (gfV )W

)
and

(
U ×Y0 (V ×Z0 W ), h ◦ gW ◦ fV×Z0

W
)
.
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5.10. Lemma. The unique isomorphism (U×Y0 V )×Z0W ' U×Y0 (V ×Z0W ) commuting
with the various projections is a renaming isomorphism. The isotransformation arising
from this renaming transformation is called the associator.

A simple but useful criterion for describing isotransformations where one of the ana-
functors involved is a functor is as follows.

5.11. Lemma. An anafunctor (V, g) : X−7→ Y is isomorphic to a functor (X0, f) : X−7→
Y if and only if there is a natural isomorphism

X[V ]

}}

g

!!
X

f

99
∼⇒ Y

Just as there is a vertical composition of natural transformations between internal
functors, there is a vertical composition of transformations between internal anafunctors
[Bartels 2006]. This is where the subcanonicity of J will be used in order to construct a
map locally over some cover. Consider the following diagram

X[U ×X0 V ×X0 W ]

uu ))
X[U ×X0 V ]

yy ))

X[V ×X0 W ]

uu &&
X[U ]

f

++

a⇒ X[V ]

g

��

b⇒ X[W ]

h

ssY

We can form a natural transformation between the leftmost and the rightmost composites
as functors in S. This will have as its component the arrow

b̃a : U ×X0 V ×X0 W
id×∆×id−−−−−→ U ×X0 V ×X0 V ×X0 W

a×b−−→ Y1 ×Y0 Y1
m−→ Y1

in S. Notice that the Čech groupoid of the cover

U ×X0 V ×X0 W // U ×X0 W (5)

is
U ×X0 V ×X0 V ×X0 W ⇒ U ×X0 V ×X0 W,
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with source and target arising from the two projections V ×X0 V // V . Denote this pair
of parallel arrows by s, t : UV 2W ⇒ UVW for brevity. In [Bartels 2006], section 2.2.3,
we find the commuting diagram

UV 2W t //

s
��

UVW

b̃a
��

UVW
b̃a

// Y1

(6)

(this can be checked by using generalised elements) and so we have a functor

Č(U ×X0 V ×X0 W ) // disc(Y1).

Our pretopology J is assumed to be subcanonical, so example 4.6 gives us a unique arrow
ba : U ×X0 W // Y1, which is the data for the composite of a and b.

5.12. Remark. In the special case that U ×X0 V ×X0 W //U ×X0 W is split (e.g. is an
isomorphism), the composite transformation has

U ×X0 W // U ×X0 V ×X0 W
b̃a−→ Y1

as its component arrow. In particular, this is the case if one of a or b is a renaming
transformation.

5.13. Example. Let (U, f) : X−7→ Y be an anafunctor and U ′′
j′−→ U ′

j−→ U succes-
sive refinements of U // X0 (e.g isomorphisms). Let (U ′, fU ′) and (U ′′, fU ′′) denote the
composites of f with X[U ′] //X[U ] and X[U ′′] //X[U ] respectively. The arrow

U ×X0 U
′′ idU ×j◦j′−−−−−→ U ×X0 U // Y1

is the component for the composition of the isotransformations (U, f) ⇒ (U ′, fU ′),⇒
(U ′′, fU ′′) described in example 5.8. Thus we can see that the composite of renaming
transformations associated to isomorphisms φ1, φ2 is simply the renaming transformation
associated to their composite φ1 ◦ φ2.

This can be used to show that the associator satisfies the necessary coherence condi-
tions.

5.14. Example. If a : f ⇒ g, b : g ⇒ h are natural transformations between functors
f, g, h : X // Y in S, their composite as transformations between anafunctors

(X0, f), (X0, g), (X0, h) : X−7→ Y.

is just their composite as natural transformations. This uses the equality

X0 ×X0 X0 ×X0 X0 = X0 ×X0 X0 = X0,

which is due to our choice in remark 4.12 of canonical pullbacks.

Even though we don’t have pseudoinverses for weak equivalences of internal categories,
one might guess that the local splitting guaranteed to exist by definition is actually more
than just a splitting of sorts. This is in fact the case, if we use anafunctors.
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5.15. Lemma. Let f : X // Y be a J-equivalence in S. There is an anafunctor

(U, f̄) : Y−7→ X

and isotransformations

ι : (X0, f) ◦ (U, f̄)⇒ idY

ε : (U, f̄) ◦ (X0, f)⇒ idX

Proof. We have the anafunctor (U, f̄) by definition as f is J-locally split. Since the
anafunctors idX , idY are actually functors, we can use lemma 5.11. Using the special case
of anafunctor composition when the second is a functor, this tells us that ι will be given
by a natural isomorphism

X
f

��
Y [U ] //

f̄
<<

Y
��

with component ι : U // Y1. Notice that the composite f1 ◦ f̄1 is just

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−→ Y1 ×Y0 Y1 ×Y0 Y1 ↪→ Y3

m−→ Y1.

Since the arrow component of Y [U ] // Y is U ×Y0 Y1 ×Y0 U
pr2−−→ Y1, ι is indeed a natural

isomorphism using the diagram (2).
The other isotransformation ε is between (X0×Y0U, f̄ ◦pr2) and (X0, idX), and is given

by the component

ε : X0 ×X0 X0 ×Y0 U = X0 ×Y0 U
id×(f̄0,ι)−−−−−→ X0 ×Y0 (X0 ×Y0 Y1) ' X2

0 ×Y 2
0
Y1 ' X1

The diagram

(X0 ×Y 2
0
U)2 ×X2

0
X1

'
��

pr2 // X1

'

��

U ×Y0 X1 ×Y0 U
−ι×f×ι

��
(X0 ×Y0 Y1)×Y0 Y1 ×Y0 (Y1 ×Y0 X0)

id×m×id
// X0 ×Y0 Y1 ×Y0 X0

commutes (a fact which can be checked using generalised elements), and using (2) we see
that ε is natural.
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The first half of the following theorem is proposition 12 in [Bartels 2006], and the
second half follows because all the constructions of categories involved in dealing with
anafunctors outlined above are still objects of C.

5.16. Theorem. [Bartels 2006] For a site (S, J) where J is a subcanonical singleton
pretopology, internal categories, anafunctors and transformations form a bicategory called
Catana(S, J). If we restrict attention to a full sub-2-category C which admits base change
for arrows in J , we have an analogous full sub-bicategory Cana(J).

In fact the bicategory Cana(J) fails to be a strict 2-category only in the sense that the
associator is given by the non-identity isotransformation from lemma 5.10. All the other
structure is strict.

There is a strict 2-functor Cana(J) //Catana(S, J) which is an inclusion on objects and
fully faithful in the strictest sense, namely being the identity functor on hom-categories.
The following is the main result of this section, and allows us to relate anafunctors to the
localisations considered in the next section.

5.17. Proposition. There is a strict, identity-on-objects 2-functor

αJ : C // Cana(J)

sending J-equivalences to equivalences, and commuting with the respective inclusions into
Cat(S) and Catana(S, J).

Proof. We define αJ to be the identity on objects, and as described in examples 5.2, 5.5
on 1-arrows and 2-arrows (i.e. functors and transformations). We need first to show that
this gives a functor C(X, Y ) // Cana(J)(X, Y ). This is precisely the content of example
5.14. Since the identity 1-cell on a category X in Cana(J) is the image of the identity
functor on S in C, αJ respects identity 1-cells. Also, lemma 5.9 tells us that αJ respects
composition. That αJ sends J-equivalences to equivalences is the content of lemma 5.15.

The 2-category C is locally small (i.e. enriched in small categories) if S itself is locally
small (i.e. enriched in sets), but a priori the collection of anafunctors X−7→ Y do not
constitute a set for S a large category.

5.18. Proposition. Let (S, J) be a locally small, subcanonical unary site satisfying
WISC and let C admit base change along arrows in J . Then Cana(J) is locally essen-
tially small.

Proof. Given an object A of S, let I(A) be a weakly initial set for J/A. Consider the
locally full sub-2-category of Cana(J) with the same objects, and arrows those anafunctors
(U, f) : X−7→ Y such that U // X0 is in I(X0). Every anafunctor is then isomorphic,
by example 5.8, to one in this sub-2-category. The collection of anafunctors (U, f) :
X−7→ Y for a fixed U forms a set, by local smallness of C, and similarly the collection of
transformations between a pair of anafunctors forms a set by local smallness of S.
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Examples of locally small sites (S, J) where Cana(J) is not known to be locally essen-
tially small are the category of sets from the model of ZF used in [van den Berg 2012],
the model of ZF constructed in [Roberts 2013] and the topos from proposition 3.23. We
note that local essential smallness of Cana(J) seems to be a condition just slightly weaker
than WISC.

6. Localising bicategories at a class of 1-cells

Ultimately we are interesting in inverting all J-equivalences in C and so need to discuss
what it means to add the formal pseudoinverses to a class of 1-cells in a 2-category – a
process known as localisation. This was done in [Pronk 1996] for the more general case
of a class of 1-cells in a bicategory, where the resulting bicategory is constructed and its
universal properties examined. The application in loc. cit. is to show the equivalence of
various bicategories of stacks to localisations of 2-categories of smooth, topological and
algebraic groupoids. The results of this article can be seen as one-half of a generalisation
of these results to more general sites.

6.1. Definition. [Pronk 1996] Let B be a bicategory and W ⊂ B1 a class of 1-cells. A
localisation of B with respect to W is a bicategory B[W−1] and a weak 2-functor

U : B //B[W−1]

such that U sends elements of W to equivalences, and is universal with this property
i.e. precomposition with U gives an equivalence of bicategories

U∗ : Hom(B[W−1], D) //HomW (B,D),

where HomW denotes the sub-bicategory of weak 2-functors that send elements of W to
equivalences (call these W -inverting, abusing notation slightly).

The universal property means that W -inverting weak 2-functors F : B // D factor,
up to an equivalence, through B[W−1], inducing an essentially unique weak 2-functor

F̃ : B[W−1] //D.

6.2. Definition. [Pronk 1996] Let B be a bicategory with a class W of 1-cells. W is
said to admit a right calculus of fractions if it satisfies the following conditions

2CF1. W contains all equivalences

2CF2. a) W is closed under composition
b) If a ∈ W and there is an isomorphism a

∼⇒ b then b ∈ W
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2CF3. For all w : A′ // A, f : C // A with w ∈ W there exists a 2-commutative square

P

v

��

g // A′

w

��
C

f // A

'
z�

with v ∈ W .

2CF4. If α : w ◦ f ⇒ w ◦ g is a 2-arrow and w ∈ W there is a 1-cell v ∈ W and a 2-arrow
β : f ◦ v ⇒ g ◦ v such that α ◦ v = w ◦ β. Moreover: when α is an isomorphism,
we require β to be an isomorphism too; when v′ and β′ form another such pair,
there exist 1-cells u, u′ such that v ◦ u and v′ ◦ u′ are in W , and an isomorphism
ε : v ◦ u⇒ v′ ◦ u′ such that the following diagram commutes:

f ◦ v ◦ u β◦u +3

f◦ε '

��

g ◦ v ◦ u

g◦ε'

��
f ◦ v′ ◦ u′

β′◦u′
+3 g ◦ v′ ◦ u′

(7)

For a bicategory B with a calculus of right fractions, [Pronk 1996] constructs a lo-
calisation of B as a bicategory of fractions; the 1-arrows are spans and the 2-arrows are
equivalence classes of bicategorical spans-of-spans diagrams.

From now on we shall refer to a calculus of right fractions as simply a calculus of
fractions, and the resulting localisation constructed by Pronk as a bicategory of fractions.
Since B[W−1] is defined only up to equivalence, it is of great interest to know when a
bicategory D, in which elements of W are sent to equivalences by a 2-functor B //D, is
equivalent to B[W−1]. In particular, one might be interested in finding such an equivalent
bicategory with a simpler description than that which appears in [Pronk 1996].

6.3. Proposition. [Pronk 1996] A weak 2-functor F : B //D which sends elements of
W to equivalences induces an equivalence of bicategories

F̃ : B[W−1]
∼−→ D

if the following conditions hold

EF1. F is essentially surjective,

EF2. For every 1-cell f ∈ D1 there are 1-cells w ∈ W and g ∈ B1 such that Fg
∼⇒ f ◦Fw,
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EF3. F is locally fully faithful.

Thanks are due to Matthieu Dupont for pointing out (in personal communication)
that proposition 6.3 actually only holds in the one direction, not in both, as claimed in
loc. cit.

The following is useful in showing a weak 2-functor sends weak equivalences to equiv-
alences, because this condition only needs to be checked on a class that is in some sense
cofinal in the weak equivalences.

6.4. Proposition. Let V ⊂ W be two classes of 1-cells in a bicategory B such that for
all w ∈ W , there exists v ∈ V and s ∈ W and an invertible 2-cell

a

w

��
b v

//

s

??

c .

'
��

Then a weak 2-functor F : B // D that sends elements of V to equivalences also sends
elements of W to equivalences.

Proof. In the following the coherence arrows will be present, but unlabelled. It is enough
to prove that if in a bicategory D with a class of maps M (in our case M = F (W )) such
that for all w ∈M there is an equivalence v and an isomorphism α,

a

w

��
b v

//

s

??

c

'α
��

where s ∈M , then all elements of M are also equivalences.
Let v̄ be a pseudoinverse for v and let j = s◦v̄. Then there is sequence of isomorphisms

w ◦ j ⇒ (w ◦ s) ◦ v̄ ⇒ v ◦ v̄ ⇒ I.

Since s ∈ M , there is an equivalence u, t ∈ M and an isomorphism β giving the
following diagram

d

t

��

u // a

w

��
b v

//

s

??

c .

α
��

β
��
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Let ū be a pseudoinverse of u. We know from the first part of the proof that we have a
pseudosection k = t ◦ ū of s, with an isomorphism s ◦ k ⇒ I. We then have the following
sequence of isomorphisms:

j ◦w = (s ◦ v̄) ◦w ⇒ ((s ◦ v̄) ◦w) ◦ (s ◦ k)⇒ s ◦ ((v̄ ◦ v) ◦ (t ◦ ū))⇒ (s ◦ t) ◦u⇒ ū ◦u⇒ I.

Thus all elements of M are equivalences.

7. 2-categories of internal categories admit bicategories of fractions

In this section we prove the result that C ↪→ Cat(S) admits a calculus of fractions for
the J-equivalences, where J is a singleton pretopology on S.

The following is the first main theorem of the paper, and subsumes a number of other,
similar theorems throughout the literature (see section 8 for details).

7.1. Theorem. Let S be a category with a singleton pretopology J . Assume the full sub-
2-category C ↪→ Cat(S) admits base change along maps in J . Then C admits a right
calculus of fractions for the class WJ of J-equivalences.

Proof. We show the conditions of definition 6.2 hold.

2CF1. An internal equivalence is clearly J-locally split. Lemma 4.17 gives us the rest.

2CF2. a) That the composition of fully faithful functors is again fully faithful is trivial.
Consider the composition g ◦ f of two J-locally split functors,

Y [U ]

��

u

��

Z[V ]

��

v

��
X

f
// Y g

// Z
�� ��

By lemma 4.13 the functor u pulls back to a functor Z[U ×Y0 V ] //Z[V ]. The
composite Z[U ×Y0 V ] //Z is fully faithful with object component in J , hence
g ◦ f is J-locally split.

b) Lemma 4.17 tells us that fully faithful functors are closed under isomorphism,
so we just need to show J-locally split functors are closed under isomorphism.

Let w, f : X // Y be functors and a : w ⇒ f be a natural isomorphism. First,
let w be J-locally split. It is immediate from the diagram

Y [U ]

��

u

��
X

w

''

f

77 Y


�

a��
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that f is also J-locally split.

2CF3. Let w : X // Y be a J-equivalence, and let f : Z // Y be a functor. From the
definition of J-locally split, we have the diagram

Y [U ]

��

u

��
X w

// Y
��

We can use lemma 4.13 to pull u back along f to get a 2-commuting diagram

Z[U ×Y0 Z0]
v

%%xx
Y [U ]

��

u

!!

Z

f
yy

X w
// Y

�	

with v ∈ WJ as required.

2CF4. Since J-equivalences are representably fully faithful, given

Y
w

  
X

f
==

g
!!

⇓ a Z

Y

w

>>

where w ∈ WJ , there is a unique a′ : f ⇒ g such that

Y
w

  
X

f
==

g
!!

⇓ a Z

Y

w

>>
= X

f

$$

g

::⇓ a′ Y w // Z .

The existence of a′ is the first half of 2CF4, where v = idX . Note that if a is an
isomorphism, so if a′, since w is representably fully faithful. Given v′ : W //X ∈ WJ
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such that there is a transformation

X
f

  
W

v′
==

v′ !!

⇓ b Y

X

g

>>

satisfying

X
f

  
W

v′
==

v′ !!

⇓ b Y w // Z

X

g

>>
=

Y
w

  
W v′ // X

f
==

g
!!

⇓ a Z

Y

w

>>

= W
v′ // X

f

$$

g

::⇓ a′ Y
w // Z , (8)

then uniqueness of a′, together with equation (8) gives us

X
f

  
W

v′
==

v′ !!

⇓ b Y

X

g

>>
= W

v′ // X

f

$$

g

::⇓ a′ Y .

This is precisely the diagram (7) with v = idX , u = v′, u′ = idW and ε the identity
2-arrow. Hence 2CF4 holds.

The proof of theorem 7.1 is written using only the language of 2-categories, so can be
generalised from C to other 2-categories. This approach will be taken up in [Roberts B].

The second main result of the paper is that we want to know when this bicategory of
fractions is equivalent to a bicategory of anafunctors, as the latter bicategory has a much
simpler construction.

7.2. Theorem. Let (S, J) be a subcanonical unary site and let the full sub-2-category
C ↪→ Cat(S) admit base change along arrows in J . Then there is an equivalence of
bicategories

Cana(J) ' C[W−1
J ]

under C.
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Proof. Let us show the conditions in proposition 6.3 hold. To begin with, the 2-functor
αJ : C // Cana(J) sends J-equivalences to equivalences by proposition 5.17.

EF1. αJ is the identity on 0-cells, and hence surjective on objects.

EF2. This is equivalent to showing that for any anafunctor (U, f) : X−7→ Y there are
functors w, g such that w is in WJ and

(U, f)
∼⇒ αJ(g) ◦ αJ(w)−1

where αJ(w)−1 is some pseudoinverse for αJ(w).

Let w be the functor X[U ] //X and let g = f : X[U ] // Y . First, note that

X[U ]

}}

=

##
X X[U ]

is a pseudoinverse for

αJ(w) =


X[U ][U ]

=

yy ##
X[U ] X

 .

Then the composition αJ(f) ◦ αJ(w)−1 is

X[U ×U U ×U U ]

ww ''
X Y ,

which is just (U, f) (recall we have the equality U ×U U ×U U = U by remark 4.12).

EF3. If a : (X0, f)⇒ (X0, g) is a transformation of anafunctors for functors f, g : X //Y ,
it is given by a natural transformation

f ⇒ g : X = X[X0 ×X0 X0] // Y.

Hence we get a unique natural transformation a : f ⇒ g such that a is the image of
a′ under αJ .
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We now give a series of results following from this theorem, using basic properties of
pretopologies from section 3.

7.3. Corollary. When J and K are two subcanonical singleton pretopologies on S such
that Jun = Kun, for example J cofinal in K, there is an equivalence of bicategories

Cana(J) ' Cana(K).

The class of maps in Top of the form
∐
Ui // X for an open cover {Ui} of X

form a singleton pretopology. This is because O is a superextensive pretopology (see the
appendix). Given a site with a superextensive pretopology J , we have the following result
which is useful when J is not a singleton pretopology (the singleton pretopology qJ is
defined analogously to the case of Top, details are in the appendix).

7.4. Corollary. Let (S, J) be a superextensive site where J is a subcanonical pretopol-
ogy. Then

C[W−1
Jun

] ' Cana(qJ).

Proof. This essentially follows by lemma A.9.

Obviously this can be combined with previous results, for example if K is cofinal
in qJ , for J a non-singleton pretopology, K-anafunctors localise C at the class of Jun-
equivalences.

Finally, given WISC we have a bound on the size of the hom-categories, up to equiv-
alence.

7.5. Theorem. Let (S, J) be a subcanonical unary site satisfying WISC with S locally
small and let C ↪→ Cat(S) admit base change along arrows in J . Then any localisation
C[W−1

J ] is locally essentially small.

Recall that this localisation can be chosen such that the class of objects is the same
as the class of objects of C, and so it is not necessary to consider additional set-theoretic
mechanisms for dealing with large (2-)categories here.

We note that the issue of size of localisations is not touched on in [Pronk 1996]. even
though such issues are commonly addressed in localisation of 1-categories. If we have a
specified bound on the hom-sets of S and also know that some WISCκ holds, then we can
put specific bounds on the size of the hom-categories of the localisation. This is important
if examining fine size requirements or implications for localisation theorems such as these,
for example higher versions of locally presentable categories.

8. Examples

The simplest example is when we take the trivial singleton pretopology triv, where cover-
ing families are just single isomorphisms: triv-equivalences are internal equivalences and,
up to equivalence, localisation at Wtriv does nothing. It is worth pointing out that if we
localise at Wtrivun , which is equivalent to considering anafunctors with source leg having
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a split epimorphism for its object component, then by corollary 7.3 this is equivalent to
localising at Wtriv, so Cana(trivun) ' Cana(triv) ' C.

The first non-trivial case is that of a regular category with the canonical singleton
pretopology c. This is the setting of [Bunge-Paré 1979]. Recall that WBP

J is the class
of Bunge-Paré J-equivalences (definition 4.18). For now, let C denote either Cat(S) or
Gpd(S).

8.1. Proposition. Let (S, J) be a finitely complete unary site with J saturated. Then
we have

C[(WBP
J )−1] ' C[W−1

J ]

This is merely a restatement of the fact Bunge-Paré J-equivalences and ordinary J-
equivalences coincide in this case.

8.2. Corollary. The canonical singleton pretopology c on a finitely complete category
S is saturated. Hence WBP

c = Wc for this site, and

C[(WBP
c )−1] ' C[W−1

c ] ' Cana(c)

We can combine this corollary with corollary 7.3 so that the localisation of either
Cat(S) or Gpd(S) at the Bunge-Paré weak equivalences can be calculated using J-
anafunctors for J cofinal in c. We note that c does not satisfy WISC in general (see
proposition 3.23 and the comments following), so the localisation might not be locally
essentially small.

The previous corollaries deal with the case when we are interested in the 2-categories
consisting of all of the internal categories or groupoids in a site. However, for many
applications of internal categories/groupoids it is not sufficient to take all of Cat(S) or
Gpd(S). One widely used example is that of Lie groupoids, which are groupoids internal
to the category of (finite-dimensional) smooth manifolds such that source and target
maps are submersions (more on these below). Other examples are used in the theory of
algebraic stacks, namely groupoids internal to schemes or algebraic spaces. Other types
of such presentable stacks use groupoids internal to some site with specified conditions on
the source and target maps. Although it is not covered explicitly in the literature, it is
possible to consider presentable stacks of categories, and this will be taken up in future
work [Roberts A].

We thus need to furnish examples of sub-2-categories C, specified by restricting the
sort of maps that are allowed for source and target, that admit base change along some
class of arrows. The following lemma gives a sufficiency condition for this to be so.

8.3. Lemma. Let CatM(S) be defined as the full sub-2-category of Cat(S) with objects
those categories such that the source and target maps belong to a singleton pretopology
M. Then CatM(S) admits base change along arrows in M, as does the corresponding
2-category GpdM(S) of groupoids.
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Proof. Let X be an object of CatM(S) and f : M //X0 ∈M. In the following diagram,
all the squares are pullbacks and all arrows are in M.

X[M ]1

��

//

s′

!!

t′

**X1 ×X0 M //

��

M

��

M ×X0 X1

��

// X1
//

��

X0

M // X0

The maps marked s′, t′ are the source and target maps for the base change along f , so
X[M ] is in CatM(S). The same argument holds for groupoids verbatim.

In practice one often only wants base change along a subclass ofM, such as the class of
open covers sitting inside the class of open maps in Top. We can then apply theorems 7.1
and 7.2 to the 2-categories CatM(S) and GpdM(S) with the classes of M-equivalences,
and indeed to sub-2-categories of these, as we shall in the examples below.

We shall focus of a few concrete cases to show how the results of this paper subsume
similar results in the literature proved for specific sites.

The category of smooth manifolds is not finitely complete so the localisation results
in this section so far do not apply to it. There are two ways around this. The first is to
expand the category of manifolds to a category of smooth spaces which is finitely complete
(or even cartesian closed). In that case all the results one has for finitely complete sites can
be applied. The other is to take careful note of which finite limits are actually needed,
and show that all constructions work in the original category of manifolds. There is
then a hybrid approach, which is to work in the expanded category, but point out which
results/constructions actually fall inside the original category of manifolds. Here we shall
take the second approach. First, let us pin down some definitions.

8.4. Definition. Let Diff be the category of smooth, finite-dimensional manifolds. A
Lie category is a category internal to Diff where the source and target maps are submer-
sions (and hence the required pullbacks exist). A Lie groupoid is a Lie category which is
a groupoid. A proper Lie groupoid is one where the map (s, t) : X1

//X0×X0 is proper.
An étale Lie groupoid is one where the source and target maps are local diffeomorphisms.

By lemma 8.3 the 2-categories of Lie categories, Lie groupoids and proper Lie groupoids
admit base change along any of the following classes of maps: open covers (qO), surjective
local diffeomorphisms (ét), surjective submersions (Subm). The 2-categories of étale Lie
groupoids and proper étale Lie groupoids admit base change along arrows in ét and Subm.
We should note that we have qO cofinal in ét, which is cofinal in Subm.

We can thus apply the main results of this paper to the sites (Diff ,O), (Diff ,qO),
(Diff , ét) and (Diff , Subm) and the 2-categories of Lie categories, Lie groupoids, proper
Lie groupoids and so on. However, the definition of weak equivalence we have here,
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involving J-locally split functors, is not one that appears in the Lie groupoid literature,
which is actually Bunge-Paré Subm-equivalence. However, we have the following result:

8.5. Proposition. A functor f : X // Y between Lie categories is a Subm-equivalence
if and only if it is a Bunge-Paré Subm-equivalence.

Before we prove this, we need a lemma proved by Ehresmann.

8.6. Lemma. [Ehresmann 1959] For any Lie category X, the subset of invertible arrows,
X iso

1 ↪→ X1 is an open submanifold.

Hence there is a Lie groupoid X iso and an identity-on-objects functor X iso //X which
is universal for functors from Lie groupoids. In particular, a natural isomorphism between
functors with codomain X is given by a component map that factors through X iso

1 , and
the induced source and target maps X iso

1
//X0 are submersions.

Proof. (proposition 8.5) Full faithfulness is the same for both definitions, so we just need
to show that f is Subm-locally split if and only if it is essentially Subm-surjective. We
first show the forward implication.

The special case of a qO-equivalence between Lie groupoids is a small generalisation
of the proof of proposition 5.5 in [Moerdijk-Mrčun 2003], which states than an internal
equivalence of Lie groupoids is a Bunge-Paré Subm-equivalence. Since qO is cofinal in
Subm, a Subm-equivalence is a qO-equivalence, hence a Bunge-Paré Subm-equivalence.

For the case when X and Y are Lie categories, we use the fact that we can define
X0 ×Y0 Y iso

1 and that the local sections constructed in Moerdijk-Mrčun’s proof factor
through this manifold to set up the proof as in the groupoid case.

For the reverse implication, the construction in the first half of the proof of proposition
4.19 goes through verbatim, as all the pullbacks used involve submersions.

The need to localise the category of Lie groupoids at WSubm was perhaps first noted in
[Pradines 1989], where it was noted that something other than the standard construction
of a category of fractions was needed. However Pradines lacked the necessary 2-categorical
localisation results. Pronk considered the sub-2-category of étale Lie groupoids, also lo-
calised at WSubm, in order to relate these groupoids to differentiable étendues [Pronk 1996].
Lerman discusses the 2-category of orbifolds qua stacks [Lerman 2010] and argues that it
should be a localisation of the 2-category of proper étale Lie groupoids (again at WSubm).
These three cases use different constructions of the 2-categorical localisation: Pradines
used what he called meromorphisms, which are equivalence classes of butterfly-like dia-
grams and are related to Hilsum-Skandalis morphisms, Pronk introduces the techniques
outlined in this paper, and Lerman uses Hilsum-Skandalis morphisms, also known as right
principal bibundles.

Interestingly, [Colman 2010] considers this localisation of the 2-category of Lie group-
oids then considers a further localisation, not given by the results of this paper.2 Colman in

2In fact this is the only 2-categorical localisation result involving internal categories or groupoids
known to the author to not be covered by theorem 7.1 or its sequel [Roberts B].
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essence shows that the full sub-2-category of topologically discrete groupoids, i.e. ordinary
small groupoids, is a localisation at those internal functors which induce an equivalence
on fundamental groupoids.

Our next example is that of topological groupoids, which correspond to various flavours
of stacks on the category Top. The idea of weak equivalences of topological groupoids
predates the case of Lie groupoids, and [Pradines 1989] credits it to Haefliger, van Est,
and [Hilsum-Skandalis 1987]. In particular the first two were ultimately interested in
defining the fundamental group of a foliation, that is to say, of the topological groupoid
associated to a foliation, considered up to weak equivalence.

However more recent examples have focussed on topological stacks, or variants thereon.
In particular, in parallel with the algebraic and differentiable cases, the topological stacks
for which there is a good theory correspond to those topological groupoids with conditions
on their source and target maps. Aside from étale topological groupoids (which were
considered by [Pronk 1996] in relation to étendues), the real advances here have come
from work of Noohi, starting with [Noohi 2005a], who axiomatised the concept of local
fibration and asked that the source and target maps of topological groupoids are local
fibrations.

8.7. Definition. A singleton pretopology LF in Top is called a class of local fibrations
if the following conditions hold:3

1. LF contains the open embeddings

2. LF is stable under coproducts, in the sense that
∐

i∈I Xi
// Y is in LF if each

Xi
// Y is in LF

3. LF is local on the target for the open cover pretopology. That is, if the pullback of
a map f : X // Y along an open cover of Y is in LF , then f is in LF .

Conditions 1. and 2. tell us thatqO ⊂ LF , and that LF isqJ for some superextensive
pretopology J containing the open embeddings as singleton ‘covering’ families (beware the
misleading terminology here: covering families are not assumed to be jointly surjective).
Note that LF will not be subcanonical, by condition 1. As an example, given any of the
following pretopologies K:

• Serre fibrations,

• Hurewicz fibrations,

• open maps,

• split maps,

• projections out of a cartesian product,

3We have packaged the conditions in a way slightly different to [Noohi 2005a], but the definition is in
fact identical.
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• isomorphisms;

one can define a class of local fibrations by choosing those maps which are in K on
pulling back to an open cover of the codomain. Such maps are then called local K.
As an example of the usefulness of this concept, the topological stacks corresponding to
topological groupoids with local Hurewicz fibrations as source and target have a nicely
behaved homotopy theory. The case of étale groupoids corresponds to the last named
class of maps, which give us local isomorphisms, i.e. étale maps. We can then apply
lemma 8.3 and theorem 7.1 to the 2-category GrpLF (Top) to localise at the class WqO
(as qO ⊂ LF ), or any other singleton pretopology contained in LF , using anafunctors
whenever this pretopology is subcanonical. Note that if C satisfies WISC, so will the
corresponding LF , although this is probably not necessary to consider in the presence of
full AC.

A slightly different approach is taken in [Carchedi 2012], where the author introduces
a new pretopology on the category CGH of compactly generated Hausdorff spaces. We
give a definition equivalent to the one in loc cit.

8.8. Definition. A (not necessarily open) cover {Vi ↪→ X}i∈I is called a CG-cover if for
any map K //X from a compact space K, there is a finite open cover {Uj ↪→ K} which
refines the cover {Vi ×X K //K}i∈I . CG-covers form a pretopology CG on CGH.

Compactly generated stacks then correspond to groupoids in CGH such that source
and target maps are in the pretopology CGun. Again, we can localise GpdCG(CGH)
at WCGun using lemma 8.3 and theorem 7.1, and anafunctors can be again pressed into
service.

We now arrive at the more involved case of algebraic stacks (cf. the continually growing
[Stacks project] for the extent of the theory of algebraic stacks), which were the first
presentable stacks to be defined. There are some subtleties about the site of definition
for algebraic stacks, and powerful representability theorems, but we can restrict to three
main cases: groupoids in the category of affine schemes Aff = Ringop; groupoids in
the category Sch of schemes; and groupoids in the category AlgSp of algebraic spaces.
Algebraic spaces reduce to algebraic stacks on Sch represented by groupoids with trivial
automorphism groups, and the category of schemes is a subcategory of Sh(Aff), so we
shall just consider the case when our ambient category is Aff . In any case, all the
special properties of classes of maps in all three sites are ultimately defined in terms of
properties of ring homomorphisms. Note that groupoids in Aff are exactly the same thing
as cogroupoid objects in Ring, which are more commonly known as Hopf algebroids.

Despite the possibly unfamiliar language used by algebraic geometry, algebraic stacks
reduce to the following semiformal definition. We fix three singleton pretopologies on our
site Aff : J , E and D such that E and D are local on the target for the pretopology J .
An algebraic stack then is a stack on Aff for the pretopology J which ‘corresponds’ to a
groupoid X in Aff such that source and target maps belong to E and (s, t) : X1

//X2
0 be-

longs to D. We recover the algebraic stacks by localising the 2-category of such groupoids
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at WE (this claim of course needs substantiating, something we will not do here for reasons
of space, referring rather to [Pronk 1996, Schäppi 2012] and the forthcoming [Roberts A]).

In practice, D can be something like closed maps (to recover Hausdorff-like conditions)
or all maps, and E consists of either smooth or étale maps, corresponding to Artin and
Deligne-Mumford stacks respectively. J is then something like the étale topology (or
rather, the singleton pretopology associated to it, as the étale topology is superextensive),
and we can apply lemma 8.3 to see that base change exists along J , along with the fact
that asking for (s, t) ∈ D is automatically stable under forming the base change. In
practice, a variety of combinations of J,E and D are used, as well as passing from Aff to
Sch and AlgSp, so there are various compatibilities to check in order to know one can
apply theorem 7.1.

A final application we shall consider is when our ambient category consists of alge-
braic objects. As mentioned in section 2, a number of authors have considered localising
groupoids in Mal’tsev, or Barr-exact, or protomodular, or semi-abelian categories, which
are hallmarks of categories of algebraic objects rather than spatial ones, as we have been
considering so far.

In the case of groupoids in Grp (which, as in any Mal’tsev category, coincide with
the internal categories) it is a well-known result that they can be described using crossed
modules.

8.9. Definition. A crossed module (in Grp) is a homomorphism t : G // H together
with a homomorphism α : H // Aut(G) such that t is H-equivariant (using the conjuga-
tion action of H on itself), and such that the composition α◦t : G // Aut(G) is the action
of G on itself by conjugation. A crossed module is often denoted, when no confusion will
arise, by (G // H). A morphism (G // H) // (K // L) of crossed modules is a pair
of maps G //K and H //L making the obvious square commute, and commuting with
all the action maps.

Similar definitions hold for groups internal to cartesian closed categories, and even just
finite-product categories if one replaces H // Aut(G) with its transpose H × G // G.
Ultimately of course there is a definition for crossed modules in semiabelian categories
(e.g. [AMMV 2010]), but we shall consider just groups. There is a natural definition of
2-arrow between maps of crossed modules, but the specifics are not important for the
present purposes, so we refer to [Noohi 2005c, definition 8.5] for details. The 2-categories
of groupoids internal to Grp and crossed modules are equivalent, so we shall just work
with the terminology of the latter.

Given the result that crossed modules correspond to pointed, connected homotopy
2-types, it is natural to ask if all maps of such arise from maps between crossed modules.
The answer is, perhaps unsurprisingly, no, as one needs maps which only weakly preserve
the group structure. One can either write down the definition of some generalised form of
map ([Noohi 2005c, definition 8.4]), or localise the 2-category of crossed modules ([Noohi
2005c] considers a model structure on the category of crossed modules). To localise the
2-category of crossed modules we can consider the singleton pretopology epi on Grp
consisting of the epimorphisms, and localise Gpd(Grp) at Wepi.
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There are potentially interesting sub-2-categories of crossed modules that one might
want to consider, for example, the one corresponding to nilpotent pointed connected 2-
types. These are crossed modules t : G //H where the cokernel of t is a nilpotent group
and the (canonical) action of coker t on ker t is nilpotent. The correspondence between
such crossed modules and the corresponding internal groupoids is a nice exercise, as well
as seeing that this 2-category admits base change for the pretopology epi.

A. Superextensive sites

The usual sites of topological spaces, manifolds and schemes all share a common property:
one can (generally) take coproducts of covering families and end up with a cover. In this
appendix we gather some results that generalise this fact, none of which are especially
deep, but help provide examples of bicategories of anafunctors. Another reference for
superextensive sites is [Shulman 2012].

A.1. Definition. [CLW 1993] A finitary (resp. infinitary) extensive category is a cat-
egory with finite (resp. small) coproducts such that the following condition holds: let I
be a a finite set (resp. any set), then, given a collection of commuting diagrams

Xi
//

��

Z

��
Ai //

∐
i∈I Ai ,

one for each i ∈ I, the squares are all pullbacks if and only if the collection {Xi
//Z}i∈I

forms a coproduct diagram.

In such a category there is a strict initial object: given a map A // 0 with 0 initial,
we have A ' 0.

A.2. Example. Top is infinitary extensive. Ringop, the category of affine schemes, is
finitary extensive.

In Top we can take an open cover {Ui}I of a space X and replace it with the single
map

∐
I Ui

//X, and work just as before using this new sort of cover, using the fact Top
is extensive. The sort of sites that mimic this behaviour are called superextensive.

A.4. Definition. (Bartels-Shulman) A superextensive site is an extensive category S
equipped with a pretopology J containing the families

(Ui //
∐
I

Ui)i∈I

and such that all covering families are bounded; this means that for a finitely extensive site,
the families are finite, and for an infinitary site, the families are small. The pretopology
in this instance will also be called superextensive.
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A.5. Example. Given an extensive category S, the extensive pretopology has as covering
families the bounded collections (Ui //

∐
I Ui)i∈I . The pretopology on any superextensive

site contains the extensive pretopology.

A.6. Example. The category Top with its usual pretopology of open covers is a su-
perextensive site.

A.7. Example. An elementary topos with the coherent pretopology is finitary superex-
tensive, and a Grothendieck topos with the canonical pretopology is infinitary superex-
tensive.

Given a superextensive site (S, J), one can form the class qJ of arrows of the form∐
I Ui

//A for covering families {Ui //A}i∈I in J (more precisely, all arrows isomorphic
in S/A to such arrows).

A.8. Proposition. The class qJ is a singleton pretopology, and is subcanonical if and
only if J is.

Proof. Since isomorphisms are covers for J they are covers for qJ . The pullback of a
qJ-cover

∐
I Ui

//A along B //A is a qJ-cover as coproducts and pullbacks commute
by definition of an extensive category. Now for the third condition we use the fact that
in an extensive category a map

f : B //
∐
I

Ai

implies thatB '
∐

I Bi and f =
∐

i fi. GivenqJ-covers
∐

I Ui
//A and

∐
J Vj

//(
∐

I Ui),
we see that

∐
J Vj '

∐
IWi for some objects Wi. By the previous point, the pullback∐

I

Uk ×∐
I Ui′

Wi

is a qJ-cover of Ui, and hence (Uk ×∐
I Ui′

Wi
// Uk)i∈I is a J-covering family for each

k ∈ I. Thus
(Uk ×∐

I Ui′
Wi

// A)i,k∈I

is a J-covering family, and so

∐
J

Vj '
∐
k∈I

(∐
i∈I

Uk ×∐
I Ui′

Wi

)
// A

is a qJ-cover.
The map

∐
I Ui

//A is the coequaliser of
∐

I×I Ui ×A Uj ⇒
∐

I Ui if and only if A is the
colimit of the diagram in definition 3.3. Hence (

∐
I Ui

// A) is effective if and only if
(Ui // A)i∈I is effective
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Notice that the original superextensive pretopology J is generated by the union of qJ
and the extensive pretopology.

One reason we are interested in superextensive sites is the following.

A.9. Lemma. In a superextensive site (S, J), we have Jun = (qJ)un.

This means we can replace the singleton pretopology Jun (e.g. local-section-admitting
maps of topological spaces) with the singleton pretopology qJ (e.g. disjoint unions of
open covers) when defining anafunctors. This makes for much smaller pretopologies in
practice.

One class of extensive categories which are of particular interest is those that also have
finite/small limits. These are called lextensive. For example, Top is infinitary lextensive,
as is a Grothendieck topos. In contrast, an elementary topos is in general only finitary
lextensive. We end with a lemma about WISC.

A.10. Lemma. If (S, J) is a superextensive site, (S, J) satisfies WISC if and only if
(S,qJ) does.

One reason for why superextensive sites are so useful is the following result from
[Schäppi 2012].

A.11. Proposition. [Schäppi 2012] Let (S, J) be a superextensive site, and F a stack

for the extensive topology on S. Then the associated stack F̃ on the site (S,qJ) is also
the associated stack for the site (S, J).

As a corollary, since every weak 2-functor F : S //Gpd for extensive S represented
by an internal groupoid is automatically a stack for the extensive topology, we see that
we only need to stackify F with respect to a singleton pretopology on S. This will be
applied in [Roberts A].
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