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DUALITY AND TRACES FOR INDEXED MONOIDAL CATEGORIES

KATE PONTO AND MICHAEL SHULMAN

Abstract. By the Lefschetz fixed point theorem, if an endomorphism of a topological
space is fixed-point-free, then its Lefschetz number vanishes. This necessary condition
is not usually sufficient, however; for that we need a refinement of the Lefschetz number
called the Reidemeister trace. Abstractly, the Lefschetz number is a trace in a symmetric
monoidal category, while the Reidemeister trace is a trace in a bicategory; in this paper
we relate these contexts using indexed symmetric monoidal categories.

In particular, we will show that for any symmetric monoidal category with an associated
indexed symmetric monoidal category, there is an associated bicategory which produces
refinements of trace analogous to the Reidemeister trace. This bicategory also produces
a new notion of trace for parametrized spaces with dualizable fibers, which refines the
obvious “fiberwise” traces by incorporating the action of the fundamental group of the
base space. We also advance the basic theory of indexed monoidal categories, including
introducing a string diagram calculus which makes calculations much more tractable.
This abstract framework lays the foundation for generalizations of these ideas to other
contexts.
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1. Introduction

It is well-known that in any symmetric monoidal category, there are useful intrinsic no-
tions of duality and trace; see, for example, [8, 17, 18]. One of the original motivating
examples is that traces in the stable homotopy category compute fixed-point indices, an
observation which leads directly to the Lefschetz fixed point theorem. The search for
generalizations and converses of the Lefschetz fixed point theorem has led to various gen-
eralizations and refinements of the fixed-point index, such as the Reidemeister trace [4,12].
In this paper we present an abstract framework for constructing refinements of traces in
symmetric monoidal categories, which produces the Reidemeister trace as a particular
example. Other examples, which we will not discuss here, include equivariant [25], rel-
ative [28], and fiberwise [27] generalizations of the Lefschetz number and Reidemeister
trace.

These refinements arise from generalizations of duality and trace to indexed symmetric
monoidal categories. An indexed symmetric monoidal category is a family of symmetric
monoidal categories C A, one for each object A of a cartesian monoidal base category S,
equipped with base change functors induced by the morphisms of S. The simplest case
is when S is the category of sets and C A the category of A-indexed families of objects of
some fixed symmetric monoidal category, such as abelian groups or chain complexes. We
can also allow S to consist of groupoids or higher groupoids. The prototypical example in
homotopy theory, which will give rise to the Reidemeister trace, is when S is the category
of topological spaces and C A is the homotopy category of parametrized spectra over A,
as in [22]. More generally, S could be any category of spaces, or of schemes, or a topos,
and C A a category of sheaves of abelian groups, modules, spaces, or parametrized spectra
on A, or a derived category thereof.

In any such context we can, of course, consider duality and trace in the individual
symmetric monoidal categories C A. Following [22] we call these notions fiberwise, since
in examples they are usually equivalent to duality and trace acting on each fiber or stalk
separately. Thus, if M is fiberwise dualizable, any endomorphism f : M → M has a
fiberwise trace, which is an endomorphism of the unit object IA of C A. In examples, this
trace essentially calculates the ordinary traces of the induced endomorphisms fx : Mx →
Mx of the fibers Mx, for all x ∈ A. Our first theorem gives a refinement of this fiberwise
symmetric monoidal trace.

1.1. Theorem. If M ∈ C A is fiberwise dualizable and f : M →M is any endomorphism,
then the symmetric monoidal trace of f factors as a composite

IA −→ (πA)∗〈〈A〉〉 tr(f̂)−−→ IA.

(In fact, we prove a stronger theorem about “partial traces” whose domains and
codomains are “twisted” by an additional object.)

The first morphism in this factorization is defined purely in terms of A, while the
second morphism contains the information about M and f . Thus, this theorem refines
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tr(f) by lifting its domain to a potentially larger one. In examples, the refined trace tr(f̂)
also includes the traces of the composites of the fiberwise endomorphisms fx with the
action of “loops” in A on the fibers of M (in cases where A is something which contains
loops, like a groupoid or a topological space).

Often, however, we are in a somewhat different situation: we want to extract trace-like
information (such as fixed point invariants) from an endomorphism f : A → A in some
cartesian monoidal category S, such as sets, groupoids, or spaces. Since there are no
nontrivial dualities in a cartesian monoidal category, the standard approach is to choose a
non-cartesian monoidal category C (such as abelian groups, chain complexes, or spectra),
apply a functor Σ: S→ C (such as the free abelian group or suspension spectrum), and
then consider the symmetric monoidal trace of Σ(f) in C. The trace obtained from the
free abelian group functor in this way simply counts the number of fixed points of a set-
endofunction, while that obtained from the suspension spectrum functor is exactly the
classical fixed-point index.

Now, it turns out that in most examples where this is done, there is actually an indexed
symmetric monoidal category over S, such that C = C ? is the category indexed by the
terminal object of S. Moreover, the functor Σ: S → C ? is definable in terms of this
structure: Σ(A) is the “pushforward” to C ? of the unit object of C A. For example, the
free abelian group functor arises from “set-indexed families of abelian groups”, and the
suspension spectrum functor arises from spectra parametrized over spaces.

Our second theorem gives a refinement of the trace of Σ(f) in this situation. We
need a slightly stronger hypothesis, however: rather than requiring Σ(A) to be dualizable
in C ? (the requirement in order for Σ(f) to have a trace), we need to assume that IA is
totally dualizable in C A. Total duality is a new type of duality, not reducible to symmetric
monoidal duality, which can be defined in any good indexed symmetric monoidal category;
it was first noticed in the case of parametrized spectra by Costenoble and Waner [5], and
studied further in [22]. Total dualizability of IA implies ordinary dualizability of Σ(A) in
C ?, and in examples it seems to be not much stronger than this (if at all).

1.2. Theorem. If IA is totally dualizable and f : A→ A is an endomorphism in S, then
the symmetric monoidal trace of Σ(f) factors as a composite

I?
tr(f̂)−−→ 〈〈Af 〉〉−→ I?.

Here, it is the first morphism in the factorization which should be regarded as a refined
trace of f , while the second morphism forgets the additional information contained therein
(although in this case, the intermediate object 〈〈Af 〉〉also depends on f). In examples, the

object 〈〈Af 〉〉 is “generated by” the “fixed-point classes” of f , and the refined trace tr(f̂)
separates out the contributions to the fixed-point index of f depending on which fixed-
point class they belong to. In particular, in the case of spectra parametrized over spaces,
we obtain the Reidemeister trace, and Theorem 1.2 says that the Reidemeister trace
refines the fixed-point index.
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As with Theorem 1.1, Theorem 1.2 is a special case of a stronger theorem about
“partial traces” and arbitrary totally dualizable objects. We can also exploit this gen-
eralization to describe a further connection to the classical symmetric monoidal theory.
Perhaps the most important “partial” or “twisted” trace is the trace of the composite

Σ(A)
Σ(f)−−→ Σ(A)

Σ(∆A)−−−−→ Σ(A)⊗ Σ(A)

which is a map I? → Σ(A) called the transfer of f (or the “trace of f with respect to
∆”). The transfer of f is also a refinement of tr(Σ(f)), in that when composed with the
augmentation

Σ(πA) : Σ(A)→ Σ(?) = I?

it reproduces the symmetric monoidal trace of f . The generalized version of Theorem 1.2

then implies that tr(f̂) refines not only tr(Σ(f)), but also the trace of f with respect to
∆.

1.3. Theorem. In the situation of Theorem 1.2, the transfer of f factors as a composite

I?
tr(f̂)−−→ 〈〈Af 〉〉−→ Σ(A).

Although they may seem different on the surface, Theorems 1.1 and 1.2–1.3 actually
apply in formally dual situations (although their conclusions and proofs are not dual).
This observation is originally due to May and Sigurdsson [22], who constructed a bicategory
out of parametrized spectra, and identified fiberwise and Costenoble-Waner duality as
cases of the general notion of duality in this bicategory (which comes in dual flavors, since
composition in a bicategory is not symmetric). In [33], the second author generalized
their construction to any indexed symmetric monoidal category. Part of proving the
above theorems, therefore, will be to extend the results of [22] on duality to the case of a
general indexed symmetric monoidal category.

The consideration of traces for bicategorical duality, on the other hand, requires an
additional structure called a shadow, introduced by the first author in [27] and studied
further in [29]. Thus, another necessary preliminary will be to prove that the bicategory
arising from any indexed symmetric monoidal category has a canonical shadow. This

done, we will be able to identify the morphisms tr(f̂) and tr(f̂) as traces relative to
the bicategorical incarnations of fiberwise and total duality, respectively, and deduce
Theorems 1.1, 1.2, and 1.3.

Finally, there is one further ingredient in this paper: the use of a string diagram cal-
culus for indexed monoidal categories. In general, string diagram calculus is a “Poincaré
dual” way of drawing composition in categorical structures, which tends to make com-
plicated computations much more visually evident. In particular, many basic equalities,
such as the naturality of tensor products, are realized by simple isotopies. String dia-
grams for monoidal categories and bicategories are described in [14–17, 24, 31, 36], and a
generalization for bicategories with shadows was given in [29].
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Several of the results of this paper require fairly involved computations which are made
much more tractable by an appropriate string diagram calculus. However, for clarity of
exposition, we postpone the introduction of string diagrams (along with the proofs which
depend on them, of course) to the very end of the paper. Thus, the reader can avoid
string diagrams altogether by stopping after §8.

The organization of this paper is as follows. In §§2–3 we introduce indexed symmetric
monoidal categories. Then in §4 we recall the classical notion of trace in symmetric
monoidal categories, and construct the functor Σ referred to above. In §5 we describe the
construction of a bicategory with a shadow from an indexed symmetric monoidal category.

In §6 we state the “fiberwise” duality and trace theorems—Theorem 1.1 and its
generalizations—although the proofs are postponed until §11. Next, §7 is devoted to
the consideration of “base change objects”, an additional bit of structure that exists in
bicategories arising from indexed monoidal categories. This is then used in §8, where we
state and prove the “total” duality and trace theorems, 1.2 and 1.3 and their generaliza-
tions. The proofs in this case are actually easier than the fiberwise case, although some
calculations still have to be postponed to §12.

Finally, in §§9–10 we introduce our string diagram calculus, and in §§11–12 we apply
it to the postponed calculations.

Throughout the paper, we make use of three primary examples:

(i) S = sets, C A = A-indexed families of abelian groups.

(ii) S = topological spaces, C A = spectra parametrized over A.

(iii) S = groupoids, C A = A-indexed diagrams of chain complexes.

The first is a “toy” example, which is easy to compute with, but which is so degenerate
that it fails to display all of the interesting phenomena. The second is the motivating
example which matters most in applications (together with various generalizations), but
it is technically fairly complicated, so we omit all proofs relating to it; many of them
can be found in [26]. (In particular, no knowledge of spectra is necessary to read this
paper.) The third is an intermediate example which is easier to understand, but which
still displays most of the interesting phenomena.

We would like to thank David Corfield, Todd Trimble, and Daniel Schäppi for helpful
suggestions about string diagrams and monoidal bicategories. The second-named author
gratefully acknowledges the hospitality of the University of Kentucky.

2. Indexed monoidal categories

We begin with the following standard definition (cf. for instance [23] or [13, B1.2]).

2.1. Definition. Let S be a category. An S-indexed category C is a pseudofunctor
from Sop to Cat .
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In elementary terms, this means we have a category for each object A ∈ S, which
we write as C A, and a functor for each morphism f : A → B in S, which we write as
f ∗ : C B → C A, such that composition and identities are preserved up to coherent natural
isomorphism. We sometimes refer to S as the base category and the C A as the fiber
categories, and we refer to the functors f ∗ as reindexing functors.

2.2. Example. If S = Ring is the category of rings, there is an S-indexed category
sending a ring A to ModA, with f ∗ given by restriction of scalars. There are similar
examples using chain complexes, DGAs, or ring spectra.

2.3. Example. For any category C, there is a Set-indexed category sending each set A
to the category CA of A-indexed families of objects of C.

2.4. Example. If S has finite limits, then there is an S-indexed category sending each
object A to its slice category S/A, with the functors f ∗ given by pullback.

In the important special case when S is the category Top of topological spaces, we
also have a “homotopy” version A 7→ Ho(Top/A), in which we invert the weak homotopy
equivalences in each fiber category. See [22] for an extensive formal development of this
example. Similar examples can be constructed whenever S has a “homotopy theory” (e.g.
when it is a Quillen model category).

“Derived” examples such as the last one are of particular interest to us. Here are two
more such examples.

2.5. Example. If Top denotes a suitably nice category of topological spaces, there is a
Top-indexed category defined by A 7→ SpA, where SpA denotes a point-set–level category
of spectra parametrized over A, such as the parametrized orthogonal spectra used in [22].
We can similarly invert the weak equivalences of spectra to obtain a derived Top-indexed
category A 7→ Ho(SpA).

2.6. Example. If the category C in Example 2.3 has a homotopy theory, then we can
pass to homotopy categories in that example to obtain another Set-indexed category
Ho(CA). However, since Ho(CA) ' (Ho(C))A for any set A, we gain no extra generality
thereby.

We will see in later sections that qualitatively different phenomena arise in “derived”
situations, when the base category S also has a “homotopy theory” which is taken into
account somehow in the fibers. This is the case in Examples 2.4 and 2.5, but not in
Example 2.6. Since Examples 2.4 and 2.5 are somewhat technically complicated, it will
be useful to have a simpler example which exhibits some of the same derived phenomena.
We can obtain such examples by replacing spaces by groupoids (which, up to homotopy,
can be identified with homotopy 1-types).

2.7. Example. If S = Gpd is the category of groupoids and C is any category, we can
define C A = CA to be the category of functors from the groupoid A to C. For simplicity,
we usually take C to be abelian groups. This is an enlargement of Example 2.3, if we
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consider sets as discrete groupoids. On the other hand, if A is a one-object groupoid, i.e.
a group G, then AbA can be identified with the category of modules over the group ring
Z[G].

2.8. Example. We have “derived phenomena” in Example 2.7 even when C does not
have its own homotopy theory, because the construction automatically “sees” the ho-
motopy theory of groupoids. (For instance, we have CA ' CB whenever A ' B are
equivalent groupoids, not only when they are isomorphic). However, we can also “derive
it further” if C does have a homotopy theory, obtaining a Gpd-indexed category with
C A = Ho(CA), where we invert the objectwise weak equivalences in CA. To maximize
concreteness and familiarity, we may take C = ChZ to be the category of (unbounded)
chain complexes, with its usual homotopy theory.

Note that in contrast to Example 2.6, when A is not discrete, Ho(CA) will generally
be different from (Ho(C))A. Thus, this example is genuinely different from Example 2.7.

Now in most of these examples, each category C A has a monoidal structure, which is
respected by the transition functors. Namely:

• If C is a monoidal category (such as Ab or ChZ with tensor product), then so is
CA for any set or groupoid A;

• When S has finite limits, each slice category S/A is cartesian monoidal;

• Each category SpA has a parametrized smash product; and

• All of these monoidal structures descend to homotopy categories.

This “fiberwise” monoidal structure is simply described by the following definition.

2.9. Definition. For a category S, an S-indexed symmetric monoidal category is a
pseudofunctor from Sop to the 2-category SymMonCat of symmetric monoidal categories,
strong symmetric monoidal functors, and monoidal natural transformations.

In elementary terms, this means an indexed category such that each C A is a symmetric
monoidal category, each reindexing functor is strong symmetric monoidal, and each con-
straint isomorphism is a monoidal transformation. We write ⊗A and IA for the tensor
product and unit object of the monoidal category C A, and refer to them as the fiberwise
monoidal structure.

However, for many purposes it is more effective to express the monoidal structure
differently. If S has finite products, including a terminal object ?, then in any S-indexed
monoidal category C we can define an external product functor

C A × C B → C A×B

(M,N) 7→M �N := (π∗BM)⊗A×B (π∗AN).

(Here πA : A×B → B and πB : A×B → A are the projections from the cartesian product.)
This external product is coherently associative and unital, in a suitable sense (see [33]),
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with unit object U = I?. Moreover, we can recover the fiberwise monoidal structures (or
internal products) from the external products, via the isomorphisms

M ⊗A N ∼= ∆∗A(M �N) (2.10)

IA ∼= π∗AU. (2.11)

(Here ∆A : A→ A×A is the diagonal of the cartesian product.) These hold for any A ∈ S
and M,N ∈ C A, by monoidality of the functors f ∗. In the same way we can construct
natural isomorphisms

f ∗M � g∗N ∼= (f × g)∗(M �N) (2.12)

for any M,N, f, g for which this makes sense.

2.13. Example. If C is a symmetric monoidal category, then in the Set-indexed sym-
metric monoidal category A 7→ CA of Example 2.3, the fiberwise product of M = (Ma)
and N = (Na) in CA is defined by

(M ⊗A N)a = Ma ⊗Na

whereas the external product of M = (Ma) ∈ CA and N = (Nb) ∈ CB is defined by

(M �N)(a,b) = Ma ⊗Nb.

The case of Example 2.7 is similar. Note that if A is one-object groupoid, hence a group
G, and we identify AbA with the category of Z[G]-modules, then its fiberwise monoidal
structure is the tensor product over Z, made into a Z[G]-module using the fact that Z[G]
is a bialgebra. It is not a tensor product over Z[G], which wouldn’t make sense anyway
since Z[G] is not commutative.

2.14. Example. If S has finite limits, then in the S-indexed symmetric monoidal cate-
gory A 7→ S/A of Example 2.4, the fiberwise product of M,N ∈ S/A is their fiber product
(pullback):

M ⊗A N = M ×A N

whereas the external product of M ∈ S/A and N ∈ S/B is just their cartesian product,
with the induced projection to A×B:

M �N = M ×N.

The case of Example 2.5 is similar, with cartesian products replaced by smash products.
Both the fiberwise and external products of parametrized spectra are used in [22].

2.15. Remark. When the base category S is monoidal but not cartesian monoidal, we
can still define “an external product” for C to consist of functors C A × C B → C A⊗B

which are coherently associative and unital. For instance, Example 2.2 has an external
product, but not an internal one. However, our interest here is solely in the case when S
is cartesian monoidal.
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3. Indexed coproducts

In order to construct a bicategory from an indexed symmetric monoidal category, and
thereby prove our refinements of the symmetric monoidal trace, we will need one further
piece of structure.

3.1. Definition. Let S be a cartesian monoidal category, and C an S-indexed category.
We say that C has S-indexed coproducts if

(i) Each reindexing functor f ∗ has a left adjoint f!, and

(ii) For any pullback square

A
f //

h ��

B
g
��

C
k
// D

in S, the composite

f!h
∗ −→ f!h

∗k∗k!

∼=−→ f!f
∗g∗k! −→ g∗k!

is an isomorphism (the Beck-Chevalley condition).

If C is symmetric monoidal, we say that ⊗ preserves indexed coproducts (in each
variable separately), or that the projection formula holds, if

(iii) for any f : A→ B in S and any M ∈ C B, N ∈ C A, the canonical map

f!(f
∗M ⊗N)→ f!(f

∗M ⊗ f ∗f!N) ∼= f!f
∗(M ⊗ f!N)→M ⊗ f!N

is an isomorphism.1

We will only use the Beck-Chevalley condition for a few types of pullback squares.
The basic such squares are shown in Figure 1. (These are all actually pullback squares
in any cartesian monoidal category, whether or not it has pullbacks in general. See
also [20,30,37].) We will also consider the transposes of Figures 1(b) and 1(c), as well as
squares obtained from one of these by taking a cartesian product with a fixed object.

For ease of reference, we have assigned a name to each of these Beck-Chevalley con-
ditions. We call Figure 1(a) “commutativity with reindexing” because the condition
(id×g)!(f × id)∗ ∼= (f × id)∗(id×g)! says that the indexed-coproduct functor g! commutes
with the reindexing functor f ∗. We call Figure 1(b) the “Frobenius axiom” because the
condition ∆!∆

∗ ∼= (∆× id)∗(id×∆)! has the same form as one of the axioms of a Frobe-
nius algebra. The name of Figure 1(c) will make more sense once we introduce string
diagrams; see §9. Finally, we call Figure 1(d) “monic diagonals” because the fact that
that square is a pullback says precisely that ∆A is a monomorphism.

We have stated the definition of “⊗ preserves indexed coproducts” in a form which
may be most familiar, but we care most about the following equivalent statement.

1If C is not symmetric, we must assert also the analogous condition on the other side.



DUALITY AND TRACES FOR INDEXED MONOIDAL CATEGORIES 591

A× C f×idC //

idA×g
��

B × C
idB ×g
��

A×D
f×idD

// B ×D

(a) Commutativity with reindexing

A
∆ //

∆
��

A× A
idA×∆
��

A× A
∆×idA

// A× A× A

(b) The Frobenius axiom

A
(idA,f) //

f
��

A×B
f×idB
��

B
∆B

// B ×B

(c) Sliding and splitting

A
idA //

idA
��

A

∆
��

A
∆

// A× A

(d) Monic diagonals

Figure 1: Pullback squares involving products

3.2. Lemma. If C is an indexed symmetric monoidal category with S-indexed coproducts,
then these are preserved by ⊗ if and only if for any f : A → B and g : C → D in S and
any M ∈ C A, N ∈ C C, the composite

(f × g)!(M �N) −→ (f × g)!(f
∗f!M � g

∗g!N)
∼=−→ (f × g)!(f × g)∗(f!M � g!N)

−→ f!M � g!N

is an isomorphism.

Proof (Sketch) We will show that each of the two families of isomorphisms

f!(f
∗M ⊗N) ∼= (M ⊗ f!N) and (f × g)!(M �N) ∼= (f!M � g!N)

can be constructed from the other. We omit the proof that the constructed isomorphism
in each case is in fact the canonical morphism exhibited above and in Definition 3.1; in
each case this can be shown by a diagram chase, or by invoking the technology of “mates”
from [19].

First, we observe that to prove the second isomorphism above, it suffices to consider
the case when f or g is an identity, since then we can conclude

(f × g)!(M �N) ∼= (f × id)!(id×g)!(M �N) ∼= (f × id)!(M � g!N) ∼= (f!M � g!N).

Now assuming that ⊗ preserves indexed coproducts, for any f : A → B, M ∈ C A, and
N ∈ C C , we have

(f × idC)!(M �N) = (f × idC)!(π
∗
CM ⊗ (f × idC)∗π∗BN)

∼= (f × idC)!π
∗
CM ⊗ π∗AN

∼= π∗Cf!M ⊗ π∗AN
= f!M �N
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using the assumption and the “commutativity with reindexing” Beck-Chevalley condition.
Conversely, assuming the desired condition, then for any f : A → B, M ∈ C A, and
N ∈ C B, we have

f!(M ⊗ f ∗N) = f!∆
∗(M � f ∗N)

∼= f!(idA, f)∗(M �N)
∼= ∆∗(f × idB)!(M �N)
∼= ∆∗(f!M �N)

= f!M ⊗N

using (2.12), the assumption, and the “sliding and splitting” Beck-Chevalley condition.

3.3. Remark. In the case when the fiber categories are cartesian monoidal, the projection
formula is also called the “Frobenius condition”. As remarked above, however, we reserve
the adjective “Frobenius” for the Beck-Chevalley condition associated to Figure 1(b). The
two are closely related, however:

(i) Trimble has shown that the “Frobenius” Beck-Chevalley condition follows from ei-
ther

(a) The “commutativity with reindexing” Beck-Chevalley condition and the pro-
jection formula (see [38]), or

(b) The Beck-Chevalley conditions “commutativity with reindexing” and “sliding
and splitting” (see [37]).

(ii) Walters has shown that in a context different than ours (a “cartesian bicategory”),
the “Frobenius” and “sliding and splitting” Beck-Chevalley conditions imply the
projection formula (as a special case of the “modular law”); see [39].

We now consider some examples of indexed categories with indexed coproducts.

3.4. Example. If C is a cocomplete symmetric monoidal category with ordinary coprod-
ucts that are preserved on both sides by ⊗ (such as if it is closed), then the Set-indexed
category A 7→ CA has indexed coproducts preserved by ⊗, given by taking ordinary
coproducts along the fibers of a set-function.

3.5. Example. In the S-indexed category A 7→ S/A, the left adjoints f! are given by com-
position with f , and the compatibility conditions are elementary lemmas about pullback
squares.

In derived situations, the adjunctions f! a f ∗ are usually unproblematic to obtain, as
is the projection formula, but the Beck-Chevalley conditions are somewhat more subtle.
In general, when S has a homotopy theory that is “seen” by A 7→ C A, we can usually only
expect the Beck-Chevalley condition to hold for homotopy pullback squares in S (that is,
commutative squares for which the canonical map from the vertex to “the” homotopy
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pullback is a suitable sort of equivalence). The pullback squares in Figures 1(a), 1(b),
and 1(c) are always homotopy pullback squares, but the one in Figure 1(d) (monic diag-
onals) is not.

Motivated by these examples, we define an S-indexed category to have indexed ho-
motopy coproducts if the reindexing functors have left adjoints which satisfy the Beck-
Chevalley condition for all homotopy pullback squares, including particularly those in
Figures 1(a), 1(b), and 1(c) (and its dual), and all squares obtained from them by taking
cartesian products with a fixed object. In order to ensure our results remain valid in
derived contexts, we will never assume more than this, although we will see that some
theorems reduce to a slightly simpler form if the Beck-Chevalley condition for Figure 1(d)
also holds. We will refer to this latter case by saying that diagonals are monic. (Of course,
diagonals are always monic in the base category S; the question is whether that monicity
is “visible” to the fiber categories C A.)

3.6. Example. In the examples A 7→ Top/A and A 7→ SpA of Examples 2.4 and 2.5, the
adjunctions f! a f ∗ are Quillen adjunctions, and thus descend to homotopy categories.
The Beck-Chevalley condition is proven in [22] for pullbacks of fibrations (see also [34]).
This includes “commutativity with reindexing” (Figure 1(a)) if B or D is a terminal
object, but never the Frobenius axiom (Figure 1(b)).

For this reason, in [22] and [33], the presence of closed structure was invoked to avoid
the Frobenius axiom. In hindsight, the reason this works is that closedness of the fibers
and the reindexing functors implies the projection formula, by a standard argument—and
together with “commutativity of reindexing” this actually implies the Frobenius axiom
(see Remark 3.3).

However, there is a more direct argument: Figures 1(b) and 1(c) are homotopy pullback
squares, and it is straightforward to show that if the Beck-Chevalley condition holds for
pullbacks of fibrations, it also holds for all homotopy pullback squares. Thus, these two
examples have indexed homotopy coproducts; the projection formula is also proven in [22].

3.7. Example. In Example 2.7 of diagrams indexed over groupoids, the left adjoints f!

are given by left Kan extension. If C has a homotopy theory as in Example 2.8, then
these adjunctions are also Quillen, and therefore descend to homotopy categories. In
both cases, the Beck-Chevalley condition for homotopy pullback squares (which is to say,
pseudo-pullbacks of groupoids) is straightforward to verify, as is the projection formula.

Note that this would not be true if instead of groupoids we allowed S to consist of
arbitrary small categories. In that case, the Beck-Chevalley condition would hold only for
comma squares (squares containing a natural transformation which exhibits the upper-
left vertex as (equivalent to) the comma category of the functors on the right and the
bottom). In general, none of the squares in Figure 1 are comma squares.

Note that diagonals are not generally monic in Example 3.7, even when C has no
homotopy theory itself. As we remarked in §2, for “derived phenomena” it suffices that
the homotopy theory of S is “visible” to the indexed category.

Here are a couple additional examples of interest.
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3.8. Example. If S is a category with pullbacks and a factorization system (E ,M), then
M is automatically stable under pullback and composition, and so A 7→ M/A defines an
S-indexed symmetric monoidal subcategory of A 7→ S/A. The (E ,M)-factorizations give
left adjoints f! for this indexed category, and it has indexed coproducts preserved by × if
E is stable under pullback.

For instance, (E ,M) could be the (regular epi, mono) factorization system on a regular
category, such as Set or another topos. In this case we can also write this indexed category
as A 7→ Sub(A), where Sub(A) is the poset of subobjects of A.

3.9. Example. The hyperdoctrines of Lawvere [20, 21] are, in particular, indexed carte-
sian monoidal categories with indexed coproducts preserved by ×. The Beck-Chevalley
conditions for the squares in Figures 1(a) and 1(c) appear in [20, p. 8–9]. In this case we
think of S as a category of types (or contexts) and terms in a type theory, and the fiber
categories as categories of propositions and proofs in a given context.

From now on, C will always denote an S-indexed symmetric monoidal category which
has indexed homotopy coproducts preserved by ⊗.

3.10. Remark. As mentioned in the introduction, in §§9–10 we will introduce a string
diagram calculus for reasoning about indexed monoidal categories. This calculus greatly
simplifies the constructions to be performed in subsequent sections, and is necessary (as
a practical matter, though not a mathematical one) for the proofs of our main theorems
in §§11–12. Some readers may find it helpful to have the string diagram calculus in mind
all through the paper, and we encourage such readers to jump forward and read §§9–10
now.

4. Symmetric monoidal traces

As a preliminary to refining the symmetric monoidal trace, in this section we recall the
definition of the latter and explain how it interacts with the indexed situation. Recall that
an object M of a symmetric monoidal category is said to be dualizable if there exists
an object MF, its dual, and evaluation and coevaluation morphisms η : I → M ⊗MF

and ε : MF ⊗M → I satisfying the usual triangle identities. In this case, the trace of a
morphism f : Q⊗M →M ⊗ P is defined to be the composite:

Q
id⊗η // Q⊗M ⊗MF f⊗id //M ⊗ P ⊗MF ∼= //MF ⊗M ⊗ P ε⊗id // P

The most basic case is when Q and P are the unit object I, so that the trace of an
endomorphism f : M →M is a morphism tr(f) : I → I. References include [8, 17,18].

4.1. Example. Any finitely generated free abelian group is dualizable in Ab, and the
trace of an endomorphism is the usual trace of its matrix with respect to any basis. (To be
precise, it is the endomorphism Z→ Z determined by multiplying by the usual numerical
trace.) Similarly, in ChZ, any bounded chain complex of finitely generated free abelian
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groups is dualizable, and the trace of an endomorphism is (multiplying by) its Lefschetz
number (the alternating sum of its degreewise traces).

4.2. Example. A “homotopical” version of this takes place in the stable homotopy cat-
egory of spectra. Any topological space gives rise to a spectrum called its suspension
spectrum, and if the space was a finite-dimensional manifold, then its suspension spec-
trum is dualizable. Its dual is a desuspension of the stable normal bundle of an embedding
of the manifold into a suitably-high-dimensional Euclidean space; the evaluation and co-
evaluation are Thom collapse maps.

Thus, any endomorphism of such a manifold gives rise to an endomorphism of its
suspension spectrum. It turns out that the trace of this endomorphism can be identified
with the fixed-point index of the original map; see [8]. The fixed-point index is a classical
invariant which sums the index of the induced vector field in the neighborhood of each
fixed point of the endomap.

It is easy to check that in a cartesian monoidal category, the only dualizable object is
the terminal object. However, as remarked in the introduction, we often want to extract
trace-like information from endomorphisms of objects in a cartesian monoidal category.
Thus, to get out of the cartesian situation, we apply a monoidal functor landing in a
non-cartesian monoidal category.

If the cartesian monoidal category S is the base category of some indexed symmetric
monoidal category with indexed coproducts preserved by ⊗, then there is a canonical such
functor Σ: S→ C ?, defined as follows. We send an object A to

Σ(A) = (πA)!IA ∼= (πA)!(πA)∗I?

and a morphism φ : A→ B to the composite

Σ(A) = (πA)!(πA)∗I? ∼= (πB)!φ!φ
∗(πB)∗I? −→ (πB)!(πB)∗I? = Σ(B). (4.3)

Moreover, this functor Σ is strong symmetric monoidal:

Σ(A×B) = (πA×B)!π
∗
A×BI?

∼= (πA×B)!π
∗
A×B(I? ⊗ I?)

∼= (πA×B)!(π
∗
A×BI? ⊗ π∗A×BI?)

∼= (πA × πB)!(π
∗
Bπ
∗
AI? ⊗ π∗Aπ∗BI?)

∼= (πA)!π
∗
AI? ⊗ (πB)!π

∗
BI?

= ΣA⊗ ΣB

(This is especially obvious in string diagram notation; see Figure 6 on page 628. We
leave the verification of the coherence of these isomorphisms to the reader.) If Σ(A) is
dualizable, for some A ∈ S, then we can ask about the trace of Σ(f).
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4.4. Example. For a cocomplete symmetric monoidal category C and the Set-indexed
category A 7→ CA, we have C? ∼= C, and the functor Σ takes a set A to the copower A · I
of the unit object I ∈ C by the set A (that is, the coproduct of A copies of I). If C is Ab,
then Σ(A) is the free abelian group on A, and similarly for modules, chain complexes,
and so on.

In the case of abelian groups, if A is finite, then the abelian group Σ(A) = Z[A] is
dualizable. And if f : A→ A is an endofunction, then the trace of Σ(f) is just the number
of fixed points of f .

4.5. Example. For the Top-indexed monoidal category A 7→ Ho(SpA), the category C ?

is the stable homotopy category of spectra. For a space A, we have Σ(A) = Σ∞(A+),
the suspension spectrum of A with a disjoint basepoint. This should be regarded as a
homotopical version of the “free abelian group” functor.

We have already remarked that if A is a finite-dimensional closed smooth manifold,
then Σ(A) is dualizable, and if f : A→ A is an endomorphism, then the trace of Σ(f) is
the fixed-point index of f .

4.6. Example. In the case of the underived groupoid-indexed category A 7→ AbA from
Example 2.7, we again have Ab? ∼= Ab, and Σ(A) is just the free abelian group on the
set of connected components of A. If A has finitely many connected components, then
Σ(A) is dualizable, and the trace of Σ(f) is the number of “fixed components,” i.e. the
number of isomorphism classes of objects x such that f(x) ∼= x.

4.7. Example. By contrast, for the derived version A 7→ Ho(ChAZ ), the fiber over ? is
Ho(ChZ), and Σ(A) is the homotopy colimit of the constant A-diagram of shape Z. This
can be represented concretely by the complex of chains on the nerve of A.

For an example of duality and trace, suppose that A is a finitely generated free
groupoid ; that is, a groupoid freely generated by some finite directed graph. Thus, it
has finitely many objects, and the group of automorphisms of any object is a finitely gen-
erated free group. Then Σ(A) is equivalent to the following chain complex concentrated
in degrees 1 and 0:

Z[A1]→ Z[A0].

Here A0 is the (finite) set of objects of A and A1 a (finite) set of generating morphisms, and
the differential sends each generator γ to t(γ)−s(γ), the difference between its source and
target objects. Since this complex is bounded and finitely generated free, it is dualizable
in Ho(ChZ); its dual can be identified with

Z[A0]→ Z[A1]

in degrees 0 and −1, where now the differential sends an object x to the sum of all
generating morphisms having target x, minus the sum of all generators having source x.

Now suppose f : A → A is an endomorphism of A. Therefore, it takes each object
to another object, and each generating morphism to a composite of other generators
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and inverses of generators. The induced endomorphism Σ(f) corresponds, in the above
representation, to the endomorphism

Z[A1] //

��

Z[A0]

��
Z[A1] // Z[A0]

which acts as f on objects, and sends each generating morphism to the sum of the
generators occurring in its image, counted with multiplicity (where inverses of generators
contribute negatively). Therefore, the trace tr(f) is the sum of

(i) the number of objects (literally) fixed by f , and

(ii) for each generating morphism γ, the number of occurrences of γ−1 in the image
f(γ), minus the number of occurrences of γ in f(γ).

(The perhaps-surprising signs in (ii) come from the sign in the symmetry isomorphism
for the tensor product of chain complexes.) As it must be, the result is invariant under
equivalence of groupoids (though not manifestly so from the above description).

Note that a finitely generated free groupoid is essentially the same thing as a finite
1-dimensional CW complex, up to homotopy. It is straightforward to check that under
this equivalence, the trace calculated above agrees with the topological fixed-point index.

As mentioned at the beginning of this section, we can also consider traces of more
general morphisms of the form Q⊗M →M⊗P . Probably the most important symmetric
monoidal trace of this form is the trace of

Σ(A)
Σ(f)−−→ Σ(A)

Σ(∆A)−−−−→ Σ(A)⊗ Σ(A)

for some endomorphism f : A→ A in S, which we call the transfer of f . Note that the
transfer is a morphism I → Σ(A).

4.8. Example. Considering the Set-indexed category A 7→ AbA, the transfer of an
endomorphism f : A→ A of a finite set is a morphism Z→ Z[A]. This is equivalent to a
single element of Z[A], which turns out to be just the formal sum of all the fixed points
of f .

4.9. Example. Considering the derived groupoid-indexed category A 7→ Ho(ChAZ ), if
A is a finitely generated free groupoid, then using the small chain complex representing
Σ(A) from Example 4.7, the diagonal Σ(A) → Σ(A) ⊗ Σ(A) can be represented by the
morphism

0 //

��

Z[A1] //

��

Z[A0]

��
Z[A1]⊗ Z[A1] //

(
Z[A1]⊗ Z[A0]

)
⊕
(
Z[A0]⊗ Z[A1]

)
// Z[A0]⊗ Z[A0]
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which sends each object x to x⊗ x, and each generating morphism γ to

γ ⊗ s(γ) + t(γ)⊗ γ

(where s(γ) and t(γ) are the source and target objects of γ, respectively). The transfer
of an endomorphism f is then a morphism Z → Σ(A) in Ho(ChAZ ), i.e. an element of
H0(Σ(A)), which is the free abelian group on the set of connected components of A. The
coefficient of each component in this trace is 0 if that component is not mapped to itself,
and otherwise it is the trace, as in Example 4.7, of f restricted to that component.

4.10. Example. If M is a closed smooth manifold, the transfer of f : M → M is an
element of the 0th stable homotopy group of M+. This latter group can be identified with
the free abelian group on the set of connected components of M , and as in the previous
example, the coefficient of each component in the trace is the sum of the indices of the
fixed points in that component.

Thus, in general, we expect that the transfer of f separates out the contributions to
tr(f) based on in which connected component of A they lie. (In the case of a plain set,
of course, each element is its own connected component.)

In particular, the transfer is itself a refinement of the ordinary trace of Σ(f). Note that
the unique map A→ ? to the terminal object induces an augmentation Σ(A)→ Σ(?) = I;
standard facts about the functoriality of traces then imply that the composite

I
tr(Σ(∆◦f))−−−−−−→ Σ(A) −→ I

is simply the trace of Σ(f). In the above examples, the augmentation simply adds up all
the coefficients, and this equality is then obvious.

5. Shadows from indexed monoidal categories

We now move on to our new refinements of the symmetric monoidal trace, which we will
obtain by constructing a bicategory out of an indexed monoidal category and making use
of the general notion of bicategorical trace introduced in [27, 29]. Bicategorical traces
require some extra structure on the bicategory, however, so we begin by recalling that.

The notion of duality in a symmetric monoidal category, which we recalled in the
previous section, generalizes easily to bicategories. A 1-cell M : R −7−→ S in a bicategory is
right dualizable if there is a 1-cell MF : S −7−→ R called its right dual, and evaluation
and coevaluation 2-cells η : UR → M �MF and ε : MF �M → US satisfying the usual
triangle identities. (Here � denotes the bicategory composition and UR is the unit 1-cell
associated to the 0-cell R.) Dual pairs in a bicategory are often also called adjoints,
since in the bicategory Cat of categories, functors, and natural transformations they are
precisely adjoint functors.

The definition of trace in a symmetric monoidal category requires the symmetry iso-
morphism, which is not present in a bicategory. In fact, it wouldn’t even make sense to
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ask for it, since in general M �N and N �M live in different hom-categories. However,
as described in [27,29], if we impose an extra structure on a bicategory, we can define an
analogous notion of trace.

Specifically, we define a shadow functor on a bicategory B to consist of functors〈〈
−
〉〉
: B(R,R)→ T

for each object R of B and some fixed category T, equipped with a natural isomorphism

θ : 〈〈M �N〉〉
∼=−→ 〈〈N �M〉〉

for M : R −7−→ S and N : S −7−→ R, such that the following diagrams commute whenever they
make sense:

〈〈
(M �N)� P

〉〉 θ //

〈〈 a〉〉
��

〈〈
P � (M �N)

〉〉 〈〈 a〉〉
//
〈〈
(P �M)�N

〉〉
〈〈
M � (N � P )

〉〉 θ //
〈〈
(N � P )�M

〉〉 〈〈 a〉〉
//
〈〈
N � (P �M)

〉〉θ

OO

〈〈
M � UR

〉〉 θ //

〈〈 r〉〉 &&

〈〈
UR �M

〉〉
〈〈 l〉〉
��

θ //
〈〈
M � UR

〉〉
〈〈 r〉〉xx〈〈

M
〉〉

If B is equipped with a shadow functor and M is a right dualizable 1-cell in B, then
the trace of a 2-cell f : Q�M →M � P is defined to be the composite:

〈〈Q〉〉
〈〈 id�η〉〉

// 〈〈Q�M �MF〉〉
〈〈 f�id〉〉

// 〈〈M � P �MF〉〉 θ // 〈〈MF �M � P 〉〉
〈〈 ε�id〉〉

// 〈〈P 〉〉

The most basic case is when Q and P are unit 1-cells, so the shadows of such units are
particularly important; we write 〈〈A〉〉= 〈〈UA〉〉and call it the shadow of A.

The following example generally provides the best intuition.

5.1. Example. There is a bicategory whose 0-cells are rings (not necessarily commu-
tative), whose 1-cells are bimodules, and whose 2-cells are bimodule homomorphisms.
Composition of 1-cells is done with the tensor product of bimodules, and the right dual-
izable bimodules Z −7−→ R are precisely the finitely generated projective right R-modules.
The shadow of an R-R-bimodule M is the abelian group M/(r ·m = m · r). The bicate-
gorical trace specializes to the Hattori-Stallings trace from [11,35], which takes values in
〈〈R〉〉.

There are similar bicategories consisting of chain complexes of bimodules over rings,
or DGAs. In this case the shadow is essentially Hochschild homology, and the bicategor-
ical trace is the alternating sum of the levelwise Hattori-Stallings traces, just as in the
symmetric monoidal category of chain complexes.
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Now we turn to the task of constructing a bicategory from an indexed symmetric
monoidal category. For motivation, let S be a category with finite limits and consider
the indexed symmetric monoidal category A 7→ S/A, whose fiberwise monoidal structures
are given by pullback. There is also a bicategory whose composition operation is given
by pullback in S: its objects are those of S and its 1-cells are spans A ← M → B in S.
Thus, let us consider how we might derive the structure of this bicategory from that of
A 7→ S/A.

The category of 1-cells from A to B is isomorphic to S/(A × B), which is just the
fiber category over A × B, so all we need to do is construct the units and composition.
The central observation is that if A ← M → B and B ← N → C are spans, then their
composite M ×B N is isomorphic to ∆∗B(M � N), where � is the external (cartesian)
product of our indexed category. Of course, ∆∗B(M �N) is actually an object of S/(A×
B × C), so to make it into an object of S/(A × C), we need to forget the map to B by
pushing forward along the projection πB : A×B ×C → A×C; thus we have M ×B N ∼=
(πB)!∆

∗
B(M � N). Similarly, the unit span A ← A → A can be described (somewhat

perversely) as (∆A)!IA, where IA is the unit object of the symmetric monoidal category
S/A (namely, the identity A→ A).

These considerations motivate the following theorem. Minus the statement about the
shadow, this theorem was first observed by [22] in a particular case, and then generalized
in [33].

5.2. Theorem. Let S be a cartesian monoidal category, and let C be an S-indexed sym-
metric monoidal category with indexed homotopy coproducts preserved by ⊗. Then there
is a bicategory C/S, whose 0-cells are the objects of S, with

C/S(A,B) = C A×B,

and with composition and units defined by

M �N = (idA×πB × idC)!(idA×∆B × idC)∗(M �N) and

UA = (∆A)!π
∗
A(U)

Moreover, C/S has a shadow with values in C ?, defined by

〈〈M〉〉= (πA)!(∆A)∗M.

Note that we can equivalently write the composition and units in terms of the internal
monoidal structure, as M �N = (πB)!(π

∗
CM ⊗ π∗AN) and UA = (∆A)!IA.

Proof. The associativity isomorphism is the composite

( idA×πC×idD )
!
( idA×∆C×idD )

∗((
( idA×πB×idC )

!
( idA×∆B×idC )

∗
(M�N)

)
�P
)

∼=−→( idA×πB×πC×idD )
!
( idA×∆B×∆C×idD )

∗
(M�N�P)

∼=−→( idA×πB×idD )
!
( idA×∆B×idD )

∗(
M�
(
( idB ×πC×idD )

!
( idB ×∆C×idD )

∗
(N�P)

))
.
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This uses the “commutativity with reindexing” Beck-Chevalley condition from Figure 1(a),
along with pseudofunctoriality isomorphisms for the functors f ∗ and f!. The unit isomor-
phism is(

idA×πB × idB
)

!

(
idA×∆B × idB

)∗(
M � (∆B)!π

∗
B(U)

)
∼=−→ (idA×πB × idB)!(idA×∆B)!(idA×∆B)∗(idA× idB ×πB)∗(M � U)

∼=−→M

This uses the “Frobenius” isomorphism from Figure 1(b), together with pseudofuncto-
riality for the equality (π × id)∆ = id. More details, including proofs of the coherence
axioms, can be found in [33].

To define the isomorphism 〈〈M �N〉〉 ∼= 〈〈N �M〉〉, first note that for P ∈ C A and
Q ∈ C B there is an isomorphism

P �Q→ γ∗(Q� P ), (5.3)

where γ : A × B ∼= B × A is the symmetry isomorphism of S. The isomorphism (5.3) is
defined by

P �Q := (idA×πB)∗P ⊗A×B (πA × idB)∗Q
γ−→ (πA × idB)∗Q⊗A×B (idA×πB)∗P
∼= γ∗(idB ×πA)∗Q⊗A×B γ∗(πB × idA)∗P
∼= γ∗((idB ×πA)∗Q⊗B×A (πB × idA)∗P )
∼= γ∗(Q� P )

where the arrow labeled γ denotes the symmetry isomorphism of C A×B. Given this, we
can define the isomorphism θ to be the composite

(πA)!∆
∗
A((idA×πB × idA)!(idA×∆B × idA)∗(M �N))
∼= (πA)!∆

∗
A(idA× idA×πB)!γ!(idA×∆B × idA)∗(M �N)

∼= (πA)!(idA×πB)!(∆A × idB)∗γ!(idA×∆B × idA)∗(M �N)
∼= (πA)!(idA×πB)!(∆A × idB)∗(idA× idA×∆B)∗(idA×γ)!(M �N)
∼= (πA × πB)!(∆A ×∆B)∗(idA×γ)!(M �N)

(5.3)−−→ (πA × πB)!(∆A ×∆B)∗(idA×γ)!γ
∗(N �M)

∼= (πB)!(πA × idB)!(idA×∆B)∗(∆A × idB × idB)∗γ∗(N �M)
∼= (πB)!(πA × idB)!(idA×∆B)∗γ∗(idB ×∆A × idB)∗(N �M)
∼= (πB)!(∆B)∗(πA × idB × idB)!γ

∗(idB ×∆A × idB)∗(N �M)
∼= (πB)!(∆B)∗(idB ×πA × idB)!(idB ×∆A × idB)∗(N �M)

where γ denotes various symmetry isomorphisms in C . The axioms of a shadow functor
can be proven by adapting the methods of [33].
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5.4. Remark. We will see in §9 that the isomorphisms in the proof of Theorem 5.2 are
dramatically simplified by the use of string diagram notation. Figure 5 on page 628 shows
the operations of C/S; Figure 9 on page 629 shows the associativity and unit isomorphisms;
and Figure 10 on page 630 shows the shadow isomorphism.

5.5. Remark. The bicategory constructed from an indexed symmetric monoidal cate-
gory as in Theorem 5.2 has additional structure: it is a symmetric monoidal bicategory
in which each object is its own dual. (In [33] it is shown to be a “fibrant” symmetric
monoidal double category, and in [32] it is shown how this structure gives rise to a sym-
metric monoidal bicategory.) The shadow defined above can also be constructed from this
additional structure, as suggested in [29], but for our purposes it is easier to construct it
directly.

We now consider some examples of Theorem 5.2.

5.6. Example. If S has finite limits, then from the indexed symmetric monoidal category
A 7→ S/A, Theorem 5.2 produces the bicategory of spans in S. The shadow of an endospan
A←M → A is the pullback (∆A)∗M , regarded as an object of S = S/?.

5.7. Example. If C is a symmetric monoidal category with ordinary coproducts pre-
served by ⊗, then from the Set-indexed symmetric monoidal category A 7→ CA, this
theorem produces the bicategory of C-valued matrices. Its objects are sets, of course, and
its 1-cells A −7−→ B are (A × B)-indexed families of objects of C, while its composition is
by “matrix multiplication.”

The shadow of an A-by-A matrix (Ma1,a2) is its “trace”
∐

aMa,a. In particular, the
shadow of a set A is

∐
a∈A I, which is isomorphic to the copower A · I.

5.8. Example. If S is a regular category, then from the S-indexed monoidal category
A 7→ Sub(A), Theorem 5.2 produces the bicategory of relations in S. This bicategory
reflects all the logical structure of subobjects in S; see for instance [10]. The shadow of a
relation R ↪→ A×A is again the pullback ∆∗R, which we can interpret as “the object of
all a ∈ A such that R(a, a)”.

5.9. Example. From Example 2.7, Theorem 5.2 produces a bicategory whose objects
are groupoids and whose 1-cells A −7−→ B form the diagram category CA×B. Since every
groupoid is canonically isomorphic to its opposite, we can equivalently regard this category
as CAop×B, whose objects are variously called (C-valued) “profunctors”, “distributors”,
“bimodules”, or “relators” from A to B. When we do this, the composition of 1-cells
produced by Theorem 5.2 becomes identified with the usual tensor product of functors
construction with which we compose profunctors. The unit object is the profunctor
defined by UA(a1, a2) = homA(a1, a2) · I, where I is the unit object of C.

Similarly, the shadow of a profunctor M : A −7−→ A is the coend∫ a∈A
M(a, a).
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In particular, the shadow of the unit UA is∫ a∈A
homA(a, a) · I ∼=

(∫ a∈A
homA(a, a)

)
· I.

The set
∫ a∈A

homA(a, a) is the quotient of the set
∐

a homA(a, a) of all automorphisms of
objects of A by the “conjugacy” relation γ ∼ α−1γα. Note that this set decomposes into
a disjoint union, over all connected components of A, of the set of conjugacy classes of
the isotropy group2 of that connected component.

This is the usual bicategory of groupoids and C-valued profunctors, with its usual
shadow (as discussed in [29]). Of course, this bicategory sits in a larger bicategory of
categories and profunctors, but for the reasons given in Example 3.7, we cannot produce
the latter using Theorem 5.2.

An important special case occurs when C = Ab is the category of abelian groups,
and we restrict to groups (that is, one-object groupoids). In that case, an Ab-valued
profunctor G −7−→ H can be identified with a bimodule between the group rings Z[G] and
Z[H]. The above formula for the shadow of a group, in the bicategory of profunctors,
gives us the free abelian group on its set of conjugacy classes:

〈〈G〉〉= Z[Conj(G)]

which is also the shadow 〈〈Z[G]〉〉 of its group ring in the bicategory of bimodules. Thus,
the sub-bicategory of Ab-valued profunctors between groups can be identified with the
sub-bicategory of Example 5.1 determined by group rings. (Of course, we can also replace
Z by any commutative ring.)

Note that for this example, it is important that the proof of Theorem 5.2 only used
the Beck-Chevalley condition for homotopy pullback squares. The same is true of the
next example.

5.10. Example. The indexed monoidal categories A 7→ SpA and A 7→ Ho(SpA) of
parametrized spectra give rise to point-set–level and derived bicategories. The latter
bicategory is the one studied in [22].

In general, shadows in Example 5.10 do not have a simple description, but in the
important case of the shadow of unit 1-cells, we can say more. In fact, there is a general
way to compute the shadow of a unit 1-cell which works in most examples. The definition
gives us:

〈〈A〉〉= 〈〈UA〉〉= (πA)!(∆A)∗UA = (πA)!(∆A)∗(∆A)!IA.

Recalling the functor Σ(A) = (πA)!IA from §4, we see that there is a canonical morphism
Σ(A)→〈〈A〉〉induced by the unit of the adjunction ∆! a ∆∗. If diagonals are monic, this is

2The isotropy group of a connected component of A is just the group of automorphisms of any object
in that component. It is well-defined up to conjugacy, so its set of conjugacy classes is well-defined up to
isomorphism.
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an isomorphism, so that we can identify 〈〈A〉〉with Σ(A). This is the case in Examples 5.6,
5.7, and 5.8.

On the other hand, if diagonals are not monic, as in Examples 5.9 and 5.10, then 〈〈A〉〉
can be noticeably different from Σ(A). However, we can compute 〈〈A〉〉 if we can find a
different square

LA
p //

q

��

A

∆
��

A
∆
// A× A,

for some object LA, which is a homotopy pullback (and hence will usually satisfy the
Beck-Chevalley condition, although it is not one of the squares listed in Figure 1). For if
this is the case, we have

〈〈A〉〉= (πA)!∆
∗
A(∆A)!IA ∼= (πA)!p!q

∗IA ∼= (πLA)!ILA = Σ(LA).

Moreover, in this case the map Σ(A) → 〈〈A〉〉= Σ(LA) is simply the image by Σ of the
comparison map A→ LA (which is induced by the homotopy pullback property of LA).

5.11. Example. In Top, the homotopy pullback of ∆A with itself is the free loop space
LA: its points are continuous maps S1 → A (no basepoints involved). Therefore, in the
bicategory of parametrized spectra, the shadow 〈〈A〉〉 is Σ(LA) = Σ∞+ (LA), the suspension
spectrum of the free loop space of A. The map A → LA sends each point x ∈ A to the
constant loop at x.

5.12. Example. We can compute the shadow in Example 5.9 in this way too. When A
is a groupoid, the homotopy pullback (or pseudo-pullback) of ∆A with itself is a groupoid
LA whose objects are pairs (x, γ), where x is an object of A and γ ∈ homA(x, x), and
whose morphisms are “conjugations”. The map A→ LA sends each object x to (x, idx).

Now recall that in the underived case of Ab-valued profunctors, Σ(B) is the free
abelian group on the set of connected components of B. Therefore, we recover the fact
that 〈〈A〉〉 is the free abelian group on the set of conjugacy classes of automorphisms in A.

5.13. Example. The derived version of the profunctors example is perhaps easier to see
from the free-loop-space perspective. Now the shadow of A is the homotopy quotient of
the LA-diagram constant at I. When C is chain complexes, this just gives the complex
of chains on the nerve of LA.

The nerve of LA, however, is isomorphic to what is called the cyclic nerve of A. This
is a simplicial set ZA whose n-simplices are “composable loops” of n+ 1 morphisms in A:

x0
α0−→ x1

α1−→ · · · αn−1−−−→ xn
αn−→ x0

(note that the starting and ending objects are the same). The face maps of ZA compose
pairs of adjacent morphisms, with the final face map composing around the loop:

(α0 , . . . , αn−1, αn) 7→ (αnα0 , . . . , αn−1).
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The isomorphism N(LA) ∼= ZA is as follows: given an n-simplex

(x0, γ0)
α1−→ (x1, γ1)

α2−→ · · · αn−→ (xn, γn)

in N(LA), where by definition α−1
i+1γiαi+1 = γi+1, we send it to the n-simplex

(α0, α1, . . . , αn)

in ZA, where by definition
α0 := α−1

n · · ·α−1
0 γ0.

It is straightforward to check that this is an isomorphism of simplicial sets (in fact, an
isomorphism of “cyclic sets”). See, for instance, [2].

The reason for passing across this isomorphism is that when A is a group G, the chains
on ZG form exactly the Hochschild complex of the group ring Z[G] (as a bimodule over
itself). More generally, when A is a skeletal groupoid, the chains on ZA are the direct
sum of the Hochschild complexes of Z[G], as G runs over the isotropy groups of connected
components of A. If A is not skeletal, then the chains on ZA are homotopy equivalent to
those on its skeleton. Thus, for any groupoid A, we have a quasi-isomorphism

〈〈A〉〉 '
⊕

x∈π0(A)

HH ∗

(
Z[homA(x, x)]

)
.

Note that when using 〈〈G〉〉 as the target of a map into or out of Z, the difference
between the derived and underived cases is negligible. This is because maps into and out
of Z are determined, up to homotopy, by the 0th homology of a chain complex, and the
0th Hochschild homology of Z[G] is exactly its underived shadow: the free abelian group
on its set of conjugacy classes. These two cases cover most of our examples, so higher
Hochschild homology will not make much of an appearance hereafter.

6. Fiberwise duality

At this point we have all the machinery necessary to prove the “fiberwise” comparison
Theorem 1.1 and its generalizations, by considering duality and trace in the bicategory
C/S. From now on, we will mostly restrict attention to the three examples mentioned in
the introduction:

(i) The Set-indexed category A 7→ AbA, where f ∗ is given by reindexing and f! is given
by coproducts over the fibers of f . In this case C/S is the bicategory of Ab-valued
matrices.

(ii) The Top-indexed category A 7→ Ho(SpA) of parametrized spectra, where f ∗ is
given by pullback and f! by pushout along f . In this case C/S is the bicategory of
parametrized spectra from [22].
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(iii) The Gpd-indexed category A 7→ Ho(ChAZ ), where f ∗ is given by reindexing and
f! by homotopy left Kan extension. In this case C/S is equivalent to the derived
bicategory of ChZ-valued profunctors over groupoids.

Until now we have also considered other examples, such asA 7→ S/A andA 7→ Ho(Top/A).
However, in order to have interesting dualities, it is generally necessary for the fibers to
be “additive” in some sense, as is the case in the examples above.

We now observe that there are two canonical “embeddings” of the fiber categories C A

into C/S. Namely, we can consider an object M ∈ C A either as a 1-cell M̂ : A −7−→ ? or a

1-cell M̂ : ? −7−→ A in C/S, since the isomorphisms ?× A ∼= A ∼= A× ? induce equivalences

C A ' C A×? = C/S(A, ?) and

C A ' C ?×A = C/S(?,A).

However, unlike C A, which is of course a symmetric monoidal category, the bicategory
structure of C/S does not endow C/S(A, ?) or C/S(?,A) with monoidal structures; rather,
it equips them with two composition functors

� : C/S(A, ?)× C/S(?,A) −→ C/S(A,A) ' C A×A

� : C/S(?,A)× C/S(A, ?) −→ C/S(?, ?) ' C ?.

The relationship of these functors to the monoidal structure of C A is easily obtained from
the definition of �; we have

M̂ � N̂ ∼= M �N ∈ C A×A

M̂ � N̂ ∼= (πA)!(M ⊗A N) ∈ C ?

From this we can deduce fundamental relationships between duality and trace in the fiber
categories of C versus the bicategory C/S. All proofs in this section involve fairly lengthy
string diagram calculations, so we defer them to §11.

The following theorem was proven, for parametrized spectra, in [22].

6.1. Theorem. An object M ∈ C A is dualizable in the symmetric monoidal category C A

if and only if M̂ : A −7−→ ? is right dualizable in the bicategory C/S. Moreover, we have

(M̂)F ∼= M̂F.

Therefore, duality in C/S includes, as a special case, duality in the fiber categories C A.
The following proposition helps to clarify the nature of this duality.

6.2. Proposition.

(i) If M ∈ C A is dualizable in C A, then for any morphism a : ? → A, we have that
a∗(M) ∈ C ? is dualizable in C ?.

(ii) Suppose that
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(a) the fiber categories of C are all closed monoidal, as are the reindexing functors
f ∗, and

(b) the collection of all functors a∗ : C A → C ? is jointly conservative (isomorphism-
reflecting).

Then if a∗(M) ∈ C ? is dualizable for every a : ?→ A, it follows that M is dualizable
in C A.

Proof. The first statement is easy, since strong monoidal functors (like a∗) always pre-
serve dualizability. The second is proven in [22, 15.1.1] for parametrized spectra, but the
proof requires only the two properties mentioned above.

In our examples, a morphism a : ?→ A is the same as a “point” of A, and the functor
a∗ computes the “fiber” of M over that point. Thus, since conditions (ii)a and (ii)b
above hold quite frequently (in particular, they hold in our three primary examples), it is
usually the case that M is dualizable in C A if and only if each of its fibers is dualizable
in C ?. Thus (following [22]), in the situation of Theorem 6.1 we say that M is fiberwise
dualizable.

We can now state an equivalent form of Theorem 1.1.

6.3. Theorem. Let M ∈ C A be fiberwise dualizable and let f : M →M be an endomor-
phism in C A. Then the diagram

(πA)!IA

(πA)! tr(f)

��

// 〈〈A〉〉

tr(f̂)
��

(πA)!IA // I?

(6.4)

commutes.

Note that the lower-left composite in (6.4) is simply the adjunct of

tr(f) : IA → IA ∼= π∗AI?

under the adjunction (πA)! a π∗A, so the conclusion of the theorem is equivalent to the
assertion that the symmetric monoidal trace of f : M →M is equal to the composite

IA → (πA)∗(πA)!(∆A)∗(∆A)!IA = (πA)∗〈〈A〉〉 (πA)∗ tr(f̂)−−−−−−→ (πA)∗I? = IA.

(This is the form in which we stated Theorem 1.1.) In particular, tr(f) can be recovered

from tr(f̂). Thus, the bicategorical trace tr(f̂) carries at least as much information as the
fiberwise trace tr(f).

Moreover, the top morphism in (6.4) is an instance of the “monic diagonals” Beck-
Chevalley morphism. (In fact, it is exactly the comparison morphism Σ(A) → 〈〈A〉〉 that
we saw in §5.) Thus, if diagonals are monic, then the two traces carry exactly the same
information, while otherwise the bicategorical trace can be strictly more informative.

We now consider fiberwise traces in our three primary examples.
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6.5. Example. By Proposition 6.2, a Set-indexed family of abelian groups (Ma)a∈A ∈
AbA is dualizable just when each Ma is a dualizable abelian group, which is to say it is
finitely generated and projective. If f = (fa) : M → M is an endomorphism, then its
trace in AbA is the family of traces of the endomorphisms fa : Ma →Ma:

tr(f) = (tr fa)a∈A : (Z)a∈A −→ (Z)a∈A.

Since diagonals are monic in this case, the trace of f̂ is just the adjunct of this under the
adjunction (πA)! a (πA)∗, which turns out to be the induced map⊕

a

Z [tr(fa)]−−−−→ Z.

Of course, by the universal property of a coproduct, knowing this morphism is the same
as knowing the individual morphisms tr(fa).

6.6. Example. Again, by Proposition 6.2, a Gpd-indexed diagramM of chain complexes
is dualizable just when each chain complex M(a) is dualizable. In the underived context,
this means it is finitely generated and projective, while in the derived case it just means
it is quasi-isomorphic to such a complex. The symmetric monoidal unit IA ∈ ChAZ is just
the constant functor at the unit object Z ∈ ChZ, and for an endomorphism f : M →M ,
the symmetric monoidal trace is the natural transformation IA → IA consisting of the
individual traces of the morphisms fa : M(a)→M(a).

As for the bicategorical trace, recall that the shadow of a groupoid A is the copower
of the unit I = Z by the set of conjugacy classes of automorphisms in A. A computation
shows that tr(f̂) : 〈〈A〉〉 → Z sends each automorphism γ ∈ homA(a, a) to the ordinary
symmetric monoidal trace of the composite

M(a)
M(γ)−−−→M(a)

fa−→M(a).

(Cyclicity of the trace implies that this is invariant under conjugacy.) Since the unit
IA → (πA)∗〈〈A〉〉picks out the identities, it is clear that the composite of these two will find
exactly the traces of the fa’s. As we saw above, this is the symmetric monoidal traces
in ChAZ , as asserted by Theorem 6.1. Note that in this case, the bicategorical trace does
carry strictly more information.

6.7. Example. Once again, by Proposition 6.2, a parameterized spectrum E over B
is fiberwise dualizable if and only if each of its fibers is dualizable in the usual stable
homotopy category Ho(Sp).

In particular, if p : E → B is a fibration with fiber F such that Σ∞(F+) is dualizable,
then the “fiberwise suspension spectrum” Σ∞B (E q B) is fiberwise dualizable over B. In
this case, for a fiberwise map f : E → E, the symmetric monoidal trace of Σ∞B (f q idB) in
Ho(SpB) is the fiberwise fixed point index of f , [7]. This is a fiberwise endomorphism of
the “parametrized sphere spectrum” SB over B (this is the unit object IA). Since SB '



DUALITY AND TRACES FOR INDEXED MONOIDAL CATEGORIES 609

(πB)∗S, where S is the ordinary sphere spectrum, by adjunction this map is equivalent to
a map

(πB)!SB ∼= Σ∞(B+)→ S.

The homotopy classes of maps Σ∞(B+) → S make up the 0th stable cohomotopy of B+.
If b : ?→ B is the inclusion of a point b in B, the composite

S = Σ∞(?+)
Σ∞(b+) // Σ∞(B+)

tr(Σ∞B (fqidB))
// S

is the symmetric monoidal trace of the induced map Σ∞((f |p−1(b))+) on the fiber over
b. Thus, just as in the previous examples, the symmetric monoidal fiberwise trace con-
sists of all the traces on all the fibers, “put together” in a suitable way (here, in a way
“continuously parametrized” by B).

As for the bicategorical trace, recall from Example 5.11 that the shadow of UB is the
suspension spectrum of the free loop space of B. Thus, Theorem 6.3 gives a factorization
of the fiberwise trace as

Σ∞(B+)→ Σ∞(LB+)→ S.

The first map is induced by the inclusion of B into LB as constant loops. As for the
second, a loop γ in B based at b induces an endomorphism Eγ of p−1(b), and the trace of
(Σ∞+ applied to) the composite

p−1(b)
Eγ // p−1(b)

f |p−1(b) // p−1(b)

gives an endomorphism S → S of the sphere spectrum. Together, these maps comprise
the bicategorical trace.

6.8. Remark. As remarked previously, the unit object IA of C A is always fiberwise
dualizable. The symmetric monoidal trace of idIA is just itself, but its bicategorical trace
is a nontrivial morphism 〈〈A〉〉→ I?, which we can view as an “augmentation” of 〈〈A〉〉. In
§8 we will see that this augmentation plays an important role in comparing the two types
of traces appropriate for total duality.

We would also like a version of Theorem 6.3 for twisted traces. There are various
forms of this, depending on where we choose the twisting objects Q and P to live.

6.9. Theorem. Let M ∈ C A be fiberwise dualizable.

(i) For any Q ∈ C A×A, P ∈ C ?, and g : Q � M̂ → M̂ � P , there is a corresponding
morphism g : (∆A)∗Q⊗M →M ⊗ π∗AP in C A, such that the bicategorical trace

tr(g) : (πA)!(∆A)∗Q = 〈〈Q〉〉−→ 〈〈P 〉〉= P

and the symmetric monoidal trace

tr(g) : (∆A)∗Q −→ (πA)∗P
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are adjuncts under the adjunction (πA)! a (πA)∗. In other words, the following
triangles commute.

(πA)!(∆A)∗Q

(πA)! tr(g)

��

tr(g)

%%
(πA)!(πA)∗P // P

(∆A)∗Q //

tr(g) ((

(πA)∗(πA)!(∆A)∗Q

(πA)∗ tr(g)

��
(πA)∗P

(6.10)

(ii) For any Q,P ∈ C A, and f : Q ⊗M → M ⊗ P , there is a corresponding morphism

f̃ : (∆A)!Q� M̂ → M̂ � (πA)!P such that the following triangle commutes.

(πA)!Q //

(πA)! tr(f) ((

(πA)!(∆A)∗(∆A)!Q

tr(f̃)
��

(πA)!P

(6.11)

(iii) For any Q ∈ C A and P ∈ C ?, there is a bijection between morphisms f : Q⊗M →
M ⊗ (πA)∗P and morphisms f̂ : (∆A)!Q � M̂ → M̂ � P , and for a corresponding
pair of such morphisms, the following square commutes.

(πA)!Q //

(πA)! tr(f)
��

(πA)!(∆A)∗(∆A)!Q

tr(f̂)
��

(πA)!(πA)∗P // P

(6.12)

Note that g in (i) is of the maximally general form for a morphism of which we could

take the bicategorical trace with respect to M̂ . Thus, the conclusion of (i) says that

for any bicategorical trace with respect to M̂ , there is a symmetric monoidal trace with
respect to M which carries exactly the same information.

By contrast, in (ii), f is of the maximally general form for a morphism of which we
could take the symmetric monoidal trace with respect to M . Thus, the conclusion of (ii)
says that for any symmetric monoidal trace with respect to M , there is a bicategorical
trace with respect to M̂ which is related to it in a suitable way.

Unlike the situation of (i), neither of these traces can be recovered from the other in
general. However, if diagonals are monic, then the top map in (6.11) is an isomorphism,

and thus the bicategorical trace tr(f̃) can be recovered from the symmetric monoidal trace
tr(f); hence the latter carries at least as much information as the former.

In the case of (iii), the lower-left composite

(πA)!Q
(πA)! tr(f)−−−−−−→ (πA)!(πA)∗P −→ P

is the adjunct of tr(f) under the adjunction (πA)! a (πA)∗, and thus carries exactly the
same information. Therefore, in the situation of (iii), the bicategorical trace carries at
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least as much information than the symmetric monoidal one. If diagonals are monic, then
the top morphism in (6.12) is an isomorphism, and so the two traces carry exactly the
same information.

Note that Theorem 6.3 is a special case of Theorem 6.9(iii), taking Q = IA and P = I?;
thus we only need to prove Theorems 6.1 and 6.9. In §11, we will do this using string
diagram calculations.

6.13. Example. Let A be a set and F ∈ FinSetA be an A-indexed family of finite sets,
and define M(a) = Z[F (a)]. Then M ∈ AbA and is fiberwise dualizable, since each M(a)
is finitely generated and free. Moreover, we have a diagonal morphism

∆: M →M ⊗M

induced by the diagonal F → F × F .
Now if f : M → M is any endomorphism, then the composite ∆ ◦ f : M → M ⊗M

is of the form assumed in Theorem 6.9(ii), with Q = IA and P = M . Its symmetric
monoidal trace, of course, is the transfer of f in the symmetric monoidal category AbA.
This is a morphism IA →M , which simply picks out at each a ∈ A the transfer of fa, as
in Example 4.8. The image of this under (πA)! is a morphism Z[A]→

⊕
a∈AM(a), which

of course sends each generator a ∈ A to the transfer of fa. Since diagonals are monic in
this case, the top morphism in (6.11) is an isomorphism, and so the bicategorical trace of

f̃ is exactly the same.

6.14. Example. We can perform the same construction as in the previous example, but
now starting with a groupoid A and a finite-set-valued functor F ∈ FinSetA. Again
we obtain a fiberwise dualizable object M equipped with a diagonal, so we can apply
Theorem 6.9(ii) to ∆ ◦ f for any f : M → M . The symmetric monoidal transfer will,
again, consist exactly of all the transfers of the fiber maps fa : M(a) → M(a), and its
image under (πA)! will again be the sum of all of these.

Since Q = IA, the domain (πA)!(∆A)∗(∆A)!Q of the bicategorical trace is isomorphic

to 〈〈A〉〉. Unsurprisingly, the bicategorical trace tr(f̃) : 〈〈A〉〉→ (πA)!M sends each conjugacy
class [γ] to the symmetric monoidal transfer of the composite

M(a)
M(γ)−−−→M(a)

fa−→M(a)

thereby combining Examples 6.6 and 6.13.

7. Base change objects

In the previous section we stated our first comparison theorem for traces, with the proof
deferred to §11. In §8 we will state and prove our second such theorem, but first we need
to introduce some more structure implied by an indexed symmetric monoidal category.
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Recall that we have equivalences C A ' C/S(A, ?) ' C/S(?,A). In fact, the action of
the reindexing and indexed-coproduct functors is also visible in C/S, as follows. For any
morphism f : A→ B in S, we define its base change objects to be

Bf = (idB ×f)∗UB and

fB = (f × idB)∗UB,

regarded as 1-cells B −7−→ A and A −7−→ B in C/S, respectively. Note that by the Beck-
Chevalley condition from Figure 7(c) and its dual (and using the definition of UB), we
have isomorphisms

Bf = (id×f)∗UB

= (id×f)∗(∆B)!π
∗
B(U)

∼= (f × id)!(∆A)!f
∗π∗B(U)

∼= (f × id)!(∆A)!π
∗
A(U)

∼= (f × id)!UA

and fB ∼= (id×f)!UA. This equivalence for fB is shown using string diagrams in Figure 11
on page 630.

7.1. Example. In the bicategory of spans in S, the base change objects of a map f : A→
B in S are the spans A

id←− A
f−→ B and B

f←− A
id−→ A.

7.2. Example. In the bicategory of C-valued matrices, the base change objects of a
set-function f : A→ B are the matrix

(fB)a,b =

{
I if b = f(a)

∅ otherwise

and its transpose.

7.3. Example. In the bicategory of C-valued profunctors, the base change objects of a
functor f : A→ B are defined by

(fB)(a, b) = homB(f(a), b) · I and (Bf )(b, a) = homB(b, f(a)) · I

The purpose of introducing the base change objects is to prove the following lemma.

7.4. Lemma. For any f : A→ B, M ∈ C B, and N ∈ C A, we have isomorphisms

f̂ ∗M ∼= fB � M̂ f̂!N ∼= Bf � N̂̂
f ∗M ∼= M̂ �Bf f̂!N ∼= N̂ � fB
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Proof. The first isomorphism is the composite

f̂ ∗M ∼= f ∗(idB ×πB)!(∆B)!(U �M)
∼= (idA×πB)!(f × idB)∗(∆B)!(U �M)
∼= (idA×πB)!(f × idB)∗(∆B)!(∆B)∗(πB × idB)∗(U �M)
∼= (idA×πB)!(f × idB)∗(idB ×∆B)∗(∆B × idB)!(πB × idB)∗(U �M)
∼= (idA×πB)!(idA×∆B)∗(f × idB × idB)∗(∆B × idB)!(πB × idB)∗(U �M)
∼= (idA×πB)!(idA×∆B)∗(((f × idB)∗(∆B)!π

∗
B(U))�M)

∼= fB � M̂.

These isomorphisms come from the Frobenius axiom and the equality (π × id)∆ = id.
The other three are analogous.

The first isomorphism in Lemma 7.4 is shown using string diagrams in Figure 12
on page 630 (and the others are analogous). As usual, the string diagram version is
considerably simpler.

7.5. Remark. In particular, this means that the indexed category C : Sop → Cat is
recoverable from the bicategory C/S together with the base change objects. If we recall
from Remark 5.5 that C/S is actually a symmetric monoidal bicategory, then we can
recover the monoidal structure of C from it as well. The external product � : C A×C B →
C A×B can be identified with the functor

� : C/S(A, ?)× C/S(B, ?) −→ C/S(A×B, ?)

arising from the monoidal structure of C/S.
In particular, since M ⊗A N ∼= (∆A)∗(M �N), we also have

M̂ ⊗A N ∼= ∆(A× A)� (M̂ � N̂).

In the language of [6, 9], this means that ⊗A is the “convolution monoidal structure”
on C/S(A, ?) induced by the “autonomous map pseudo-comonoid structure” of A arising
from ∆. Under this identification, Theorem 6.1 becomes a special case of [9, Prop. 4.6].
(We are indebted to Daniel Schäppi for pointing out this connection.) It seems likely that
versions of Theorems 6.3 and 6.9 are also true in that generality.

Essentially the same proof as of Lemma 7.4 shows that more generally, for any f : A→
B and M ∈ C B×C ' C/S(B,C), we have fB�M ∼= (f × id)∗M . In particular, if M = gC
for some g : B → C, we have

fB � gC ∼= (f × id)∗(gC) ∼= (f × id)∗(g × id)∗UC ∼= (gf × id)∗UC ∼= gfC.

It is easy to verify coherence of these isomorphisms, so that the assignment f 7→ fB
defines a pseudofunctor S→ C/S which is the identity on objects.

We can also conclude:
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7.6. Lemma. For any f : A→ B in S, we have a dual pair (fB,Bf ).

Proof. The remarks above show that the functors fB � − and Bf � − are naturally
adjoint. The result then follows from the bicategorical Yoneda lemma.

Alternative proofs of Lemmas 7.4 and 7.6 can be found in [33], using the language of
double categories. Together, they imply that C/S is a proarrow equipment in the sense
of [41] (called a framed bicategory in [33]).

8. Total duality

In §6, we saw that duality in the symmetric monoidal category C A can be identified with
a special case of duality in the bicategory C/S. However, even for objects of C A, the

bicategory C/S introduces an additional, new type of duality: we can ask whether M̂ ,

rather than M̂ , is right dualizable. In this case we say that M is totally dualizable.
In contrast to fiberwise duality, total duality does not take place entirely within C A,

and thus can incorporate information about the object A as well. This is made precise
by the following theorems, whose proofs are surprisingly easier than the corresponding
ones in §6. (However, we will still need to postpone some computations to be done with
string diagrams in §12.) The first theorem was proven by [22] in the case of parametrized
spectra, and we give the same proof here.

8.1. Theorem. If M ∈ C A is totally dualizable, then (πA)!M is dualizable in C ?.

Proof. By construction, the base change objects for πA : A → ? can be identified with

ÎA and ÎA, and in particular we have a dual par (ÎA, ÎA). Therefore, by Lemma 7.4 we

have (πA)!M ∼= M̂ � ÎA. But since the composite of dual pairs is again a dual pair, if M̂
is right dualizable then so must (πA)!M be, as a 1-cell ? −7−→ ?. However, it is easy to verify
that C/S(?, ?) ' C ? as monoidal categories; thus (πA)!M is dualizable in C ? as desired.

In particular, for M = IA we have:

8.2. Corollary. If IA ∈ C A is totally dualizable, then Σ(A) is dualizable in C ?.

This is in sharp contrast to fiberwise duality, since IA (being the unit object of a
symmetric monoidal category) is always fiberwise dualizable. However, we will see later
that objects M ∈ C A other than IA can be totally dualizable without implying any
finiteness conditions on A.

The relationship between bicategorical and symmetric monoidal traces for totally du-
alizable objects is quite simple.
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8.3. Theorem. If M ∈ C A is totally dualizable and f : M →M is an endomorphism in
C A, then the following triangle commutes.

I?
tr(f̂) //

tr((πA)!f)   

〈〈A〉〉

��
I?

Here the right-hand vertical map is the augmentation of the shadow from Remark 6.8.

We will prove a more general version of this theorem momentarily, but first we consider
some examples.

8.4. Example. We have seen in Example 6.5 that an A-indexed family of abelian groups
M = (Ma)a∈A ∈ AbA is fiberwise dualizable just when each Ma is dualizable, which is
to say, finitely generated and free. On the other hand, if M is totally dualizable, then
Theorem 8.1 implies that

⊕
aMa must be dualizable, which implies that all but finitely

many of the Ma must be zero and the rest must be dualizable.
In fact, this latter condition is also sufficient. For total dualizability of M means that

there is an A-indexed family (Na)a∈A and morphisms

η : U? −→ M̂ � N̂

ε : N̂ � M̂ −→ UA.

satisfying appropriate triangle identities. Under the assumption that
⊕

aMa is dualizable,
we may take Na = Ma

F and define

η : Z −→
⊕
a∈A

Ma ⊗Na,

to be the sum of all the coevaluations of the Ma, and

ε : Na1 ⊗Ma2 −→

{
Z if a1 = a2

0 if a1 6= a2.

to be the evaluation of Ma if a1 = a2, and zero otherwise. The same approach works for
a finite family of dualizable objects in any C, as long as C is additive so that we can add
up the coevaluations.

Note that in particular, this means that the unit object IA is totally dualizable if and
only if A is finite. On the other hand, there can be totally dualizable objects in CA for
arbitrarily large A, as long as their “support” is a finite subset of A.

Finally, if M is totally dualizable as above, and f : M →M is an endomorphism, then

the trace of f̂ is the induced map

Z
∑
a tr(fa)
−−−−−→

⊕
a

Z.
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which is the direct sum of all the traces of the components fa. The trace of (πA)!f is
the numerical sum of all these traces (as an endomorphism of Z), and the augmentation
〈〈A〉〉 =

⊕
a Z → Z is “addition”. Thus, we can see that the bicategorical trace clearly

carries more information than the symmetric monoidal one.

8.5. Example. The finiteness restriction in the previous example arises because in an
abelian group (or in a hom-set of any additive category) we can only add up finitely many
elements. An example of a situation in which we can “add up” infinitely many elements
is the monoidal category C = Sup of suplattices, i.e. partially ordered sets with arbitrary
suprema, and suprema-preserving maps. We think of the supremum of a subset of a
suplattice as an infinitary version of the “sum” of that subset.

Sup is a monoidal category, with a tensor product whose universal property says
that it represents “bilinear maps”, i.e. functions that preserve suprema in each variable
separately. The unit object is the two-element lattice. Many more suplattices than abelian
groups are dualizable, precisely because we can “add up” infinitely many elements: for
instance, any power set P(A) is dualizable as a suplattice. However, traces in Sup carry
correspondingly less information: there are only two maps I → I, so a trace can only
record the presence or absence of a “fixed point” rather than any numerical information.

The same sort of argument as above now shows that M ∈ SupA is totally dualizable
just when each Ma is a dualizable suplattice, irrespective of the cardinality of A. (For the
coevaluation, we take a pointwise supremum.) In particular, IA is totally dualizable for
any set A.

If f : M →M is an endomorphism of such an M , then the trace of f̂ is the map

I −→
∐
a

I ∼= P(A)

which picks out the subset of those a ∈ A for which the trace of fa is nonzero. Its
composite with the augmentation P(A)→ I remembers only whether the trace of any fa
was nonzero.

8.6. Example. Now we consider the underived example of groupoids and Ab-valued pro-
functors. For simplicity, we also consider first the case of groups (one-object groupoids),
in which case (as we remarked in Example 5.9) profunctors can be identified with bimod-
ules between group rings. Thus, an object M ∈ AbG is totally dualizable just when it is
right dualizable as a Z-Z[G]-bimodule, which is equivalent to its being finitely generated
and projective as a Z[G]-module.

In particular, Z[G] itself is always totally dualizable, regardless of how large G might
be. On the other hand, the trivial module Z, which is the unit object of AbG, is quite
rarely totally dualizable, since it is quite rarely projective. (But if we took C = VectQ
to be the category of rational vector spaces instead of Ab, then by Maschke’s theorem,
the unit object Q over any finite group G would be totally dualizable [40, 4.2.1, 4.2.2].)

Just as shadows of profunctors in this case can be identified with shadows of bimodules,
the resulting traces for totally dualizable G-modules can be identified with the Hattori-
Stallings trace (the trace in the bicategory of bimodules; see Example 5.1 and [29]). In
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this case, Theorem 8.3 says that if f : M →M is an endomorphism with Hattori-Stallings

trace tr(f̂) ∈ 〈〈Z[G]〉〉, and ε : Z[G] → Z is the canonical augmentation of the group ring,
then

ε(tr(f̂)) = tr(ε!(f))

(where ε! denotes the “extension of scalars” functor along ε).
The case of arbitrary groupoids can be reduced to a combination of the case of groups,

as just described, and the case of sets, as in Example 8.4. Namely, for a groupoid A, an
object M ∈ AbA consists essentially of one module over each Z[G], as G runs through
the isotropy groups of the connected components of A. Such an M is totally dualizable
just when it is zero at all but finitely many connected components and totally dualizable
at the others. As we have seen, the shadow of a groupoid is the direct sum (coproduct)
of the shadows of the group rings of each of its isotropy groups:

〈〈A〉〉=
⊕

x∈π0(A)

Z[Conj(homA(x, x))]

Finally, the trace of an endomorphism of a totally dualizable M is the direct sum of its
traces at each connected component:

tr(f) =
∑

x∈π0(A)

(
tr(fx) ∈ Z[Conj(homA(x, x))]

)
∈ 〈〈A〉〉

and Theorem 8.3 says that the sum in Z of the augmentations of these traces is equal to
the trace of the sum of the augmentations of f at each connected component:

∑
x∈π0(A)

ε
(

tr(fx)
)

= tr

 ∑
x∈π0(A)

ε!(f)

 ∈ Z.

8.7. Example. The Gpd-indexed category of chain complexes up to homotopy is similar
to that of Gpd-indexed abelian groups, but with some important differences. The prin-
cipal one is that now a chain complex is dualizable if it is quasi-isomorphic to a finitely
generated complex of projective modules. This makes for many more dualizable objects.

For instance, the unit object over a group G is totally dualizable just when Z admits a
finite projective resolution as a Z[G]-module. In this case the group G is said to be of type
FP ; see e.g. [3, VIII.6]. Groups of type FP include finitely generated free groups, surface
groups, and finitely generated free abelian groups. All groups of type FP are torsion-free.

We can analyze the case of a general groupoid as we did in the previous example, by
decomposing a profunctor into a direct sum of modules over group rings. However, for
the purposes of computing an explicit example, it is instructive to proceed differently.
Given any groupoid A and an object x ∈ A, we write Z[Ax] and Z[xA] for the profunctors
defined by

Z[Ax](a) = Z[homA(x, a)] and Z[xA](a) = Z[homA(a, x)].
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These are the base change objects, as in §7, associated to the functor x : ? → A which
picks out the object x, relative to the Gpd-indexed symmetric monoidal category of
families of abelian groups. (The corresponding base change objects for chain complexes
are the same profunctors, regarded as concentrated in degree 0.)

In particular, therefore, Z[xA] is right dualizable, with right dual Z[Ax]. We regard
Z[xA] as the counterpart for groupoids of a rank-one free module. The main difference
from the case of rings is that now, there may be more than one isomorphism class of such
modules, if A has more than one isomorphism class of objects. Just as a map R → M
from a rank-one free R-module to any R-module M is determined uniquely by an element
of M (the image of 1 ∈ R), a map Z[xA] → M of A-modules is determined uniquely by
an element of M(x) (the image of idx ∈ homA(x, x) ⊆ Z[xA](x)). (This is essentially just
the Yoneda Lemma.)

Now suppose that A is a finitely generated free groupoid, as in Example 4.7, with
object set A0 and generating set of morphisms A1, with source- and target-assigning
maps s, t : A1 ⇒ A0. Let M ∈ AbA be an A-indexed diagram of abelian groups such that
each abelian group M(x) is finitely generated and free. Write Mx for a basis of M(x);
then the action of any generator γ ∈ A1 can be described by a “matrix” γM,p,q, with
coefficients defined by

γ(p) =
∑

q∈Mt(γ)

γM,p,q · q

for p ∈ Ms(γ). Then M is quasi-isomorphic to the following chain complex of A-modules
concentrated in degrees 1 and 0:⊕

γ∈A1

⊕
p∈Ms(γ)

Z[t(γ)A] d //
⊕

x∈A0

⊕
p∈Mx

Z[xA]. (8.8)

Here the differential sends the generator (γ, p, idt(γ)) of the (γ, p) summand to the differ-
ence

(s(γ), p, γ)−
∑

q∈Mt(γ)

γM,p,q · (t(γ), q, idt(γ)).

In the case when A0 has one object, so that A is a finitely generated free group, and M is
the trivial module Z, then the degree-0 part of this complex is just the group ring Z[G],
and the degree-1 part is the augmentation ideal. In that case, at least, the fact that the
augmentation ideal is also a finitely generated free module is well-known [40, 6.1.5].

Since this complex consists of finite sums of shifts of the dualizable objects Z[xA], it is
dualizable. Therefore, M is totally dualizable in the derived context of chain complexes,
when regarded as a chain complex concentrated in degree 0. Its dual is the complex
concentrated in degrees 0 and −1:⊕

x∈A0

⊕
p∈Mx

Z[Ax]
∂ //
⊕

γ∈A1

⊕
p∈Ms(γ)

Z[At(γ)]

(we leave the computation of the differential to the reader).
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Now, if f : M →M is an endomorphism, with matrix elements fp,q defined by f(p) =∑
q fp,q · q, then a corresponding endomorphism of (8.8) can be defined by

f(x, p, idx) =
∑
q

fp,q · (x, q, idx)

f(γ, p, idt(γ)) =
∑
q

fp,q · (γ, q, idt(γ)).

Therefore, noting that
∑

p∈Mx
fp,p is the trace tr(fx) of f restricted to M(x), we can

calculate
tr(f) =

∑
x∈A0

tr(fx) · [idx]−
∑
γ∈A1

tr(ft(γ)) · [idt(γ)]

where each [idx] denotes the image of idx in 〈〈A〉〉. (As in Example 4.7, the minus sign arises
from the symmetry isomorphism for the tensor product of chain complexes.)

Note that this result is invariant under equivalence of groupoids A, as it must be. In
fact, it can be rephrased as a sum over the connected components of A:

tr(f) =
∑

x∈π0(A)

(1−DA,x) tr(fx) · [idx]

where DA,x denotes the number of generators of the isotropy group of A at x (which is
finitely generated and free).

Finally, since the augmentation 〈〈A〉〉→ Z sends each [idx] to 1, Theorem 8.3 says that
the trace of (πA)!(f) must be∑

x∈A0

tr(fx)−
∑
γ∈A1

tr(ft(γ)) =
∑

x∈π0(A)

(1−DA,x) tr(fx).

This is easy to verify directly, using the fact that since the homotopy colimit (πA)!(M)
can be calculated using the projective resolution (8.8) to be⊕

γ∈A1

⊕
p∈Ms(γ)

Z d //
⊕

x∈A0

⊕
p∈Mx

Z.

Note that if M is the constant functor at Z, then this is exactly the chain complex
representing Σ(A) which we used in Examples 4.7 and 4.9.

8.9. Example. Total duality was first studied in [22] for the derived bicategory of
parametrized spectra, where it was called Costenoble-Waner duality ; see also [29]. In
this bicategory, Theorem 8.1 implies that if the parametrized sphere spectrum SA over A
is Costenoble-Waner dualizable, then Σ∞(A+) is dualizable. This is the original observa-
tion of [22] that Theorem 8.1 generalizes.

Concrete examples of Costenoble-Waner duality can also be found in [22]. For instance,
the parametrized sphere spectrum SA over any closed smooth manifold A is Costenoble-
Waner dualizable [22, 18.6.1].
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For simplicity, we consider only the trace of its identity map. The trace of the identity
of Σ∞(A+) can be identified with the Euler characteristic of A (as an endomorphism of
the sphere spectrum S). Thus, the theorem says that this Euler characteristic factors as

S → Σ∞(LA+)→ S.

The first map turns out to be the composite

S → Σ∞(A+)→ Σ∞(LA+)

of the transfer of the identity map with the inclusion A→ LA as constant paths.

While Theorem 8.3 is a direct analogue of Theorem 6.3, often we are interested in a
different situation. As mentioned in the introduction, usually we are given a morphism
in the cartesian monoidal base category S, and we want to compute a trace which gives
us information about its fixed points.

Our final theorem, which solves this problem, will be a version of Theorem 8.3 which
compares twisted traces. Combined with the base change objects from §7, this will enable
us to compare symmetric monoidal and total duality traces involving an endomorphism
of the base object.

8.10. Theorem. Suppose M ∈ C A is totally dualizable, Q ∈ C ?, P ∈ C A×A, and we

have a morphism f : Q � M̂ → M̂ � P . Suppose furthermore that we are given R ∈ C ?

and a morphism
ξ : P � ÎA = (id×πA)!P −→ (πA)∗R = ÎA �R.

Then the following triangle commutes:

Q
tr(f̂) //

tr(ξ◦f)   

〈〈P 〉〉
tr(ξ)
��
R

(8.11)

Here ξ ◦ f denotes the following composite in C ?:

Q⊗ (πA)!M ∼= Q� M̂ � ÎA
f�id−−→ M̂ � P � ÎA

id�ξ−−−→ M̂ � ÎA �R ∼= (πA)!M ⊗R

Proof. Continuing from the proof of Theorem 8.1, we observe that the equivalence
C/S(?, ?) ' C ? identifies the shadow of C/S (restricted to C/S(?, ?)) with the identity
functor of C ?. Thus, this equivalence respects traces as well, and so the symmetric
monoidal trace of ξ ◦ f can be identified with its bicategorical trace (considered as a
morphism in C/S(?, ?)). But with this identification, (8.11) simply becomes an instance
of the functoriality of bicategorical trace [29, Prop. 7.5].
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As in the case of untwisted traces, we see that for total duality, bicategorical traces
carry more information than the induced symmetric monoidal ones.

Probably the most important case of Theorem 8.10 is the following. Let φ : A→ A be
an endomorphism of A ∈ S, and let f be a morphism M → φ∗M . We think of such an f
as a “φ-equivariant endomorphism of M”. Moreover, by Lemma 7.4 we can equivalently

regard f as a morphism M̂ → M̂�Aφ; thus its bicategorical trace will be a map I? →〈〈Aφ〉〉
in C ?.

We now want to apply Theorem 8.10 with Q = R = I? and P = Aφ. We choose ξ to
be the morphism

Aφ � ÎA
∼=−→ φ̂!IA

∼=−→ φ̂!φ∗IA −→ ÎA.

The trace of this ξ is an augmentation 〈〈Aφ〉〉→ I?, which reduces to the augmentation of

〈〈A〉〉 if φ is the identity. Theorem 8.10 then implies that tr(f̂) factors tr(ξ ◦ f) via this
augmentation.

Specializing even further, suppose that M = IA is totally dualizable; in this case we
may say that A itself is “totally dualizable”. Then for any φ, we can choose f to be the
isomorphism

IA ∼= φ∗IA. (8.12)

The bicategorical trace of this f is a morphism I? →〈〈Aφ〉〉, which we call the total-duality
trace of φ. In Proposition 12.5, we will prove that for this f and the above ξ, we have
ξ ◦ f = Σ(φ). Thus, we can deduce Theorem 1.2.

8.13. Corollary. For any totally dualizable A ∈ S and any φ : A → A, the total-
duality trace of φ is a morphism I? → 〈〈Aφ〉〉which factors the symmetric monoidal trace
tr(Σ(φ)) : I? → I? via an augmentation 〈〈Aφ〉〉→ I?.

In order to see what this means in examples, we need a way to compute the object
〈〈Aφ〉〉. We can do this with a generalization of the technique used for 〈〈A〉〉 in §5 involving
free loop spaces. Namely, suppose we have a homotopy pullback

LφA
p //

q

��

A

(id,φ)
��

A
∆
// A× A.

Then just as before, we have

〈〈Aφ〉〉= (πA)!(∆A)∗(idA×φ)∗(∆A)!IA ∼= (πA)!p!q
∗IA ∼= (πLφA)!ILφA = Σ(LφA).

The actual pullback of ∆ and (id, φ) is the equalizer of φ and the identity. Thus, in
non-derived situations, 〈〈Aφ〉〉 is Σ applied to this equalizer.
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8.14. Example. Let A be a finite set, so that the unit object IA in AbA is totally
dualizable, and let φ : A→ A be an endomorphism. Then the equalizer of φ and id is the
set Fix(φ) of fixed points of φ, so that 〈〈Aφ〉〉=

⊕
φ(a)=a Z = Z[Fix(φ)] is the free abelian

group on this set. The augmentation 〈〈Aφ〉〉→ Z takes each basis element to 1. The total-
duality trace of φ can then be computed as the homomorphism Z→ 〈〈Aφ〉〉which sends 1
to
∑

φ(a)=a a. Thus, its image under the augmentation is the number of fixed points of φ,

which is exactly the trace of ξ ◦ f = Σ(φ).

In derived situations, however, LφA will generally be a “twisted free loop space” whose
points are “paths” from a point x to φ(x).

8.15. Example. For a groupoid A with an endofunctor φ, the pseudo-pullback of (id, φ)
and ∆ is the groupoid LφA whose points are pairs (x, γ) where x ∈ A is an object and
γ ∈ homA(x, φ(x)) is a morphism. A morphism in LφA from (x, γ) to (y, δ) is a morphism
α : x → y in A such that an evident square commutes. Then 〈〈Aφ〉〉 is the colimit or
homotopy quotient (depending on whether we are in the underived or derived setting) of
the constant diagram on LφA.

In the underived case of Ab-valued profunctors, this implies that 〈〈Aφ〉〉 is the free
abelian group on the set of connected components of LφA. Using terminology from fixed-
point theory, we may call the connected components of LφA the fixed-point classes of
φ.

Similarly, in the derived case of ChZ-valued profunctors, 〈〈Aφ〉〉 is the complex of chains
on the nerve of LφA. By a straightforward generalization of Example 5.13, we can identify
the nerve of LφA with the “φ-twisted cyclic nerve” of A. When A is a group G, the chains
on its twisted cyclic nerve form the Hochschild complex of Z[G]φ as a bimodule over Z[G].
As before, in the general case we obtain a direct sum over isotropy groups. Also as before,
the derived-underived difference is not very important here, since the 0th homology of the
derived version gives us back the underived version.

However, passing to the derived version is important in order to have nontrivial totally
dualizable objects. As we saw in Examples 8.6 and 8.7, the unit object is rarely totally
dualizable as an Ab-valued profunctor, but as a ChZ-valued profunctor in the derived
case, it can sometimes be—for instance, when our groupoid is a group of type FP.

For a concrete example, let A be a finitely generated free groupoid, and let φ : A→ A
be an endofunctor. As we saw in Example 8.7, the unit object IA (i.e. the constant functor
at Z) is equivalent to the 2-term chain complex⊕

γ∈A1
Z[t(γ)A] d //

⊕
x∈A0

Z[xA].

Given φ : A → A, the twisted target φ∗IA of (8.12) is represented by the same complex,
but with the action of A twisted by φ. We can write this as⊕

γ∈A1
Z[t(γ)Aφ] d //

⊕
x∈A0

Z[xAφ].
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where for any object x, the profunctor Z[xAφ] is defined by

Z[xAφ](y) = Z[homA(φ(y), x)].

Now the morphism (8.12) can be represented by the chain map⊕
γ∈A1

Z[t(γ)A] d //

��

⊕
x∈A0

Z[xA]

��⊕
γ∈A1

Z[t(γ)Aφ]
d
//
⊕

x∈A0
Z[xAφ]

defined as follows:

• Each degree-0 generator (x, idx) goes to (φ(x), idφ(x)).

• Suppose that γ is a generating morphism such that φ(γ) is written in terms of
generators as

φ(γ) = αεnn · · ·α
ε1
1 ,

with each εi ∈ {+1,−1}. Then the degree-1 generator (γ, idt(γ)) goes to the sum

n∑
i=1

εi ·
(
αi, βi

)
where βi ∈ homA(t(γ), t(αi)) is defined by

βi =

{
α
−εi+1

i+1 · · ·α−εnn εi = 1

αiα
−εi+1

i+1 · · ·α−εnn εi = −1

By our calculation of 〈〈Aφ〉〉, the total-duality trace of φ will be a sum of conjugacy classes
of morphisms [δ] such that δ ∈ homA(φ(x), x) for some x (note δ is not necessarily a
generator). This can now be computed as a sum of the following terms:

(i) For every object x, if φ(x) = x, then we have a contribution of [idx].

(ii) For every generating morphism γ : x→ y, we have a contribution of

−
∑
αi=γ

εi · [βi]

with βi defined as above.

The augmentation 〈〈Aφ〉〉→ Z takes each generator [δ] to 1, so applying it to this sum, we
recover the trace as computed in Example 4.7.
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8.16. Example. Finally, this factorization is familiar in fixed point theory (the orig-
inal context that we are working to generalize). Let B be a closed smooth manifold
and φ : B → B be an endomorphism. Then working in the derived indexed symmetric
monoidal category of parametrized spectra, we have computed that 〈〈Bφ〉〉is the suspension
spectrum of the twisted loop space ΛφB = {γ ∈ BI |φ(γ(0)) = γ(1)}. The augmentation
is Σ∞+ applied to the map

ΛφB → ∗.

As remarked in Example 8.9, when B is a closed smooth manifold, its parametrized sphere
spectrum SB is totally dualizable. As usual, φ then induces a fiberwise morphism

f : SB → SB �Bφ,

whose bicategorical trace is a map S → Σ∞((ΛφB)+), hence an element of the 0th stable
homotopy group of (ΛφB)+. However, this group is canonically isomorphic to Z[π0(ΛφB)],
and π0(ΛφB) is the set of fixed-point classes of the map φ. Thus, the trace of φ is equiv-
alently a formal integral combination of fixed-point classes. Under this interpretation, it
can be identified with the original definition of the Reidemeister trace from [4,12], which
assigns to each fixed-point class the sum of the indices of the fixed points in that class.

Acting on 0th stable homotopy, the augmentation takes each fixed-point class in
π0(ΛφB) to 1. Therefore, Corollary 8.13 reduces to the obvious fact that if we add up the
Reidemeister coefficients over all fixed-point classes, we obtain the sum of the indices of
all fixed points, i.e. the trace of Σ∞(φ+).

Returning to the general situation, it is also natural to ask how the total-duality trace
of φ is related to the transfer of Σ(φ), as defined in §4. We can compare these by applying
Theorem 8.10 with a different choice of R and ξ. We take R = Σ(A), of course, and we
take ξ to be the following composite:

Aφ � ÎA
∼=−→ φ!IA

∼=−→ φ!φ
∗IA −→ IA −→ (πA)∗(πA)!IA

∼=−→ ÎA � Σ(A)

which we denote by ζ. (Note that the previous ξ is a factor of this ζ.)
The trace of ζ is a morphism tr(ζ) : 〈〈Aφ〉〉 → Σ(A), which factors the augmentation

〈〈Aφ〉〉→ I? through the augmentation Σ(A)→ I? (this follows from a triangle identity for
the adjunction (πA)! a (πA)∗). If φ is the identity, so that 〈〈Aφ〉〉= 〈〈A〉〉, then tr(ζ) is the
retraction of the comparison map Σ(A) → 〈〈A〉〉. In Proposition 12.6 we will prove that
ζ ◦ f = Σ(∆ ◦ φ). Thus, we obtain Theorem 1.3.

8.17. Corollary. For any totally dualizable A ∈ S and any φ : A→ A, the total-duality
trace of φ factors the symmetric monoidal transfer tr(Σ(∆ ◦ φ)) : I? → Σ(A) via the map
tr(ζ) : 〈〈Aφ〉〉→ Σ(A).

Thus, not only does the total-duality trace carry more information than the symmetric
monoidal trace, it also carries more information than the symmetric monoidal transfer.
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8.18. Example. As in Example 8.14, let φ : A→ A be an endomorphism of a finite set.
Then Σ(A) ∼= 〈〈A〉〉 is the free abelian group with basis A, and the morphism 〈〈Aφ〉〉→ Σ(A)
maps the basis elements of 〈〈Aφ〉〉 (the fixed points of φ) to themselves. Thus, the total-
duality trace

∑
φ(a)=a a ∈ 〈〈Aφ〉〉maps to the same sum

∑
φ(a)=a a ∈ Σ(A), which is the

transfer tr(∆ ◦ φ).

8.19. Example. As in Example 8.15, let φ : A→ A be an endomorphism of a finitely gen-
erated free groupoid, and recall from Example 4.9 that Σ(A) is the free abelian group on
the connected components of A. The morphism 〈〈Aφ〉〉→ Σ(A) takes each conjugacy class
[δ] to its connected component, and we see that the total-duality trace from Example 8.15
maps to the transfer from Example 4.9.

8.20. Example. As noted before, the transfer of an endomorphism φ : M → M of a
closed smooth manifold is an element of Z[π0(M)]. The induced morphism π0(ΛφM) →
π0(M) associates a homotopy class of paths to the component containing it. Thus, the
image in Z[π0(M)] of the Reidemeister trace has the coefficient of a component in π0(M)
being the sum of the fixed point indices of the fixed point classes lying in that component.

8.21. Remark. The idea in the proof of Theorem 8.10 can be applied to more general
traces in the bicategory C/S. Namely, suppose M ∈ C A×B is right dualizable, when
regarded as a 1-cell A −7−→ B in C/S. Let Q ∈ C A×A and P ∈ C B×B, and let f : Q�M →
M�P be a morphism, which therefore has a trace tr(f) : 〈〈Q〉〉→ 〈〈P 〉〉. Suppose furthermore

that as in Theorem 8.10, we have an R ∈ C ? and a morphism ξ : P�ÎA → ÎA�R. Then by

composition of dual pairs, M � ÎA ∼= ̂(πB)!M is right dualizable, and by the functoriality
of bicategorical trace, the following triangle commutes:

〈〈Q〉〉 tr(f) //

tr(ξ◦f) !!

〈〈P 〉〉
tr(ξ)
��
R.

However, by Theorem 6.1, it follows that (πB)!M is dualizable in the symmetric monoidal
category C A, and ξ ◦ f is a morphism

Q� ̂(πB)!M → ̂(πB)!M �R

of the sort to which we can apply Theorem 6.9(i). Therefore, there is a morphism

ξ ◦ f : (∆A)∗Q⊗A (πB)!M → (πB)!M ⊗A (πA)∗R

whose symmetric monoidal trace in C A carries the same information as tr(ξ ◦ f).
Thus, although it may seem that we have only considered two very special cases of

duality and trace in C/S, the general case involves no new ideas, being essentially just a
combination of these two.
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g

h

X

Y

A

Z

C
D

k

W

(a) A map in S

A A

A

(b) A diagonal

A

(c) A projection

Figure 2: String diagrams in a cartesian monoidal base category

This concludes our results on refinements of the symmetric monoidal trace, and also
the main part of the paper. In the subsequent sections, we introduce the string diagram
calculus for indexed monoidal categories and apply it to complete the postponed proofs
from §6 and §8.

9. String diagrams for objects

Our string diagram calculus for indexed monoidal categories is inherited from a similar
calculus used by C. S. Peirce in his “System Beta.” This was given a categorical interpre-
tation in terms of hyperdoctrines (indexed monoidal posets such as Examples 3.8 and 3.9)
by [1].

We begin with the usual string diagram calculus for morphisms in the base category S,
drawn proceeding down the page, with the morphisms of S contained in inverted triangles,
as shown in Figure 2(a). Since the diagonal and projection maps ∆A : A → A × A and
πA : A → ? play such an essential role, to reduce clutter we represent them by empty
triangles, as in Figures 2(b) and 2(c).

To this string diagram calculus we now add a new type of vertex, which we draw as a
square box. Such a vertex can only have strings coming in the top, never out the bottom,
and if the strings entering its top are labeled by objects A, B, C of S, then the box vertex
must be labeled by an object of the fiber category C A×B×C . Finally, we require that our
diagrams have no strings coming out the bottom either; all strings must end at a vertex
of one type or the other. Thus we arrive at string diagrams such as in Figure 3(a).

One way to define the value of such a diagram is as follows: first we take the external
product of all the fiber objects appearing (in box nodes), then we apply the reindexing
functor f ∗, where f is the composite of the S-portion of the diagram. Thus, according to
this scheme, the diagram in Figure 3(a) would have the value

(g × h× idB)∗(M �N).

However, there are other natural ways to “compose up” the same diagram, which for
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M N

g

h

D

C

A

D

B

(a) An object of CA×B

M N

A

A

A

(b) The fiberwise product M ⊗N

A

(c) The fiberwise unit IA

Figure 3: String diagrams in an indexed monoidal category

f

g

M N P

h

Figure 4: A string diagram involving indexed coproducts

Figure 3(a) give results such as

(h× id)∗(g × id)∗(M �N) and

(h× id)∗
((

(g × id)∗M
)
�N

)
.

The point of the string diagram notation is that all of these are canonically isomorphic
(using the coherence isomorphisms for the monoidal structures and reindexing functors).
A proper proof of validity for these string diagrams would make this precise, but we do
not have space to give such a proof here. Thus, properly speaking our string diagrams
are only an informal guide to the necessary calculations.

As a useful example, Figures 3(b) and 3(c) show string diagrams for the expres-
sions (2.10) and (2.11), giving the fiberwise monoidal product and unit in terms of the
external ones.

We now need a way to notate the adjoint functors f!. We do this by introducing a
third type of node, drawn with an upward-pointing triangle, which is also labeled by a
morphism of S but with the codomain on top and the domain on the bottom. For instance,
the diagram in Figure 4 represents the object (f!∆

∗(M � g!N)) � h!P . The diagrams in
Figures 5 and 6 are examples we have used earlier: Figure 5 is the bicategorical product,
unit and shadow from Theorem 5.2, while Figure 6 is the functor Σ from §4.

Using this notation, the Beck-Chevalley conditions corresponding to the four pullback
diagrams in Figure 1 on page 591 are shown in Figure 7 as isomorphisms between two
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M N

(a) M �N (b) UA

M

(c) 〈〈M 〉〉

Figure 5: The operations of the bicategory C/S

A

(a) Σ(A)

A B

(b) Σ(A⊗B) ∼= Σ(A)⊗ Σ(B)

Figure 6: The functor Σ

(fragments of) string diagrams. In all cases, the natural morphism goes in the direction
shown, and the content of the Beck-Chevalley condition is that this map is an isomor-
phism. The assumption that squares satisfying the Beck-Chevalley condition are closed
under taking cartesian products with another fixed object implies that these morphisms
are still invertible when they occur as fragments of larger diagrams. The transposes of
Figures 1(b) and 1(c) are represented by the top-to-bottom reflections of Figures 7(b)
and 7(c).

The isomorphism in Figure 7(a) is essential to our ability to make deformation-
invariant sense of string diagrams involving f! nodes. For this we also require that ⊗
preserves indexed coproducts, in order that the diagram in Figure 8 have an unambigu-
ous meaning.

As examples of reasoning using these diagrams, the associativity and unit isomor-
phisms of C/S are displayed graphically in Figure 9, while the shadow isomorphism
〈〈M �N〉〉 ∼= 〈〈N �M〉〉 is shown in Figure 10. In Figures 9(a) and 10, there are sim-
ple deformations connecting the two sides (using the symmetry of S in the case of the
shadow), which involve implicit applications of the “commutativity with reindexing” Beck-
Chevalley condition. In Figure 9(b) we also need to use the “Frobenius” Beck-Chevalley
condition. The coherence of these isomorphisms would follow from the “general validity”
theorem for string diagrams which we have omitted.

Another important example is provided by base change objects. Figure 11 shows the
string diagram definition of a base change object, while Figure 12 gives a graphical proof
of Lemma 7.4, the interaction between base change object and the bicategory composition.
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f

g

∼=−→
f

g

(a) Commutativity with reindexing

∼=−→

(b) The Frobenius axiom

f

f

∼=−→

f

(c) Sliding and splitting

∼=−→

(d) Monic diagonals

Figure 7: Beck-Chevalley conditions

f g

M N

Figure 8: (f × g)!(M �N) ∼= f!M � g!N

M N P

∼=

M N P

∼=

M N P

(a) Associativity

M

∼=

M

∼=

M

(b) Unitality

Figure 9: The constraints of the bicategory C/S
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M N

A A

B B ∼=

N M

B B

A A

Figure 10: The shadow constraint of C/S

f

∼=
f

f

∼=
f

Figure 11: The base change object fB

f

M

∼=

f

M

∼=

M

f

Figure 12: Proof of Lemma 7.4
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f

M

(a)

f

M

(b)

Figure 13: Transition to “slice diagrams”

10. String diagrams for morphisms

There is still something important missing from our string diagrams: morphisms in the
fiber categories C A. (Here we go beyond [1], since in their posetal setting there were no
morphisms to keep track of, only inequalities between objects.) Since we are representing
the objects of C A by two-dimensional diagrams, we need three dimensions for morphisms
between them.

We begin by rotating our string diagrams from the previous section to become hor-
izontal slices, so that we can connect them with vertically drawn strings. For example,
the string diagrams in Figures 13(a) and 13(b) represent the same object. Figure 13(a)
gives a representation as in the previous section, while Figure 13(b) is the version we will
use from now on. In these “slice” diagrams, the triangles for f! functors point to the left,
in contrast with those for f ∗ functors which point to the right.

The morphisms will be represented by composites of “basic” morphisms, each of which
is drawn as a node lying in between the corresponding slices, connected by strings to the
nodes above and below which are its “direct” input and output. For other nodes which
“do not participate” in the morphism, and thus appear identically above and below, we
connect their incarnations in the upper and lower slices by a direct string. Just as with
ordinary string diagrams, this allows us to see visually when two basic morphisms “do
not interact” at all, and thus can be “slid past each other” by using a naturality property.

As an example, suppose we have morphisms A
f−→ B

g−→ C in S, along with a mor-
phism φ : M → N in CD. Then the following square commutes, by naturality of the
pseudofunctor isomorphism f ∗g∗ ∼= (gf)∗:

f ∗g∗M
∼= //

f∗g∗φ

��

(gf)∗M

(gf)∗φ
��

f ∗g∗N ∼=
// (gf)∗N.

(10.1)

The equality of diagrams representing this commutative square is shown in Figure 14.
Hopefully the reader can see the advantage of this over (10.1). To distinguish the strings
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Mgf

Ngf

φ

Ngf

=

Mgf

Mgf

Ngf

φ

Figure 14: A slice diagram

g

ggg

g

=

g

g

(a) For a general g

=

(b) For the diagonal

Figure 15: Triangle identities for the adjunctions g! a g∗

in the slices from the strings that represent slice transitions, we draw the former with
black lines and the latter with colored lines. For additional clarity, we further distinguish
two different types of transition strings: those which connect to triangle vertices (which
represent morphisms of S) and those which connect to box vertices (which represent
objects in fiber categories). We draw the former with blue lines and the latter with red
lines.

The units and counits of the adjunctions f! a f ∗ will frequently occur as basic mor-
phisms in slice diagrams; we notate these with small blue triangles. As usual in string
diagram notations, the triangle identities for these adjunctions look like simple topological
deformations; some examples are shown in Figure 15.

In Figure 16 we further illustrate this notation by drawing the evaluation, coevaluation,
and one triangle identity for a dual pair in a fiber category. (Recall that unlabeled triangles
represent diagonal and projection morphisms.) We use small blue dots to represent the
pseudofunctoriality isomorphisms of the indexed category; in Figure 16(c) the blue dots
represent the isomorphisms

∆∗(π × id)∗ ∼= Id

∆∗(∆× id)∗ ∼= ∆∗(id×∆)∗

∆∗(id×π)∗ ∼= Id .

Observe that the red strings connecting the box nodes in Figure 16(c) display the same
shape as the usual representation of a triangle identity in a monoidal category.
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M

MF

ε

(a) The evaluation

M

MF

η

(b) The coevaluation

M M

M ∆∗(π∗U �M)

∼=

M
MF

M
∆∗(∆∗(M �MF)�M)

∆∗(η � id)

M
MF

M
∆∗(M �∆∗(MF �M))

∼=

M ∆∗(M � π∗U)

∆∗(id� ε)

M M

∼=

η

ε

= = idM

(c) A triangle identity

Figure 16: A dual pair in a fiber category
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f

g

f

g

(a) Commutativity with reindexing (b) The Frobenius axiom

f
f

f

(c) Sliding and splitting (d) Monic diagonals

Figure 17: Surfaces for Beck-Chevalley conditions

The Beck-Chevalley conditions corresponding to the four pullback diagrams in Fig-
ure 1, and which were shown in Figure 7 as isomorphisms between two (fragments of)
string diagrams, are displayed in Figure 17 as morphisms between slices. The transposes
of Figures 1(b) and 1(c) are represented by the left-to-right reflections of Figures 17(b)
and 17(c), respectively.

In Figure 17(a) we draw the Beck-Chevalley morphism simply as one blue string cross-
ing in front of another, since it represents merely a deformation of the slice diagrams. In
Figure 17(d) we notate the Beck-Chevalley morphism with a triangle, since it can be
identified with the unit of the adjunction ∆! a ∆∗. Finally, for the Beck-Chevalley mor-
phisms in Figures 17(b) and 17(c), and their inverses when these occur, we use a small
blue diamond. The isomorphisms in Figures 17(b), 17(c), and 17(d), however, are less
“topological” than that in Figure 17(a) (although Figure 17(b) becomes a topological de-
formation if we replace our strings by tubes, as is well-known in the context of Topological
Quantum Field Theory).

We end this section with an important computation that will be used many times in

the following sections. First of all, since the composite A
∆A−−→ A × A

πA×idA−−−−→ A is the
identity idA, we have

(∆A)∗(πA × idA)∗ ∼= Id and (πA × idA)!(∆A)!
∼= Id . (10.2)

These isomorphisms already appeared in Figure 16(c); in Figure 18(a) we isolate them.
Secondly, we can say more: the adjunction (πA × idA)!(∆A)! a (∆A)∗(πA × idA)∗ is

isomorphic to the identity adjunction. In particular, its unit

Id −→ (∆A)∗(∆A)! −→ (∆A)∗(πA × idA)∗(πA × idA)!(∆A)!
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is equal to the composite of the inverses of the isomorphisms (10.2). Graphically, this
implies that the “blob” in Figure 18(b) is equal to the identity. We obtain Figure 18(c),
which we call a curlycue identity, by moving one of the isomorphisms (10.2) to the other
side.

Finally, in Figure 18(d), we go from the first diagram to the second by adding a triangle
identity for the adjunction ∆! a ∆∗ at the top and sliding the counit down to the bottom,
then to the third diagram by applying the curlycue identity. We will refer to the equality
of the first and third diagrams in Figure 18(d) as a broken zigzag identity.

10.3. Remark. We have remarked that the Beck-Chevalley morphism for the non-
homotopy-pullback square in Figure 1(d) is simply the unit Id → (∆A)∗(∆A)! of the
adjunction (∆A)! a (∆A)∗. Thus, the fact that Figure 18(b) is the identity means that
regardless of whether the Beck-Chevalley condition holds, this morphism is always split
monic; the lower 2/3 of Figure 18(b) supplies a retraction. (We would obtain a different
retraction, however, by using id×π instead of π × id.)

10.4. Remark. There are other ways to depict the adding of a dimension to string
diagrams. Rather than using a new type of string as we have done, a more usual approach
would be to keep the codimension of all elements constant as we move up in dimension.
Thus, we would replace the strings and nodes occurring in the two-dimensional slice
diagrams by surfaces and strings, respectively, and then use 0-dimensional nodes for the
morphisms in the fiber categories.

Arguably, using surfaces is the “correct” representation, and our “slice” diagrams can
in fact be viewed as slices of surfaces. The strings and nodes in the slices are slices of
surfaces and strings, while the vertically drawn strings are actual strings in the surface
diagram (singular junctions of surfaces) and the nodes along them are actual nodes. The
reader is welcome to interpret our diagrams in this way. One advantage of this viewpoint
is that then pictures such as those in Figure 15(b) are related by a simple topological
deformation. Moreover, if we view the an indexed monoidal category as sitting inside the
bicategory constructed from it, as suggested in Remark 7.5, then such surface diagrams
can be regarded as a fragment of the more traditional surface diagrams for monoidal
bicategories. (Our string diagrams are in fact an adaptation of a “schematic” or “hybrid”
sort of surface diagram for monoidal bicategories that was suggested to us by Daniel
Schäppi.)

However, the authors find it quite difficult to draw and visualize even moderately
complicated surface diagrams—whereas we can easily manipulate our “slice-transition”
diagrams schematically, without attempting to figure out what sort of “surfaces” they
represent.

11. Proofs for fiberwise duality and trace

In this section we will prove Theorems 6.1 and 6.9, using string diagram calculations.
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(a) The isomorphisms (10.2) (b) The blob

=

(c) Straightening out a curlycue

= =

(d) The broken zigzag

Figure 18: Blobs, curlycues, and broken zigzags
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Proof of Theorem 6.1 For M̂ to be right dualizable, we require a 1-cell (M̂)F : 1 −7−→ A,

which of course is of the form N̂ for some N ∈ C A, and morphisms

η : UA −→ M̂ � N̂

ε : N̂ � M̂ −→ U?

satisfying the triangle identities. Substituting in the definitions of the structure of C/S,
we can rewrite such maps as

η : (∆A)!IA −→ π∗1M ⊗ π∗2N
ε : (πA)!(M ⊗N) −→ I?.

These morphisms are depicted in Figures 19(a) and 19(b).
However, giving such maps is equivalent to giving their adjuncts

η : IA −→ ∆∗A(π∗1M ⊗ π∗2N)
∼=−→ ∆∗Aπ

∗
1M ⊗∆∗Aπ

∗
2N

∼=−→M ⊗N

ε : (M ⊗N) −→ (πA)∗I?
∼=−→ IA

and these are exactly the maps required to make N into a dual of M in C A, as shown
in Figures 16(a) and 16(b). This gives us a bijection between putative evaluation-

coevaluation morphisms for dual pairs (M,N) and (M̂, N̂). In Figures 19(c), 19(d),
19(e), and 19(f), we show explicitly how this bijection works.

Thus, it remains only to verify that η and ε satisfy the appropriate triangle identities
if and only if η and ε satisfy their triangle identities. We will verify this for one triangle
identity; the other is similar and left to the reader. Refer to Figures 20 and 21.

In Figure 20(a) we show the composite which the bicategorical triangle identity asserts
to be equal to an identity. The morphisms occuring at the top prior to the coevaluation
η comprise the isomorphism from Figure 9(b) (spelled out in more detail), using the
definition of the Beck-Chevalley morphism from Figure 7(d). In Figure 20(b) we have
replaced η and ε with their equivalents in terms of the symmetric monoidal η and ε.
Then in Figure 20(c), we slide a number of morphisms past each other, in the way which
string diagram notation makes easy to see. To get to Figure 21(a), we apply a triangle
identity for the adjunction ∆! a ∆∗, as in Figure 15(b). In Figure 21(b) we do some more
sliding, and then finally in Figure 21(c) we apply (the dual of) the curlycue identity from
Figure 18(c). But Figure 21(c) is exactly the composite which the symmetric monoidal
triangle identity asserts equal to an identity. Thus, one triangle identity holds if and only
if the other does.

Proof of Theorem 6.9(i) The definition of g is shown in Figure 22(a). We must show
that the bicategorical trace

tr(g) : (πA)!(∆A)∗Q = 〈〈Q〉〉−→ 〈〈P 〉〉= P
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M

MF

ε

(a) The bicategorical evaluation

M

MF

η

(b) The bicategorical coevaluation

M

MF

M

MF

ε

(c) The symmetric monoidal evaluation
in terms of the bicategorical one

M

MF

η

(d) The symmetric monoidal coevaluation
in terms of the bicategorical one

M

MF

ε
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(f) The bicategorical coevaluation in
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Figure 19: The correspondence between symmetric monoidal and bicategorical evaluation
and coevaluation
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Figure 20: Comparison of fiberwise duals, steps 1–3
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Figure 21: Comparison of fiberwise duals, steps 4–6
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(a) The map g in Theorem 6.9(i)
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(b) The bicategorical tr(g)

Figure 22: Two morphisms from the proof of Theorem 6.9(i)
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is equal to the composite

(πA)!(∆A)∗Q
(πA)! tr(g)−−−−−−→ (πA)!π

∗
AP −→ P. (11.1)

In Figure 22(b) we show tr(g), while in Figure 23 we show (11.1) with the definition of
g substituted. We can first of all consider the parts of these diagrams occurring above g
separately from those occurring below g; it will clearly suffice to show that each of these
pairs are equal.

In Figure 24 we treat the lower parts. Figure 24(a) is the lower part of Figure 23. To
obtain Figure 24(b), we change the isomorphism

∆∗(id×π∗)π∗ ∼= π∗

from one which contracts ∆ with the second π to one which contracts it with the first.
The two are equal by pseudofunctor coherence, since both are induced by the equality
π(id×π)∆ = π.

Then in Figure 24(c) we slide ε and the symmetry down to the bottom. This yields
the lower part of Figure 22(b) (recalling the relationship of the symmetric monoidal and
bicategorical evaluations) together with a composite of pseudofunctoriality isomorphisms
on top. But by pseudofunctor coherence, this composite is equal to the identity.

Next, in Figure 25 we begin considering the upper parts. In Figure 25(a) we show the
upper part of Figure 23, with the symmetric monoidal coevaluation written in terms of
the bicategorical one. Then in Figure 25(b) we slide the bicategorical η all the way to the
bottom (directly above g, which divides the upper from the lower parts).

Since η also occurs directly above g in Figure 22(b), it suffices to compare the parts
of Figures 22(b) and 25(b) occurring above η. Moreover, we may also ignore the Q node
and the (πA)! node on the far left, since neither plays any role in either of these diagrams.

Now, in Figure 26(a) we have copied the part of Figure 22(b) above η, with Q and
(πA)! omitted and the definition of the Frobenius morphism substituted. In Figure 26(b)
we simply slide, and then to get to Figure 26(c) we apply the broken zigzag identity
(Figure 18(d)).

In Figure 27(a) we replace the isomorphism at the very top by a composite of two
other isomorphisms, which is equal to it by pseudofunctor coherence. Figure 27(b) is
a simple slide, and then in Figure 27(c) we replace the composite of two associativity
isomorphisms by the composite of three (the “pentagon identity,” which also holds by
pseudofunctor coherence).

In Figure 28(a) we slide the lower of these associativities past a unit, and finally in
Figure 28(b) we compose two isomorphisms at the bottom to obtain a different one (again
by pseudofunctor coherence). The result is exactly the part of Figure 25(b) above η, with
Q and (πA)! omitted.

Proof of Theorem 6.9(ii) We define f̃ to be the composite

(∆A)!Q� M̂
∼=−→ Q⊗M f−→M ⊗ P →M ⊗ (πA)∗(πA)!P

∼=−→ M̂ � (πA)!P.
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Figure 23: The symmetric monoidal ε ◦ (π!)! tr(g)
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Figure 24: Lower part, from the proof of Theorem 6.9(i)
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Figure 25: Upper part I, from the proof of Theorem 6.9(i)
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Figure 26: Upper part II, from the proof of Theorem 6.9(i)
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(a) Step 4 (b) Step 5 (c) Step 6

Figure 27: Upper part III, from the proof of Theorem 6.9(i)
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Figure 28: Upper part IV, from the proof of Theorem 6.9(i)
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M

Q
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Q

M

Q
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M

f

P

M

P
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Figure 29: The map f̃ in Theorem 6.9(ii)

This is pictured in Figure 29. We now claim that the following square commutes.

Q⊗M //

f

��

(∆A)∗(∆A)!Q⊗M

f̃
��

M ⊗ P //M ⊗ (πA)∗(πA)!P

(11.2)

To show this, we substitute f̃ from Figure 29 as g in Figure 22(a) (replacing Q by ∆!Q
and P by π!P ). Canceling the isomorphism ∆∗(id×π)∗ ∼= Id with its inverse, we see that
what is left at the bottom of the resulting diagram is exactly the left-bottom composite
of (11.2). Therefore, it suffices to show that what remains above this becomes the identity
when composed with the top arrow in (11.2). By inverting the first two transitions in
Figure 29, this is equivalent to the equality shown in Figure 30. However, this follows by
a simple sliding and the broken zigzag identity from Figure 18(d).

Now, from the conclusion of (i) and the naturality of symmetric monoidal traces, we
can conclude that the following diagram commutes.

(πA)!Q //

(πA)! tr(f)

��

(πA)!(∆A)∗(∆A)!Q

(πA)! tr(f̃)
��

tr(f̃)

((
(πA)!P // (πA)!(πA)∗(πA)!P // (πA)!P



650 KATE PONTO AND MICHAEL SHULMAN

M

Q

M

Q

M

Q

M

Q

M

Q

=

M

Q

M

Q

M

Q

M

Q

M

Q

Figure 30: The sufficient condition for Theorem 6.9(ii)

But the composite along the bottom of this diagram is the identity, by a triangle law for
the adjunction (πA)! a (πA)∗. This yields the desired result.

Proof of Theorem 6.9(iii) The bijection between the two types of morphism is im-
mediate, since the respective domains and codomains are isomorphic. For a morphism
f : Q⊗M →M ⊗ (πA)∗P , the corresponding f̂ : (∆A)!Q� M̂ → M̂ � P is shown on the
left side of Figure 31. Moreover, given f : Q⊗M → M ⊗ (πA)∗P , we can also construct

f̃ as in part (ii) (replacing P by (πA)∗P ), and we claim that f̂ is the composite

(∆A)!Q� M̂
f̃ // M̂ � (πA)!(πA)∗P

id�ε // M̂ � P. (11.3)

This composite is shown on the right side of Figure 31; a slide and a triangle identity
suffice to prove the equality. Now the desired result follows from the conclusion of part (ii)
together with the naturality of bicategorical traces [29, Prop. 7.1].

12. Proofs for total duality and trace

In contrast to the fiberwise case, our general comparison theorems for total duality traces
were completely formal, not requiring any string diagram calculations. However, the two
most interesting applications, namely Corollaries 8.13 and 8.17, required identifying the
composites ξ ◦ f and ζ ◦ f as Σ(f) and Σ(∆A ◦ f), respectively, and for this we do need
some calculation.

Recall that we have an endomorphism φ : A → A of A ∈ S and that we defined f to
be the isomorphism

IA ∼= φ∗IA (12.1)



DUALITY AND TRACES FOR INDEXED MONOIDAL CATEGORIES 651

M

Q

M

Q

M

Q

P

M

P

M

f

M

=

M

Q

M

Q

M

Q

P

M

f

P

M

P

M

P

M

Figure 31: The map f̂ in Theorem 6.9(iii)
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regarded as a morphism ÎA → ÎA � Aφ. We defined ξ be the morphism

Aφ � ÎA
∼=−→ φ̂!IA

∼=−→ φ̂!φ∗IA −→ ÎA.

By definition, then, the composite ξ ◦ f becomes

(πA)!IA
∼=−→ ÎA � ÎA

∼=−→
̂
φ∗IA � ÎA

∼=−→ ÎA � Aφ � ÎA
∼=−→ ÎA � φ̂!IA

∼=−→ ÎA � φ̂!φ∗IA −→ ÎA � ÎA
∼=−→ (πA)!IA. (12.2)

To give a simpler description of this composite we start by considering the composite
of only the third and fourth morphisms (the two on the second line of (12.2)). These are
instances of Lemma 7.4. Tracing through their definitions yields a fairly long composite
of isomorphisms, but fortunately it is equal to something simpler, as an instance of the
following lemma.

12.3. Lemma. Let M ∈ C B, N ∈ C A, and let φ : A→ B be a morphism in S. Then the
composite ̂

φ∗M � N̂
∼=−→ M̂ �Bφ � N̂

∼=−→ M̂ � φ̂!N. (12.4)

is equal to
̂
φ∗M � N̂ = (πA)!(∆A)∗(φ∗M �N)

∼= (πB)!φ!(∆A)∗(φ∗M �N)
∼= (πB)!(∆B)∗(M � φ!N)

= M̂ � φ̂!N.

Proof. A straightforward, though tedious, verification, using the coherence of Beck-
Chevalley morphisms (the techniques for computation with mates described in [19] are
useful).

The composite displayed in Lemma 12.3 is shown graphically in Figure 32. Note the
occurrence of the “sliding and splitting” Beck-Chevalley isomorphism (recall Figure 1(c)).

12.5. Proposition. The composite ξ ◦ f is Σ(φ).

Proof. Using Lemma 12.3, and unfolding the definition of the “sliding and splitting”
Beck-Chevalley morphism, (12.2) becomes the morphism shown in Figure 34(a). In Fig-
ure 34(b) we simply rearrange the order of all the morphisms, sliding the counit φ!φ

∗ → Id
on the far left down to the bottom, the isomorphism φ∗π∗ ∼= π∗ on the far right up to the
top, and rearranging things in the middle so that the other unit and counit meet.

In Figure 35(a) we cancel the internal unit and counit using a triangle identity. Now
we have the isomorphisms φ∗π∗ ∼= π∗ and π!φ!

∼= π! at the top, a counit φ!φ
∗ → Id

at the bottom, and in the middle a composite of pseudofunctoriality isomorphisms for
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M
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φ
φ
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Nφ

Figure 32: The simplified version of (12.4)

reindexing functors, which starts and ends at π!φ!φ
∗π∗. This middle composite is extracted

in Figure 35(b), after peeling off the π!φ! and π∗ (which are unchanged throughout). By
coherence for pseudofunctors, this composite is equal to the identity, so that Figure 35(a)
is equal to Figure 35(c). But this is exactly Σ(φ) (see (4.3)).

This completes the proof of Corollary 8.13; we now move on to Corollary 8.17. In this
case, we defined ζ to be the composite

Aφ � ÎA
ξ−→ IA −→ (πA)∗(πA)!IA

∼=−→ ÎA � Σ(A)

where ξ is as above.

12.6. Proposition. The composite ξ ◦ f is Σ(∆A ◦ φ).

Proof. Since ζ factors through ξ, ζ ◦ f factors through ξ ◦ f . Applying Proposition 12.5,
we see that ζ ◦ f is equal to the composite

Σ(A)
Σ(φ)−−→ Σ(A) = (πA)!IA −→ (πA)!(πA)∗(πA)!IA

∼=−→ Σ(A)⊗ Σ(A).

Thus, it will suffice to show that the composite

(πA)!IA −→ (πA)!(πA)∗(πA)!IA
∼=−→ Σ(A)⊗ Σ(A). (12.7)

is equal to Σ(∆A). Now, by definition, Σ(∆A) is equal to the composite in Figure 33(a).
We can rewrite the initial pseudofunctoriality isomorphisms to obtain Figure 33(b), and
then apply the broken zigzag identity (Figure 18(d)) to obtain Figure 33(c). In Fig-
ure 33(d) we isotope sideways, and then in Figure 33(e) we slide the adjunction unit to
the top. Finally, we can cancel the isomorphisms in the middle by pseudofunctor coher-
ence, obtaining Figure 33(f), which is exactly (12.7).
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 33: The last half of ζ
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Figure 34: The composite ξ ◦ f , steps 1–2
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