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REFLECTIVE-COREFLECTIVE EQUIVALENCE

ERIK BÉDOS, S. KALISZEWSKI, AND JOHN QUIGG

Abstract. We explore a curious type of equivalence between certain pairs of reflective
and coreflective subcategories. We illustrate with examples involving noncommutative
duality for C∗-dynamical systems and compact quantum groups, as well as examples
where the subcategories are actually isomorphic.

1. Introduction

Our intent in writing this paper is to explore a special type of equivalence between cer-
tain pairs of reflective and coreflective subcategories. We have noticed that in certain
categories involving C∗-algebras, there is a pair of equivalent subcategories, one reflective
and the other coreflective, and moreover this equivalence really depends only upon certain
categorical properties, and not upon the theory of C∗-algebras. To highlight the categor-
ical nature of this phenomenon, we will present the equivalence from a purely abstract
category-theoretical point of view, and then describe several examples from C∗-algebra
theory.

To give an idea of what our equivalence entails, consider subcategoriesM and N of a
category C. Letting IncM denote the inclusion functor ofM into C and F |M = F ◦ IncM :
M→D the restriction of a functor F : C → D, let us say thatM and N are C-equivalent
if M = N or there exist functors S : C → M, T : C → N such that T |M :M→ N and
S|N : N →M are quasi-inverses of each other. Clearly,M and N are then equivalent as
categories in the usual sense and it is easy to check that C-equivalence is an equivalence
relation. Now assume thatM is coreflective in C and N is reflective in C, with coreflector
M : C → M and reflector N : C → N , respectively. The restriction N |M is then a
left adjoint of M |N , and in order to prove that M and N are C-equivalent, it suffices to
show that the adjunction N |M aM |N is an adjoint equivalence. When this happens may
be characterized in several ways. One of them involves the counit ψ of the adjunction
IncM a M and the unit θ of the adjunction N a IncN , which enjoy certain universal
properties by definition. We show in Section 4 that N |M aM |N is an adjoint equivalence
if and only if, when everything is restricted to the subcategories, each of ψ and θ actually
possesses both universal properties.
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our considerations may be enlarged to characterize when a composite adjunction gives an
adjoint equivalence. For the benefit of specialists in category theory, we have devoted a
separate section (Section 3) to this more general approach. We thank Professor Street
warmly for his permission to include this material.

Our first main example of the reflective-coreflective equivalence involves normal and
maximal coactions of a locally compact group on C∗-algebras. It has already appeared in
the literature [7], but we provide an alternative development, with several improvements
arising from a close scrutiny of the underlying category theory. To avoid interrupting the
exposition of this equivalence, we have relegated the prerequisite background on coactions
and their crossed products to an appendix.

Our second example deals with reduced and universal compact quantum groups. The
equivalence of the two associated categories is surely known to experts in quantum group
theory, but does not seem to be mentioned in the existing literature. We also include
two other examples involving tensor products of C∗-algebras and group representations,
in which the subcategories are not only equivalent but in fact isomorphic.

2. Preliminaries

We record here our conventions regarding category theory. All of this can be found in [10].
We assume familiarity with elementary category theory, e.g., adjoint functors, coreflective
and reflective subcategories. However, since we want this paper to be readable by operator
algebraists, among others, we give somewhat more detail in this preliminary section than
might seem customary to a category theorist.

2.1. Notation. If C and D are categories, we write:

(i) Obj C for the class of objects in C;

(ii) C(x, y) for the set of morphisms with domain x ∈ Obj C and codomain y ∈ Obj C,
and f : x→ y in C to mean f ∈ C(x, y);

(iii) 1x for the identity morphism of the object x;

(iv) (most of the time) Ff rather than F (f) for the value of a functor F : C → D at a
morphism f (although we usually write compositions of morphisms as f ◦ g rather
than fg).

Recall that a functor F : C → D is called full (respectively, faithful) if it maps C(x, y)
surjectively (respectively, injectively) to D(Fx, Fy) for all x, y ∈ Obj C, and essentially
surjective if every object in D is isomorphic to one in the image of F .

If x ∈ Obj C and G : D → C is a functor, we write x ↓ G for the comma category
whose objects are pairs (y, f), where y ∈ ObjD and f : x → Gy in C, and in which
h : (y, f) → (z, g) means that h : y → z in D and (Gh) ◦ f = g. Dually, we write G ↓ x
for the comma category whose objects are pairs (y, f), where y ∈ ObjD and f : Gy → x
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in C, and in which h : (y, f) → (z, g) means that h : y → z in D and g ◦ (Gh) = f . If
IncD : D ↪→ C is an inclusion functor, we write

x ↓ D = x ↓ IncD and D ↓ x = IncD ↓ x.

In the particular case that D = C, the categories x ↓ D and D ↓ x are sometimes called
slice categories.

A more general definition goes follows: given functors F : C → D and G : E → D, the
comma category F ↓ G has as objects all triples (x, y, f), with x ∈ Obj C, y ∈ Obj E and
f : Fx→ Gy in D, and as morphisms (x, y, f)→ (x′, y′, f ′) all pairs (k, h) of morphisms
k : x → x′ in C, h : y → y′ in E such that f ′ ◦ (Fk) = (Gh) ◦ f . The composite
(k′, h′) ◦ (k, h) is (k′ ◦ k, h′ ◦ h), when defined.

Recall that if x ∈ Obj C and G : D → C is a functor, a universal morphism from x to
G is an initial object in the comma category x ↓ G, and, dually, a universal morphism
from G to x is a final object in G ↓ x.

Thus, a universal morphism (u, η) from x to G is characterized by the following uni-
versal property: whenever f : x → Gy in C there is a unique morphism g in D making
the diagram

x
η //

f   AAAAAAAA Gu

Gg
���
�
� u

g!

���
�
�

Gy y

commute, and, dually, a universal morphism (u, ε) from G to x is characterized by the
universal property that whenever f : Gy → x in C there is a unique morphism g in D
making the diagram

Gy

Gg

���
�
�

f

  AAAAAAAA
y

g!

���
�
�

Gu ε
// x u

commute.
Also, (u, η) is a universal morphism from x to G if and only if for every y ∈ ObjD the

map φ : D(u, y)→ C(x,Gy) defined by

φ(g) = (Gg) ◦ η

is bijective, in which case we have η = φ(1u). Dually, (u, ε) is a universal morphism from
G to x if and only if for every y ∈ ObjD the map ψ : D(y, u)→ C(Gy, x) defined by

ψ(g) = ε ◦Gg

is bijective, in which case we have ε = ψ(1u). If G = IncD : D ↪→ C, we refer to universal
morphisms from x to D, or from D to x. A morphism η : x→ u in C is an isomorphism
if and only if (u, η) is a universal morphism from x to C. The dual statement is also true.
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A functor F : C → D is a left adjoint of a functor G : D → C, or G is a right adjoint
of F , if there are bijections

φx,y : D(Fx, y)→ C(x,Gy) for all x ∈ Obj C, y ∈ ObjD

that are natural in x and y. In this case, we write ‘F a G’, and refer to F a G as an
adjunction from C to D. As is customary, we usually drop the subscripts x, y from the φ,
which causes no confusion.

If F a G, with natural bijections φ : D(Fx, y) → C(x,Gy), then for every x ∈ Obj C
the pair (Fx, ηx) is a universal morphism from x to G, where ηx = φ(1Fx); and for every
y ∈ ObjD the pair (Gy, εy) is a universal morphism from F to y, where εy = φ−1(1Gy).
Recall that η : 1C → GF is called the unit of the adjunction F a G, and ε : FG→ 1D is
the counit.

Conversely, given a functor G : D → C, if for each x ∈ Obj C we have a universal
morphism (Fx, ηx) from x to G, then the map F on objects extends uniquely to a functor
such that η : 1C → GF is a natural transformation, and moreover F a G, with natural
bijections φ : D(Fx, y)→ C(x,Gy) defined by φ(g) = Gg ◦ ηx.1

If, given G : D → C, we only know that for every x ∈ Obj C there exists a universal
morphism from x to G, then an Axiom of Choice for classes says that we can choose one
such universal morphism (Fx, ηx) for every x; thus G is left-adjointable if and only if
every x ∈ Obj C has a universal morphism to G. Dually, a given functor F : C → D is
right-adjointable if and only if every y ∈ ObjD has a universal morphism from F .

It follows that F a G if and only if there exists a natural transformation η : 1C → GF
such that, for every x ∈ Obj C, the pair (Fx, ηx) is a universal morphism from x to G.
There is a similar characterization in terms of ε.

For any functor G : D → C, the left adjoints of G form a natural isomorphism class,
and dually for any functor F : C → D, the right adjoints of F form a natural isomorphism
class.

Certain properties of adjoints are related to properties of the unit and counit, as
illustrated in the following standard lemma.

2.2. Lemma. Let F a G, with unit η and counit ε.

(i) F is faithful if and only if every ηx is a monomorphism.

(ii) F is full if and only if every ηx is a split epimorphism.

(iii) F is full and faithful if and only if η : 1C → GF is a natural isomorphism.

(iv) G is faithful if and only if every εy is an epimorphism.

(v) G is full if and only if every εy is a split monomorphism.

1Dually, if F : C → D is a functor, and if for all y ∈ ObjD we have a universal morphism (Gy, εy) from
F to y, then the map G extends uniquely to a functor such that ε : FG→ 1D is a natural transformation,
and moreover F a G, with natural bijections φ : D(Fx, y)→ C(x,Gy) determined by φ−1(f) = εy ◦ Ff .
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(vi) G is full and faithful if and only if ε : FG→ 1D is a natural isomorphism.

Adjunctions can be composed: if F : C → D, G : D → C,H : D → E , and K : E → D
are functors with F a G and H a K, then H ◦ F a G ◦K.

Recall that if F : C → D is an equivalence, so that there is a functor G : D → C such
that2 GF ∼= 1C and FG ∼= 1D, then F and G are called quasi-inverses of each other; F
and G are then left and right adjoint of each other, and C and D are called equivalent.

An adjunction F a G from C to D is called an adjoint equivalence if both its unit and
counit are natural isomorphisms, i.e., if both F and G are full and faithful (using Lemma
2.2); clearly, F and G are then quasi-inverses, and C and D are equivalent.

A functor F : C → D is an equivalence if only if it is full, faithful, and essentially
surjective, in which case a functor from D to C is a quasi-inverse of F if and only if it is
a right adjoint of F , if and only if it is a left adjoint of F .

Subcategories A subcategory N of C is reflective if the inclusion functor IncN : N → C
is left-adjointable, and any left adjoint N of IncN is then called a reflector of C in N .

Such a reflector N : C → N is completely determined by the choice of a universal
morphism (Nx, θx) from x to N for each object x of C. The universal property says that
every morphism in C from x to an object in N factors uniquely through θx:

x
θx //

##GGGGGGGGG Nx

!
���
�
�

z ∈ N .

Hence, if f : x→ y in C, then Nf is the unique morphism in N making the diagram

x
θx //

f

��

Nx

Nf!
���
�
�

y
θy
// Ny

commute.
The associated natural transformation θ : 1C → IncN ◦N is then the unit of the

adjunction N a IncN . Its counit ρ : N ◦ IncN → 1N is the natural transformation given
by letting ρy : Ny → y be the unique morphism in N such that ρy ◦ θy = 1y for each
y ∈ ObjN , and (y, ρy) is then a universal morphism from N to y.

Note that if N is full, then IncN is full and faithful, so the counit ρ is a natural
isomorphism and θy = ρ−1

y when y ∈ ObjN . In this case we could in fact choose θy = 1y,
i.e., we could arrange that N |N = 1N ; the counit ρ would then be just the identity
transformation and the reflector N : C → N could be thought of as a sort of “projection”
of C onto N .

2Between functors, the symbol ‘∼=’ always denotes natural isomorphism.
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Dually, a subcategoryM of C is coreflective if the inclusion functor IncM :M→ C is
right-adjointable, and any right adjoint M of IncM is called a coreflector of C in M.

Such a coreflector M is completely determined by the choice of a universal morphism
(Mx,ψx) from M to x for each object x of C. The universal property says that every
morphism from an object of M to x factors uniquely through ψx:

y ∈M

##GGGGGGGGG

!
���
�
�

Mx
ψx

// x.

Hence, if g : z → x in C, then Mg is the unique morphism in M making the diagram

Mz
ψz //

Mg !
���
�
� z

g

��
Mx

ψx
// x

commute.
The associated natural transformation ψ : IncM ◦M → 1C is then the counit of the

adjunction IncM a M . Its unit σ : 1M → M ◦ IncM is the natural transformation given
by letting σy : y → My be the unique morphism in M such that ψy ◦ σy = 1y for each
y ∈ ObjM, and (y, σy) is then a universal morphism from y to M .

Similarly to reflective subcategories, note that ifM is full, then the unit σ is a natural
isomorphism and ψy = σ−1

y when y ∈ ObjM. In this case we could choose ψy = 1y, i.e.,
we could arrange that M |M = 1M and the coreflector M : C → M could be thought of
as a sort of “projection” of C onto N . However, since this projection property can also
be made to happen with reflective subcategories, it is not terrifically informative.

3. Composite adjoint equivalence

Throughout this section we consider categories C,M, and N , and functors I, J , M , and
N as shown:

M
I //

NI

%%
C

N //

M
oo N

J
oo

MJ

ff

We further assume that N a J and I a M ; this provides us with units θ : 1C → JN and
σ : 1M →MI, and counits ρ : NJ → 1N and ψ : IM → 1C.

The unit η : 1M → MJNI and the counit ε : NIMJ → 1N for the composite
adjunction NI aMJ are given by

η = MθI · σ , ε = ρ ·NψJ .



148 ERIK BÉDOS, S. KALISZEWSKI, AND JOHN QUIGG

In other words, we have:

ηx = (MθIx) ◦ σx for each x ∈ ObjM ; (1)

εy = ρy ◦ (NψJy) for each y ∈ ObjN . (2)

We are interested in conditions ensuring that NI aMJ is an adjoint equivalence, i.e.,
in η and ε being natural isomorphisms.

3.1. Theorem. The following conditions are equivalent:

(i) For each x ∈ ObjM, (x, θIx) is a final object in I ↓ JNIx.

(ii) NI is full and faithful.

(iii) η is a natural isomorphism.

If I is full and faithful, then conditions (i)–(iii) are equivalent to

(iv) MθIx is an isomorphism in M for each x ∈ ObjM.

Similarly, the following conditions are equivalent:

(v) For each y ∈ ObjN , (y, ψJy) is an initial object in IMJy ↓ J .

(vi) MJ is full and faithful.

(vii) ε is a natural isomorphism.

If J is full and faithful, then conditions (v)–(vii) are equivalent to

(viii) NψJy is an isomorphism in N for each y ∈ ObjN .

An immediate consequence is:

3.2. Corollary. The pair NI aMJ is an adjoint equivalence if and only if conditions
(i) and (v) in Theorem 3.1 are satisfied.

To prove Theorem 3.1 we will use the following lemma.

3.3. Lemma. Assume that we are given categories and functors

P : A → C, F : C → D, G : D → C, Q : B → D

such that F a G. Then the comma category FP ↓ Q is isomorphic to the comma category
P ↓ GQ.

Proof. Let φ : D(Fx, y) → C(x,Gy) for x ∈ Obj C and y ∈ ObjD denote the natural
bijections implementing the adjunction F a G. We define a map R from FP ↓ Q to
P ↓ GQ as follows: set R((a, b, f)) = (a, b, φ(f)) ∈ Obj(P ↓ GQ) for each (a, b, f) ∈
Obj(FP ↓ Q), and set R((k, h)) = (k, h) : (a, b, φ(f)) → (a′, b′, φ(f ′)) for each (k, h) :
(a, b, f)→ (a′, b′, f ′) in FP ↓ Q. It is routine to check that R is an isomorphism between
the two comma categories.
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Proof of Theorem 3.1 Let x ∈ ObjM, y ∈ Obj C. As σ is the unit of I a M , the
bijection φ : C(Ix, y) → M(x,My) implementing this adjunction is given by φ(h) =
(Mh) ◦ σx. Now, using Lemma 3.3 and its proof, we have

I ↓ JNIx ' 1M ↓MJNIx =M ↓MJNIx

under an isomorphism which sends (x, θIx) to

(x, φ(θIx)) = (x, (MθIx) ◦ σx) = (x, ηx) .

It follows that (x, θIx) is final in I ↓ JNIx if and only if (x, ηx) is final in the slice category
M ↓MJNIx, that is, if and only if ηx is an isomorphism.

This shows that (i) is equivalent to (iii). Lemma 2.2 gives that (ii) is equivalent to
(iii). If I is full and faithful, then σ is a natural isomorphism and the equivalence between
(iii) and (iv) follows from equation (1). Hence the first half is shown, and the second half
follows in a dual way.

3.4. Theorem. Consider the following conditions:

(i) (Nx, θx ◦ ψx) is an inital object in IMx ↓ J for each x ∈ Obj C.

(ii) Nψx is an isomorphism for each x ∈ Obj C.

(iii) (Mx, θx ◦ ψx) is a final object in I ↓ JNx for each x ∈ Obj C.

(iv) Mθx is an isomorphism for each x ∈ Obj C.

Then (i) ⇔ (ii) and (iii) ⇔ (iv).
If these conditions are satisfied and I and J are both full and faithful, then NI aMJ

is an adjoint equivalence.
On the other hand, if NI a MJ is an adjoint equivalence, then all four conditions

above are equivalent; moreover, I and J are then both full and faithful whenever one of
these four conditions holds.

Proof. Let x ∈ Obj C, y ∈ ObjN . As θ is the unit of N a J , the bijection φ′ :
N (Nx, y)→ C(x, Jy) implementing this adjunction is given by φ′(h) = (Jh)◦θx. Further,
using the properties of ψ and θ, it is not difficult to check that θx ◦ ψx = (JNψx) ◦ θIMx .

Hence, using Lemma 3.3 and its proof, we have

NIMx ↓ N = NIMx ↓ 1N ' IMx ↓ J

under an isomorphism which sends (Nx,Nψx) to

(Nx, φ′(Nψx)) = (Nx, (JNψx) ◦ θIMx) = (Nx, θx ◦ ψx) .

It follows that (Nx, θx ◦ ψx) is initial in IMx ↓ J if and only if (Nx,Nψx) is initial in
the slice category NIMx ↓ N , that is, if and only if Nψx is an isomorphism. This shows
that (i) is equivalent to (ii). The equivalence of (iii) and (iv) is dual.
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If conditions (i)–(iv) are satisfied and I and J are both full and faithful, then σ and ρ
are natural isomorphisms, and we see from equations (1) and (2) that η and ε are natural
isomorphisms, hence that NI aMJ is an adjoint equivalence.

Conversely, assume that NI a MJ is an adjoint equivalence. Then MJ is full and
faithful (Corollary 3.2) and ηMx is an isomorphism (Theorem 3.1). Since

(MJNψx) ◦ ηMx = (MJNψx) ◦MθIMx ◦ σMx

= M
(
(JNψx) ◦ θIMx

)
◦ σMx = M(θx ◦ ψx) ◦ σMx

= Mθx ◦Mψx ◦ σMx = Mθx

for each object x in C, we see that Mθx is an isomorphism if and only if Nψx is an
isomorphism. It follows that (ii) is equivalent to (iv), hence that all four conditions are
equivalent. If one of them holds, then (ii) and (iv) hold, and from equations (1) and (2)
we now see that σ and ρ must be natural isomorphisms; that is, I and J must both be
full and faithful.

4. Reflective-coreflective equivalence

We now apply the general theory to a curious sort of equivalence between full subcate-
gories, one reflective and the other coreflective. We have not been able to find this type
of equivalence in the category-theory literature.

We let M and N be full subcategories of a category C, with N reflective and M
coreflective. We will use the same notation as in the previous section, now with I = IncM
and J = IncN . Note that I and J are both full and faithful since we are assuming that
M and N are full subcategories of C. Thus:

4.1. Notation. N : C → N is a reflector,
θ : 1C → IncN ◦N is the unit of the adjunction N a IncN ,
ρ : N ◦ IncN → 1N is the counit of the adjunction N a IncN ,
M : C →M is a coreflector,
ψ : IncM ◦M → 1C is the counit of the adjunction IncM aM , and
σ : 1M →M ◦ IncM is the unit of the adjunction IncM aM .

Writing N |M = N ◦ IncM and M |N = M ◦ IncN , the following diagram illustrates this
special situation:

M
IncM //

N |M

%%
C

N //

M
oo N

IncN
oo

M |N

ff

By composition, we have N |M a M |N , with unit η : 1M → M |N ◦ N |M and counit
ε : N |M ◦M |N → 1N .

In light of Theorem 3.1, the following properties are of interest:
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4.2. Properties.

(F) For each x ∈ ObjM, (x, θx) is a final object in M ↓ Nx;
in other words, (x, θx) is a universal morphism from M to Nx.

(I) For each y ∈ ObjN , (y, ψy) is an initial object in My ↓ N ;
in other words, (y, ψy) is a universal morphism from My to N .

These conditions may be visualized by the following commutative diagrams:

M N

z

""EEEEEEEE

!
���
�
�

x
θx //

""EEEEEEEEE Nx

!
���
�
�

y

M N

x

""DDDDDDDDD

!
���
�
�

My
ψy //

""DDDDDDDD
y

!

���
�
�

z

In the left half, the top part is Property 4.2 (F), and the bottom part is guaranteed by
reflectivity of N in C. In the right half, the top part is guaranteed by coreflectivity ofM
in C, while the bottom part is Property 4.2 (I).

As a consequence of Theorem 3.1, we immediately get:

4.3. Theorem. The following conditions are equivalent:

(i) Property 4.2 (F) holds.

(ii) N |M is full and faithful.

(iii) η is a natural isomorphism.

(iv) For each x ∈ ObjM, Mθx : Mx→MNx is an isomorphism (in M and therefore)
in C.

Similarly, the following conditions are equivalent:

(v) Property 4.2 (I) holds.

(vi) M |N is full and faithful.

(vii) ε is a natural isomorphism.

(viii) For each x ∈ ObjN , Nψx : NMx → Nx is an isomorphism (in N and therefore)
in C.

As a corollary to Theorem 4.3 we get the following more precise version of [7, Propo-
sition 2.1]:
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4.4. Corollary. The pair N |M aM |N is an adjoint equivalence if and only if Properties
4.2 (F) and (I) hold.

5. “Maximal-normal” type equivalence

In this section we keep the hypotheses of Section 4, so N is a full reflective subcategory
of a category C andM is a full coreflective subcategory of C; we also retain Notation 4.1.
We further assume that the adjunction N |M aM |N is an adjoint equivalence; that is, we
assume that both Properties 4.2 (F) and (I) are satisfied (cf. Corollary 4.4). Moreover, in
order to capture the complete “maximal-normal equivalence” phenomenon exhibited by
C∗-coactions in [7], we also assume that the following condition is satisfied:

5.1. Hypothesis. For each x ∈ Obj C, (Nx, θx ◦ ψx) is an initial object in the comma
category Mx ↓ N .

5.2. Remark. Hypothesis 5.1 may be seen as a strengthening of Property 4.2 (I). As we
are also assuming that Property 4.2 (F) holds, it follows from Theorem 3.4 that we could
equally have assumed that (Mx, θx ◦ ψx) is final in M ↓ Nx for each x ∈ Obj C

We immediately apply our new hypothesis:

5.3. Proposition. N ∼= N |M ◦M .

Proof. It follows from Theorem 3.4 that Nψx is an isomorphism for each x ∈ Obj C.
This may also be seen directly: in the diagram

Mx
θMx //

ψx

��

NMx

Nψx!
���
�
�

x
θx
// Nx,

both (NMx, θMx) and (Nx, θx ◦ψx) are initial in Mx ↓ N , so the unique morphism Nψx
in N making the diagram commute in C is an isomorphism.

Since N is functorial and ψ is a natural transformation, the composition

Nψ : N |M ◦M → N

is natural, and the result follows.

5.4. Corollary. M ∼= M |N ◦N .

Proof. We could argue as in the proof of Proposition 5.3, using Theorem 3.4; alterna-
tively, using Proposition 5.3 directly we have

M |N ◦N ∼= M |N ◦N |M ◦M ∼= 1M ◦M = M.
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We can deduce various consequences of the foregoing results; for example, Proposi-
tion 5.3 and Corollary 5.4 immediately give:

5.5. Corollary. N |M ◦M is a reflector of C in N , and M |N ◦N is a coreflector of C
in M.

Another consequence is:

5.6. Corollary. The following conditions are equivalent:

(i) For every x ∈ Obj C, ψx : Mx→ x is an epimorphism in C.

(ii) M is faithful.

(iii) N is faithful.

(iv) For every x ∈ Obj C, θx : x→ Nx is a monomorphism in C.

Proof. Since ψ is the counit of IncM a M and θ is the unit of N a IncN , Lemma 2.2
gives (i)⇔(ii) and (iii)⇔(iv). Since N ∼= N |M ◦M and N |M is an equivalence, we have
(ii)⇔(iii).

5.7. Remark. Even if we now also assume that ψx is an epimorphism for every x ∈ Obj C
(or, equivalently, θx is a monomorphism for every x ∈ Obj C), N : C → N itself can still
fail to be an equivalence of categories: N is faithful by Corollary 5.6, and it is essentially
surjective because the counit ρ is a natural isomorphism. But, although θx : x→ Nx is a
monomorphism for all x ∈ C, it is in general not an isomorphism for all x, in which case
θx will not be a split epimorphism, and hence by Lemma 2.2 N is not full. The point
we are making here is that this is the only property of equivalences that N can fail to
possess.

Similarly, the coreflector M : C → M is then faithful (by Corollary 5.6 again) and
essentially surjective (because the unit σ is a natural isomorphism), but in general will
not be full.

5.8. Remark. Hypothesis 5.1, as well as the assumptions in Remark 5.7, are satisfied in
the examples given in Section 6. But we don’t know whether it is necessarily true that
θx is an epimorphism for all x ∈ Obj C and that ψx is a monomorphism for all x ∈ Obj C,
although these properties are satisfied in our examples.

6. Examples

All our examples will involve C∗-algebras. We record here a few conventions which are
not totally standard. By a homomorphism from a C∗-algebra (or just a ∗-algebra) into
another, we will always mean a ∗-homomorphism. If X and Y are ∗-algebras, X � Y will
represent the algebraic tensor product; if X and Y are C∗-algebras, X ⊗ Y will represent
the minimal (i.e., spatial) C∗-tensor product [12, Chapter 6].
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6.1. Coactions Our first — in fact the “original” — example of the “maximal-normal”
equivalence involves coactions of groups on C∗-algebras.

Fix a locally compact Hausdorff group G. Coactions of G on C∗-algebras are dual to
actions; see [8] for an introduction (including an exposition of the equivalence we will now
describe), or [4, Appendix A].

We will give here a development of the equivalence between maximal and normal
coactions of G. Most of the main results have appeared in the literature (mainly in
[7]), but we will give an alternative development, with new proofs, and, in some cases,
improvements upon existing results. We emphasize that these improvements arose from
a close scrutiny of the underlying category theory.

One of our motivations for making this exposition essentially self-contained is that we
find the existing literature on group coactions somehow unsatisfying, and in particular we
sometimes find it inconvenient to dig specific results out of the currently available papers.

For the theory of coactions, we adopt the conventions of [4]. All our coactions will be
full and coaction-nondegenerate.

6.1.1. Notation.

(i) C∗ will denote the category whose objects are C∗-algebras and whose morphisms
are nondegenerate homomorphisms into multiplier algebras, so that φ : A → B in
C∗ means that φ : A→M(B) is a homomorphism such that φ(A)B = B. For such
a homomorphism, there is always a canonical extension φ : M(A)→M(B), and we
have (for example) ψ ◦ φ = ψ ◦ φ when ψ : B → C in C∗.

(ii) C(G) will denote the category whose objects are coactions of G on C∗-algebras, and
whose morphisms are morphisms of C∗ that are equivariant for the coactions, so
that φ : (A, δ)→ (B, ε) in C(G) means that the diagram

A
δ //

φ

��

A⊗ C∗(G)

φ⊗id

��
B ε

// B ⊗ C∗(G)

commutes in C∗.

In this example of the maximal-normal equivalence, the coreflective and reflective
subcategories of C∗ are given by the maximal and normal coactions, respectively. To
introduce these, it behooves us to say a few words about crossed-product duality for
C∗-dynamical systems: for every coaction (A, δ) there is a crossed product C∗-algebra,
denoted A ×δ G, that encodes the representation theory of the coaction, and there is a
dual action δ̂ of G on A×δ G and a canonical surjection

Φ : A×δ G×δ̂ G→ A⊗K(L2(G)),
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where K denotes the compact operators. (A, δ) is maximal if Φ is an isomorphism, and
normal if Φ factors through an isomorphism of the reduced crossed product by the dual
action:

A×δ G×δ̂ G
Φ //

Λ
��

A⊗K

A×δ G×δ̂,r G,
∼=

77oooooo

where Λ is the regular representation. The full subcategories of C(G) obtained by restrict-
ing to maximal or normal coactions will be denoted by Cm(G) and Cn(G), respectively.

In practice, the following normality criterion is often useful: a coaction (A, δ) is normal
if and only if jA : A→M(A×δ G) is injective, where jA is the “A-part” of the canonical
covariant homomorphism (jA, jG) of (A,C0(G)) in the multiplier algebra of the crossed
product. It is also useful to note that we can take

jA = (id⊗ λ) ◦ δ,

where λ is the left regular representation of G.

6.1.2. Notation. For any object (A, δ) in C(G), an object ((B, ε), φ) in the comma
category Cm(G) ↓ (A, δ) will be denoted simply as a triple (B, ε, φ), and similarly for the
comma category (A, δ) ↓ Cn(G).

Thus, to say (B, ε, φ) is an object in Cm(G) ↓ (A, δ) means that (B, ε) is a maximal
coaction and φ : B →M(A) is a nondegenerate homomorphism that is ε− δ equivariant,
i.e., φ : (B, ε)→ (A, δ) in C(G).

6.1.3. Definition. Let (A, δ) be a coaction.

(i) A normalizer of (A, δ) is an initial object (B, ε, η) in (A, δ) ↓ Cn(G), and we say
(B, ε) is a normalization of (A, δ).

(ii) A maximalizer of (A, δ) is a final object (B, ε, ζ) in Cm(G) ↓ (A, δ), and we say
(B, ε) is a maximalization of (A, δ).

6.1.4. Remark. Note that just knowing that (B, ε) is a normalization of (A, δ) doesn’t
uniquely determine a normalizer — indeed, in general there will be many normalizers
for a single normalization3. Our choice of terminology (particularly “normalizer”) was
designed to allow us to keep track of this distinction. Similarly for maximalization.

Normalizations We need to know that normalizations exist:

3and every normalizer can be obtained from any particular one by pre- (alternatively, post-) composing
with an automorphism of the respective coaction
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6.1.5. Proposition. [13, Proposition 2.6] If (A, δ) is a coaction, then jA : (A, δ) →
(jA(A),Ad jG) is a normalizer.

In the above proposition, we’ve committed a mild abuse of notation: by our earlier use
of the notation “Ad”, Ad jG would refer to an inner coaction, for example on A×δG; here
of course we are using the same notation for the restriction of Ad jG to jA(A). Moreover,
we should formally have said “(jA(A),Ad jG, jA) is a normalizer”. We will from now
on sometimes be sloppy and refer to an object (y, f) in a comma category just by the
morphism f .

Proof. Corollary A.14 tells us that jA is a morphism of (A, δ) to the normal coaction
(jA(A),Ad jG), and by construction jA is surjective. Let φ : (A, δ)→ (B, ε) in C(G) with
(B, ε) normal. We need to know that there is a unique morphism ρ in C(G) making the
diagram

(A, δ)
jA //

φ ''NNNNNNNNNNN
(jA(A),Ad jG)

ρ!
���
�
�

(B, ε)

commute. It suffices to show that ker jA ⊂ kerφ. By functoriality of crossed products, we
have a commutative diagram

A
jA //

φ

��

A×δ G
φ×G
��

B
jB
// B ×ε G,

so that

ker jA ⊂ ker
(
(φ×G) ◦ jA

)
= ker

(
jB ◦ φ) = kerφ

because jB is injective.

Upon examining the above particular normalizer, we discern a hidden property:

6.1.6. Corollary. Every normalizer is surjective.

Proof. This follows immediately from the following two observations: it is true for
the particular normalizer in Proposition 6.1.5, and all normalizers are isomorphic by
universality of initial objects.

In the following characterization of normalizations, the proof of the converse direction
is essentially due to Fischer [5, Lemma 4.2] (see also [3, Lemma 2.1] — the hypothesis in [3]
that the homomorphisms map into the C∗-algebras themselves rather into the multipliers
is not used in the proof of [3, Lemma 2.1]). We say “essentially” regarding [5] because
Fischer doesn’t explicitly address equivariance.
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6.1.7. Proposition. An object (B, ε, η) of (A, δ) ↓ Cn(G) is a normalizer if and only if
the morphism

η ×G : A×δ G→ B ×ε G

in C∗ is an isomorphism.

Proof. First assume that (B, ε, η) is a normalizer. By Lemma A.12, to see that η ×G :
A ×δ G → B ×ε G is an isomorphism it suffices to show that (B ×ε G, jB ◦ η, jG) is a
crossed product of (A, δ). Since η is surjective by Corollary 6.1.6, B ×ε G is generated
by jB ◦ η(A)jG(C0(G)). Thus by Lemma A.6 it suffices to show that every covariant
homomorphism (π, µ) of (A, δ) factors through (jB ◦ η, jG). By universality there is a
unique morphism ρ in C(G) making the diagram

(A, δ)
η //

π
%%KKKKKKKKKK
(B, ε)

ρ!
���
�
�

(C,Adµ)

commute. Then by Lemma A.3, (ρ, µ) is a covariant homomorphism of (B, ε) in M(C),
and the morphism ρ× µ : B ×ε G→ C in C∗ satisfies

(ρ× µ) ◦ jB ◦ η = ρ ◦ η = π,

and of course
(ρ× µ) ◦ jG = µ.

Conversely, suppose η×G is an isomorphism, and let (C, γ, φ) be an object in (A, δ) ↓
Cn(G). We need to show that there is a unique morphism ψ in C(G) making the diagram

(A, δ)
η //

φ $$HHHHHHHHH
(B, ε)

ψ!
���
�
�

(C, γ)

commute. It suffices to observe that kerφ ⊃ ker η, since

jC ◦ φ = (φ×G) ◦ jA
= (φ×G) ◦ (η ×G)−1 ◦ (η ×G) ◦ jA
= (φ×G) ◦ (η ×G)−1 ◦ jB ◦ η

and jC is injective.
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6.1.8. Remarks.

(i) For the first half of the above proof, we could have alternatively argued4 as in
Proposition 6.1.11 below: note that by Corollary A.15 and Lemma 6.1.5 there is at
least one normalizer (C, γ, σ) for which σ×G is an isomorphism, and since any two
normalizers are isomorphic it follows that η ×G is also an isomorphism.

(ii) Since Corollary A.15 shows that jA × G is an isomorphism, the above proposi-
tion implies that (jA(A),Ad jG, jA) is a normalizer, giving an independent proof
of Lemma 6.1.5.

6.1.9. Notation. For every coaction (A, δ) we make the following choice of normalizer
qn : (A, δ)→ (An, δn):

• An = A/ ker jA;

• δn is the unique coaction of G on An corresponding to the coaction Ad jG under the
canonical isomorphism An ∼= jA(A);

• qn = qn(A,δ) : A→ An is the quotient map.

Thus it follows from Proposition 6.1.5 that there is a unique functor Nor : C(G) →
Cn(G) that takes each object (A, δ) to (An, δn) and is a left adjoint to the inclusion functor,
so that Cn(G) is a reflective subcategory of C(G) and Nor is a reflector, with unit qn.
Moreover, by our construction we can identify the normalization of every normal coaction
with itself, so that the counit of this reflector is the identity transformation on the identity
functor on the subcategory Cn(G). What the normalization functor does to morphisms is
characterized as follows: if φ : (A, δ)→ (B, ε) in C(G), then the normalization of φ is the
unique morphism φn in Cn(G)5 making the diagram

(A, δ)
qn //

φ
��

(An, δn)

φn

��
(B, ε)

qn
// (Bn, εn)

commute.

Maximalizations The existence of maximalizations is established in [3, Theorem 3.3]
and [5, Theorem 6.4]. The construction in [3] is noncanonical (involving a choice of mini-
mal projection in the compacts), while Fischer’s construction in [5] is canonical (involving
an appropriate relative commutant of the image of K in the multipliers of the double
crossed product). However, having a specific formula for maximalizations has not turned
out to be particular useful, and in fact from a categorical perspective is clearly deprecated.

4and in fact there is some redundancy in the results presented here
5indeed, unique in C(G), since the subcategory Cn(G) is full
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In certain situations where the cognoscenti “know” what the maximalization should be,
we’ll be careful to say “a maximalization” (or “a maximalizer”). For instance, if (A,G, α)
is an action, then the regular representation

Λ : (A×α G, α̂)→ (A×α,r G, α̂n)

is the normalization of the dual coaction on the full crossed product, but is only a maxi-
malization of the dual coaction on the reduced crossed product. The point is that, given
only the coaction (A ×α,r G, α̂n), we can’t reconstruct what the action (A,α) was, and
so we can’t reconstruct the full crossed product. Again, Fischer tells us how to pick a
canonical maximalization, but we will not do that.

As with normalizers, we have an automatic surjectivity for maximalizers:

6.1.10. Lemma. Every maximalizer is surjective.

Proof. The argument is similar to Corollary 6.1.6: the maximalizers constructed in both
[3] and [5] are surjective, and by universality all maximalizers are isomorphic.

6.1.11. Proposition. An object (B, ε, ζ) of Cm(G) ↓ (A, δ) is a maximalizer if and only
if the morphism

ζ ×G : B ×ε G→ A×δ G

in C∗ is an isomorphism.

Proof. First suppose that (B, ε, ζ) is a maximalizer. To see that ζ×G is an isomorphism,
it will suffice to know that there is at least one maximalizer (C, γ, σ) for which σ × G is
an isomorphism; for example, this holds for the constructions of maximalizers in both [5]
and [3]. By universality of maximalizers there is an isomorphism

θ : (B, ε, ζ)→ (C, γ, σ).

Then in particular θ gives an isomorphism (B, ε) ∼= (C, γ) of coactions, and we have a
commuting diagram

B ×ε G
θ×G
∼=
//

ζ×G &&LLLLLLLLLL
C ×γ G

σ×G∼=
��

A×δ G.

Thus ζ ×G is an isomorphism.
Conversely, suppose that ζ × G is an isomorphism, and let (C, γ, φ) be an object in

Cm(G) ↓ (A, δ). We need to show that there is a unique morphism ψ in C(G) making the
diagram

(C, γ)
φ

$$HHHHHHHHH

ψ !
���
�
�

(B, ε)
ζ
// (A, δ)
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commute.
Consider the diagram

C
id⊗1 //

ψ !

���
�
�
�
�
�
�

φ

��???????? C ⊗K

σ

��

φ⊗id

%%KKKKKKKKKK C ×G×GΦC
∼=

oo

φ×G×G

((QQQQQQQQQQQQ

A
id⊗1 // A⊗K A×G×G

ΦA
oo

B
id⊗1 //

ζ

??��������
B ⊗K

ζ⊗id

99ssssssssss
B ×G×G

ΦB

∼=oo
ζ×G×G

∼=
66mmmmmmmmmmmm

in C∗, where we define

σ = ΦB ◦ (ζ ×G×G)−1 ◦ (φ×G×G) ◦ (ΦC)−1,

so that the diagram (without ψ) commutes. We must show that there is a unique mor-
phism ψ making the left triangle commute, and moreover that ψ is γ − ε equivariant.

Note that by crossed-product duality theory we have

σ
∣∣(

1M(C)⊗K
)= 1M(B) ⊗ idK.

It follows that σ maps C ⊗ 1M(K) into (the canonical image in M(B⊗K) of) M(B)⊗ 1K.
Thus there is a unique homomorphism ψ : C →M(B) such that

σ = ψ ⊗ 1M(K),

and moreover ψ is nondegenerate since σ is.
For the equivariance of ψ, note that, again by the general theory of crossed-product

duality, the morphism σ is (γ⊗∗ id)− (ε⊗∗ id) equivariant, where by “⊗∗” we mean that,
in order to have an honest coaction, tensoring with idK must be followed by a switching
of the last two factors in the triple tensor product, so that, for example,

γ ⊗∗ id = (id⊗ Σ) ◦ (γ ⊗ id),

where
Σ : C∗(G)⊗K → K⊗ C∗(G)

is the flip isomorphism. Thus we have

(id⊗ Σ) ◦
(
(ε ◦ ψ)⊗ id

)
= (id⊗ Σ) ◦ (ε⊗ id) ◦ (ψ ⊗ id)

= (ε⊗∗ id) ◦ σ
= (σ ⊗ id) ◦ (γ ⊗∗ id)

= (ψ ⊗ id⊗ id) ◦ (id⊗ Σ) ◦ (γ ⊗ id)

= (id⊗ Σ) ◦ (ψ ⊗ id⊗ id) ◦ (γ ⊗ id)

= (id⊗ Σ) ◦
((

(ψ ⊗ id) ◦ γ
)
⊗ id

)
,

so because id ⊗ Σ is injective we have (ε ◦ ψ) ⊗ id =
(
(ψ ⊗ id) ◦ γ

)
⊗ id, and therefore

ε ◦ ψ = (ψ ⊗ id) ◦ γ.
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6.1.12. Remarks. (i) The above property of giving isomorphic crossed products was in
fact the definition of maximalization given in [5] and [3]. In Definition 6.1.3 we use the
universal property as the definition because it can be stated completely within the original
category. Also, in [5] and [3] the property involving isomorphic crossed products was only
shown to imply the universal property of Definition 6.1.3, not that the two properties are
in fact equivalent, as proved above.

(ii) In [7, Lemma 3.2] it is shown that in fact any morphism φ : (A, δ) → (B, δ) in
C(G) for which φ×G is an isomorphism is surjective. Moreover, in [7, Proposition 3.1] it
is shown that φ is in fact an isomorphism if either (A, δ) is normal or (B, ε) is maximal.

6.1.13. Notation. For every coaction (A, δ) we assume that a maximalizer

qm : (Am, δm)→ (A, δ)

has been chosen, with the proviso that if (A, δ) is maximal then

(Am, δm) = (A, δ) and qm = idA.

Thus it follows that there is a unique functor Max : C(G) → Cm(G) that takes each
object (A, δ) to (Am, δm) and is a right adjoint to the inclusion functor, so that Cm(G) is
a coreflective subcategory of C(G) and Max is a coreflector, with counit qm. Moreover,
since we have chosen the coreflector to do nothing to maximal coactions, the unit of
this coreflector is the identity transformation on the identity functor on the subcategory
Cm(G). What the maximalization functor does to morphisms is characterized as follows:
if φ : (A, δ) → (B, ε) in C(G), then the maximalization of φ is the unique morphism φm

in Cm(G)6 making the diagram

(Am, δm)
qm //

φm

��

(A, δ)

φ
��

(Bm, εm)
qm

// (B, ε)

commute.
We have now defined a coreflector Max : C(G)→ Cm(G) and a reflector Nor : C(G)→

Cn(G). The following two lemmas show that Max and Nor satisfy Properties 4.2 (F)
and (I).

6.1.14. Lemma. Let (A, δ) be a normal coaction. Then not only is qm : (Am, δm)→ (A, δ)
a maximalizer, it is also a normalizer.

Thus, not only is qm final in Cm(G) ↓ (A, δ), it is also initial in (Am, δm) ↓ Cn(G).

Proof. (A, δ) is normal, so (A, δ, qm) is an object of (Am, δm) ↓ Cn(G). Since qm × G :
Am ×δm G→ A×δ G is an isomorphism, the result follows from Proposition 6.1.7.

6indeed, unique in C(G), since the subcategory Cm(G) is full
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6.1.15. Lemma. Let (A, δ) be a maximal coaction. Then not only is qn : (A, δ)→ (An, δn)
a normalizer, it is also a maximalizer.

Thus, not only is qn initial in (A, δ) ↓ Cn(G), it is also final in Cm(G) ↓ (An, δn).

Proof. The proof is similar to the above: (A, δ) is maximal, so (A, δ, qn) is an object of
Cm(G) ↓ (An, δn). Since qn×G : A×δG→ An×δnG is an isomorphism, the result follows
from Proposition 6.1.11.

6.1.16. Corollary. [7, Theorem 3.3] Nor |Cm(G) a Max |Cn(G) is an adjoint equivalence.
In particular, Nor |Cm(G) : Cm(G) → Cn(G) is an equivalence, and Max |Cn(G) is a quasi-
inverse.

Proof. This follows immediately from the above two lemmas and Corollary 4.4.

We now show that Max and Nor satisfy the extra property recorded in Hypothesis 5.1
and its dual analog mentioned in Remark 5.8.

6.1.17. Lemma. Let (A, δ) be a coaction. Then qn ◦ qm : (Am, δm) → (An, δn) is both a
normalizer and a maximalizer.

The notation in the above lemma is unambiguous, but just to be clear: in the compo-
sition qn ◦ qm the maps are

qn : A→ An and qm : Am → A.

Proof. We only prove the first statement; the second one is similar. The coaction (An, δn)
is normal, and qn ◦ qm is an equivariant surjection, since qn and qm are. By functoriality
of crossed products, we have

(qn ×G) ◦ (qm ×G) = (qn ◦ qm)×G : Am ×δm G→ An ×δn G.

Since both qn × G and qm × G are isomorphisms, so is (qn ◦ qm) × G. Thus qn ◦ qm is a
normalizer, by Proposition 6.1.7.

The following three consequences may be new, and result from careful consideration
of the categorical perspective:

6.1.18. Corollary. Nor ∼= Nor |Cm(G) ◦Max and Max ∼= Max |Cn(G) ◦ Nor.

Proof. This now follows immediately from Proposition 5.3 and Corollary 5.4

6.1.19. Corollary. Max and Nor are both faithful.

Proof. Since maximalizers are surjective, they are epimorphisms in C(G), so this follows
immediately from Corollary 5.6.

6.1.20. Corollary. If (A, δ) is a coaction, then the map qn : (A, δ) → (An, δn), and
hence every normalizer of (A, δ), is a monomorphism in C(G).

Proof. The first part follows immediately from Lemma 2.2, and then the second part
follows since any two normalizers of (A, δ) are isomorphic in C(G).
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6.1.21. Remark. The preceding corollary surprised us at first. Certainly qn : A → An

is not generally a monomorphism in C∗, because it would then have to be injective,
which it frequently fails to be — for example, if G is a locally compact group then
qn : (C∗(G), δG)→ (C∗r (G), δnG) is the integrated form of the regular representation, which
is noninjective if G is nonamenable.

It is instructive to repeat Remark 5.7 in the present context: let us examine exactly
how the functor Nor : C(G) → Cn(G) itself fails to be an equivalence of categories. We
have seen that Nor is faithful, and it is not only essentially surjective, as any reflector
in a full reflective subcategory must be, but in our case is actually surjective on objects,
because we have insisted that the reflector satisfy

Nor |Cn(G) = 1|Cn(G).

Thus the unit qn, although it is always both an epimorphism and a monomorphism in
C(G), is not generally an isomorphism. In particular, it is not a split epimorphism, so by
Lemma 2.2 Nor is not full, and that is the only property of equivalences that it fails to
possess.

6.2. Compact quantum groups Our next example of the reflective-coreflective equi-
valence involves compact quantum groups as defined by S.L. Woronowicz [14, 15] — see
also [9, 11, 2]. For the ease of the reader, we begin by recalling some basic facts about
these objects.

A compact quantum group (A,∆) consists of a unital C∗-algebra A (with unit 1 = 1A)
and a unital homomorphism ∆ : A→ A⊗ A (called the co-multiplication) satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆,

and such that the linear spans of (1⊗A)∆(A) and (A⊗ 1)∆(A) are each dense in A⊗A.
For any compact quantum group (A,∆), there exists a unique state h = hA on A, called
the Haar state of (A,∆), which satisfies

(h⊗ id) ◦∆ = (id⊗ h) ◦∆ = h(·)1.

(These conditions are known, respectively, as left- and right-invariance of h.)
By a Hopf ∗-subalgebra A of (A,∆) we mean a Hopf ∗-algebra A which is a unital

∗-subalgebra of A with co-multiplication given by restricting the co-multiplication ∆ from
A to A. (As a Hopf ∗-algebra, A has a co-unit and a co-inverse, but they won’t play any
role in our discussion).

Any compact quantum group (A,∆) has a canonical dense Hopf ∗-subalgebra A, called
the associated Hopf ∗-algebra of (A,∆); A is the linear span of the matrix entries of all
finite dimensional co-representations of (A,∆). Here, when n ∈ N, an n-dimensional
co-representation of (A,∆) means a unitary matrix U = (uij) ∈Mn(A) satisfying

∆(uij) =
n∑
k=1

uik ⊗ ukj, i, j = 1, . . . , n .
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The associated Hopf ∗-algebra of (A,∆) is the unique dense Hopf ∗-subalgebra of
(A,∆) (see the appendix of [2] for a proof). It is known (cf. [15]) that the Haar state of
(A,∆) is faithful on A, but not on A in general.

Now let (A,∆) and (B,∆′) be compact quantum groups with associated Hopf ∗-
algebras A and B, respectively. A quantum group morphism from (A,∆) to (B,∆′) is a
unital homomorphism π : A→ B satisfying

∆′ ◦ π = (π ⊗ π) ◦∆.

Using this equation, one easily sees that if U = (uij) ∈ Mn(A) is a co-representation
of (A,∆), then V = (π(uij)) ∈ Mn(B) is a co-representation of (B,∆′). It follows that
π(A) ⊆ B.

The obvious category whose objects are compact quantum groups and morphisms are
quantum group morphisms has too many morphisms for our purposes; our category C
will be obtained by considering only those morphisms satisfying a certain natural condi-
tion. The following lemma illustrates two ways of describing this condition. Whenever π
satisfies one of these equivalent conditions, we will say that π is a strong quantum group
morphism.

6.2.1. Lemma. Let π be a quantum group morphism from (A,∆) to (B,∆′). Then the
restriction of π to A is injective if and only if hA = hB ◦ π.

Proof. Assume first that π|A : A → B is injective, and set h′ = hB ◦ π. We will show
that h′ = hA.

Let a ∈ A. Then we have

π(h′(a) 1A) = h′(a) 1B = hB(π(a)) 1B =
(
(hB ⊗ idB) ◦∆′

)
(π(a))

=
(
(hB ⊗ idB) ◦ (π ⊗ π)

)
(∆(a))) = π

(
(h′ ⊗ idA)(∆(a))

)
.

As ∆(a) ∈ A�A, we have (h′ ⊗ idA)(∆(a)) ∈ A. The injectivity of π on A then implies
that (h′ ⊗ idA)(∆(a)) = h′(a) 1A.

In the same way, one gets (idA ⊗ h′)(∆(a)) = h′(a) 1A. Hence the state h′ is left-
and right-invariant on A, and therefore also on A, by density of A and continuity of
the involved maps. By the uniqueness property of the Haar state on A, it follows that
h′ = hA, as desired.

Assume now that hA = hB ◦ π. To show that π is injective on A, consider a ∈ A
satisfying π(a) = 0. Then we have

hA(a∗a) = hB(π(a∗a)) = hB(π(a)∗π(a)) = hB(0) = 0

But hA is faithful on A, so a = 0.
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It is straightforward to check that the usual composition (as maps) of two strong
quantum group morphisms, whenever it makes sense, is again a strong quantum group
morphism. The following definition is therefore meaningful.

6.2.2. Definition. The category C has compact quantum groups as objects. Its mor-
phisms are strong quantum group morphisms. Composition of morphisms is given by
usual composition of maps, while the identity morphisms are just the identity maps.

Reduced compact quantum groups Let (A,∆) be a compact quantum group with
associated Hopf ∗-algebra A. The left kernel NA = {a ∈ A | hA(a∗a) = 0} of hA is then
known to be a two-sided ideal of A. Set Ar = A/NA and let θA denote the quotient map
from A onto Ar.

The C∗-algebra Ar can be made into a compact quantum group (Ar,∆r), called the
reduced quantum group of (A,∆) (cf. [14] and [2, Section 2] for details):

The co-multiplication ∆r is determined by the equation ∆r ◦ θA = (θA ⊗ θA) ◦ ∆.
The quotient map θA is injective on A and θA(A) is the Hopf ∗-algebra of (Ar,∆r). In
particular, this means that θA is a morphism in C from (A,∆) to (Ar,∆r). Moreover, the
Haar state of (Ar,∆r) is faithful and is the unique state hr of Ar such that hA = hr ◦ θA.

We will say that (A,∆) is reduced whenever hA is faithful on A, i.e. whenever NA =
{0}, in which case we will identify (Ar,∆r) with (A,∆). Clearly, the reduced quantum
group of any (A,∆) is reduced.

6.2.3. Definition. The categoryR is the full subcategory of C whose objects are reduced
compact quantum groups.

To see that reduction gives a functor R from C to R, we will use the following lemma.

6.2.4. Lemma. Let π be a strong quantum group morphism from (A,∆) to (B,∆′). Then
there exists a unique strong quantum group morphism πr from (Ar,∆r) to (Br,∆

′
r) such

that πr ◦ θA = θB ◦ π, that is, making the diagram

(A,∆)
θA //

π

��

(Ar,∆r)

πr
��

(B,∆′)
θB
// (Br,∆

′
r)

commute.

Proof. As hA(a∗a) = hB(π(a)∗π(a)) for a ∈ A, it follows readily that π(NA) ⊆ NB.7

Hence we may define πr : Ar → Br by

πr(θA(a)) = θB(π(a)), a ∈ A.

It is easy to check that ∆′r ◦πr ◦θA = (πr⊗πr)◦∆r ◦θA. This implies that πr is a quantum
group morphism from (Ar,∆r) to (Br,∆

′
r) satisfying πr ◦ θA = θB ◦ π.

7This is not necessarily true if π is not strong. Consequently, Lemma 6.2.4 is not true for general
quantum group morphisms.
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Letting hr and h′r denote the respective Haar states of (Ar,∆r) and (Br,∆
′
r), we have

(h′r ◦ πr) ◦ θA = h′r ◦ θB ◦ π = hB ◦ π = hA.

From the uniqueness property of hr, we get hr = h′r ◦ πr, so πr is a strong quantum group
morphism. The uniqueness property of πr is evident.

If now π and π′ are two composable morphisms in C, it is straightforward to deduce
from the uniqueness property that (π ◦ π′)r = πr ◦ π′r. Hence, we may define R as follows.

6.2.5. Definition. The functor R : C → R takes each object (A,∆) in C to (Ar,∆r)
in R, and each morphism π in C to the morphism πr in R.

6.2.6. Proposition. The functor R is a left adjoint to the inclusion functor IncR : R →
C, and the unit θ of R a IncR is given by θx = θA for each x = (A,∆) in C. In particular,
R is reflective in C.

Proof. For each compact quantum group x = (A,∆), let θx : x→ Rx be the morphism
in C given by θx = θA. Then Lemma 6.2.4 implies that the map θ which sends each x to
θx is a natural transformation from 1C to IncR ◦R.

Moreover, Lemma 6.2.4 also implies that (Rx, θx) is a universal morphism from x to
R for each object x = (A,∆) in C. Indeed, consider an object y = (B,∆′) in R and a
morphism π : x→ y in C. Then (Br,∆

′
r) = (B,∆′) = y and θB = idB. Hence πr : Rx→ y

is the unique morphism in R such that π = πr ◦ θx.
This shows that R a IncR and θ is the unit of this adjunction.

Universal compact quantum groups Let (A,∆) be a compact quantum group with
associated Hopf ∗-algebraA. We recall the construction of the universal compact quantum
group associated to (A,∆) (cf. [2, Section 3] for more details).

When a ∈ A, set ‖a‖u = supφ ‖φ(a)‖, where the variable φ runs over all unital
homomorphisms φ from A into any unital C∗-algebra B. The function ‖ · ‖u : A → [0,∞]
is then a C∗-norm on A which majorises any other C∗-norm on A. Let Au be the C∗-
algebra completion8 of A with respect to the C∗-norm ‖·‖u. As usual, we identify A with
its canonical copy inside Au. The C∗-algebra Au has the universal property that every
unital homomorphism from A to a unital C∗-algebra B, extends uniquely to a unital
homomorphism from Au to B.

In particular, ∆ : A → A�A ⊆ Au ⊗ Au extends to a homomorphism

∆u : Au → Au ⊗ Au,

and (Au,∆u) is then seen to be a compact quantum group, called the universal quantum
group of (A,∆). Since A is, by construction, a dense Hopf ∗-subalgebra of (Au,∆u), it is
the Hopf ∗-algebra associated to (Au,∆u), by uniqueness.

8As such a completion is unique only up to isomorphism, we actually make a choice here for each
compact quantum group.



REFLECTIVE-COREFLECTIVE EQUIVALENCE 167

By the universal property of Au, there is a canonical homomorphism ψA from Au onto
A extending the identity map from A to itself. Then ∆ ◦ ψA = (ψA ⊗ ψA) ◦ ∆u, and
hA ◦ ψA is the Haar state of (Au,∆u), which just means that ψA is a morphism in C from
(Au,∆u) to (A,∆).

A compact quantum group (A,∆) is called universal if ψA is injective. Equivalently,
(A,∆) is universal if, and only if, the given norm on A is its greatest C∗-norm. Obviously,
the universal compact quantum group associated to any (A,∆) is universal.

6.2.7. Definition. The category U is the full subcategory of C whose objects are uni-
versal compact quantum groups.

To see that universalization gives a functor U from C to U , we will use the following
lemma.9

6.2.8. Lemma. Let π be a strong quantum group morphism from (A,∆) to (B,∆′). Then
there exists a unique strong quantum group morphism πu from (Au,∆u) to (Bu,∆

′
u) such

that ψB ◦ πu = π ◦ ψA, that is, making the following diagram commute

(Au,∆u)
ψA //

πu
��

(A,∆)

π

��
(Bu,∆

′
u)

ψB
// (B,∆′)

Proof. We have π : A → B ⊆ Bu. Hence, by the universal property of Au, we may
uniquely extend this map to a unital homomorphism πu : Au → Bu.

Let a ∈ A. Then we have

(πu ⊗ πu)(∆u(a)) = (π ⊗ π)(∆(a)) = ∆′(π(a)) = ∆′u(πu(a)).

By density of A and continuity, we see that πu is a quantum group morphism. As πu

agrees with π on A, πu is injective on A. Hence, πu is a strong quantum group morphism.
Further, as ψB ◦ πu = π = π ◦ ψA clearly holds on A, we have ψB ◦ πu = π ◦ ψA

(again by density of A and continuity). Finally, if φ is a another morphism which satisfies
ψB ◦ φ = π ◦ ψA, then φ agrees with π on A, so φ = πu.

If now π and π′ are two composable morphisms in C, it is straightforward to deduce
from the uniqueness property that (π ◦π′)u = πu ◦π′u. Hence, we may define U as follows.

6.2.9. Definition. The functor U : C → U takes each object (A,∆) in C to (Au,∆u)
in U , and each morphism π in C to the morphism πu in U .

6.2.10. Proposition. The functor U is a right adjoint to the inclusion functor IncU :
U → C and the counit ψ of the adjunction IncU a U is given by ψy = ψB for each
y = (B,∆′) in C. In particular, U is coreflective in C.

9As will be apparent from its proof, Lemma 6.2.8 is also valid if we consider quantum group morphisms
instead of strong quantum group morphisms.
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Proof. For each compact quantum group y = (B,∆′), let ψy be the morphism in C
defined by ψy = ψB. Then Lemma 6.2.8 implies that the map ψ which sends each y to
ψy is a natural transformation from IncU ◦U to 1C.

Lemma 6.2.8 also implies that each ψy is a universal morphism from U to y for each
object y = (B,∆′) in C. Indeed, consider a universal compact quantum group x = (A,∆)
and a morphism π : x→ y in C. Then ψA is an isomorphism and π′ = πu ◦ψ−1

A : (A,∆)→
(Bu,∆

′
u) is clearly the unique morphism in U(x, Uy) such that π = ψy ◦ π′.

Equivalence of R and U It follows from Propositions 6.2.6 and 6.2.10 that R|U a U |R
is an adjunction from U to R. To see that this is an adjoint equivalence, we will use the
following:

6.2.11. Proposition. Let (A,∆) be a compact quantum group. Then:

(i) UθA = (θA)u is an isomorphism in U ;

(ii) RψA = (ψA)r is an isomorphism in R.

Proof. (i) Lemma 6.2.8, applied to θA, gives that

(θA)u : (Au,∆u)→
(
(Ar)u, (∆r)u

)
is a morphism in U satisfying ψAr ◦ (θA)u = θA ◦ ψA.

Since θA is injective on A, the map θA(a) 7→ a ∈ A ⊆ Au gives a well-defined
homomorphism from θA(A) to Au. Hence, by universality, it extends to a homomorphism
from (Ar)u to Au, which is easily seen to be a morphism in U and the inverse of (θA)u.

(ii) Lemma 6.2.4, applied to ψA, gives that

(ψA)r :
(
(Au)r, (∆u)r

)
→ (Ar,∆r)

is a morphism in R satisfying (ψA)r ◦ θAu = θA ◦ψA. As (ψA)r ◦ θAu = θA ◦ψA is surjective
(because θA and ψA are both surjective by construction), it is clear that (ψA)r is surjective.

Moreover, as hr ◦ θA ◦ ψA is the Haar state of (Au,∆u) and hr is faithful, we have
ker(θA ◦ ψA) = NAu = ker(θAu). Since (ψA)r ◦ θAu = θA ◦ ψA, it readily follows that (ψA)r

is injective.
Hence, (ψA)r is a bijection. But any quantum group morphism which is a bijection is

easily seen to be an isomorphism in C. So (ψA)r is an isomorphism in R.

6.2.12. Theorem. The adjunction R|U a U |R is an adjoint equivalence. In particular,
the categories R and U are equivalent.

Proof. Proposition 6.2.11 (i) (respectively (ii)) implies that the adjunction R|U a U |R
satisfies condition (iv) (respectively (viii)) in Theorem 4.3. As U (respectively R) is full,
Theorem 4.3 gives that the unit (respectively the counit) of this adjunction is a natural
isomorphism. Hence, the assertion follows.



REFLECTIVE-COREFLECTIVE EQUIVALENCE 169

6.2.13. Remark. Proposition 6.2.11 may be reformulated by saying that (Rx, θx ◦ψx) is
an initial object in Ux ↓ R and (Ux, θx ◦ψx) is a final object in U ↓ Rx for each x ∈ Obj C
(cf. Theorem 3.4), which means that Hypothesis 5.1 and its dual analog are satisfied.
Being surjective by construction, ψx is an epimorphism in C for each x ∈ Obj C, so we
can conclude from Corollary 5.6 that U and R are faithful.

6.3. Other examples Here we describe two other examples of the maximal-normal
equivalence, in which the subcategories are not only equivalent but in fact isomorphic.
These concern tensor products and group representations, and it should be clear that one
can readily construct an abundance of such examples.

Tensor products We show that the categories of maximal and minimal C∗-tensor
products are equivalent, indeed isomorphic.10 More precisely, we show that, for a fixed
C∗-algebra D, the categories of maximal tensor products A ⊗max D and minimal tensor
products A⊗min D are isomorphic. We thank Chris Phillips for this suggestion.

We could easily have done everything with both variables free, i.e., allowing D to vary
as well as A, but we merely wanted to present examples, and the result we establish is
more readily compared with the maximal-normal equivalence for coactions. To see the
relation, let G be a locally compact group, and take D = C∗(G). For any C∗-algebra A,
let ι be the trivial action of G. Then the full and reduced crossed products are

Aoι G = A⊗max C
∗(G) and Aoι,r G = A⊗min C

∗
r (G),

and in each case the dual coaction is trivial. The maximal-normal equivalence relates the
maximal coaction (Aoι G, ι̂) to its normalization (Aoι,r G, ι̂

n), i.e., the maximal tensor
product A⊗max C

∗(G) to the minimal one A⊗min C
∗
r (G), both with the trivial coaction.

The “maximal-normal isomorphism” we exhibit here relates only the C∗-algebras A⊗max

C∗(G) and A⊗min C
∗(G) (not A⊗min C

∗
r (G)); thus the comparison is not perfect (and so

even in with D = C∗(G) the results we present here are not a special case of the maximal-
normal equivalence for coactions), but clearly there is a strong similarity between the two
types of equivalence.

Fix a C∗-algebra D. Our ambient category C will comprise C∗-tensor products with
D. More precisely, the objects in C are pairs (A, σ), where A is a C∗-algebra and σ is a
C∗-norm on the algebraic tensor product A�D; and a morphism π : (A, σ)→ (B, τ) in
C is a C∗-homomorphism π : A→ B such that the homomorphism

π � id : A�D → B �D

between the algebraic tensor products is σ − τ bounded.
Thus, for any object (A, σ) in C, idA : (A,max)→ (A, σ) and idA : (A, σ)→ (A,min)

are morphisms in C, where max and min denote the maximal and minimal C∗-norms, re-
spectively. Also, any C∗-homomorphism π : A→ B gives two morphisms π : (A,max)→
(B,max) and π : (A,min)→ (B,min) in C.

10Of course, the tensor-product C∗-algebras themselves will usually not be isomorphic!
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A moment’s thought reveals that C really is a category: the identity morphism on
an object (A, σ) is idA, and the composition of morphisms π : (A, σ) → (B, τ) and
φ : (B, τ)→ (C, γ) is φ ◦ π : (A, σ)→ (C, γ).

Our subcategoriesM and N will comprise the maximal and minimal tensor products,
respectively. That is, M is the full subcategory of C with objects of the form (A,max),
and N is the full subcategory with objects of the form (A,min). The following proposition
is almost trivial.

6.3.1. Proposition. The subcategories M and N of C are coreflective and reflective,
respectively.

Proof. To show that M is coreflective, we must construct a right adjoint M of the
inclusion functor IncM : M → C. It suffices to find, for each object (A, σ) in C, a
universal morphism (M(A, σ), ψ(A,σ)) from M to (A, σ), because there would then be a
unique way to extend M to a right adjoint such that ψ : IncM ◦M :→ 1C is a natural
transformation. So, let (B,max) be an object in M, and let π : (B,max) → (A, σ) be a
morphism.

Then obviously π : (B,max)→ (A,max) is the unique morphism making the diagram

(B,max)
π

%%KKKKKKKKKK

π !
���
�
�

(A,max)
idA

// (A, σ)

commute, so we can take

M(A, σ) = (A,max) and ψ(A,σ) = idA

It is just as easy to construct a left adjoint N for the inclusion functor IncN : N → C.
Note that the adjunctions IncM a M and N a IncN implicitly constructed in the

above proof are given by

M(A, σ) = (A,max) Mπ = π

N(A, σ) = (A,min) Nπ = π,

where (A, σ) and π are an object and a morphism, respectively, of C. Moreover, the counit
of IncM aM and the unit of N a IncN are both given by identity maps:

ψ(A,σ) = idA : (A,max)→ (A, σ)

θ(A,σ) = idA : (A, σ)→ (A,min)

We could now apply the results of Sections 4 and 5, after verifying the relevant hypotheses
therein, but in this context all this reduces to almost a triviality, and in fact the restriction
N |M is not only an equivalence, but in fact an isomorphism of subcategories: N |M and
M |N are easily seen to be inverses of each other.
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6.3.2. Remark. The components of both the counit ψ : IncM ◦M → 1C and θ : 1C →
IncN ◦N are both monomorphisms and epimorphisms, since these components reduce to
idA for each object (A, σ). Of course, in spite of all this we must still keep in mind that
neither the counit nor the unit is an isomorphism.

Group representations Another example of the “maximal-normal isomorphism” is
given by group representations weakly containing the trivial representation. More pre-
cisely, this time our ambient category C will have

• objects: triples (G, u,A), where G is a locally compact group, A is a C∗-algebra,
and u : G → M(A) is a strictly continuous unitary homomorphism that weakly
contains the trivial representation 1G : G → C (given by 1G(s) = 1 for all s ∈ G),
and for which the associated morphism πu : C∗(G)→ A in C∗ maps C∗(G) onto A;

• morphisms: (φ, π) : (G, u,A)→ (H, v,B) in C means that φ : G→ H is a continuous
homomorphism, π : A→ B is a morphism in C∗ and the diagram

G
u //

φ

��

M(A)

π
��

A?
_oo

π
||zzzzzzzzz

H v
//M(B)

commutes.

Thus, for each object (G, u,A) in C, the weak containment hypothesis means that
there is a morphism γu in C∗ making the diagram

G
u //

1G ""EEEEEEEEEE M(A)

γu

��

A

γu
||yyyyyyyyyy

? _oo

C
commute. It is routine to check that this is a category.

This time, our full subcategoriesM and N will have objects of the form (G, iG, C
∗(G))

and (G, 1G,C), respectively, where iG : G→M(C∗(G)) is the canonical inclusion.

6.3.3. Proposition. The subcategories M and N of C are coreflective and reflective,
respectively.

Proof. As usual, it suffices to find, for each object (G, u,A) of C, a universal morphism
(M(G, u,A), ψ(G,u,A)) fromM to (G, u,A), and a universal morphism (N(G, u,A), θ(G,u,A))
from (G, u,A) to N . Note that we have a commutative diagram

M(C∗(G))

πu
��

C∗(G)

πuxxqqqqqqqqqq
? _oo

G

iG
::uuuuuuuuuu u //

1G %%JJJJJJJJJJJ M(A)

γu

��

A

γu
xxpppppppppppppp

? _oo

C.
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Claim It follows that we can take

M(G, u,A) = (G, iG, C
∗(G))

ψ(G,u,A) = (idG, πu)

N(G, u,A) = (G, 1G,C)

θ(G,u,A) = (idG, γu).

To verify the claim, first we show that

(idG, πu) : (G, iG, C
∗(G))→ (G, u,A)

is final in the comma category M ↓ (G, u,A):
Given an object (H, iH , C

∗(H)) in M and a morphism (φ, ω) : (H, iH , C
∗(H)) →

(G, u,A), we must show that the diagram

(H, iH , C
∗(H))

(φ,ω)

((PPPPPPPPPPPP

(σ,τ) !
���
�
�

(G, iG, C
∗(G))

(idG,πu)
// (G, u,A)

can be uniquely completed. We will show that we can take

(σ, τ) = (φ,C∗(φ)),

where C∗(φ) : C∗(H) → C∗(G) is the morphism in C∗ corresponding to the continu-
ous homomorphism φ : H → G. First of all, note that (φ,C∗(φ)) : (H, iH , C

∗(H)) →
(G, iG, C

∗(G)) is a morphism in C (in fact, inM, sinceM is full and both objects are in
M), by the universal property of group C∗-algebras. Of course φ = idG ◦ φ, so it remains
to show that

ω = πu ◦ C∗(φ)

in C∗. This time, because we are “mixing categories”, we take some care with the “bar-
ring” of nondegenerate homomorphisms into multiplier algebras (see [1, Appendix A]).
So, we must show that

πu ◦ C∗(φ) = ω : C∗(H)→M(A).

Since all the above homomorphisms are nondegenerate, it suffices to show that

πu ◦ C∗(φ) = ω : M(C∗(H))→M(A).

Furthermore, by the universal property of group C∗-algebras it suffices to show that the
above equation holds after pre-composing both sides with iH : H →M(C∗(H)):

πu ◦ C∗(φ) ◦ iH = πu ◦ C∗(φ) ◦ iH (properties of barring)

= πu ◦ iG ◦ φ ((φ,C∗(φ)) is a morphism)

= u ◦ φ (universal property of πu)

= ω ◦ iH ((φ, ω) is a morphism).
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To finish, we need to verify that

(idG, γu) : (G, u,A)→ (G, 1G,C)

is initial in the comma category (G, u,A) ↓ N : given an object (H, 1H ,C) in N and a
morphism (φ, ω) : (G, u,A)→ (H, 1H ,C), we must show that the diagram

(G, u,A)
(idG,γu)//

(φ,ω) &&NNNNNNNNNNN
(G, 1G,C)

(σ,τ)!
���
�
�

(H, 1H ,C)

can be uniquely completed. We will show that we can take (σ, τ) = (φ, idC). Again, the
only nontrivial thing to show is ω = idC ◦ γu = γu. Note that γu : A → C is the unique
homomorphism such that γu ◦u = 1G. Thus the following computation finishes the proof:

ω ◦ u = 1H ◦ φ = 1G.

6.3.4. Proposition. With the above notation, the restriction N |M : M → N is an
isomorphism of categories.

Proof. Again N |M and M |N are easily seen to be inverses of each other.

A. Appendix

In this appendix we take the opportunity to reinterpret much of the existing theory of
coaction crossed products in the present, more categorical, context.

To begin, we explicitly record a few properties of the category C∗. Since C(G) is
obtained from C∗ by adding extra structure, some of the following observations will be
relevant for C(G) as well.

A morphism φ : A → B in C∗ is a monomorphism if and only it is injective. Thus,
monomorphicity is completely determined by the kernel. What about epimorphicity? One
direction is elementary: If φ : A → B in C∗ and φ is surjective (i.e., φ(A) = B), then
φ is an epimorphism. Of course, the converse is false for general morphisms in C∗. For
example, if φ(A) properly contains A then φ is an epimorphism in C∗. There is a positive
result, which does not seem to have become a standard tool among operator algebraists:

A.1. Lemma. [6] Suppose φ : A → B is a homomorphism — so we are requiring φ to
map A into B itself rather than merely M(B). Then φ is an epimorphism in C∗ if and
only if it is surjective.

The above results lead to an obvious question, which does not seem to be addressed
in the literature: if φ : A→ B is an epimorphism in C∗, must φ(A) ⊃ B?
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Factorizability in C∗ is also often controlled by kernels: if φ : A→ B and ψ : A→ C
in C∗, with φ surjective, then there is a morphism ρ in C∗ making the diagram

A
φ //

ψ ��@@@@@@@ B

ρ

���
�
�

C

commute if and only if kerφ ⊂ kerψ, and moreover ρ is unique. We do not know whether
the conclusion still holds if we weaken the surjectivity hypothesis on φ to epimorphicity
of φ in C∗.

The above factorizability criterion carries over to C(G) (a routine diagram chase shows
the required equivariance): if φ : (A, δ)→ (B, ε) and ψ : (A, δ)→ (C, γ) in C(G), with φ
surjective, then there is a morphism ρ in C(G) making the diagram

(A, δ)
φ //

ψ $$HHHHHHHHH
(B, ε)

ρ

���
�
�

(C, γ)

if and only if kerφ ⊂ kerψ, and moreover ρ is unique.

A.2. Lemma. [13, Lemma 1.11] Every morphism µ : C0(G) → B in C∗ implements an
inner coaction Adµ of G on B, and all inner coactions are normal.

Of course “Adµ” is an abuse of notation — it is intended to be in an obvious way
dual to the notation Adu for the inner action determined by a strictly continuous unitary
homomorphism u : G → M(B). The notation stands for the morphism Adµ : B →
B ⊗ C∗(G) in C∗ defined by

Adµ(b) = Adµ⊗ id(wG)(b⊗ 1),

where wG denotes the unitary element of M(C0(G)⊗C∗(G)) determined by the canonical
embedding G ↪→M(C∗(G)).

A.3. Lemma. Let (A, δ) be a coaction, and let µ : C0(G) → B and π : A → B in C∗.
Then the pair (π, µ) is a covariant homomorphism of (A, δ) in M(B) if and only if π is
δ − Adµ equivariant.

We will show presently that the crossed-product functor for coactions is right-adjoin-
table. Of course, this will follow from the universal property of crossed products. It will
be a little clearer to consider this universality for an individual coaction first. Let’s recall
Raeburn’s definition of crossed product:
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A.4. Definition. Let (η, ν) be a covariant homomorphism of a coaction (A, δ) in M(C).
Then (C, η, ν) is a crossed product of (A, δ) if for every covariant homomorphism (π, µ)
of (A, δ) in M(B) there is a unique morphism ρ in C∗ making the diagram

A
η //

π
��>>>>>>>> C

ρ!

���
�
� C0(G)νoo

µ
||xxxxxxxx

B

(3)

commute. The existence of ρ is expressed by saying that (π, µ) factors through (η, ν), and
existence and uniqueness together are expressed by saying that (π, µ) factors uniquely
through (η, ν).

A.5. Remark. In addition to the above axioms, Raeburn explicitly hypothesizes that
the C∗-algebra C is generated by products of the form η(a)ν(f) for a ∈ A and f ∈ C0(G).
This hypothesis is redundant: the theory of crossed products tells us that if (C, η, ν) and
(D, σ, ω) are crossed products of (A, δ), then there is a unique isomorphism θ : C → D
such that θ ◦ η = σ and θ ◦ ν = ω in C∗. Since there is at least one crossed product
(C, η, ν) for which C is generated by11 the set of products η(A)ν(C0(G)), it must therefore
be true for every crossed product (D, σ, ω). That being said, we can nevertheless turn
this redundancy around to find a useful replacement for the uniqueness clause:

A.6. Lemma. Let (η, ν) be a covariant homomorphism of a coaction (A, δ) in M(C),
and suppose that every covariant homomorphism of (A, δ) factors through (η, µ). Then
(C, η, ν) is a crossed product of (A, δ) if and only if C is generated by η(A)ν(C0(G)).

We will use Lemma A.3 to show that crossed products give universal morphisms. We
need a functor:

A.7. Notation. Ad denotes the functor that takes an object (B, µ) of C0(G) ↓ C∗ to
the object (B,Adµ) of C(G), and takes a morphism ψ in C0(G) ↓ C∗ to ψ, now regarded
as a morphism in C(G).

Note that the above definition of Ad makes sense on morphisms, because if ψ :
(B, µ) → (C, ν) in C0(G) ↓ C∗ then (computing in the usual category of C∗-algebras
and ∗-homomorphisms)

Ad ν ⊗ id(wG)
(
ψ(b)⊗ 1

)
= ψ ◦ µ⊗ id(wG)

(
ψ(b)⊗ 1

)
= ψ ⊗ id

(
Adµ⊗ id(b⊗ 1)

)
,

so that (Ad ν) ◦ ψ = (ψ ⊗ id) ◦ (Adµ) in C∗.

A.8. Lemma. Let (A, δ) be a coaction of G, let (C, ν) be an object in C0(G) ↓ C∗, and
let η : (A, δ)→ (C,Ad ν) in C(G). If (C, η, ν) is a crossed product of (A, δ) then (C, ν, η)
is a universal morphism from (A, δ) to the functor Ad.

11in fact is the closed span of
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Proof. Let (B, µ) be an object in C0(G) ↓ C∗, and let π : (A, δ) → (B,Adµ) in C(G).
By Lemma A.3 the pair (π, µ) is a covariant homomorphism of (A, δ) in M(B). Thus,
since (C, η, ν) is a crossed product of (A, δ) there is a unique morphism ρ : C → B in C∗

making diagram (3) commute. Then ρ : (C, ν) → (B, µ) in C0(G) ↓ C∗, so ρ is also
a morphism from (C,Ad ν) to (B,Adµ) in C(G), and it is the unique such morphism
making the diagram

(A, δ)
η //

π
%%KKKKKKKKKK

(C,Ad ν)

ρ!
���
�
�

(B,Adµ)

(4)

commute. We have shown that (C, ν, η) is a universal morphism from (A, δ) to Ad.

A.9. Question. Is the converse of the above lemma true? That is, if (C, ν, η) is a
universal morphism from (A, δ) to Ad, is (C, η, ν) a crossed product of (A, δ)? The naive
approach would be to take any covariant homomorphism (π, µ) of (A, δ) in M(B), then
note that by Lemma A.3 we have a morphism π : (A, δ) → (B,Adµ) in C(G), so by
universality we have a unique morphism ρ in C(G) making the diagram (4) commute.
But this only says that the coactions Adµ and (Ad ρ) ◦ ν on B coincide, which does not
imply that µ = ρ ◦ ν.

Now we promote the above universal property to a functor: once we choose a universal
morphism (A×δG, jG, jA) for each coaction (A, δ), there is a unique functor from C(G) to
C0(G) ↓ C∗ that takes an object (A, δ) to (A×δ G, jG) and is a left adjoint to the functor
Ad.

A.10. Definition. The above functor, taking (A, δ) to (A ×δ G, jG), is the crossed-
product functor, denoted by

CP : C(G)→ C0(G) ↓ C∗.

The value of CP on a morphism φ in C(G) is written φ×G.

The above discussion can be summarized by:

A.11. Corollary. CP is a left adjoint for Ad, with unit j : 1C(G) → Ad ◦CP given by

j(A,δ) = jA : (A, δ)→ (A×δ G, jG).

The following easy observation is another summary of the above discussion, and follows
from essential uniqueness of universal morphisms:

A.12. Corollary. Let (η, ν) be a covariant homomorphism of a coaction (A, δ) in
M(C). Then (C, ν, η) is a crossed product of (A, δ) if and only if

η × ν : A×δ G→ C

is an isomorphism in C∗.
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A.13. Lemma. [“Epi-mono factorization” in C(G)] If φ : (A, δ) → (B, ε) in C(G), then
there is a unique coaction γ on φ(A) such that the diagram

(A, δ)
φ //

φ %%KKKKKKKKKK
(φ(A), γ)� _

��
(B, ε)

commutes in C(G). Moreover, γ is normal if ε is.

Proof. We claim that γ = ε|φ(A) does the job. First, note that

ε(φ(A)) = φ⊗ id(δ(A))

⊂ φ⊗ id(M(A⊗G∗(G))

⊂M(φ(A)⊗ C∗(G)).

Further, γ is injective since ε is injective on M(B), and γ satisfies the coaction identity
because ε does. Finally,

γ
(
φ(A)

)(
1M(φ(A)) ⊗ C∗(G)

)
= ε
(
φ(A)

)(
1M(B) ⊗ C∗(G)

)
= φ⊗ id

(
δ(A)

)(
1M(B) ⊗ C∗(G)

)
= φ⊗ id

(
δ(A)

(
1M(A) ⊗ C∗(G)

))
,

which has closed span φ(A)⊗ C∗(G) since δ(A)(1⊗ C∗(G)) has closed span A⊗ C∗(G).
For the last part, suppose that ε is normal. The inclusion map gives a morphism

ι : (φ(A), γ) ↪→ (B, ε), so we have a commutative diagram

φ(A) ι //

jφ(A)

��

B

jB
��

φ(A)×γ G ι×G
// B ×ε G

in C∗. Since jB and ι are injective, so is jφ(A), so γ is normal.

As a consequence of the above, we have another effective means to recognize normal
coactions:

A.14. Corollary. [13, Lemma 2.2 and Proposition 2.3] If (π, µ) is a covariant homo-
morphism of (A, δ) in M(B), then Adµ restricts to a normal coaction δµ on π(A), and
then π : (A, δ) → (π(A), δµ) in C(G). Moreover, if π is injective then it is an isomor-
phism of (A, δ) onto (π(A), δµ). Thus, (A, δ) is normal if and only if it has a covariant
homomorphism (π, µ) with π injective.
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A.15. Corollary. [13, Proposition 2.5] For every coaction (A, δ), the morphism

jA ×G : A×δ G→ jA(A)×Ad jG G

is an isomorphism.

Proof. Since jA : A→ jA(A) is surjective, by Lemma A.6 and Corollary A.12 it suffices
to show that every covariant homomorphism of (A, δ) factors through (jjA(A)◦jA, jG), and
then by Lemma A.3 it suffices to show that for every morphism π : (A, δ)→ (B,Adµ) to
an inner coaction there is a morphism ρ making the diagram

(A, δ)
jA //

π
''NNNNNNNNNNN

(jA(A),Ad jG)

ρ

���
�
�

(B,Adµ)

(5)

commute in C(G). Define

ρ = π × µ|jA(A) : jA(A)→M(B).

Applying Corollary A.14 to the morphism

jA : (A, δ)→ (A×δ G,Ad jG),

then post-composing with the morphism

π × µ : (A×δ G,Ad jG)→ (B,Adµ),

we see that ρ gives a suitable morphism in C(G).
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