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YONEDA THEORY FOR DOUBLE CATEGORIES

ROBERT PARÉ

Abstract. Representables for double categories are defined to be lax morphisms into
a certain double category of sets. We show that horizontal transformations from rep-
resentables into lax morphisms correspond to elements of that lax morphism. Vertical
arrows give rise to modules between representables. We establish that the Yoneda em-
bedding is a strong morphism of lax double categories which is horizontally full and
faithful and dense.

Introduction

There is no question about the importance of the Yoneda lemma in category theory. It
is the basis for categorical universal algebra and, more generally, for categorical model
theory. There are enriched versions [14] which specialize to Yoneda embeddings for 2-
categories which are then easily generalized to bicategories. This was used by Joyal
and Street [12] to give an elegant treatment of coherence for bicategories. In another
(related) direction is the fundamental work of Street and Walters [20] on abstract Yoneda
structures.

Although (weak) double categories may seem a minor generalization of bicategories,
Yoneda theory is very different. A straightforward generalization of the 2-categorical case
presents some difficulties. If we take the “hom functor” to consist of horizontal arrows, it
is not clear what to do with the vertical ones, and vice versa. In fact it is not immediately
apparent where representables are to take their values or, for that matter, what sort of
morphisms they are.

A careful study of the structure of representables leads to the most basic double
category, the double category Set, of sets, functions and spans. This, we claim, is the
natural recipient for representables, which then turn out to be lax morphisms of double
categories.

This paper exposes the Yoneda theory for double categories, from the basic lemma
characterizing transformations defined on representables (Theorem 2.3) to the Yoneda
embedding (Theorem 4.8) and its density (Theorem 4.10).

There are several ways we could have chosen to present the theory.
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One way, as suggested by the referee, is via the theory of pseudo and lax algebras for 2-
monads [19]. The free category monad, fc, on the category of graphs is cartesian so lifts to
a 2-monad on Cat(Graph), the 2-category of category objects in graphs. Then a pseudo
algebra for this monad is an unbiased version of (weak) double category. Lax morphisms
of algebras are exactly lax functors, and algebra 2-cells are our natural transformations.
Lax algebras correspond to (unbiased) lax double categories. Not only does this provide a
more succinct presentation of the basic definitions but it explains why they work so well.
Following this line, if we want to capture virtual double categories, we must pass to the
double category Cat(Graph) of categories, functors and profunctors, in Graph, and the
extension of fc to a double monad.

A related approach is to consider monoids in a Kleisli double category as explained in
[5] and [16], developing the original ideas of Burroni [3]. In this context, it would be in-
teresting to understand why certain natural constructions performed on double categories
merely produce virtual double categories in general.

Although [19] deals with a 2-categorical version of the Yoneda lemma, it is too general
to be immediately applicable in the present situation. We have chosen a more basic,
follow-your-nose, approach. We can look at a (weak) double category in two ways, either
as a (horizontal) 2-category in which we carry along its “logic” in the form of some extra
vertical arrows (think of sets with functions and relations), or as a (vertical) bicategory
in which we specify some rigidifying arrows (the point of view of [18]). Both the theories
of 2-categories and the theory of bicategories are well developed, and the basic concepts
and results are easily generalized to double categories. Things become interesting when
the results don’t generalize straightforwardly, as in the case of the Yoneda lemma. We
have followed these ideas and concluded the inevitability of the double category Set as the
basis of double category theory. Along the way, virtual double categories and modules
are concepts that also impose themselves. We believe that our process has uncovered
interesting concepts which can now be transported back to the more abstract setup.

As the referee pointed out, (weak) double categories are nothing other than Batanin’s
monoidal 1-globular categories [1] and Set is the result of the span construction in this
context. He also considered higher dimensional analogues of this notion, and it is hoped
that our “nuts and bolts” study will work its way up the dimension chain and yield useful
intuitions.

Weber’s work [21] provides further evidence that Set is a fundamental object of study
in 2-dimensional category theory, leading us out of the realm of mere bicategories. It
is a colimit completion in his setting. We believe that this will translate back to ours
but have not worked through the details yet. His work also views it as a 2-dimensional
replacement for the Ω of topos theory, with “true” replaced by the universal opfibration
of pointed sets. These are interesting ideas which should be pursued further in relation
to the present work.

Finally we mention a related work which has recently appeared on arXiv, that of Fiore,
Gambino and Kock [8]. In the course of their work on double adjunctions and monads
in double categories, they develop representables (Example 3.4 = our Section 2.1) and a
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Yoneda theorem (Proposition 3.10 = our Theorem 2.3). Because the Yoneda embedding
is not full on vertical arrows, adjointness cannot be characterized as an objectwise repre-
sentability property as in the case of ordinary adjoints. To remedy this, they introduce
presheaves with parameters and parametric representability, which is a useful replacement
for something we take for granted in our daily work in categories. Our Theorem 3.18 is
in some sense an alternative approach to the same problem. More work is needed to
reconcile the two.

A more detailed description of the paper follows.
In section 1, we recall the notions of double category, lax functor, and natural trans-

formation (a.k.a. lax transformation), with illustrative examples chosen to set the scene
for later use.

In section 2, we establish, for lax double functors, the familiar version of the Yoneda
lemma, giving a bijection between natural transformations defined on representables and
elements of the codomain. We illustrate this circle of ideas by giving an application to
adjoint double functors.

In section 3, we introduce the appropriate notion of vertical transformation of lax
functor in order to study how the representables depend on the vertical structure. This is
the double category version of the modules of [4] which are a multiobject version of pro-
functor. Following [4], we call the cells introduced modulations. This will lead, at the end
of the section, to a Yoneda lemma for modules which has as a corollary, a characterization
of elements of a lax functor at a vertical arrow in terms of modulations. This, together
with the Yoneda lemma of section 2, gives complete information about a lax functor in
terms of representables, which will be formalized as the density theorem of section 4. An
application to the calculation of tabulators illustrates well the power of these results.

As a computational tool we introduce the double category of elements of a lax functor
into Set. Of course it is much more than a notational convenience. It is central to all of
categorical model theory and its use in the proof of Theorem 4.10 is just one aspect of
this. We work out in detail the example of a horizontally discrete double category. That
is, our domain is just a category A considered as a vertical double category and then
everything reduces to category theory in the slice Cat/A. In particular, modules give the
“right” definition of profunctor over A.

Finally, in the short section 4, we tie everything together. We define the Yoneda
embedding and explain in what sense it is full and faithful, and we show that every lax
functor into Set is a colimit of representables. For this we need to introduce multimod-
ulations, making Lax(Aop,Set) into a virtual double category. We leave the question of
representability of composition of modules to a future paper [17].

1. The Basic Structures

1.1. Double categories
Double categories go back to Ehresmann [7]. They have objects, two kinds of arrows,

horizontal and vertical, and cells whose boundaries are squares, horizontal and vertical
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composition of arrows and cells giving category structures and satisfying middle four
interchange on cells. There is a perfect duality between horizontal and vertical.

The double categories we encounter in practice, and certainly in this work, are a weak-
ened version where one of the composites is only associative and unitary up to coherent
isomorphism. These weak double categories (also called pseudo double categories) have
come up in recent work [9], [6], [18], with different conventions for the weak direction.
Our convention is that vertical is the weak direction, as will become evident below. We
shall also call them simply double categories and use the term strict double category for
the classical notion.

Our basic example is the double category of sets, Set. Its objects are sets and its
horizontal arrows are functions. A vertical arrow from A to B is a span, i.e. a diagram
of sets

A B

S

A

( )0
�����
S

B

( )1
��?

??

with composition given by pullback

A B

S

A
�����
S

B
��?

??

B C

T

B
�����
T

C
��?

??
S T

T ⊗ S

S
�����
T ⊗ S

T
��?

??

Pb

and vertical identities IdA by

A A

A

A

1A
�����
A

A

1A
��?

??

A cell

B B′
g

//

A

B

•S
��

A A′f // A′

B′

•S′

��
s

is a commutative diagram

B B′
g

//

S

B
��

S S ′s // S ′

B′
��

S S ′

A

S

OOA A′f // A′

S ′

OO

Cells can be composed horizontally giving a category. They can also be composed verti-
cally using the universal property of pullback.
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Vertical composition of spans is of course neither strictly associative nor unitary but
it is up to canonical special isomorphisms,

α : U ⊗ (T ⊗ S)
∼= // (U ⊗ T )⊗ S, ρ : S ⊗ IdA

∼= // S, λ : IdB ⊗ S
∼= // S

In general, a special isomorphism is a cell of the form

B B

A

B

•v
��

A AA

B

•v′

��

which has a horizontal inverse. Vertical composition of cells is as strictly associative and
unitary as the constraints of domain and codomain permit

D D′//

C

D

•U
��

C C ′// C ′

D′

•U ′

��

C C ′//

A

C

•T⊗S

��

A A′// A′

C ′

•T ′⊗S′

��

D′ D′D′

B′B′

D′

•U ′⊗T ′

��

B′

A′A′ A′A′

B′

•S
��

υ

τ⊗σ

α′

D D

C

D

•U
��

C

D

C

A

C

•T⊗S

��

A AA

D D′//

B

D

•U⊗T

��

B B′// B′

D′

•U ′⊗T ′

��

B B′//

A

B

•S
��

A A′// A′

B′

•S′

��

α υ⊗τ

σ

=

The interchange law, asserting the equality of the two different ways of evaluating

C C ′//

B

C

•��

B B′// B′

C ′
•��
C ′ C ′′//

B′

C ′
•��

B′ B′′// B′′

C ′′
•��

B B′//

A

B

•��

A A′// A′

B′
•��
B′ B′′//

A′

B′
•��

A′ A′′// A′′

B′′
•��

τ τ ′

σ σ′

holds without qualification.
Similar considerations hold for identities: there are special isomorphisms, λB : IdB ⊗

S // S, ρA : S ⊗ IdA // S, and suitably interpreted equalities Idg ⊗ σ = σ, σ ⊗ Idf = σ
and Id1A = 1IdA .

For a general (weak) double category the notation is this: the horizontal direction
is the dominant one and notation is simpler; multiplication is strict and denoted by
juxtaposition and identities are 1A, 1f . The vertical direction is in a sense complementary
and provides the two-dimensional structure. It is associative and unitary up to coherent
special isomorphism, and the notation is more “fancy”; multiplication is denoted with a
dot or a tensor, and identities by idA, idf or IdA, Idf . Vertical arrows are distinguished
with a dot.
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A closely related example is V-Set. Let V be a monoidal category with coproducts
over which ⊗ distributes, i.e. V ⊗ ( ) and ( )⊗ V preserve these coproducts. Then V-Set
has sets as objects and functions as horizontal arrows. A vertical arrow A • // B in V-Set
is an A×B matrix [Vab] of objects of V, and a cell

B B′
g

//

A

B

•[Vab]

��

A A′f // A′

B′

• [W ′
a′b′ ]

��
[xab]

is a matrix of morphisms xab : Vab // Wfa,gb of V. Vertical composition is matrix multi-
plication: for [Wbc] : B • // C, [Wbc] ⊗ [Vab] = [

∑
b∈BWbc ⊗ Vab]. That V-Set is a double

category is a straightforward calculation.
A close contender for the most basic double category is Cat, the double category

of small categories, whose objects are small categories and whose horizontal morphisms
are functors. A vertical morphism P : A • // B is a profunctor, i.e. a functor P :
Aop × B // Set thought of as providing arrows from objects of A to objects of B.
Thus an element x ∈ P (A,B) is often denoted by x : A •

P
//B. Functoriality of P

allows composition of these arrows by morphisms of A and B. Vertical composition is
profunctor composition. Thus if Q : B • // C, then an element of Q ⊗ P (A,C) is an

equivalence class of pairs A •x
P

//B •
y

Q
//C, denoted y ⊗B x. The equivalence relation

is generated by (yb) ⊗ x = y ⊗ (bx). The identity IdA is, as usual, the hom functor
Aop ×A // Set.

A cell

B B′
G

//

A

B

•P
��

A A′F // A′

B′

•P ′

��
t

is a natural transformation t : P // P ′(F−, G−). Thus t is a way of assigning arrows
t(x) : FA •

P ′
//GB to arrows x : A •

P
//B in a natural way, i.e. t(xa) = t(x)F (a) and

t(bx) = G(b)t(x).
A certain amount of calculation is coded in the statement that Cat is a double category.
There are various reasons for orienting our vertical arrows as we did. One is that a

cell

A A′
G

//

A

A

•IdA
��

A A′F // A′

A′

•IdA′

��
t

is a natural transformation F // G so that the 2-category Cat lies comfortably inside
Cat. Another reason, more relevant to the present paper, is that these correspond to the
vertical transformations of lax morphisms which arise as values of our “hom-functor”.
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Inevitably, when dealing with profunctors, something gets switched around but in the
present context our convention minimizes this. Many people following Bénabou use the
word distributor or, following the Australian school, bimodule from A to B for a functor
Bop × A // Set. Bénabou actually introduced the word “profunctor” with the above
convention (Aop × B // Set) then changed the convention and later the name. One of
the objections to the word “profunctor” was that they are not projective limits of functors,
but a functor P : Aop ×B // Set can be viewed as functor A // (SetB)op and then its
values are indeed projective limits of representables.

In a similar vein, we also have the double category V-Cat for V a monoidal cate-
gory with colimits over which ⊗ distributes. The objects are (small) V-categories, the
horizontal arrows V-functors, the vertical arrows V-profunctors, and cells

B D
G

//

A

B

•P
��

A CF // C

D

•Q
��

α

families of morphisms α(A,B) : P (A,B) //Q(FA,GB) respecting the profunctor actions.
A double category in which the horizontal arrows are all identities is essentially a

bicategory and much of the general theory of double categories is a straightforward gener-
alization of bicategory theory. A notable exception is the Yoneda theory presented below.
When we wish to consider a bicategory B as the vertical structure of a double category
in this way we denote it by VB.

A 2-category A can be made into a double category in a variety of ways. It can be
considered as a bicategory and made into a double category VA or it can be considered
the horizontal part of a double category whose only vertical arrows are identities. This is
denoted HA. There is also Ehresmann’s double category QA of quintets in A. It has the
same objects as A, the horizontal arrows and vertical arrows are the same: the 1-cells of
A. A cell in QA

B Dg
//

A

B

•h
��

A C
f // C

D

•k
��

α

is a 2-cell α : kf // gh.

1.2. Lax functors
It has been known for a long time [2] that the morphisms of bicategories which occur

in practice come in various forms, more general than what one might suspect in the first
instance. The same is true for double categories.

Recall from [9] that a lax functor of double categories F : A // B assigns to objects,
horizontal arrows, vertical arrows and cells of A like ones in B, respecting boundaries



YONEDA THEORY FOR DOUBLE CATEGORIES 443

and preserving horizontal composition of arrows and cells but not necessarily vertical
composition. Instead, comparison special cells are given: for every A in A,

FA FA

FA

FA

•idFA

��

FA FAFA

FA

•F (idA)

��
ϕA

and for every A •v // Ā •v̄ // Ã,

FÃ FÃ

FĀ

FÃ

•F v̄

��

FĀ

FÃ

FĀ

FA

FĀ

•Fv

��

FA FAFA

FÃ FÃ

FA

FÃ

FA FAFA

FÃ

•F (v̄·v)

��

ϕv̄,v

satisfying unit and associativity laws that look very much like those for a monad, so much
so in fact, that a lax functor 1 // B is a monad in B.

An oplax functor is the same sort of thing with the direction of the ϕA and ϕv̄,v reversed.
A lax (or oplax) functor is normal if the ϕA are isomorphisms. If the ϕv̄,v are isomorphisms
as well, we say that F is a pseudo functor. If the ϕA and ϕv̄,v are identities, we say that
F is a (strict) functor. As will become evident later, strict functors are important, even
when A and B are weak.

The discrete category functor Set //Cat extends to a pseudo functor D : Set //Cat.
In fact, a profunctor between discrete categories is very nearly the same thing as a span
between their sets of objects, each being a representation of a matrix of sets. D is a
doubly full embedding: it induces a bijection between horizontal arrows A // A′ and
horizontal arrows DA //DA′; a bijection between cells v // v′ and cells Dv //Dv′; an
equivalence of categories between vertical arrows A • // Ā and vertical arrowsDA • // DĀ,
with special cells as morphisms; and an equivalence of categories between cells f • // f̄
and cells Df • // Df̄ , with commuting squares of special cells as morphisms.

The object functor Ob : Cat // Set extends to a lax functor Cat // Set. On
categories and functors it’s the usual thing. For a vertical arrow P : A • // B, i.e. a
functor P : Aop ×B // Set, we construct the span Ob(P ) : Ob(A) • // Ob(B)

ObA ObB

∑
A,B P (A,B)

ObA
����

��
��

�

∑
A,B P (A,B)

ObB
��?

??
??

??
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The composite Ob(Q)⊗Ob(P ) is

Ob(A) Ob(B)

∑
A,B,C Q(B,C)× P (A,B)

Ob(A)
����

��
��

�

∑
A,B,C Q(B,C)× P (A,B)

Ob(B)
��?

??
??

??

and Ob(Q⊗ P ) is a quotient of this, giving

(ObQ)⊗Ob(P ) // Ob(Q⊗ P )

which is generally not an isomorphism. Ob is not normal either. The identity IdA :
A • // A is the hom functor so Ob(IdA) is the span

Ob(A) Ob(A)

Arr(A)

Ob(A)

dom

����
��

��
��
Arr(A)

Ob(A)

cod

��?
??

??
??

?

and the comparison IdOb(A)
// Ob(IdA) is the function Ob(A) // Arr(A) which picks

out the identities. Thus Ob : Cat // Set is a genuine lax functor.
On the other hand, the connected components functor π0 : Cat // Set extends to

an oplax normal functor Cat // Set. On categories and functors it’s the usual thing. A
vertical morphism P : A • // B has associated to it a category of elements with projection
functors giving a span in Cat

A B

El(P )

A
����

��
��

��
El(P )

B
��?

??
??

??
?

to which we can apply π0 to get a span in Set. This is π0P : π0A • // π0B. Thus
an element of π0P is an equivalence class of elements of P , x : A •

P
//B, where the

equivalence relation is generated by x ∼ x′ if there are a and b such that

B B
b

//

A

B

•x
��

A Aa // A

B

•x′

��

“commutes”.
An element of π0(Q⊗P ) is an equivalence class of elements y⊗Bx which are themselves

equivalence classes. We can combine the two equivalence relations to get a more direct
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description of π0(Q⊗P ), namely as the set of equivalence classes of pairs (x, y) as below,
where (x, y) ∼ (x′, y′) if there exist a, b, c such that

B B′//

A

B

•x
��

A A′a // A′

B′

•x′

��

C C ′
c

//

B

C

•y

��

B B′b // B′

C ′

•y′

��

On the other hand an element of π0Q⊗π0P is a pair, ([A •x //B], [B′ •
y //C]), of equiva-

lence classes with B connected to B′. There is a canonical function π0(Q⊗P ) //π0Q⊗π0P
which takes [A •x //B •

y //C] to ([A •x //B], [B •
y //C]) which is manifestly not a bijec-

tion. The identity IdA : A • // A is the hom functor so π0(IdA) is the span

π0A π0A

π0(A
2)

π0A

π0dom

����
��

��
��
π0(A

2)

π0A

π0cod

��?
??

??
??

?

which is isomorphic to the identity via π0(idA) : π0A // π0(A
2). This is because cod ⊣

id ⊣ dom and π0 takes adjoints to isomorphisms. This makes π0 : Cat // Set an oplax
normal functor.

1.3. Remark. The object functor Ob : Cat // Set can also be viewed as taking P :
A • // B to

ObA ObB

Ob(El(P ))

ObA
����

��
��

��
Ob(El(P ))

ObB
��?

??
??

??
?

1.4. Remark. The chaotic functor K : Set // Cat can also be made into an oplax
normal functor K : Set // Cat although it is less interesting. This is because any non
empty chaotic category is equivalent to 1 and any profunctor, which can’t distinguish
equivalent categories, is constant. But for the record, K(S) : KAop ×KB // Set is the
constant functor 1 if S ̸= ∅ and the constant functor ∅ if S = ∅.

A lax functor 1 // Set is easily seen to be a small category. Indeed, as is well-known,
a small category is the same as a monad in Span, the bicategory of sets and spans, and a
lax morphism with domain 1 is a vertical monad.

Similarly, a lax functor 1 // V-Set is a small V-category.
For B and B′ bicategories, a lax functor F : VB //VB′ is nothing but a (lax) morphism

of bicategories. On the other hand, for 2-categoriesA andA′, a lax functor F : HA //HA′

corresponds to a 2-functor.
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1.5. Natural Transformations

1.6. Definition. Let A and B be double categories and F,G : A // B lax functors.
A natural transformation t : F // G assigns to each object A in A a horizontal arrow
tA : FA // GA in B and to each vertical arrow v : A • // Ā of A a cell

FĀ GĀ
tĀ

//

FA

FĀ

•Fv

��

FA GA
tA // GA

GĀ

•Gv
��

tv

of B satisfying the following conditions:
(Horizontal naturality) for every f : A // A′

FA′ GA′
tĀ

//

FA

FA′

Ff

��

FA GA
tA // GA

GA′

Gf

��

commutes, and for every cell

Ā Ā′
f̄

//

A

Ā

•v
��

A A′f // A′

Ā′

•v′

��
α

FĀ GĀ
tĀ

//

FA

FĀ

•Fv

��

FA GA
tA // GA

GĀ

•Gv
��

tv

GĀ GĀ′
Gf̄

//

GA

GĀ

•
��

GA GA′Gf // GA′

GĀ′

•Gv′

��
Gα =

FĀ FĀ′
F f̄

//

FA

FĀ

•Fv

��

FA FA′Ff // FA′

FĀ′

•Fv′

��
Fα

FĀ′ GĀ′
tĀ′

//

FA′

FĀ′

•
��

FA′ GA′tA′
// GA′

GĀ′

•Gv′

��
tv′

(Vertical functoriality) for every A

FA FA

FA

FA

•idFA

��

FA FAFA

FA

•
��

ϕA

FA GA
tA

//

FA

FA

•F (idA)

��

FA GA
tA // GA

GA

•G(idA)

��
t(idA) =

FA GA
tA

//

FA

FA

•idFA

��

FA GA
tA // GA

GA

• idGA

��
idtA

GA GA

GA

GA

•
��

GA GAGA

GA

•G(idA)

��
γA
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for all v : A • // Ā, v̄ : Ā • // Ã

F Ã F Ã

F Ā

FÃ

•F v̄

��

FĀ

FÃ

FĀ

FA

FĀ

•Fv

��

FA FAFA

FÃ FÃ

FA

FÃ

FA FAFA

FÃ

•F (v̄·v)

��

ϕ(v̄,v)

FÃ GÃ
tÃ

//

FA

FÃ

•

��

FA GA
tA // GA

GÃ

•G(v̄·v)

��

t(v̄·v)
=

FÃ GÃ
tÃ

//

FĀ

FÃ

•F v̄

��

FĀ GĀ
tĀ // GĀ

GÃ

•Gv̄
��

tv̄

FĀ GĀ//

FA

FĀ

•Fv

��

FA GA
tA // GA

GĀ

•Gv
��

tv

GÃ GÃ

GA

GÃ

GA GAGA

GÃ

•G(v̄·v)

��

γ(v̄,v)

Natural transformations compose horizontally and vertically giving a 2-category of
double categories, lax functors and natural transformations. This may seem a bit para-
doxical because, as is well-known, bicategories with lax morphisms and any of the usual
2-cells don’t form a 2-category or bicategory. What makes it work for natural transforma-
tions is that they are defined using horizontal arrows and these are well-behaved. Actually
this 2-category is part of a larger strict double category Doub introduced in [9] and about
which we will have more to say in the next section.

Returning to our examples of the previous section where we saw that a lax functor
1 // Set corresponds to a small category, a natural transformation now corresponds to a
functor. More generally, a natural transformation between lax functors 1 // V-Set is a
V-functor.

For lax morphisms of bicategories F,G : B //B′, natural transformation between the
corresponding lax functors VB // VB′ are precisely the ICONs of [15]. That’s because
all horizontal arrows in VB′ are identities.

Finally, for 2-functors F,G : A // A′, a natural transformation HF // HG is the
same as a 2-natural transformation.

2. The Yoneda Lemma Part I

2.1. The Hom Functor
Let A be a double category and Aop the horizontal dual of A. Hom will be the lax

functor Aop × A // Set defined as follows:
(H1) for objects A, B of A, Hom(A,B) is the set of horizontal arrows f : A // B in A;
(H2) for horizontal morphisms a : A′ // A and b : B // B′, Hom(a, b) is the function
taking f to bfa (as usual);
(H3) for vertical arrows v : A • // Ā and w : B • // B̄, Hom(v, w) is the span

Hom(A,B) Hom(Ā, B̄)

Hom(v, w)

Hom(A,B)

∂0

����
��

��
��

Hom(v, w)

Hom(Ā, B̄)

∂1

��?
??

??
??

?
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where Hom(v, w) is the set of cells

Ā B̄
f̄

//

A

Ā

•v
� �

A B
f // B

B̄

•w
��

ϕ

and where ∂0 and ∂1 are vertical domain and codomain, i.e. ∂0ϕ = f , ∂1ϕ = f̄ ;
(H4) for cells

Ā′ Ā
ā

//

A′

Ā′

•v′

��

A′ Aa // A

Ā

•v
��

α

B̄ B̄′
b̄′

//

B

B̄

•w
��

B B′b // B′

B̄′

•w′

��
βand

Hom(α, β) is the function Hom(v, w) // Hom(v′, w′) which takes ϕ to βϕα, which is in
fact a morphism of spans, i.e. ∂0, ∂1 are preserved;
(H5) for every pair of objects, the structural unit

Hom(A,B) Hom(A,B)

Hom(A,B)

Hom(A,B)

•IdHom(A,B)
��

Hom(A,B) Hom(A,B)Hom(A,B)

Hom(A,B)

•Hom(idA,idB)
��

is given by the function

h(A,B) : Hom(A,B) // Hom(idA, idB)

f 7−→ idf ;

(H6) for composable pairs A •v //Ā •v̄ //Ã and B •w //B̄ •w̄ //B̃ the structural multipli-
cation for Hom

Hom(A,B)

Hom(v,w)•
��

h((v̄,w̄),(v,w))

Hom(A,B)

Hom(v̄·v,w̄·w)•

��

Hom(Ā, B̄)

Hom(v̄,w̄)•
��

Hom(Ã, B̃) Hom(Ã, B̃)

is the function
Hom(v̄, w̄)⊗ Hom(v, w) // Hom(v̄ · v, w̄ · w)
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Ã B̃
f̃

//

Ā

Ã

•v̄
��

Ā B̄// B̄

B̃

•w̄
��

ϕ̄

Ā B̄
f̄

//

A

Ā

•v
��

A B
f // B

B̄

•w
��

ϕ

7−→

Ã B̃
f̃

//

A

Ã

•v̄·v
��

A B
f // B

B̃

•w̄·w
��

ϕ̄·ϕ

which is a morphism of spans.
That Hom is horizontally functorial is obvious, it being instances of the ordinary

hom functor. The associativity and unit laws for Hom are easily seen to be just the
corresponding ones for A.

Notice that all of the structure of A is used in the definition of Hom. The double
category Set was originally conceived as the recipient of the hom functor.

Of course there could be other ways of defining Hom, for example it could take its
values in Cat. It would then be lax normal. It is hoped that the unity of concepts
developed below will convince even the most skeptical reader of the advantages of our
choice.

We more often use the notation A(−,−) instead of Hom, especially when more than
one double category is considered.

2.2. The Yoneda Lemma I
Given an object B of A we get a lax functor A(−, B) : Aop // Set by substituting the

pseudo functor 1 // A determined by B into the second variable of the hom functor. So
in particular A(v,B) = A(v, idB).

2.3. Theorem. [Yoneda Lemma I] Let F : Aop // Set be a lax functor. Then there is a
bijection between natural transformations t : A(−, B) // F and elements x ∈ FB given
by x = t(B)(1B).

Proof. Given x ∈ FB we want to construct a natural transformation tx : A(−, B) //F
such that tx(B)(1B) = x. It follows by naturality on horizontal arrows that

tx(A) : A(A,B) // FA

must be given by
tx(A)(f) = F (f)(x).

In order to determine

A(Ā, B) FĀ
txĀ

//

A(A,B)

A(Ā, B)

•A(v,B)

��

A(A,B) FA
txA // FA

FĀ

•Fv

��
txv
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take an element

Ā B
f̄

//

A

Ā

•v
��

A B
f // B

B

• idB
��

ψ

of A(v,B). Then

A(B,B) A(B,B)

A(B,B)

A(B,B)

•IdA(B,B)

��

A(B,B) A(B,B)A(B,B)

A(B,B)

•A(idB ,B)

��
h(B)

A(B,B) A(Ā, B)
A(f̄ ,B)

//

A(B,B)

A(B,B)

•
��

A(B,B) A(A,B)
A(f,B) // A(A,B)

A(Ā, B)

•A(v,B)

��
A(ψ,B)

A(Ā, B) FĀ
txĀ

//

A(A,B)

A(Ā, B)

•
��

A(A,B) FA
txA // FA

FĀ

•Fv
��

txv

is equal to

A(B,B) A(B,B)

A(B,B)

A(B,B)

•IdA(B,B)

��

A(B,B) A(B,B)A(B,B)

A(B,B)

•A(idB ,B)

��
hB

A(B,B) FB
txB

//

A(B,B)

A(B,B)

•
��

A(B,B) FB
txB // FB

FB

•F idB

��
txidB

FB FĀ
F f̄

//

FB

FB

•
��

FB FA
Ff // FA

FĀ

•Fv
��

Fψ

by horizontal naturality, which is then equal to

A(B,B) FB
txB

//

A(B,B)

A(B,B)

•IdA(B,B)

��

A(B,B) FB
txB // FB

FB

• idFB

��
idtxB

FB FB

FB

FB

•
��

FB FBFB

FB

•F idB

��
ϕB

FB FĀ
F f̄

//

FB

FB

•
��

FB FA
Ff // FA

FĀ

•Fv
��

Fψ

by the unit law. Take 1B ∈ IdA(B,B). The top cell

1B 7−→ id1B = 1idB 7−→ 1idBψ = ψ 7−→ tk(v)(ψ)

and the bottom cell

1B 7−→ x 7−→ ϕ(B)(x) 7−→ F (ψ)ϕ(B)(x)

so we must have
tx(v)(ψ) = F (ψ)ϕ(B)(x).

Obviously tx(B)(1B) = x, so all that remains to be done is to check that tx is indeed a
natural transformation, which is an easy calculation.
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Specializing to F = A(−, B′), we see that a natural transformationA(−, B) //A(−, B′)
corresponds to a horizontal arrow b : B // B′. To be more precise, b defines a natural
transformation A(−, b) : A(−, B) // A(−, B′) given by

A(A, b) = A(1A, b) : A(A,B) // A(A,B′)

(f : A // B) 7−→ (bf : A // B′)

A(v, b) = A(v, idb) : A(v, idB) // A(v, idB′)

Ā B//

A

Ā

•v
��

A B// B

B

• idB
��

ψ

Ā B′//

A

Ā

•v
��

A B′// B′

B′

• idB′

��
(idb)(ψ)7−→

We can now state the following.

2.4. Corollary. Every natural transformation t : A(−, B) // A(−, B′) is of the form
A(−, b) for a unique horizontal arrow b : B // B′.

2.5. Adjoints
In this section and the next, we give an application of the Hom functor and Yoneda

lemma to adjoints for double categories. Here we sketch the relevant ideas from [10].
The theory of adjoints for double categories was developed in [10] where it was made

clear that adjointness is a relation between lax functors for the right and oplax ones for
the left. This is a well-known feature of adjunctions between morphisms of bicategories
and, in fact goes back to adjoints between monoidal categories (see e.g. [13]).

In order to formulate adjointness in general terms, a strict double category, Doub, of
double categories with lax functors as horizontal arrows and oplax functors as vertical
ones was introduced. This is perhaps the main point of [10]. A cell

C D
G

//

A

C

•R
��

A BF // B

D

•S
��

t

assigns to each object A in A a horizontal arrow

tA : SFA // GRA

and to each vertical arrow v : A • // Ā, a cell

SFĀ GRĀ
tĀ

//

SFA

SFĀ

•SFv

��

SFA GRA
tA // GRA

GRĀ

•GRv
��

tv
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satisfying the following conditions.
(Horizontal naturality 1) For every f : A // A′

SFA′ GRA′
tA′

//

SFA

SFA′

SFf

��

SFA GRA
tA // GRA

GRA′

GRf

��

commutes.
(Horizontal naturality 2) For every cell

Ā Ā′
f̄

//

A

Ā

•v
��

A A′f // A′

Ā′

•v′

��
α

SFĀ GRĀ
tA

//

SFA

SFĀ

•SFv

��

SFA GRA
tA // GRA

GRĀ

•GRv
��

tv

GRĀ GRĀ′
GRf̄

//

GRA

GRĀ

•
��

GRA GRA′GRf // GRA′

GRĀ′

•GRv′

��
GRα =

SFĀ SFĀ′
SF f̄

//

SFA

SFĀ

•SFv

��

SFA SFA′SFf // SFA′

SFĀ′

•SFv′

��
SFα

SFĀ′ GRĀ′
tĀ′

//

SFA′

SFĀ′

•
��

SFA′ GRA′tA′
// GRA′

GRĀ′

•GRv′

��
tv′

(Vertical functoriality 1)

=

SFA SFA

SFA

SFA

•S(idFA)

��

SFA SFASFA

SFA

•SF idA

��
SϕA

SFA GRA
tA

//

SFA

SFA

•
��

SFA GRA
tA // GRA

GRA

•GRidA

��
tidA

GRA GRA

GRA

GRA

•
��

GRA GRAGRA

GRA

•G(idRA)

��
GρA

SFA SFA

SFA

SFA

•S(idFA)

��

SFA SFASFA

SFA

• idSFA

��
σFA

SFA GRA
tA

//

SFA

SFA

•
��

SFA GRAtA // GRA

GRA

• idGRA

��
idtA

GRA GRA

GRA

GRA

•
��

GRA GRAGRA

GRA

•G(idRA)

��
γRA

(Vertical functoriality 2)

=

SFÃ SFÃ

SFA

SFÃ

•S(F v̄·Fv)
��

SFA SFASFA

SFÃ

•SF (v̄·v)
��

Sϕ(v̄,v)

SFÃ GRÃ
tÃ

//

SFA

SFÃ

•
��

SFA GRA
tA // GRA

GRÃ

•GR(v̄·v)
��

t(v̄·v)

GRÃ GRÃ

GRA

GRÃ

•
��

GRA GRAGRA

GRÃ

•G(Rv̄·Rv)
��

Gρ(v̄,v)



YONEDA THEORY FOR DOUBLE CATEGORIES 453

SFÃ SFÃ

SFA

SFÃ

•SF v̄·Fv)

��

SFA SFASFA

SFÃ

σ(F v̄,Fv)

SFÃ GRÃ
tÃ

//

SFĀ

SFÃ

•SF v̄

��

SFĀ GRĀtĀ // GRĀ

GRÃ

•GRv̄
��

tv̄

SFĀ GRĀ//

SFA

SFĀ

•SFv

��

SFA GRA
tA // GRA

GRĀ

•GRv
��

tv

GRÃ GRÃ

GRA

GRÃ

GRA GRAGRA

GRÃ

•G(Rv̄·v)

��

γ(Rv̄,Rv)

Horizontal composition

C D
G

//

A

C

•R
��

A BF // B

D

•
��

t

D D′
G′

//

B

D

•S
��

B B′F ′
// B′

D′

•S′

��
t′

is given by

t′tA = (S ′F ′FA
t′FA // G′SFA

G′tA // G′GRA)

and

t′t(v) =

S ′F ′FĀ G′SFĀ
t′FĀ

//

S ′F ′FA

S ′F ′FĀ

•S′F ′Fv

��

S ′F ′FA G′SFA
t′FA // G′SFA

G′SFĀ

•G′SFv

��
t′Fv

G′SFĀ G′GRĀ
G′tĀ

//

G′SFA

G′SFĀ

•
��

G′SFA G′GRA
G′tA // G′GRA

G′GRĀ

•G′GRv

��
G′tv

And vertical composition

C̄ D̄
Ḡ

//

C

C̄

•R̄
��

C D// D

D̄

• S̄
��

t̄

C D
G

//

A

C

•R
��

A BF // B

D

•S
��

t

is given by

t̄ · t(A) = (S̄SFA S̄tA // S̄GRA
t̄RA // ḠR̄RA)

and

t̄ · t(v)=

S̄SF Ā S̄GRĀ
S̄tĀ

//

S̄SFA

S̄SFĀ

S̄SFv

��

S̄SFA S̄GRA
S̄tA // S̄GRA

S̄GRĀ

S̄GRv

��
S̄tv

S̄GRĀ ḠR̄RĀ
t̄RA

//

S̄GRA

S̄GRĀ
��

S̄GRA ḠR̄RA
t̄RA // ḠR̄RA

ḠR̄RĀ

ḠR̄R(v)

��
t̄Rv
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One might be suspicious of this construction because, although we are dealing with
weak double categories, Doub is a strict double category. The reason is that both hor-
izontal and vertical composition are defined in terms of horizontal composition in the
codomain double category.

Another cause for suspicion might be that bicategories can be considered as dou-
ble categories with identity horizontal arrows and neither lax, oplax, or pseudo natural
transformations make lax functors into the 1-cells of a 2-category of bicategories. Again,
because cells are defined in terms of the horizontal structure, the components of t on the
objects are identities so if R and S are identity functors, a cell t is exactly an ICON as
defined in [15].

We remark in passing that when R and S are identities and A and B are arbitrary
double categories, the cells we have just defined are exactly the natural transformations
of §1.5.

In [10], an oplax functor F : A // B is said to be left adjoint to the lax functor
U : B // A if they form a conjoint pair in Doub. This means that there are cells

B A
U

//

A

B

•F
��

A A1A // A

A

•IdA
��

η

B B
1B

//

B

B

•IdB

��

B AU // A

B

•F
��

ϵand

satisfying the “triangle” identities

B B
1B

//

B

B

•IdB

��

B A// A

B

•F
��

ϵ

B A
U

//

A

B

•F
��

A A1A // A

A

•IdA
��

η

=

B B
1B

//

A

B

•F
��

A A1A // A

B

•F
��

1F

and

B B
1B

//

B

B

•IdB

��

B AU // A

B

•F
��

ϵ

B A
U

//

A

B

•
��

A A1A // A

A

•IdB
��

η =

B A
U

//

B

B

•IdB

��

B AU // A

A

•IdA
��

idU

The usual properties of uniqueness and composability of adjoints follow from general
properties of conjoints. All the details can be found in [10].

2.6. Example. π0 : Cat // Set which is oplax (normal) is left adjoint to the discrete
category functor D : Set // Cat, and Ob : Cat // Set which is lax is right adjoint to D.
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2.7. The Hom Version of Adjoints
Let U : B // A be a lax functor. It can be substituted into the second variable of the

Hom functor for A to get a lax functor

A(−, U−) : Aop × B // Set.

If F : A // B is an oplax functor, F op : Aop // Bop is lax and it can be substituted
into the first variable of the Hom functor for B to get a lax

B(F−,−) : Aop × B // Set.

2.8. Theorem. F is left adjoint to U if and only if B(F−,−) is isomorphic to A(−, U−).

Proof. Suppose F is left adjoint to U with unit η and counit ϵ as above. Define

t : B(F−,−) // A(−, U−)

by the usual formulas
t(A,B) : B(FA,B) // A(A,UB)

(b : FA // B) 7−→ (A
ηA // UFA

Ub // UB)

and
t(v, w) : B(Fv,w) // A(v, Uw)

FĀ B̄
b̄

//

FA

FĀ

•Fv

��

FA B
b // B

B̄

•w
��

β 7−→

Ā UFĀ
ηĀ

//

A

Ā

•v
��

A UFA
ηA // UFA

UFĀ

•UFv
��

ηv

UFĀ UB̄
Ub̄

//

UFA

UFĀ

•
��

UFA UB
Ub // UB

UB̄

•Uv
��

Uβ

It is clear that t is horizontally natural at both the object and vertical arrow level.
Vertical functoriality requires, first of all that

B(FA,B) B(FA,B)

B(FA,B)

B(FA,B)

•IdB(FA,B)

��

B(FA,B) B(FA,B)B(FA,B)

B(FA,B)

•B(F idA,idB)

��
h(FA,B)

B(FA,B) A(A,UB)
t(A,B)

//

B(FA,B)

B(FA,B)

•
��

B(FA,B) A(A,UB)
t(A,B) // A(A,UB)

A(A,UB)

•A(idA,U idB)

��
t(idA,idB)

be equal to

B(FA,B) A(A,UB)
t(A,B)

//

B(FA,B)

B(FA,B)

•IdB(FA,B)

��

B(FA,B) A(A,UB)
t(A,B) // A(A,UB)

A(A,UB)

•IdA(A,UB)

��
Idt(A,B)

A(A,UB) A(A,UB)

A(A,UB)

A(A,UB)

•
��

A(A,UB) A(A,UB)A(A,UB)

A(A,UB)

•A(idA,U idB)

��
h′(A,UB)
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the first takes an element b : FA // B of idB(FA,B) to

A UFA
ηA

//

A

A

•idA

��

A UFA
ηA // UFA

UFA

•UF idA

��
ηidA

UFA UFA

UFA

UFA

•
��

UFA UFAUFA

UFA

•U idFA

��
UϕA

UFA UB
Ub

//

UFA

UFA

•
��

UFA UB
Ub // UB

UB

•U idB

��
U idB

whereas the second takes it to

A UFA
ηA

//

A

A

•idA

��

A UFA
ηA // UFA

UFA

• idUFA

��
idηA

UFA UB
Ub

//

UFA

UFA

•
��

UFA UB
Ub // UB

UB

• idUB

��
idUb

UB UB

UB

UB

•
��

UB UBUB

UB

•U idB

��
ψB

This last rectangle is equal to

A UFA
ηA

//

A

A

•idA

��

A UFA
ηA // UFA

UFA

• idUFA

��
idηA

UFA UFA
Ub

UFA

UFA

•
��

UFA UFAUFA

UFA

•U idFA

��
ψFA

UFA UB
Ub

//

UFA

UFA

•
��

UFA UB
Ub // UB

UB

•U idB

��
U idB

by naturality of ψ, and this in turn is equal to the above because η respects vertical
identities (1).

t must also respect vertical composition. This means that

B(FÃ, B̃) B(FÃ, B̃)

B(FA,B)

B(FÃ, B̃)

B(FA,B) B(FA,B)B(FA,B)

B(FÃ, B̃)

•B(F (v̄·v),w̄·w)

��

h

B(FÃ, B̃) B(FÃ, B̃)

B(FĀ, B̄)

B(FÃ, B̃)

•B(F v̄,w̄)
��

B(FĀ, B̄)

B(FÃ, B̃)

B(FĀ, B̄)

B(FA,B)

B(FĀ, B̄)

•B(Fv,w)
��

B(FA,B) B(FA,B)B(FA,B)

B(FÃ, B̃) A(Ã, B̃)
t(Ã,B̃)

//

B(FA,B)

B(FÃ, B̃)

•

��

B(FA,B) A(A,UB)
t(A,B) // A(A,UB)

A(Ã, B̃)

•A(v̄·v,U(w̄·w))

��

t(v̄·v,w̄·w)

must equal

B(FÃ, B̃ A(Ã, UB̃)
t(Ã,B̃)

//

B(FĀ, B̄)

B(FÃ, B̃

•B(F v̄,w)
��

B(FĀ, B̄) A(Ā, UB̄)
t(Ā,B̄) // A(Ā, UB̄)

A(Ã, UB̃)

•A(v̄,Uw̄)
��

t(v̄,w̄)

B(FĀ, B̄) A(Ā, UB̄)//

B(FA,B)

B(FĀ, B̄)

•B(Fv,w)
��

B(FA,B) A(A,UB)
t(A,B) // A(A,UB)

A(Ā, UB̄)

•A(v,Uw))
��

t(v,w)

A(Ã, UB̃) A(Ã, B̃)

A(A,UB)

A(Ã, UB̃)

A(A,UB) A(A,UB)A(A,UB)

A(Ã, B̃)

•A(v̄·v,U(w̄·w))

��

h′
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The first takes a pair of cells, β, β̄,

FÃ B̃
b̄

//

FĀ

FÃ

•F v̄

��

FĀ B̄b̄ // B̄

B̃

•w̄
��

β̄

FĀ B̄//

FA

FĀ

•Fv

��

FA B
b // B

B̄

•w
��

β

to

Ã UFÃ
ηÃ

//

A

Ã

A UFA
ηA // UFA

UFÃ

•UF (v̄·v)

��

η(v̄·v)

Ã UFÃ//

Ā

Ã

•v̄
��

Ā

UFÃ

Ā

A

Ā

•v
��

A UFAUFA

UFÃ UFÃ

UFA

UFÃ

UFA UFAUFA

UFÃ

•U(F v̄·Fv)

��

Uϕv̄,v

UFÃ UB̃
Ub̃

//

UFA

UFÃ

UFA UB
Ub // UB

UB̃

•U(w̄·w)

��

U(β̄·β)

whereas the second takes β, β̄ to

Ã UFÃ
ηÃ

//

Ā

Ã

•v̄
��

Ā UFĀ
ηĀ // UFĀ

UFÃ

•UF v̄
��

ηv̄

Ā UFĀ//

A

Ā

•v
��

A UFA
ηA // UFA

UFĀ

•UFv
��

ηv

UFÃ UB̃
Ub̃

//

UFĀ

UFÃ

UFĀ UB̄Ub̄ // UB̄

UB̃

•Uw̄
��

Uβ̄

UFĀ UB̄//

UFA

UFĀ

•
��

UFA UB
Ub // UB

UB̄

•Uw
��

Uβ

UB̃ UB̃

UB

UB̃

UB UBUB

UB̃

•U(w̄·w)

��

ψw̄,w

Again, naturality of ψ allows us to transform this last rectangle into

Ã UFÃ
ηĀ

//

Ā

Ã

•v̄
��

Ā UFĀ
ηĀ // UFĀ

UFÃ

•UF v̄
��

ηv̄

Ā UFĀ//

A

Ā

•v
��

A UFA
ηA // UFA

UFĀ

•UFv
��

ηv

UFÃ UFÃ

UFA

UFÃ

UFA UFAUFA

UFÃ

•U(F v̄·Fv)

��

ψFv̄,Fv

UFÃ UB̃
Ub̃

//

UFA

UFÃ

UFA UB
Ub // UB

UB̃

•U(w̄·w)

��

U(β̄·β)

which is equal to the one above because η respects vertical composition (2). This shows
that t is a natural transformation of lax morphisms

B(F−,−) // A(−, U−).
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Similarly, using ϵ and F we get a transformation

A(−, U−) // B(F−,−)

which is inverse to t, by virtue of the triangle identities just like for ordinary adjoints.
Conversely, suppose we have a natural transformation t : B(F−,−) //A(−, U−). Let

ηA : A // UFA be t(A,FA)(1FA) and

Ā UFĀ
ηĀ

//

A

Ā

•v
��

A UFA
ηA // UFA

UFĀ

•UFv
��

ηv

be t(v, Fv)(1Fv). It follows from horizontal naturality of t that

t(A,B)(f) = (Uf)(ηA)

and

t(v, w)(ψ) =

Ā UFĀ
ηĀ

//

A

Ā

•v
��

A UFA
ηA // UFA

UFĀ

•UFv
��

ηv

UFĀ UB̄
Uf̄

//

UFA

UFĀ

•
��

UFA UB
Uf // UB

UB̄

•Uw
��

Uψ

Note that the vertical domain and codomain of ηv are ηA and ηĀ because t(v, Fv) is a
morphism of spans. The horizontal naturality of η in A and v is straightforward. It’s just
the usual Yoneda calculus.

Should there be any lingering doubts about the definition of cells in Doub, we check
the vertical functoriality condition for η. It is a direct consequence of vertical functoriality

for the natural transformation t. This says that for A •v // Ā •v̄ // Ã and B •w // B̄ •w̄ // B̃
we have that

B(FÃ, B̃) A(Ã, UB̃)//

B(FĀ, B̄)

B(FÃ, B̃)

•B(F v̄,w̄)
��

B(FĀ, B̄) A(Ā, UB̄)// A(Ā, UB̄)

A(Ã, UB̃)

•A(v̄,Uw̄)
��

t(v̄,w̄)

B(FĀ, B̄) A(Ā, UB̄)//

B(FA,B)

B(FĀ, B̄)

•B(Fv,w)
��

B(FA,B) A(A,UB)// A(A,UB)

A(Ā, UB̄)

•A(v,Uw)
��

t(v,w)

A(Ã, UB̃) A(Ã, UB̃)

A(A,UB)

A(Ã, UB̃)

A(A,UB) A(A,UB)A(A,UB)

A(Ã, UB̃)

•A(v̄·v,U(w̄·w))

��

ξ

equals

B(FÃ, B̃) B(FÃ, B̃)

B(FĀ, B̄)

B(FÃ, B̃)

•B(F v̄,w̄)
��

B(FĀ, B̄)

B(FÃ, B̃)

B(FĀ, B̄)

B(FA,B)

B(FĀ, B̄)

•B(Fv,w)
��

B(FA,B) B(FA,B)B(FA,B)

ξ

B(FÃ, B̃) B(FÃ, B̃)

B(FA,B)

B(FÃ, B̃)

B(FA,B) B(FA,B)B(FA,B)

B(FÃ, B̃)

•B(F (v̄·v),w̄·w)

��

B(FÃ, B̃) A(Ã, UB̃)//

B(FA,B)

B(FÃ, B̃)

B(FA,B) A(A,UB)// A(A,UB)

A(Ã, UB̃)

•A(v̄·v,U(w̄·w))

��

t(v̄·v,w̄·w)
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Here ξ combines the laxity of A(−,−) and that of U

ξ : (ψ̄, ψ) 7−→ ψ(w̄ · w)(ψ̄ · ψ)

Ã UB̃//

Ā

Ã

•v̄
��

Ā UB̄// UB̄

UB̃

•Uw̄
��

ψ̄

Ā UB̄//

A

Ā

•v
��

A UB// UB

UB̄

•Uw
��

ψ

UB̃ UB̃

UB

UB̃

UB UBUB

UB̃

U(w̄·w)

��

ψ(w̄·w)

Likewise ξ uses the oplaxity of F

ξ : (θ̄, θ) 7−→ (θ̄ · θ)ϕ(v̄, v)

FÃ FÃ

FA

FÃ

•F (v̄·v)

��

FA FAFA

FÃ

ϕ(v̄,v)

FÃ B̃//

FĀ

FÃ

•F v̄

��

FĀ B̄// B̄

B̃

•w̄
��

θ̄

FĀ B̄//

FA

FĀ

•Fv

��

FA B// B

B̄

•w
��

θ

Now we specialize this by letting B, B̄, B̃, w, w̄ be FA, FĀ, FÃ, Fv, and F v̄ respec-
tively, and evaluate at the element (1F v̄, 1Fv). The cell in (1) first applies t componentwise
to get (ηv̄, ηv) and then ξ to get

Ã UFÃ//

Ā

Ã

•v̄
��

Ā UFĀ// UFĀ

UFÃ

•UF v̄
��

ηv̄

Ā UFĀ//

A

Ā

•v
��

A UFA// UFA

UFĀ

•UFv
��

ηv

UFÃ UFÃ

UFA

UFÃ

UFA UFAUFA

UFÃ

•U(F v̄·Fv)

��

U(F v̄,Fv)

To evaluate (2) at (1F v̄, 1Fv) we first apply ξ. Thus, multiply 1F v̄ · 1Fv = 1F v̄·Fv and
then multiply horizontally by ϕ(v̄, v), so

ξ(1F v̄, 1Fv) =

FÃ FÃFÃ

FĀFĀ

FÃ

•F v̄
��

FĀ

FAFA FAFA

FĀ

•Fv
��

FÃ FÃ

FA

FÃ

•F (v̄·v)

��

FA FAFA

FÃ

ϕ(F,v)
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Then we apply t

t(v̄ · v, F v̄ · Fv)(ϕ(v̄, v)) =

Ã UFÃ
ηÃ

//

A

Ã

•v̄·v
��

A UFA
ηA // UFA

UFÃ

•UF (v̄·v)
��

η(v̄·v)

UFÃ UFÃ

UFA

UFÃ

•
��

UFA UFAUFA

UFÃ

•U(F v̄·Fv)
��

Uϕ(v̄,v)

The equality of (3) and (4) is vertical functoriality (2) of η. It is a bit simpler than the
general formulation because the domain of η is a composite of two identities.

We leave the verification that η respects identities, which is similar, as a salutary
exercise for the suspicious reader.

It is thus seen that η is a cell

B A
U

//

A

B

•F
��

A A1A // A

A

•IdA
��

η

When t is invertible, a similar argument applied to t−1 will produce a cell

B B
1B

//

B

B

•IdB

��

B AU // A

B

•F
��

ϵ

For w : B • // B̄,

FUB̄ B̄
ϵB̄

//

FUB

FUB̄

•FUw

��

FUB B
ϵB // B

B̄

•w
��

ϵw = t−1(Uw,w)(1Uw)

and then

t−1(v, w)(θ) =

FĀ FUB//

FA

FĀ

•Fv

��

FA FUB// FUB

FUB

•FUw
��

Fθ

FUB B̄//

FUB

FUB

•
��

FUB B// B

B̄

•w
��

ϵw

Now the composite

B(FĀ, F Ā) A(Ā, UFĀ)//

B(FA, FA)

B(FĀ, F Ā)

•B(Fv,Fv)
��

B(FA, FA) A(A,UFA)// A(A,UFA)

A(Ā, UFĀ)

•A(v,UFv)
��

t(v,Fv)

A(Ā, UFĀ) B(FĀ, F Ā)//

A(A,UFA)

A(Ā, UFĀ)

•
��

A(A,UFA) B(FA, FA)// B(FA, FA)

B(FĀ, F Ā)

•B(Fv,Fv)
��

t−1(v,Fv)
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is the identity, so it sends 1Fv to itself but

t−1(v, Fv)t(v, Fv)(1Fv) = t−1(v, Fv)(ηv) = (ϵFv)(Fηv).

So

FĀ FUFĀ//

FA

FĀ

•Fv

��

FA FUFA// FUFA

FUFĀ

•FUFv
��

Fηv

FUFĀ FĀ//

FUFA

FUFĀ

•
��

FUFA FA// FA

FĀ

•Fv
��

ϵFv = 1Fv

Similarly we get

UB̄ UFUB̄//

UB

UB̄

•Uw

��

UB UFUB// UFUB

UFUB̄

•
��

ηUw

UFUB̄ UB̄//

UFUB

UFUB̄

•
��

UFUB UB// UB

UB̄

•Uw
��

Uϵw = 1Uw

Note that, although both of these express an equality of horizontal composites with
horizontal identities, the first one is the identity

B B//

B

B

•Id

��

B AU // A

B

•F
��

ϵ

B A//

A

B

•F
��

A A1 // A

A

•Id
��

η

= 1F

and the second

B B
1

//

B

B

•Id

��

B AU // A

B

•F
��

ϵ

B A
U

//

A

B

•
��

A A1 // A

A

•Id
��

η = IdU

3. The Yoneda Lemma Part II

3.1. Modules
The first part of the Yoneda lemma given in §2.2 tells us what the elements of FB

are in terms of transformations. In order to determine a lax functor F : Aop // Set we
must also know what the elements of F (v) are, for a vertical arrow v. This requires an
understanding of how the lax functors A(−, A) depend on A. We have already seen in
Corollary 2.4 that a horizontal arrow f : A // B gives, by composition, a natural trans-
formation A(−, f) : A(−, A) //A(−, B) and what we study in this section is what kind of
morphism A(−, A) • // A(−, Ā) a vertical morphism v : A • // Ā gives. Thus the natural
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transformations will be the horizontal arrows of a (lax) double category Lax(Aop, Set) for
which we will be defining the vertical arrows and cells. This prepares the scene for the
Yoneda embedding of §4.

There are several reasonable candidates for the notion of vertical transformation of
lax functors. Our choice is guided by the structure created by vertical arrows on rep-
resentables. In fact the source of this concept goes deeper than that. A lax functor of
two variables Φ : A × B // C produces, by fixing the second variable, a lax functor
Φ(−, B) : A // C and a vertical arrow w : B • // B̄ will give the doulbe category version
of what was called a module Φ(−, w) : Φ(−, B) • // Φ(−, B̄) in [4]. This is a kind of
multiobject version of profunctor.

We give the essentials here formulated in the language of double categories. An in-
depth study, adapting and extending that of [4], will appear elsewhere.

3.2. Definition. Let F,G : A // B be lax functors. A module m : F • // G consists of:
(M1) for every vertical arrow v : A • // Ā, a vertical arrow m(v) : FA • // GĀ;
(M2) for every cell

Ā Ā′
f̄

//

A

Ā

•v
��

A A′f // A′

Ā′

•v′

��
α a cell

GA GA′
Gf̄

//

FA

GA

•m(v)

��

FA FA′Ff // FA′

GA′

•m(v′)

��
m(α)

(M3) for every pair of vertical arrows A •v // Ā •v̄ // Ã, special cells

GÃ GÃ

GĀ

GÃ

•G(v̄)

��

GĀ

GÃ

GĀ

FA

GĀ

•m(v)

��

FA FAFA

GÃ GÃ

FA

GÃ

FA FAFA

GÃ

•m(v̄·v)

��

λ(v̄,v) and

GÃ GÃ

FĀ

GÃ

•m(v̄)

��

FĀ

GÃ

FĀ

FA

FĀ

•Fv

��

FA FAFA

GÃ GÃ

FA

GÃ

FA FAFA

GÃ

•m(v̄·v)

��

ρ(v̄,v)

These are required to satisfy the following conditions:
(M4) (Horizontal functoriality) for cells

Ā Ā′//

A

Ā

•
��

A A′// A′

Ā′

•
��

α

Ā′ Ā′′//

A′

Ā′

•
��

A′ A′′// A′′

Ā′′

•
��

α′

we have

GĀ GĀ′′//

FA

GĀ

•
��

FA FA′′// FA′′

GĀ′′

•
��

m(α′α) =

GĀ GĀ′//

FA

GĀ

•
��

FA FA′// FA′

GĀ′

•
��

m(α)

GĀ′ GĀ′′//

FA′

GĀ′

•
��

FA′ FA′′// FA′′

GĀ′′

•
��

m(α′)
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and for any v : A • // Ā

GĀ GĀ

FA

GĀ

•
��

FA FAFA

GĀ

•
��

m(1v) =

GĀ GĀ

FA

GĀ

•
��

FA FAFA

GĀ

•
��

1m(v)

(M5) (Naturality of λ and ρ) for cells

Ã Ã′//

Ā

Ã

•
��

Ā Ā′// Ā′

Ã′

•
��

ᾱ

Ā Ā′//

A

Ā

•
��

A A′// A′

Ā′

•
��

α

we have

GÃ GÃ

FĀ

GÃ

•
��

FĀ

GÃ

FĀ

FA

FĀ

•
��

FA FAFA

GÃ GÃ′//

FA

GÃ

•

��

FA FA′// FA′

GÃ′

•

��

ρ m(ᾱ·α) =

GÃ GÃ′//

FĀ

GÃ

•
��

FĀ FĀ′// FĀ′

GÃ′

•
��

FĀ FĀ′//

FA

FĀ

•
��

FA FA′// FA′

FĀ′

•
��

GÃ′ GÃ′

FA′

GÃ′

FA′ FA′FA′

GÃ′

•

��
m(ᾱ)

F (α)

ρ

and

GÃ GÃ

GĀ

GÃ

•
��

GĀ

GÃ

GĀ

FA

GĀ

•
��

FA FAFA

GÃ GÃ′//

FA

GÃ

•

��

FA FA′// FA′

GÃ′

•

��

λ m(ᾱ·α) =

GÃ GÃ′//

GĀ

GÃ

•
��

GĀ GĀ′// GĀ′

GÃ′

•
��

GĀ GĀ′//

FA

GĀ

•
��

FA FA′// FA′

GĀ′

•
��

GÃ′ GÃ′

FA′

GÃ′

FA′ FA′FA′

GÃ′

•

��
G(ᾱ)

m(α)

λ

(M6) (Associativity) for A •v // Ā •v̄ // Ã •ṽ // Â

GÂ GÂ

FÃ

GÂ

•
��

FÃ

GÂ

FÃ

FĀ

FÃ

•
��

FĀ FĀFĀFĀ FĀ

FA

FĀ

•
��

FA FAFA

FĀ

•
��

GÂ GÂ

FĀ

GÂ

•

��

FĀ

GÂGÂ GÂ

FA

GÂ

FA FAFA

GÂ

•

��

1

ρ

ρ =

GÂ GÂ

FÃ

GÂ

•
��

FÃ FÃFÃ

GÂ

•
��

FÃ FÃ

FĀ

FÃ

•
��

FĀ

FÃ

FĀ

FA

FĀ

•
��

FA FAFA

FÃ FÃ

FA

FÃ

FA FAFA

FÃ

•

��

GÂ GÂ

FA

GÂ

FA FAFA

GÂ

•

��
1

ϕ

ρ
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GÂ GÂ

GÃ

GÂ

•
��

GÃ

GÂ

GÃ

FĀ

GÃ

•
��

FĀ FĀFĀFĀ FĀ

FA

FĀ

•
��

FA FAFA

FĀ

•
��

1

GÂ GÂ

FĀ

GÂ

FĀ FĀFĀ

GÂ

•

��

λ

GÂ GÂ

FA

GÂ

FA FAFA

GÂ

•

��

ρ =

GÂ GÂ

GÃ

GÂ

•
��

GÃ GÃGÃ

GÂ

•
��

1

GÃ GÃ

FĀ

GÃ

•
��

FĀ

GÃ

FĀ

FA

FĀ

•
��

FA FAFA

GÃ GÃ

FA

GÃ

FA FAFA

GÃ

•

��

ρ

GÂ GÂ

GÃ

GÂ

•
��

GÃ

GÂ

GÃ

FA

GÃ

•

��

FA FAFA

GÂ GÂ

FA

GÂ

FA FAFA

GÂ

•

��

λ

GÂ GÂ

GÃ

GÂ

•
��

GÃ GÃGÃ

GÂ

•
��

1

GÃ GÃ

GA

GÃ

•
��

GA

GÃ

GA

FA

GA

•
��

FA FAFA

GÃ GÃ

FA

GÃ

FA FAFA

GÃ

•

��

GÂ GÂ

GÃ

GÂ

•
��

GÃ

GÂ

GÃ

FA

GÃ

•

��

FA FAFA

GÂ GÂ

FA

GÂ

FA FAFA

GÂ

•

��

λ

λ

=

GÂ GÂ

GÃ

GÂ

•
��

GÃ

GÂ

GÃ

GĀ

GÃ

•
��

GĀ GĀGĀ

GÂ GÂ

GĀ

GÂ

GĀ GĀGĀ

GÂ

•

��

γ

GĀ GĀ

FA

GĀ

•
��

FA FAFA

GĀ

•
��

GÂ GÂ

FA

GÂ

FA FAFA

GÂ

•

��

λ

1

(M7) (Unit) for v : A • // Ā

GĀ GĀ

FA

GĀ

•m(v)

��

FA FAFA

GĀ

•m(v)

��
1m(v)

FA FA

FA

FA

•idFA

��

FA FAFA

FA

•F idA

��
ϕA

GĀ GĀ

FA

GĀ

FA FAFA

GĀ

•m(v)

��

ρ =

GĀ GĀ

FA

GĀ

•m(v)

��

FA

GĀ

FA

FA

FA

•idFA

��

FA FAFA

GĀ GĀ

FA

GĀ

FA FAFA

GĀ

•m(v)

��

∼=

and

GĀ GĀ

GĀ

GĀ

•idGĀ

��

GĀ GĀGĀ

GĀ

•GidĀ

��
γĀ

GĀ GĀ

FA

GĀ

•m(v)

��

FA FAFA

GĀ

•m(v)

��
1m(v)

GĀ GĀ

GĀ

GĀ

•
��

GĀ

GĀ

GĀ

FA

GĀ

•
��

FA FAFA

GĀ GĀ

FA

GĀ

FA FAFA

GĀ

•m(v)

��

λ =

GĀ GĀ

GĀ

GĀ

•idGĀ

��

GĀ

GĀ

GĀ

FA

GĀ

•m(v)

��

FA FAFA

GĀ GĀ

FA

GĀ

FA FAFA

GĀ

•m(v)

��

∼=

where ∼= represents the canonical unit isomorphism in B.

The data given in (M1) and (M2) as well as condition (M4) are coded in the functors

Mw,x of [4]. Our left and right actions, λ, ρ of (M3), are both called M̃ there, and (M5) is
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its naturality. The five familiar unit and associative laws they refer to are our (M6) and
(M7).

The name “module” comes from successive generalizations of the classical notion. If
we consider the monoidal category (Ab,⊗,Z) as a one object bicategory and make it into
a double category vertically, V(Ab), then a lax functor 1 //V(Ab) corresponds to a ring
and a module between two such lax functors to a bimodule in the classical sense. The
“bi” was dropped early on as redundant, in favour of “module” from one ring to another
to emphasize that we were dealing with a kind of morphism that could be composed and
to avoid potential clashes with other bicategorical notation.

Still following [4] we will call our cells, modulations.

3.3. Definition. Given lax functors F, F ′, G,G′ : A // B, natural transformations t :
F // F ′, s : G // G′, and modules m : F • // G, m′ : F ′ • // G′, a modulation

G G′
s

//

F

G

•m

��

F F ′t // F ′

G′

•m′

��
µ

consists of:
(m1) for every vertical arrow v : A • // Ā of A, a cell

GĀ G′Ā
sĀ

//

FA

GĀ

•m(v)

��

FA F ′A
tA // F ′A

G′Ā

•m′(v)

��
µ(v)

satisfying
(m2) (Horizontal naturality) for every cell

Ā Ā′
f̄

//

A

Ā

•v
��

A A′f // A′

Ā′

•v′

��
α

GĀ G′Ā
sĀ

//

FA

GĀ

•m(v)

��

FA F ′A
tA // F ′A

G′Ā

•m′(v)

��
µ(v)

G′Ā G′Ā′
Gf̄

//

F ′A

G′Ā

•
��

F ′A F ′A′Ff // F ′A′

G′Ā′

•m′(v′)

��
m′(α) =

GĀ GĀ′
Gf̄

//

FA

GĀ

•m(v)

��

FA FA′Ff // FA′

GĀ′

•m(v′)

��
m(α)

GĀ′ G′Ā′
sĀ′

//

FA′

GĀ′

•
��

FA′ F ′A′tA′
// F ′A′

G′Ā′

•m′(v′)

��
µ(v′)
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(m3) (Equivariance) for all pairs A •v // Ā •v̄ // Ã,

GÃ G′Ã′//

GĀ

GÃ

•
��

GĀ G′Ā// G′Ā

G′Ã′

•
��

GĀ G′Ā//

FA

GĀ

•
��

FA F ′A// F ′A

G′Ā

•
��

G′Ã′ G′Ã′

F ′A

G′Ã′

F ′A F ′AF ′A

G′Ã′

•

��
s(v̄)

µ(v)

λ′ =

GÃ GÃ

GĀ

GÃ

•
��

GĀ

GÃ

GĀ

FA

GĀ

•
��

FA FAFA

GÃ G′Ã//

FA

GÃ

•

��

FA F ′A// F ′A

G′Ã

•

��

λ µ(v̄·v)

and

GÃ G′Ã//

FĀ

GÃ

•
��

FĀ F ′Ā// F ′Ā

G′Ã

•
��

FĀ F ′Ā//

FA

FĀ

•
��

FA F ′A// F ′A

F ′Ā

•
��

G′Ã G′Ã

F ′A

G′Ã

F ′A F ′AF ′A

G′Ã

•

��
µ(v̄)

t(v)

ρ′ =

GÃ GÃ

FĀ

GÃ

•
��

FĀ

GÃ

FĀ

FA

FĀ

•
��

FA FAFA

GÃ G′Ã//

FA

GÃ

•

��

FA F ′A// F ′A

G′Ã

•

��

ρ µ(v̄·v)

To make the connection with [4], the data (m1) and condition (m2) are coded in their
natural transformations tw,x and (m3) is also called “equivariance” there.

3.4. Proposition. Let K : A × X // B be a lax functor. Then, every vertical arrow
x : X • // X̄ gives a module K(−, x) : K(−, X) • // K(−, X̄) and every cell

X̄ Ȳ//

X

X̄

•x
��

X Y// Y

Ȳ

•y
��

ξ

gives a modulation

K(−, X̄) K(−, Ȳ )//

K(−, X)

K(−, X̄)

•K(−,x)
��

K(−, X) K(−, Y )// K(−, Y )

K(−, Ȳ )

•K(−,y)
��

K(−,ξ)

Proof. We indicate the, pretty well obvious, formulas and will provide a detailed proof
elsewhere.
(M1) K(−, x)(v) = K(v, x)
(M2) K(−, x)(α) = K(α, 1x)
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(M3)

K(−, Y )(Ã) K(−, Y )(Ã)

K(−, Y )(Ā)

K(−, Y )(Ã)

•K(−,Y )(v̄)

��

K(−, Y )(Ā)

K(−, Y )(Ã)

K(−, Y )(Ā)

K(−, X)(A)

K(−, Y )(Ā)

•K(−,x)(v)
��

K(−, X)(A) K(−, X)(A)K(−, X)(A)

K(−, Y )(Ã) K(−, Y )(Ã)

K(−, X)(A)

K(−, Y )(Ã)

K(−, X)(A) K(−, X)(A)K(−, X)(A)

K(−, Y )(Ã)

•K(−,x)(v̄·v)

��

λ(v̄,v) =

K(Ã, Y ) K(Ã, Y )

K(Ā, Y )

K(Ã, Y )

•K(v̄,idy)

��

K(Ā, Y )

K(Ã, Y )

K(Ā, Y )

K(A,X)

K(Ā, Y )

•K(v,x)

��

K(A,X) K(A,X)K(A,X)

K(Ã, Y ) K(Ã, Y )

K(A,X)

K(Ã, Y )

K(A,X) K(A,X)K(A,X)

K(Ã, Y )

•K(v̄·v,x)

��

κ((v̄,idy),(v,x))

and ρ is similarly obtained from the laxity of K, ρ(v̄, v) = κ((v̄, x), (v, idx)).
(m1) K(−, ξ)(v) = K(1v, ξ).

3.5. Remark. If we let X = V2, the double category with two objects 0, 1, one vertical
arrow 0 • // 1, and nothing else except identities, then not only does a lax functor K :
A×V2 // B give a module K(−, 0) • // K(−, 1) but every module m : F • // G arises in
this way from a unique K.

3.6. Corollary. A vertical arrow v : A • // Ā in A produces a module A(−, v) : A(−, A)
• // A(−, Ā). A cell

Ā Ā′
f̄

//

A

Ā

•v
��

A A′f // A′

Ā′

•v′

��
α

produces a modulation

A(−, A) A(−, A′)
A(−,f̄)

//

A(−, A)

A(−, A)

•A(−,v)
��

A(−, A) A(−, A′)
A(−,f) // A(−, A′)

A(−, A′)

•A(−,v′)
��

A(−,α)

3.7. Elements
We will be working with lax functors Aop // Set and their morphisms (natural trans-

formations, modules, modulations). To do any serious calculation, we will need good
notation.

We use the same symbol for a span S : A • // B and its apex:

A B

S

A

( )0

����
��

�
S

B

( )1

��?
??

??

We write s : a •
S

// b or just s : a • // b to indicate that s is an element of S such that

s0 = a and s1 = b. For another span T : B • // C, an element of the composite T ⊗ S is
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a pair

a •s
S

// b •t
T

// c

also denoted t⊗b s : a • // c, or simply t⊗ s. The unique element a • // a in the identity
span IdA : A • // A is denoted ida : a • // a. A cell

B B′
g

//

A

B

•S
��

A A′f // A′

B′

•S′

��
σ

is a function assigning to a •s // b an element fa •
σ(s) // sb.

We extend this notation to lax functors F : Aop // Set. F has elements of different
sorts indexed by the objects of A, x ∈ FA, which we denoted by (A, x). For v : A • // Ā
in A, F (v) : FA • // FĀ is a span. We denote a typical element r ∈ F (v) by (v, r) :
(A, x) • // (Ā, x̄), where x = r0 and x̄ = r1. The laxity morphism

FÃ FÃ

FĀ

FÃ

•F v̄

��

FĀ

FÃ

FĀ

FA

FĀ

•Fv

��

FA FAFA

FÃ FÃ

FA

FÃ

FA FAFA

FÃ

•F (v̄·v)

��

Q(v̄,v)

takes an element (A, x) •
(v,r) // (Ā, x̄) •

(v̄,r̄) // (Ã, x̃) of F v̄ ·Fv to an element of F (v̄ · v), which
we denote by (v̄ · v, r̄ · r) : (A, x) • // (Ã, x̃). The cell

FA FA

FA

FA

•IdFA

��

FA FAFA

FA

•F (idA)

��
QA

takes the element id(A,x) : (A, x) • // (A, x) of IdFA to an element of F (idA) denoted
(idA, idx) : (A, x) • // (A, x).

This is more than just notation, it is the vertical part of a double category, El(F ), the
double category of elements of F .

An object of El(F ) is a pair (A, x), for A an object of A and x ∈ FA. A horizontal
arrow (A, x) // (B, y) is a pair (f, y) such that f : A //B is a horizontal arrow of A and
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x = F (f)(y). A vertical arrow (A, x) • // (Ā, x̄) is a pair (v, r) as above. A cell

(Ā, x̄) (B̄, ȳ)
(f̄ ,ȳ)

//

(A, x)

(Ā, x̄)

•(v,r)

��

(A, x) (B, y)
(f,y) // (B, y)

(B̄, ȳ)

•(w,s)
��

(α,s)

is a pair (α, s) for α a cell

Ā B̄
f̄

//

A

Ā

•v
� �

A B
f // B

B̄

•w
��

α

such that F (α)(s) = r. Horizontal composition is given by

(g, z)(f, y) = (gf, z),

(β, t)(α, s) = (βα, t),

and vertical composition by

(v̄, r̄) · (v, r) = (v̄ · v, r̄ · r),

(ᾱ, s̄) · (α, s) = (ᾱ · α, s̄ · s).

Much of the computational flexibility presented by this notation is summarized in the
following.

3.8. Theorem. El(F ) is a double category and projection onto the first factor is a strict
double functor.

Note that if A is not a strict double category neither is El(F ), but it is as strict as A
is. That the canonical projection El(F ) // A is strict is a precise way of saying this.

A natural transformation t : F // G induces a functor over A

El(F )

A
��?

??
?

El(F ) El(G)T // El(G)

A
����

��

given by the formulas T (A, x) = (A, t(A)(x)), T (f, y) = (f, t(B)(y)), T (v, r) = (v, t(v)(r)),
T (α, s) = (α, t(w)(s)).

T is not strict but as strict as A. This is formally that T commutes strictly with the
projection functor. We summarize this in the following.
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3.9. Proposition. Natural transformations t : F // G correspond bijectively to pseudo
functors over A

El(F )

A
��?

??
?

El(F ) El(G)T // El(G)

A
����

��

The correspondence preserves composition.

3.10. Remark.We could have stated the above proposition for T lax. It is automatically
pseudo. Also if A is strict, then so will T be. This is because El(G) // A is a horizontal
discrete fibration, a fact we will not use in this paper.

As is well known, the arrow notation for elements of a span can also be used to simplify
calculations with profunctors. If P : A • // B is a profunctor, i.e. a functor P : Aop ×
B //Set, we write x : A •

P
//B to indicate that x ∈ P (A,B). The action of P on arrows

A′ a // A and B b // B′ is denoted P (a,B)(x) = xa and P (A, b)(x) = bx. Functoriality
of P says that these actions are unitary and associative. If Q : B // C is another
profunctor, then an element of the composite Q⊗P is an equivalence class of “composable

pairs” A •x
P

//B •
y

Q
//C, denoted [A •x

P
//B •

y

Q
//C] = y ⊗B x. The equivalence relation is

generated by (y′b)⊗B x = y′ ⊗B′ bx

A B′•
x′

//

A

A

A B•x // B

B′

b

��
B′ C•

y′
//

B

B′

B C•
y // C

C

A cell in Cat

B B′
G

//

A

B

•P
��

A A′F // A′

B′

•P ′

��
t

is a function which assigns equivariantly an element FA •tx
P ′

//GB to each elementA •x
P

//B.

This notation can be usefully extended to modules m : F • // G for F,G : Aop // Set
lax functors. When A = 1, modules are profunctors. As with elements of lax functors the
notation is more than that, it’s a double category, and this is the best way to organize its
properties.

We write (v, z) : (A, x) •
m

// (B, y) to indicate that x ∈ FA, y ∈ GB, v : A • // B,
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z ∈ m(v) such that z0 = x and z1 = y,

y∈ GB

z∈

y∈

_

��

z∈ mvmv

GB

( )1

��

z∈ mv

x∈

z∈

OO

_

x∈ FAFA

mv

OO

( )0

The (v, z) are vertical arrows in a double category which we denote El(F ) +m El(G). It
is the disjoint union of El(F ) with El(G) with extra vertical arrows from El(F ) to El(G),
viz. the (v, z) above. Along with these vertical arrows are extra cells

(B, y) (B′, y′)
(g,y′)

//

(A, x)

(B, y)

•(v,z)

��

(A, x) (A′, x′)
(f,x′) // (A′, x′)

(B′, y′)

•(v′,z′)
��

(α,z′)

when α is a cell in A

B B′
g

//

A

B

•v
��

A A′f // A′

B′

•v′

��
α

such that m(α)(z′) = z. There are no vertical arrows from El(G) to El(F ) and no
horizontal arrows in either direction. Composition of arrows (v, z) : (A, x) •

m
// (B, y)

with vertical arrows of El(G), (w, s) : (B, y) •
G

// (B̄, ȳ), is given by the left action of m

(w, s) · (v, z) = (w · v, s · z),

s · z = λ(w, v)(s, z).

Similarly, the right action of m produces a composition with vertical arrows of El(F ),
(v̄, r) : (Ā, x̄) • // (A, x),

(v, z)(v̄, r) = (v · v̄, z · r),

z · r = ρ(v, v̄)(z, r).

Both horizontal and vertical composition of cells come straight from A. The module
conditions (M4)-(M7) are summarized in the following.

3.11. Theorem. El(F )+mEl(G) is a double category and projecting onto the first factor
is a strict double functor into A.
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3.12. Remark. If K : Aop×V2 //Set is the unique lax functor such that K(−, 0) = F ,
K(−, 1) = G and K(−, 01) = m, then El(F ) +m El(G) is exactly El(K).

3.13. Example: Cat/A
Although the previous section shows a different aspect of the profunctor nature of

modules we are still in unfamiliar territory. A more tractable example is when A is
horizontally discrete, i.e. it is just a category made into a vertical double category. We
start with the simplest and most familiar case.

If 1 is the terminal double category, then as pointed out at the end of sections 2.2
and 2.3, a lax functor F : 1 // Set “is” a small category and a natural transformation
t : F // G “is” a functor. If F and G correspond to categories X and Y, then a module
m : F • // G is a span

F (∗) G(∗)

m(1∗)

F (∗)
�����

�
m(1∗)

G(∗)
��?

??
?

with a right action of F (1∗) and a left action of G(1∗), so that m corresponds to a functor

M : Xop ×Y // Set

i.e. a profunctor M : X • // Y. It is easily seen that a modulation corresponds to
a morphism of profunctors, so that lax functors, natural transformations, modules and
modulations with domain 1 make up the double category Cat. We can’t make this precise
because we haven’t yet discussed composition of modules and modulations. There is no
problem with horizontal composition of modulations, but vertical composition of modules
does present some difficulties. This will be discussed in [17].

Nevertheless we can generalize this example. For a category A, the double category
VA has the same objects as A, the arrows of A as its vertical arrows, and only identity
horizontal arrows and cells. A lax functor F : VA // Set is “the same as” a category
over A. To be more precise, if Lax(VA,Set) is the category of lax functors VA // Set
and natural transformations, we have an equivalence of categories

Lax(VA,Set) ≃ Cat/A.

This is a reformulation of the observation due to Bénabou that Grothendieck’s construc-
tion of an opfibration from a pseudo functor A // Cat can be generalized to give an
equivalence between categories over A and lax normal functors from A into the bicate-
gory of profunctors.

If F : VA //Set is a lax functor, then El(F ) is horizontally discrete, i.e. all horizontal
arrows are identities and all cells are horizontal identities. It is thus of the form VEl(F ) for
an ordinary category El(F ). The projection VEl(F ) //VA is just a functor El(F ) //A.
Conversely, any functor Φ : X // A gives a lax functor F : VA // Set by defining

FA = {X ∈ Ob(X)|ΦX = A}
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Ff = {x : X // Y ∈ X|Φx = f}
with span projections “domain” and “codomain”.

By Proposition 3.9, a natural transformation t : F // G corresponds to a pseudo
functor over VA which, in the present situation, is simply a functor over A.

El(F )

A
��?

??
?

El(F ) El(G)T // El(G)

A
����

��

The above equivalence now tells us what a profunctor over A should be. It should
correspond to a module between the corresponding lax functors VA // Set.

3.14. Theorem. Let F,G : VA // Set be lax functors and Φ : B // A, Ψ : C // A
the corresponding categories over A. Then there is a canonical correspondence between
modules m : F • // G and paris (P, π) of a profunctor P : B • // C and a natural trans-
formation π

C A
Ψ

//

B

C

•P
��

B AΦ // A

A

•IdA
��

π

Modulations

G G′
s

//

F

G

•m

��

F F ′t // F ′

G′

•m′

��
µ

correspond canonically to natural transformations

C C′
s

//

B

C

•P
��

B B′T // B′

C′

•P ′

��

τ⇒

such that

C C′
S

//

B

C

•P
��

B B′T // B′

C′

•P ′

��
C′ A

Φ′
//

B′

C′

•
��

B′ AΦ′
// A

A

•IdA
��

=

C A
Ψ

//

B

C

•P
��

B AΦ // A

A

•IdA
��

τ⇒ π′
⇒ π⇒

These correspondences set up an equivalence between the category of modules and mod-
ulations with horizontal composition and the category whose objects are pairs (P, π) and
whose morphisms are τ as above, with horizontal composition.

Proof. This is merely a matter of rearranging the data for modules into that for pro-
functor over A and vice versa.
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3.15. Remark. The categories Cat/A are rarely cartesian closed so any hopes that
Lax(Aop, Set), being a kind of presheaf double category, be cartesian closed, are immedi-
ately dashed.

Recall from [10] the notion of comma double category. Given a lax functor Φ : X //Z
and an oplax one Y • // Z, there is a double category (Ψ ⇓ Φ) and a cell in Doub

X Z
Φ

//

(Ψ ⇓ Φ)

X

•
��

(Ψ ⇓ Φ) Y// Y

Z

•Ψ̄
��

κ

satisfying some universal property. An object of (Ψ ⇓ Φ) is a triple (Y,ΨY z // ΦX,X),
X an object of X, Y an object of Y and z a horizontal arrow of Z. A horizontal arrow is
a pair of horizontal arrows x : X // X ′ and y : Y // Y ′ such that

ΨY ′ ΦX ′
z′

//

ΨY

ΨY ′

Ψy

��

ΨY ΦXz // ΦX

ΦX ′

Φx

��

commutes. A vertical arrow is a triple (w, ξ, v)

Ȳ Ψ̄Ȳ

Y

Ȳ

•w
��

Y ΨYΨY

Ψ̄Ȳ

•
��

Ψ̄Ȳ ΦX̄
z̄

//

ΨY

Ψ̄Ȳ

•Ψw

��

ΨY ΦXz // ΦX

ΦX̄

•Φv
��

ΦX̄ X̄

ΦX

ΦX̄

•
��

ΦX XX

X̄

•v
��

ξ̄

with v, w vertical arrows and ξ a cell. Finally a cell is a pair of cells, one in X and one
in Y forming a commutative cube. It is the vertical composition that is interesting and
involves the laxity and oplaxity cells. The composite (w̄, ξ̄, v̄) · (w, ξ, v) is

Ỹ Ψ̄Ỹ

Ȳ

Ỹ

•w̄
��

Ȳ

Ψ̄Ỹ

Ȳ

Y

Ȳ

•w
��

Y Ψ̄YΨ̄Y

Ψ̄Ỹ Ψ̄ỸΨ̄Ỹ

Ψ̄ȲΨ̄Ȳ

Ψ̄Ỹ

•Ψ̄w̄
��

Ψ̄Ȳ

Ψ̄YΨ̄Y Ψ̄YΨ̄Y

Ψ̄Ȳ

•Ψ̄w
��

Ψ̄Ỹ Ψ̄Ỹ

Ψ̄Y

Ψ̄Ỹ

•Ψ̄(w̄·w)

��

Ψ̄Y Ψ̄YΨ̄Y

Ψ̄Ỹ

ψw̄,w

Ψ̄Ỹ ΦX̃//

Ψ̄Ȳ

Ψ̄Ỹ

•
��

Ψ̄Ȳ ΦX̄// ΦX̄

ΦX̃

•Φv̄
��

Ψ̄Ȳ ΦX̄//

Ψ̄Y

Ψ̄Ȳ

Ψ̄Y ΦX// ΦX

ΦX̄

•Φv
��

ξ

ξ

ΦX̃ ΦX̃

ΦX̄

ΦX̃

ΦX̄

ΦX̃

ΦX̄

ΦX

ΦX̄

ΦX ΦXΦX

ΦX̃ ΦX̃

ΦX

ΦX̃

ΦX ΦXΦX

ΦX̃

•Φ(v̄·v)

��

ϕv̄,v

ΦX̃ X̃ΦX̃

X̄̄X

X̃

• v̄
��

X̄

ΦXΦX XX

X̄

•v
��

The identity id(Y,z,X) is

Y ΨY

Y

Y

•idY

��

Y ΨYΨY

ΨY

•
��

ΨY ΨY

ΨY

ΨY

•Ψ(idY )

��

ΨY ΨYΨY

ΨY

• idΨY

��
ψY

ΨY ΦXz
//

ΨY

ΨY

•
��

ΨY ΦXz // ΦX

ΦX

• idΦX

��
idz

ΦX ΦX

ΦX

ΦX

•
��

ΦX ΦXΦX

ΦX

•Φidx

��
ϕX

ΦX X

ΦX

ΦX

•
��

ΦX XX

X

• idX
��
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It all works! See [10] for details, where it is shown, among other things, that an oplax
F : A // B is left adjoint to a lax U : B // A if and only if there is an isomorphism of
double categories over A× B

(F ⇓ 1B)

A× B
��?

??
?

(F ⇓ 1B) (1A ⇓ U)
∼= // (1A ⇓ U)

A× B
����

��

If Z is an object of Z and we take the comma double category

1 Z
Z

//

(1Z, Z)

1
��

(1Z, Z) Z// Z

Z

1Z

��

and get the (horizontal) slice double category Z//Z whose objects are horizontal arrows
Z ′ // Z, horizontal arrows are commutative triangles, vertical arrows are cells

Z̄ ′ Z//

Z ′

Z̄ ′

•
��

Z ′ Z// Z

Z

• idZ
��

ξ

and cells are commutative prisms of cells

Z̄ ′

Z
%%LLLLLLLZ̄ ′ Z̄ ′′Z̄ ′′

Z
yyrrr

rrr
r

Z̄ ′ Z̄ ′′

Z ′

Z̄ ′

•
��

Z ′ Z ′′Z ′′

Z̄ ′′

•
��Z

Z

• idz
��

Z̄ ′ Z̄ ′′//

Z ′

Z
%%LLLLLLLZ ′ Z ′′// Z ′′

Z
yyrrr

rrr
r

The patient reader will have realized by now that the point of this discussion is the
following reformulation of Theorem 3.14.

3.16. Theorem. Lax(VA,Set) ≃ Cat//A.

Actually, the proof of this theorem is incomplete as we haven’t yet defined vertical
composition in Lax(A,Set), which we will do in the next section. For now we simply
remark that, not only does a functor over A

B

A
F ��?

??
??

B CK // C

A
G����

��
�
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produce vertical morphisms

C A
G

//

B

C

•K∗

��

B AF // A

A

•IdA
��

κ∗ and

B A
F

//

C

B

•K∗

��

C AG // A

A

•IdA
��

κ∗

which are, in fact, companion and conjoint to K in Cat//A, but that upon examining the
definitions of κ∗ and κ∗, we see that an oplax triangle

B

A
F ��?

??
??

B CK // C

A
G����

��
�κ⇒

also gives a vertical morphism (K∗, κ∗), and a lax triangle

B

A
F ��?

??
??

B CK // C

A
G����

��
�κ⇐

gives one like (K∗, κ∗) above.

3.17. The Yoneda Lemma Part II

3.18. Theorem. (Yoneda Lemma II) Let F,G : Aop // Set be lax functors and m :
F • // G a module. Then for every v : A • // Ā, there is a bijection between elements
r ∈ m(v) and modulations

A(−, Ā) G
t1

//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) F
t0 // F

G

•m
��

µ

given by r = µ(v)(1v).

Proof. Suppose we are given r ∈ m(v) and we wish to construct a modulation µ as in
the statement. We will have a commutative diagram

A(Ā, Ā) GĀ
t1Ā

//

A(v, v)

A(Ā, Ā)

OO

∂1

A(v, v) m(v)
µ(v) // m(v)

GĀ

OO

( )0

A(v, v) m(v)//

A(A,A)

A(v, v)

∂0
��

A(A,A) FA
t0A // FA

m(v)

( )0

��
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Thus t0A(1A) = r0 and t1Ā(1Ā) = r1, which completely determine t0 and t1 (by Theorem
2.3). For a cell

B̄ Ā//

B

B̄

•w
��

B A// A

Ā

•v
��

α

horizontal naturality of µ (m2) requires

A(Ā, Ā) A(B̄, Ā)//

A(A,A)

A(Ā, Ā)

•A(v,v)
��

A(A,A) A(B,A)// A(B,A)

A(B̄, Ā)

•
��

A(B̄, Ā) GB̄//

A(B,A)

A(B̄, Ā)

•A(w,v)
��

A(B,A) FB// FB

GB̄

•m(w)

��
A(α,v) µ(w) =

A(Ā, Ā) GĀ//

A(A,A)

A(Ā, Ā)

•A(v,v)
��

A(A,A) FA// FA

GĀ

•m(v)

��
GĀ GB̄//

FA

GĀ

•
��

FA FB// FB

GB̄

•m(w)

��
m(α)

If we apply both sides to 1v we see that we must have

µ(w)(α) = m(α)(r).

Thus if there is a modulation µ it is unique and given by this formula. It is now simply a
matter of checking that it does indeed define a modulation, and this is straightforward.

3.19. Corollary. There is a bijection between elements r ∈ F (v) and modulations

A(−, Ā) F//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) F// F

F

• idF
��

µ

given by r = µ(v)(1v).

3.20. Corollary. (Fullness on modulations) Every modulation

A(−, Ā) A(−, B̄)//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) A(−, B)// A(−, B)

A(−, B̄)

•A(−,w)
��

µ

is of the form A(−, α) for a unique cell

Ā B̄//

A

Ā

•v
��

A B// B

B̄

•w
��

α
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We give a simple application of the Yoneda theorems we have so far, to the construction
of tabulators for modules. Recall from [9] that a tabulator for a vertical arrow v : A • // Ā
in a double category is an object T and a cell

T

Ā
��?

??
??

A

T

??

��
��

�
A

Ā

•v

��

τ

with universal properties:
(T1) For every cell

X

Ā
��?

??
??

A

X

??

��
��

�
A

Ā

•v

��

ξ

there is a unique horizontal arrow x : X // T such that τx = ξ;
(T2) For every commutative tetrahedron of cells

X

Ā
��?

??
??

??
??

X̄

A

����

??����

X̄ Ā//

X

X̄

•x
��

X A// A

Ā

•v
��

there is a unique cell ξ such that

T

X̄

??

��
��

�

X

T
��?

??
??

X

X̄

•x

��

T

Ā
��?

??
??

A

T

??

��
��

�
A

Ā

•v

��

ξ τ

gives the tetrahedron in the “obvious” way.
(T2′) We state the “obvious”: given cells α0, α1, ξ0, ξ1 such that

X̄ Ā//

X

X̄

•x
��

X Ā// Ā

Ā

• id
��

ξ1

X Ā//

X

X

•id

��

X A// A

Ā

•v
��

α0

=

X̄ Ā//

X̄

X̄

•id

��

X̄ A// A

Ā

•v
��

α1

X̄ A//

X

X̄

•x
��

X A// A

A

• idA
��

ξ0
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there is a unique ξ such that

X̄ T//

X

X̄

•x
��

X T// T

T

• idT
��

ξ

T A
t0

//

T

T

•
��

T A
t0 // A

A

• idA
��

idt0 =

X̄ A//

X

X̄

•x
��

X A// A

A

• idA
��

ξ0

X̄ T//

X

X̄

•x
��

X T// T

T

•
��

ξ

T Ā
t1

//

T

T

•
��

T Ā
t1 // Ā

Ā

• idĀ
��

idt1 =

X̄ Ā//

X

X̄

•x
��

X Ā// Ā

Ā

• idA
��

ξ1

X T//

X

X

•idX

��

X T// T

T

• idT
��

id

T Ā
t1

//

T

T

•
��

T A
t0 // A

Ā

•v
��

τ =

X Ā//

X

X

idx

��

X A// A

Ā

•v
��

α0

X̄ T//

X̄

X̄

•idX̄

��

X̄ T// T

T

• idT
��

id

T Ā
t1

//

T

T

•
��

T A
t0 // A

Ā

•v
��

τ =

X̄ Ā//

X̄

X̄

•
��

X̄ A// A

Ā

•v
��

α1

Now let m : F • // G be a module. If it has a tabulator, T , we can use 2.3 and
3.18 to discover what it is. Elements of TA are in bijection with natural transformations
t : A(−, A) // T which by (T1) are in bijection with modulations

A(−, A) G//

A(−, A)

A(−, A)

•IdA(−,A)

��

A(−, A) F// F

G

•m
��

µ

and as IdA(−,A) = A(−, idA), such µ are in bijection with elements r ∈ m(idA). So we take
T (A) = m(idA). It’s clear how T is horizontally functorial. In a similar way, elements of
T (v) are in bijection with modulations

A(−, Ā) T//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) T// T

T

• idT
��

µ
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and these correspond to modulations α0, α1, ξ0, ξ1 such that ξ1 · α0 = α1 · ξ0,

A(−, Ā) G//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) G// G

G

• idG
��

ξ1

A(−, A) G//

A(−, A)

A(−, A)

•IdA(−,A)

��

A(−, A) F// F

G

•m
��

α0

=

A(−, Ā) G//

A(−, Ā)

A(−, Ā)

•IdA(−,Ā)

��

A(−, Ā) F// F

G

•m
��

α1

A(−, Ā) F//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) F// F

F

• idF
��

ξ0

and these correspond to elements r0 ∈ m(idA), r1 ∈ m(idĀ), x0 ∈ F (v) and x1 ∈ G(v)
such that x1 · r0 = r1 · x0 in the notation of §3.7. That is, T (v) is defined by the pullback
diagram

m(idĀ)⊗ F (v) m(v)//

T (v)

m(idĀ)⊗ F (v)
��

T (v) G(v)⊗m(idA)// G(v)⊗m(idA)

m(v)
��

Now, everything falls into place. The projections of T (v) onto T (A) and T (Ā) are
(r0, r1, x0, x1)0 = r0 and (r0, r1, x0, x1) = r1. The multiplication for T is given by

(r1, r2, x̄0, ȳ0) · (r0, r1, x0, y0) = (r0, r2, x̄0 · x0, ȳ0 · y0)

and the unit
idT (r) = (r, r1, idr, idr).

The natural transformation t0 : T // F is given by t0(A)(r) = r0 ∈ FA, and
t0(v)(r0, r1, x0, x1) = x0 ∈ Fv. t1 : T // G is similar. The modulation

T G//

T

T

•idT

��

T F// F

G

•m
��

τ

is given by
τ(v)(r0, r1, x0, x1) = x0 · r0 = r1 · x0.

Checking the universal property is equally straightforward.

4. The Yoneda Lemma Parts III and IV

In this section we will define the Yoneda embedding and discuss to what extent it is full
and faithful. Then we show that it is dense, i.e. every lax functor Aop // Set is a colimit
of representables. We also show that every module is a colimit of representable modules.



YONEDA THEORY FOR DOUBLE CATEGORIES 481

We have almost all of the ingredients of the Yoneda embedding except for one crucial
thing: Lax(Aop,Set) is not yet a double category.

Composition of modules is problematic. In fact it doesn’t exist in general. Even com-
position of V-profunctors requires certain well-behaved colimits in V. It is straightfor-
ward, however, to define a rich enough structure to encode all of the information regarding
composition so that the existence of composites is just a question of representability. We
are referring of course to what we called “lax double categories” in [6]. This name is not
ideal. It should be reserved for the case where all n-fold composites are given but unit
laws and associativity only hold up to comparison cells. We adopt the “virtual double
category” nomenclature of [5]. Other names in the literature are “T-catégories” [3], “fc-
multicategories” [16], “multicategories with several objects” [11], and “multibicategories”
[4]. In any case, it is precisely the structure preserved by lax functors. It is thus not
surprising that it ends up playing a central role here.

As a matter of fact, composites of modules in Lax(Aop, Set) are representable, although
we don’t know if they are strongly representable. They certainly are in many important
cases. These questions will be discussed in [17]. But the composites are complicated and
in many cases it is best to work directly with the virtual double category, a position also
put forward in [4]. We refer the reader to [6] for complete definitions.

4.1. Multimodulations
Let A and B be double categories, F0, F1, G0, G1, . . . , Gk lax functors from A to B, t0,

t1 natural transformations and m,n1, . . . , nk modules as in the diagram

... F1

...

Gk

•nk

��

F1

Gk

??

t1��
��

��
��

G1 F0

G0

G1

•n1

��

G0

F0

t0

��?
??

??
??

?

... F1

G1

...

•n2

��

G1 F0F0

F1

•m
��

4.2. Definition. A multimodulation µ with domains and codomains as in the above
diagram is an assignment
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(mm1) for each A0 •
v1 //A1 •

v2 // · · · •
vk //Ak in A a cell in B

... F1Ak

...

GkAk

•nk(vk)

��

F1Ak

GkAk

::

t1Akttttttttttt

G1A1 F0A0

G0A0

G1A1

•n1(v1)

��

G0A0

F0A0

t0A0

$$JJJJJJJJJJJ

... F1Ak

G1A1

...

•n2(v2)
��

G1A1 F0A0F0A0

F1Ak

•m(vk·...·v1)
��

µ(vk,...,v1)

satisfying
(mm2) (horizontal naturality) for all vertically composable cells α1, . . . , αk

GkAk GkA
′
k

//

...

GkAk

•nkvk

��

...
...
...

GkA
′
k

•
��

...
...

G1A1

...

•n2v2
��

G1A1 G1A
′
1

// G1A
′
1

...

•��

G1A1 G1A
′
1

//

G0A0

G1A1

•n1v1

��

G0A0 G0A
′
0

// G0A
′
0

G1A
′
1

•
��

... F1A
′
k

...

GkA
′
k

•
��

F1A
′
k

GkA
′
k

??

��
��

��
��

... F1A
′
k

G1A
′
1

...

•��

G1A
′
1 F0A

′
0F0A
′
0

F1A
′
k

•m(v′n·...·v′1)
��

G1A
′
1 F0A

′
0

G0A
′
0

G1A
′
1

•
��

G0A
′
0

F0A
′
0

��?
??

??
??

?

nkαk

...

n2α2

n1α1

µ =
... F1Ak
...

GkAk

•nkvk

��

F1Ak

GkAk

??

��
��

��
��
F1Ak F1A

′
k

//

F0A0

F1Ak

•
��

F0A0 F0A
′
0

// F0A
′
0

F1A
′
k

•
��... F1Ak

G1A1

...

•n2v2
��

G1A1 F0A0F0A0

F1Ak

•
��

G1A1 F0A0

G0A0

G1A1

•n1v1

��

G0A0

F0A0

��?
??

??
??

?

µ m(αk·...·α1)

(mm3l) (left equivariance)

t1vk+1

µ

λ

GkAk F1Ak+1GkAk

GkAk+1

•Gkvk+1

��

F1Ak+1

GkAk+1

77

ooooooooooooo
GkAk F1Ak+1

F1Ak

GkAk

77

ooooooooooooo
F1Ak

F1Ak+1

•Fvk+1

��

... F1Ak

...

GkAk

•nkVk

��

F1Ak

GkAk

77

ooooooooooooo

... F1Ak

G1A1

...

•n2v2
��

G1A1 F0A0F0A0

F1Ak

•m(···)
��

G1A1 F0A0

G0A0

G1A1

•n1v1

��

G0A0

F0A0

''OOOOOOOOOOOOO

F1Ak+1

F1Ak+1

oooooo

F1Ak

F1Ak+1

F1Ak

F1Ak+1

•
��

F0A0

F1Ak

F0A0

F0A0

OOO
OOO

F0A0

F1Ak

•
��

F0A0

F1Ak+1

•m(vk+1·····v1)
��

λk

µ

GkAk+1

GkAk+1
ggggggggg
ggggggggg

GkAk

GkAk+1

GkAk

GkAk+1

•Gkvk+1

��

Gk−1Ak−1

GkAk

Gk−1Ak−1

Gk−1Ak−1

WWWWWWW
WWWWWWWGk−1Ak−1

GkAk

•nkvk

��
GkAk

GkAk+1

Gk−1Ak−1

GkAk

Gk−1Ak−1

GkAk+1

•n(vk+1·vk)
��

Gk−1Ak−1

Gk−1Ak−1

WWWWWWW
WWWWWWW

...

Gk−1Ak−1

...

Gk−1Ak−1

•
��

...

Gk−1Ak−1

...
...

...

Gk−1Ak−1

•
��

...
...

G1A1

...

G1A1

...

•��

G1A1

...

G1A1

G1A1

WWWWWWWWWWWW

WWWWWWWWWWWWG1A1

...

n2V2

G1A1

G1A1

WWWWWWWWWWWW

WWWWWWWWWWWW

G0A0

G1A1

G0A0

G1A1

•
��

G0A0

G1A1

G0A0

G0A0

WWWWWWWWWWWW

WWWWWWWWWWWWG0A0

G1A1

•n1v1

��

F1Ak+1

GkAk+1

44
iiiiii

Gk−1Ak−1

F1Ak+1

Gk−1Ak−1

GkAk+1

•
��

F0A0

G1A1

G0A0

F0A0
**UUUUUUUUG0A0

G1A1

•
��

F0A0

F1Ak+1

•

��

=
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(mm3r) (right equivariance)

...

GkAk

•nkvk

��

G1A1

...

•n2v2
��

G0A0

G1A1

•n1v1

��

G0A−1

G0A0

•G0v0

��

F0A0

F1Ak

•

��

F0A−1

F0A0

•
��

F0A−1

F1Ak

•

��

GkAk

F1Ak44jjjjjjj

G0A0

F0A0

**TTTTTTTT

G0A−1

F0A−1

**TTTTTT

F1Ak

F1Akjjjjjjjj
jjjjjjjj

F0A−1

F0A−1

TTTTTT
TTTTTT

...

GkAk

•nkvk

��

G1A1

...

•n2v2
��

G0A0

G1A1

•n1v1

��

G0A−1

G0A0

•G0v0

��

...

GkAk

•
��

G1A1

...

•��

G0A−1

G1A1

•
��

F0A−1

F1Ak

•

��

GkAk

GkAkjjjjjjj
jjjjjjj

G1A1

G1A1jjjjjjj
jjjjjjj

G0A−1

G0A−1

TTTTTT
TTTTTT

GkAk

F1Ak44jjjjjjj

G0A−1

F0A−1

**TTTTTT

µ

t0v0

ρ

ρ0

µ=

(mm3i) (inner equivariance) for every 1 ≤ i < k

...

GkAk

•
��

Gi+1Ai+1

...

•��

GiĀi

Gi+1Ai+1

•ni+1vi+1

��

G1Ai

GiĀi

•Giv̄i
��

Gi−1Ai−1

G1Ai

•nivi

��

...

Gi−1Ai−1

•
��

G0A0

...

•��

...

GkAk

•
��

Gi+1Ai+1

...

•��

GiĀi

Gi+1Ai+1

•
��

Gi−1Ai−1

GiĀi

•
��

...

Gi−1Ai−1

•
��

G0A0

...

•��

GkAk

GkAkjjjjjjj
jjjjjjj

Gi+1Ai+1

Gi+1Ai+1jjjj jjjj

GiĀi

GiĀijjjjjjjj
jjjjjjjj

Gi−1Ai−1

Gi−1Ai−1

TTTT TTTT

G0A0

G0A0

TTTTTTT
TTTTTTT

F0A0

F1Ak

•

��

GkAk

F1Ak44jjjjjjj

G0A0

F0A0

**TTTTTTTT

...

GkAk

•
��

Gi+1Ai+1

...

•��

GiĀi

Gi+1Ai+1

•ni+1vi+1

��

G1Ai

GiĀi

•Giv̄i
��

Gi−1Ai−1

G1Ai

•nivi

��

...

Gi−1Ai−1

•
��

G0A0

...

•��

...

GkAk

•
��

Gi+1Ai+1

...

•��

GiĀi

Gi+1Ai+1

•
��

Gi−1Ai−1

GiĀi

•
��

...

Gi−1Ai−1

•
��

G0A0

...

•��

GkAk

GkAkjjjjjjj
jjjjjjj

Gi+1Ai+1

Gi+1Ai+1jjjj jjjj

G1Ai

GiĀi
TTTTTTTT
TTTTTTTT

Gi−1Ai−1

Gi−1Ai−1

TTTT TTTT

G0A0

G0A0

TTTTTTT
TTTTTTT

F0A0

F1Ak

•

��

GkAk

F1Ak44jjjjjjj

G0A0

F0A0

**TTTTTTTT

λi

µ

ρi+1

µ=

It is understood that an empty composite is an identity and when k = 0 (mm1) and
(mm2) still make sense but none of (mm3r), (mm3l) or (mm3i) do. We, instead, require
the condition
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(mm30)

G0A1 G0A1

G0A0

G0A1

•G0v

��

G0A0 G0A0G0A0

G0A1

∼=

G0A1 F1A1
//

G0A0

G0A1

•G0v

��

G0A0 F1A0
// F1A0

F1A1

•F1v

��
t1v

G0A0 F1A0
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G0A0

G0A0

•idG0A0

��

G0A0 F0A0
// F0A0

F1A0

•m(idA0
)

��
µA0
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//
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G0A1

•idG0A1

��

G0A1 F0A1
// F0A1

F1A1

•m(idA1
)

��
µA1

G0A1 F0A1
//

G0A0

G0A1

•G0v

��

G0A0 F0A0
// F0A0

F0A1

•F0v

��
t0v

F1A1 F1A1

F0A0

F1A1

F0A0 F0A0F0A0

F1A1

•m(v)

��

ρ

Although this last condition is certainly reasonable, it may raise some suspicions in
the cautious reader. The following theorem should allay these concerns.

4.3. Theorem. With these definitions, Lax(A,B) is a virtual double category. Identities
are strongly representable.

Proof. We refer the reader to [17] for a complete proof. We simply mention that the
identity on G is indeed the module we have been referring to as IdG : G • // G, viz.
IdG(v) = G(v). Given a multimodulation

G

F1

��?
??

??

F0

G

??

��
��
F0

F1

•m

��

µ

it extends to a modulation

G F1
//

G

G

•IdG

��

G F0
// F0

F1

•m
��

µ̄

by defining µ̄(v) to be either side of the equation (mm30).

Now that we understand Lax(Aop, Set) as a virtual double category, it will be useful
to upgrade our Theorem 3.18 to the following.

4.4. Theorem. [Yoneda Lemma II +] Let m : F • // G be a module between lax functors

F,G : Aop // Set, and A0 •
v1 //A1 •

v2 //A2 · · · •
vk //Ak vertical morphisms. Then there is



YONEDA THEORY FOR DOUBLE CATEGORIES 485

a bijection between multimodulations

... G

...

A(−, Ak)

•A(−,vk)
��

G

A(−, Ak)

??

��
��

��
��

�

... G

A(−, A1)

...

•A(−,v2)
��

A(−, A1) FF

G

•m
��

A(−, A1) F

A(−, A0)

A(−, A1)

•A(−,v1)
��

A(−, A0)

F
��?

??
??

??
?

µ

and elements x ∈ m(vk · . . . · v1) given by

x = µ(vk, . . . , v1)(1vk , . . . , 1v1).

Proof. µ is an assignment taking vertically composable cells α1, . . . , αk to elements
µ(αk, . . . α1) ∈ m(vk · . . . · v1), satisfying certain conditions, one of which is naturality

µ(α′
kαk, . . . , α

′
1α1) = m(αk · . . . · α1)µ(α

′
e, . . . , α

′
1).

It follows that
µ(αk, . . . , α1) = m(αk · . . . · α1)µ(1vk , . . . , 1v1),

so that µ is uniquely determined by this formula. It is now just a matter of calculation
to check that µ defined by

µ(αk, . . . , α1) = m(αk · . . . · α1)(x)

does indeed define a multimodulation.

4.5. Corollary. The composite of A(−, vk),A(−, vk−1), · · · ,A(−, v1) exists and is rep-
resented by A(−, vk · . . . · v1).

4.6. Corollary. Every multimodulation
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...
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•A(−,vk)
��
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is of the form A(−, α) for a unique cell

... A′
1

...

Ak

•vk

��

A′
1

Ak

??

��
��

��
��

... A′
1

A1

...

•v2
��

A1 A′
0A′
0

A′
1

•v′
��

A1 A′
0

A0

A1

•v1

��

A0

A′
0

��?
??

??
??

?

α

where A(−, α)(vk, . . . , v1)(αk, . . . , α1) = α(αk, . . . , α1).

4.7. The Yoneda Embedding
We now have all the ingredients to define the Yoneda functor Y : A //Lax(Aop,Set).

As we are considering Lax(Aop, Set) to be a virtual double category, we will also consider
A to be one in the canonical way, viz. a multicell with horizontal domain

A0 •
v1 //A1 •

v2 // · · · •
vk //Ak

is the corresponding cell with horizontal domain vk · . . . · v1 : A0 • // Ak.

4.8. Theorem. [Yoneda Lemma III] Y : A // Lax(Aop,Set) defined by Y A = A(−, A),
Y f = A(−, f), Y v = A(−, v), Y α = A(−, A), is a strong functor (vertical composition is
preserved up to special isomorphism) which is full and faithful on horizontal arrows and
multicells.

Y is called the Yoneda embedding. It is not full on vertical arrows as we can see by
taking A = 1. Then Y becomes the double functor 1 // Cat whose value is the category
1. Modules 1 • // 1 are profunctors and so are in bijection with sets.

However it is straightforward to give the “correct” definition of a fully faithful functor
between category objects in an arbitrary category with pullbacks, viz. F : A //B is fully
faithful if

A0 × A0 B0 ×B0F0×F0

//

A1

A0 × A0

(∂0,∂1)

��

A1 B1
F1 // B1

B0 ×B0

(∂0∂1)

��

is a pullback diagram. When we apply this definition to a category object in Cat, we
get the definition of a full and faithful double functor as one which is full and faithful on
horizontal arrows and cells, with no mention of vertical arrows. This we call horizontally
full and faithful. It’s a small step to define horizontal full and faithfulness for virtual
double categories, and that is exactly what Y is.
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Although Y is far from full on vertical arrows, it is “locally faithful”: if A(−, v) ∼=
A(−, v′) (special isomorphism) then v ∼= v′. This is an immediate consequence of it being
full and faithful on multicells.

4.9. Density

4.10. Theorem. [Yoneda Lemma IV] Any lax functor F : Aop // Set is a colimit of

representables, namely the colimit of El(F ) P // A Y // Lax(Aop,Set).

Proof. El(F ) is the double category of elements of F introduced in §3.7; and we are
dealing of course with horizontal double colimits.

We first construct a colimiting cocone λ : Y P // F . For (A, x) in El(F ),

λ(A, x) : A(−, A) // F

is the unique natural transformation for which λ(A, x)(A)(1A) = x guaranteed by 2.3.
For a vertical arrow (v, r) : (A, κ) • // (Ā, x̄) in El(F ), we define

A(−, Ā) F
λ(Ā,x̄)

//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) F
λ(A,x) // F

F

• idP
��

to be the unique modulation for which λ(v, r)(v)(1v) = r guaranteed by 3.18. It is straight-
forward to check horizontal naturality and vertical functoriality of λ. A useful technique
in this regard is to use the fact that two natural transformations (or modulations) whose
domain is a representable, are equal if they have the same value at the identity. The same
technique can be used in checking the details of the next step.

If κ : Y P //G is another cocone, we would like to show that there is a unique natural
transformation t : F // G such that tλ = κ. For any x ∈ FA we must have

A(−, A)

G
κ(A,x) $$JJJJJ

J

F

A(−, A)

::λ(A,x)

ttt
ttt
F

G

t

��

and following 1A in the diagram

A(A,A)

GA
κ(A,x)(A) $$JJJ

JJ

FA

A(A,A)

::λ(A,x)(A)

ttt
ttt
FA

GA

tA

��
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we see that t(A)(x) must be κ(A, x)(A)(1A). For any (v, r) : (A, x) • // (Ā, x̄) we must
have

A(−, Ā) F
λ(Ā,x̄)

//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) F
λ(A,x) // F

F

• idF
��

λ(v,r)

F G
t

//

F

F

•
��

F Gt // G

G

• idG
��

idt =

A(−, Ā) G
κ(Ā,x̄)

//

A(−, A)

A(−, Ā)

•A(−,v)
��

A(−, A) G
κ(A,x) // G

G

• idG
��

κ(v,r)

which, when evaluated at 1v gives

t(v)(r) = κ(v, r)(v)(1v).

Thus t is uniquely determined by tλ = κ. Checking that t is a natural transformation
poses no problem.

We omit the details of the two-dimensional universal property which is straightforward
but long and uninformative.

We end with a simple example, A = 1. Lax(1,Set) is equivalent to Cat and there is
only one representable and this corresponds to the category 1. If F : 1 // Set is a lax
functor corresponding to the category A, then El(F ) = VA, the vertical double category
determined by A. The diagram PY from the above theorem is the constant functor
∆1 : VA // Set with value 1. If G : 1 // Set is another lax functor, corresponding to
a category B, then a cocone ∆1 // G corresponds to a functor A // B. The universal
such functor is 1A : A //A. Thus we see how every category is a double colimit of copies
of 1.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


