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COVARIANT PRESHEAVES AND SUBALGEBRAS

ULRICH HÖHLE

Abstract. For small involutive and integral quantaloids Q it is shown that covariant
presheaves on symmetric Q-categories are equivalent to certain subalgebras of a speci�c
monad on the category of symmetric Q-categories. This construction is related to a
weakening of the subobject classi�er axiom which does not require the classi�cation of
all subalgebras, but only guarantees that classi�able subalgebras are uniquely classi�able.
As an application the identi�cation of closed left ideals of non-commutative C∗-algebras
with certain �open� subalgebras of freely generated algebras is given.

Introduction

LetQ be a small involutive quantaloid. ThenQ induces an involution on the quantaloid of
symmetric Q-categories and distributors. In particular the involute of every contravariant
presheaf is covariant and vice versa. In this framework we ask the question whether there
exists a concept of a weak subobject classi�er in the sense that a subobject classi�ed by
a covariant presheaf is always uniquely classi�ed. For this purpose we introduce a special
kind of presheaves on symmetric Q-categories which we call weak singletons. As a �rst
property we note that weak singletons form a non-idempotent monad.

Weak singletons appear already in the theory of metric spaces. If symmetric Q-
categories are metric spaces, then maximal weak singletons coincide with extremal func-
tions (cf. [11]). Further there is a close relationship between weak singletons and the type
of singletons considered by H. Heymans (cf. [8]). In fact, if the Cauchy completion pre-
serves the symmetry axiom (cf. [9], see also Proposition 3.1), then the monad associated
with the Cauchy completion is a submonad of the weak singleton monad.

After this brief historical digression, we return to the problem of unique classi�cation
of subobjects. Let W denote the weak singleton monad. For every object a of the given
involutive quantaloid Q there exists a W-algebra structure on the free cocompletion of
the trivial Q-category a. If Q is integral, this W-algebra serves as a weak subobject
classi�er in the category of W-algebras. Under the assumption of the integrality of Q we
show that classi�able subalgebras are uniquely classi�able (cf. Theorem 4.3). Moreover,
the classi�able hull of every subalgebra exists (cf. Section 5). Since in general there
exist more subalgebras than �characteristic morphisms� , this property might be of some
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importance for a non-commutative model theory based on integral and involutive, small
quantaloids.

The previous theory has an immediate application to Q-enriched presheaves on sym-
metric Q-categories. Because of the universal property of freeW-algebras every covariant
presheaf on a symmetric Q-category X has a unique extension to aW-homomorphism on
the free W-algebra generated by X. Then we conclude from Theorem 4.3 that covariant
presheaves on symmetric Q-categories are equivalent to classi�able subalgebras of free
W-algebras. Moreover there exists a functor from the category of W-algebras to SetQ

preserving monomorphisms. Hence covariant presheaves are not only subalgebras, but
also traditional set-valued functors with domain Q.

As a simple application of the previous results we make a contribution to the prob-
lem of constructing a non-commutative topological space for spectra of non-commutative
C∗-algebras. Since Hilbert spaces occurring in the Gelfand-Naimark-Segal-construction
depend usually on the respective pure states, it seems to be reasonable to choose an inte-
gral and involutive quantaloid as basis for the necessary considerations. Then on the set
of all locally irreducible representations of a given unital, non-commutative C∗-algebra
(cf. Section 6) we introduce an appropriate structure of a symmetric Q-category. This
approach leads to the Q-category Iloc. Then closed left ideals are identi�ed with certain
covariant presheaves on Iloc. Subsequently, based on the equivalence between covariant
presheaves and classi�able subalgebras of free algebras we obtain that closed left ideals
can be interpreted as �open� subalgebras of the free algebra generated by Iloc. In this
sense free algebras of the weak singleton monad can be understood as non-commutative
spaces of non-commutative C∗-algebras.

1. Quantaloids

In order to �x notation we begin with some basic de�nitions and properties from the
theory of quantaloids (cf. [23]). A small quantaloid is a small category Q provided with
the following additional properties:

• each hom-set is a complete lattice,

• the composition · of morphisms preserves arbitrary joins in both variables.

Objects (resp. morphisms) of Q are denoted by small Roman (resp. Greek) letters.
Further, we write Q(a, b) for hom-sets of the form hom(a, b).

By the special adjoint functor theorem, for every morphism a b�λ both maps

λ · : Q(c, b) → Q(c, a) and · λ : Q(a, c) → Q(b, c)

have right adjoints λ↘ and ↙ λ which are determined by

λ↘ α =
∨{

β ∈ Q(c, b)
∣∣λ · β ≤ α

}
, β ↙ λ =

∨{
γ ∈ Q(a, c)

∣∣ γ · λ ≤ β
}
.
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It is easily seen that the following relations hold:

(λ↘ α) · (α↘ ν) ≤ λ↘ ν and (β ↙ λ) · (λ↙ ν) ≤ β ↙ ν.

Further, Q(a, a) is always a unital quantale. A quantaloid Q is integral if for all objects
a of Q the unit 1a is the universal upper bound in Q(a, a).

A quantaloid Q is called involutive i� there exists a contravariant functor j : Q → Q
satisfying the following conditions (cf. [6, 23]):

(q1) j(a) = a (i.e. j(1a) = 1a) for all object a in Q .

(q2) j2(α) = α for every morphism α in Q .

(q3) If α, β ∈ Q(a, b) with α ≤ β, then j(α) ≤ j(β).

In order to shorten the notation we write αo for j(α). In any involutive quantaloid the
operations ↘ and ↙ are mutually determined by each other (cf. Proposition 2.9 in [8])
� i.e.

(α↘ β)o = βo ↙ αo. (1.1)

With regard to the standing assumption in Section 4 we give here three examples
of integral and involutive quantaloids which will be of some importance throughout this
paper. We begin with a remark devoted to involutive quantales.

1.1. Remark. Let Q = (Q,≤, &) be an arbitrary quantale according to the terminology
in [22]. In this context quantales are not necessarily unital (i.e. quantales are not the
same as one-object quantaloids (cf. Example 1.2)). The left- and right implication in Q
are determined by:

α↙ β =
∨{

γ ∈ Q
∣∣ γ& β ≤ α

}
, α ↘ β =

∨{
γ ∈ Q

∣∣α& γ ≤ β
}
.

An element α is a left-divisor of an element β i� β = α&(α ↘ β); and β is a right-divisor
of α i� α = (α ↙ β)& β.
Further, a unital quantaleQ is integral if the unit coincides with the universal upper bound
in Q. A quantale Q is involutive if Q is provided with an order preserving involution o

s.t. (cf. [19, 21]):
(α& β)o = βo&αo.

An element α of an involutive quantale is symmetric if αo = α. Obviously, the universal
lower (resp. upper) bound ⊥ (resp. ⊤) is always symmetric. In the event that Q is unital,
then also the unit is symmetric.
An important source of involutive and unital quantales are complete lattices L with a
duality (resp. order reversing involution), that is, with a unary operation ′ satisfying the
following conditions:

ℓ′′ = ℓ,
(∨
i∈I

ℓi
)′

=
∧
i∈I

ℓ′i, ℓ ∈ L, {ℓi | i ∈ I} ⊆ L.
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The details of this situation are as follows (cf. Example 4 and 5 in [21]). On the set Q(L)
of all join preserving maps L L-σ we de�ne a partial ordering ≤ by:

σ1 ≤ σ2 ⇐⇒ ∀ ℓ ∈ L : σ1(ℓ) ≤ σ2(ℓ).

Then Q(L) = (Q(L),≤, &) is a unital quantale where & is determined by the usual
composition of maps � i.e.

σ1 &σ2(ℓ) = σ1(σ2(ℓ)), ℓ ∈ L,

and the unit is given by the identity map idL. Further, the order reversing involution on
L induces a self-mapping σ 7−→ σo on Q(L) by σo(ℓ) = σ∗(ℓ

′)′, ℓ ∈ L where σ∗ is the
right adjoint of σ � i.e.

σ∗(b) =
∨

{ℓ ∈ L | s(ℓ) ≤ b}, b ∈ L.

Obviously, σ 7−→ σo is an order preserving involution on Q(L). Since adjoint situations
can be composed, we obtain (σ1&σ2)

o = σo2 &σo1. Hence Q(L) = (Q(L),≤, & , o) is
involutive and unital quantale.
If L has at least three elements, then Q(L) is never integral. Therefore our interest goes
to the involutive and integral subquantale Q(L)id of Q(L) whose support set is given by

Q(L)id = {σ ∈ Q(L) | σ ≤ idL}.

The answer to the question, whether Q(L)id is commutative or not, depends on the
structure of the underlying lattice. If (L, ′) is the ortho-lattice of all closed subspaces of
a Hilbert space (see also Section 6), then Q(L)id is commutative and is isomorphic to the
power set of the set of all atoms of L. On the other hand, if (L, ′) is given by the real
unit interval [0, 1] provided with the order reversing involution x 7→ 1−x, then it is easily
seen that Q([0, 1])id is non-commutative.

The following list of examples shows that there exist at least three di�erent procedures
of constructing integral and involutive quantaloids from quantales.

1.2. Example. Let Q be an integral and involutive quantale. Then Q induces an integral
and involutive quantaloid as follows: The set of objects is a singleton � i.e. obj(Q) =
{∗}, and the set of morphism is given by mor(Q) = Q(∗, ∗) = Q where the composition,
the involution and the lattice structure on Q(∗, ∗) is determined by Q.

1.3. Example. Let Q be an arbitrary involutive quantale. Since Q is not necessarily
unital, we need some more terminology. An element α ∈ Q is stable, if α is left- and
right-divisor of α. Obviously, α is stable i� the relation

α&(α↘ α) = α = (α↙ α)&α (1.2)
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holds. Typical examples of stable elements are the following ones: every element in a
unital quantale is stable. In non-unital quantales every idempotent element is stable.

After these preparations we can construct a small, involutive and integral quantaloid
Q from Q as follows1:

• The set of objects of Q is the set SH(Q) of all stable and symmetric elements of Q.

• For a, b ∈ SH(Q) the hom-set Q(a, b) consists of all λ ∈ Q satisfying the conditions:

λ ≤ a ∧ b, a is left divisor and b is right divisor of λ.

• For every triple (a, b, c) the composition law Q(a, b)×Q(b, c) Q(a, c)- is de-

termined by:

λ2 · λ1 = λ1&(b↘ λ2), λ1 ∈ Q(a, b), λ2 ∈ Q(b, c),

where ↘ denotes the right implication in Q (cf. Remark 1.1).

• The partial ordering on Q(a, b) is inherited from Q. In particular, the universal
upper bound in Q(a, a) coincides with a.

Because of
a&(

∨
j∈J

(a↘ λj) =
∨
j∈J

λj = (
∨
j∈J

(λj ↙ b))& b

Q(a, b) is a complete lattice and joins are computed in Q. For (λ1, λ2) ∈ Q(a, b)×Q(b, c)
the relation

(λ1 ↙ b)&λ2 = λ1&(b↘ λ2) (1.3)

holds. Thus λ2 · λ1 ∈ Q(a, c) follows from (1.2), (1.3) and the stability of b. The associa-
tivity axiom is evident, and the universal upper bound in Q(a, a) is the unit in Q(a, a).
Referring again to (1.3) it is easily seen that the composition preserves arbitrary joins in
both variables. Hence Q is an integral quantaloid.

A contravariant endofunctor j on Q is determined by the involution o on Q � i.e.
j(λ) = λo, λ ∈ mor(Q). Thus Q is also an involutive quantaloid.

Finally, if Q is integral, then the universal upper bound ⊤ of Q plays also a special
role in Q. For every object b of Q the hom-set Q(b,⊤) is dominating � this means that
the following relation holds:

Q(b,⊤) =
∪

a∈SH(Q)

Q(b, a). (1.4)

1Here we make use of a more set-theoretical language in the presentation of categorical axioms (see
e.g. p. 4 in [3]).
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1.4. Example.We maintain the notation from Example 1.3. Further, let Q be an involu-
tive quantale which is not integral. Typical examples are involutive and unital quantales
having left-sided elements which are not right-sided. In this framework the formula (1.4)
is in general not valid � e.g.

∪
a∈SH(Q)

Q(⊤, a) is not always a hom-set. This observation is

a motivation to enlarge the quantaloid Q constructed in Example 1.3. We add a further
object ω to Q and introduce the following additional hom-sets:

• Q(ω, a) = {λ ∈ Q | λ ≤ a, a is a right divisor of λ}, a ∈ SH(Q),

• Q(a, ω) = {λ ∈ Q | λ ≤ a, a is a left divisor of λ}, a ∈ SH(Q),

• Q(ω, ω) = {0, 1}.

The extension of the composition law is determined by:

• Q(ω, b)×Q(b, c) Q(ω, c)- is de�ned by: λ2 · λ1 = λ1&(b↘ λ2),

• Q(a, b)×Q(b, ω) Q(a, ω)- is de�ned by: λ2 · λ1 = λ1&(b↘ λ2),

• Q(a, ω)×Q(ω, c) Q(a, c)- is de�ned by: λ2 · λ1 = ⊥,

• Q(ω, b)×Q(b, ω) Q(ω, ω)- is de�ned by: λ2 · λ1 = 0,

• 1 acts as unit in Q(ω, ω), and consequently 0 is the zero element in Q(ω, ω).

It is a matter of routine to check that the associativity and the identity axioms hold.
Finally, the involution has the following extension:

λ ∈ Q(ω, b) ∪Q(b, ω), j(λ) = λo, j(1) = 1, j(0) = 0.

Hence the enlargement of Q by the addition of ω leads again to an integral and involutive
quantaloid satisfying the following additional property:∪

a∈SH(Q)

Q(b, a) ⊆ Q(b, ω), b ∈ SH(Q).

2. Presheaves on symmetric Q-categories and the weak envelope

Let Q be a small quantaloid. A Q-category is a triple X = (X, eX , dX) where X is a

set, X obj(Q)-eX and X ×X mor(Q)-dX are maps subjected to the following

axioms for all x, y, z ∈ X (cf. [2, 26]):
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(Q1) dX(x, y) ∈ Q(eX(y), eX(x)),

(Q2) 1eX(x) ≤ dX(x, x),

(Q3) dX(x, y) · dX(y, z) ≤ dX(x, z).

A Q-category X is skeletal i� for all x, y ∈ X the following implication holds:

eX(x) = eX(y) and 1eX(x) ≤ dX(x, y) ∧ dX(y, x) imply x = y.

A Q-functor X Y-φ between Q-categories is a map X Y-φ satisfying the follow-
ing axioms for all x, y ∈ X:

(M1) eX(x) = eY
(
φ(x)

)
,

(M2) dX(x, y) ≤ dY
(
φ(x), φ(y)

)
.

Q-categories and Q-functors form a category Cat(Q) in an obvious way. It is not di�cult
to show that Cat(Q) is wellpowered, complete and cocomplete. Hence Cat(Q) is an
(epi, extremal mono)-category. In particular, a Q-functor X Y-φ is an extremal
monomorphism i� φ is an injective map provided with the following property for all
x1, x2 ∈ X:

(EM) dX(x1, x2) = dY (φ(x1), φ(x2)). (Fully Faithfulness)

The terminal object 1 in Cat(Q) has the form (obj.Q, e1, d1) where e1 = idobjQ and
d1(a, b) =

∨
Q(b, a).

From now on, let Q be an involutive small quantaloid. With the involution on Q, it
now makes sense to de�ne a Q-category X to be symmetric when the following axiom
holds (cf. [8]):

(Q4) dX(x, y) = dX(y, x)
o for all x, y ∈ X. (Symmetry)

The terminal object 1 in Cat(Q) is symmetric. Further, symmetric Q-categories form a
full subcategory sCat(Q) of Cat(Q). It is easily seen that sCat(Q) is also wellpow-
ered, complete and cocomplete. Moreover, sCat(Q) is a core�ective subcategory of
Cat(Q), and the corresponding core�ector is given by the symmetrization of Q-categories
(X, eX , dX) � i.e. dX is replaced by dsX de�ned by (cf. [9]):

dsX(x, y) = dX(x, y) ∧ dX(y, x)o, x, y ∈ X.

Let a be an object of Q. In order to recall the concept of covariant presheaves of type
a we �rst have to specify the Q-category Sa = (Sa, ea, da) of �morphisms of type a� :

Sa = {λ ∈ mor(Q) | codom(λ) = a}, da(λ1, λ2) = λ1 ↘ λ2, ea(λ) = dom(λ).
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Obviously, Sa is the free cocompletion of the trivial Q-category a. Further, let X be an
arbitrary Q-category. A Q-functor X Sa-φ is called a covariant presheaf on X of

type a ∈ Q (cf. [25]). A simple characterization of covariant presheaves can be given as

follows: a map X mor(Q)-φ is a covariant presheaf on X of type a i� φ satis�es

the following conditions:

(P1) φ(x) ∈ Q(eX(x), a) for all x ∈ X.

(P2) φ(x) · dX(x, y) ≤ φ(y) for all x, y ∈ X. (Right Extensionality)

Hence covariant presheaves on X of type a and distributors from X to the trivial
Q-category a are equivalent concepts. It is not surprising that covariant presheaves on
Q-categories constitute again a Q-category. Therefore let X be a Q-category and Pℓ(X) be
the set of all pairs (a, φ) where a is an object ofQ and φ is a covariant presheaf on X of type

a. We specify the following maps Pℓ(X) obj(Q)-eℓ and Pℓ(X)× Pℓ(X) mor(Q) :-dℓ

eℓ(a, φ) = a, dℓ((a, φ), (b, ψ)) =
∧
x∈X

φ(x) ↙ ψ(x).

Then it is easily seen that Pℓ(X) = (Pℓ(X), eℓ, dℓ) is a Q-category and the (covariant)

Yoneda embedding X Pℓ(X)-ηX (enriched in Q) has the form

ηX(x) = (eX(x), x̃), where x̃(z) = dX(x, z), x, z ∈ X.

It is well known that (ηX,Pℓ(X)) is the free completion of X (cf. [25]) and the following
important formula

dℓ(a, φ), ηX(x)) = φ(x), x ∈ X, (2.1)

holds for all covariant presheaves on X. In particular, Sa and Pℓ(X) are skeletal.
In the following considerations we will introduce weak singletons of symmetric Q-

categories as a special kind of covariant presheaves. For this purpose we choose a sym-
metric Q-category and consider the symmetrization Psℓ(X) of Pℓ(X). In particular, dsℓ is
given by:

dsℓ((a, φ), (b, ψ)) =
∧
x∈X

(φ(x) ↙ ψ(x)) ∧ (φ0(x) ↘ ψ0(x)), φ, ψ ∈ Pℓ(X).

Since the relation (2.1) does not remain valid in Psℓ(X), we are interested in the largest
full sub-category of Psℓ(X) satisfying (2.1). This approach leads to the full subcategory
W(X) of Psℓ(X) whose objects are all those covariant presheaves σ of type a satisfying the
following condition for all x ∈ X:

dsℓ((a, σ), (eX(x), x̃)) = σ(x) (2.2)

Since X is symmetric, (2.2) is equivalent to σ(x) ≤
∧
z∈X

σo(z) ↘ dX(z, x). Thus we

introduce the following terminology.
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2.1. Definition. Let X be a symmetric Q-category. A covariant presheaf σ on X of
type a is called a weak singleton of X of type a if σ satis�es the following condition for all
x, y ∈ X:

(S1) σo(x) · σ(y) ≤ dX(x, y). (Singleton Condition)

A weak singleton σ of X of type a is a singleton of X, if (σ, σo) is an adjoint pair of
bimodules between a and X (cf. [8]) � this means in this context that σ ful�lls the
additional property :

(S2) 1a ≤
∨
x∈X

σ(x) · σ(x)o.

2.2. Remark. (a) In any symmetric Q-category X for all x ∈ X the covariant presheaf
ηX(x) is always a singleton of X.
(b) Let Q be an integral and involutive, small quantaloid. If σ is a weak singleton of X of
type a, then for every κ ∈ Q(a, b) the pair κ · σ is again a weak singleton of X of type b.
(c) In general there exist weak singletons which are not singletons.

On the set Wa(X) of all weak singletons on X of type a we introduce a partial ordering
≼ by:

σ1 ≼ σ2 ⇐⇒ ∀x ∈ X : σ1(x) ≤ σ2(x).

A maximal element in (Wa(X),≼) is called a maximal weak singleton of type a. The
axiom of choice guarantees the existence of maximal weak singletons. In the case of
integral quantaloids we can give a characterization.

2.3. Proposition. Let Q be an integral quantaloid, and σ be a weak singleton of X of

type a. Then the following assertions are equivalent:

(i) σ is maximal in (Wa(X),≼).

(ii) For all y ∈ X the following relation holds:

σ(y) =
∧
x∈X

σo(x) ↘ dX(x, y).

Proof. The implication (ii) =⇒ (i) is obvious. Further, the singleton condition (S1)
implies:

σ(y) ≤
∧
x∈X

σo(x) ↘ dX(x, y).

In order to establish the inverse inequality, we �x y0 ∈ Y and consider the following weak
singleton σ of type a de�ned by:

σ(y) = σ(y) ∨
( ∧
X∈X

σo(x) ↘ dX(x, y0)
)
· dX(y0, y), y ∈ X.

In fact, because of the integrality of Q it is not di�cult to show that (S1) holds. Then
the relation

∧
X∈X

σo(x) ↘ dX(x, y0) ≤ σ(y0) follows from the maximality of σ.
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2.4. Example. (a) Let I be the real unit interval provided with the usual multiplication.
Then I is an integral and commutative quantale with the identity map as involution.
Further, let Q be the quantaloid induced by I in the sense of Example 1.2. Referring
to F.W. Lawvere's fundamental paper [14] it is easily seen that symmetric Q-categories
X = (X, dX , eX) are equivalent to pseudo-metric spaces (X, ϱX). The correspondence
between dX and ϱX is given by − ln

(
dX(x, y)

)
= ϱX(x, y), x, y ∈ X. Moreover, maximal

weak singletons and extremal functions (cf. [11]) are equivalent concepts.
(b) Let Ω be a frame. Then the quantaloid QΩ given by Ω in the sense of Example
1.3 is exactly the construction invented by R.F.C. Walters 1981 (cf. [26]). In particular
the involution on QΩ coincides with the identity functor. In this context, symmetric
QΩ-categories and Ω-sets (cf. [7]) are equivalent concepts. A weak singleton σ of type a
is a singleton i� a coincides with the height of σ � i.e a =

∨
x∈X

σ(x).

Let X be a symmetric Q-category. The full subcategory of Psℓ(X) whose objects are
all weak singletons of X coincides with W(X). In particular, the underlying set W (X) of
all weak singletons of X is given by:

W (X) =
∪

a∈obj(Q)

{a} ×Wa(X). (2.3)

In this context the symmetric Q-category W(X) is called the weak envelope of X.
Since X is symmetric, the Yoneda embedding ηX factors through W(X). Hence the

formation of weak envelopes gives rise to a monadW on sCat(Q) whose clone-composition

function ◦ is determined by:

X W(Y),-Φ Y W(Z),-Ψ X W(Z),-Ψ◦Φ

Φ(x) = (eX(x), σx), Ψ(x) = (eY (y), σy), Ψ ◦ Φ(x) = (eX(x), ξx), x ∈ X, y ∈ Y,

ξx(z) =
∨
y∈Y

σx(y) · σy(z), z ∈ Z.

As usually the object function X 7−→ W(X) of W can be completed to an endofunctor
W of sCat(Q). In particular, the action of W on Q-functors is given as follows:

X Y,-Φ W(Φ) = (ηY · Φ) ◦ idW(X), W(Φ)(a, σ) = (a, τ) with

τ(y) =
∨
x∈X

σ(x) · dY (φ(x), y), (a, σ) ∈ W (X), y ∈ Y. (2.4)

Also for later purposes we quote the explicit form of the multiplication µ corresponding
to W

µX = idW(X) ◦ idW(W(X)), µX(b,Σ) = (b, s), s(x) =
∨

(a,σ)∈W (X)

Σ(a, σ) · σ(x). (2.5)

In the following considerations W is called the weak singleton monad.
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3. Cauchy completion and the weak envelope of symmetric Q-categories

It is well known that the Cauchy completion of a symmetricQ-category is again symmetric
i� for all objects a of Q every adjoint pair (τ, σ) between the trivial Q-category a and
X is a singleton of X � i.e. τ = σo (cf. [2]). Moreover, we can �nd in [9] the following
result. If Q is an involutive and integral quantaloid provided with the property:

for any object a0 of Q and for any family
(
ai a0,-αi a0 ai

)
i∈I

-βi of mor-

phisms of Q the following implication holds:

1a0 ≤
∨
i∈I

αi · βi =⇒ 1a0 ≤
∨
i∈I

(αi ∧ β0
i ) · (α0

i ∧ βi), (3.1)

then the symmetric completion of any symmetric Q-category coincides with its Cauchy
completion (cf. Proof of Corollary 3.8 in [9]) � i.e. the Cauchy completion preserves the
symmetry axiom. Even though (3.1) covers a large class of examples (cf. Section 4 in [9]),
I conjecture that in the case of integral and involutive quantaloids (3.1) is not necessary
for the preservation of symmetry under the Cauchy completion. In the next proposition
we give now a necessary and su�cient condition for this property.

3.1. Proposition. Let Q be an integral and involutive quantaloid. Then the following

assertions are equivalent:

(i) The Cauchy completion preserves the symmetry axiom of Q-categories.

(ii) For any family
(
ai a0,-αi a0 ai

)
i∈I

-βi of morphisms in Q provided with the

properties

∀ i, j ∈ I : βi · αj · αoj ≤ αoi , βoi · βi · αj ≤ βoj , 1a0 ≤
∨
i∈I

αi · βi (3.2)

the following relations hold:

1a0 ≤
∨
i∈I

αi · αoi and 1a0 ≤
∨
i∈I

βoi · βi. (3.3)

Proof. (a) ((i) =⇒ (ii)) Let
(
ai a0,-αi a0 ai

)
i∈I

-βi be a family of morphisms in

Q satisfying (3.2). First we construct a symmetric Q-category as follows: I = (I, eI , dI)
where

eI(i) = ai, dI(i, j) = (αi ↘ αj) ∧ (βoi ↘ βoj ) ∧ (αoi ↙ αoj) ∧ (βi ↙ βj).

Secondly, we de�ne a covariant (resp. contravariant) presheaf σ (resp. τ) on I of type a0
by:

σ(i) = αi, τ(i) = βi, i ∈ I.
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Since Q is integral, we conclude from (3.2) that (σ, τ) forms an adjoint pair of bimodules
between a0 and I. Since the Cauchy completion preserves the symmetry axiom, we obtain
τ = σo. Hence (3.3) holds.
(b) ((ii) =⇒ (i)) We choose an adjoint pair (σ, τ) of bimodules between a0 and a symmetric
Q-category X. Then we conclude from the symmetry axiom and the extensionality axioms
that

τ(x) · σ(y) ≤ (τ o(x) ↘ τ o(y)) ∧ (σo(x) ↙ σo(y))

holds for all x, y ∈ X. Hence the family
(
eX(x) a0,-σ(x)

a0 eX(x)
)
x∈X

-τ(x)
of mor-

phisms in Q satis�es (3.2). Now we invoke (ii) and obtain:

1a0 ≤
∨
y∈X

σ(y) · σo(y) ≤
∧
x∈X

τ(x) ↘ σo(x), 1a0 ≤
∨
x∈X

τ o(x) · τ(x) ≤
∧
y∈Y

τ o(y) ↙ σ(y).

Hence τ = σ0 follows.

Now we turn to the question under which condition the monad associated with the
Cauchy completion is a submonad of the weak singleton monad. We begin with a technical
lemma.

3.2. Lemma. Let X be a symmetric Q-category. If (a1, σ1) and (a2, σ2) are singletons of

X, then the following relation holds:

dsℓ(
(
a1, σ1), (a2, σ2)

)
=

∨
x∈X

σ1(x) · σo2(x).

Proof. Because of the singleton condition (S1) and the right extensionality of σ1 the
relation ( ∨

x∈X

σ1(x) · σo2(x)
)
· σ2(z) ≤ σ1(z)

holds. Interchanging the role of σ1 and σ2 we obtain:
( ∨
x∈X

σ2(x) ·σo1(x)
)
·σ1(z) ≤ σ2(z).

Hence ∨
x∈X

σ1(x) · σo2(x) ≤ dsℓ(
(
a1, σ1), (a2, σ2)

)
follows. Now we assume that σ1 is singleton and not only a weak singleton. Then we
conclude from (S2):

dsℓ(
(
a1, σ1), (a2, σ2)

)
= 1a1 · dsℓ(

(
a1, σ1), (a2, σ2)

)
≤

∨
x∈X

σ1(x) · σo1(x) ·
(
σo1(x) ↘ σo2(x)

)
≤

∨
x∈X

σ1(x) · σo2(x).

Hence the assertion is veri�ed.
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If the Cauchy completion preserves symmetry, then Lemma 3.2 shows that the Cauchy
completion of X is a full subcategory of the weak envelope W(X) of X. In particular, the
�clone-composition� function speci�ed above factors through the Cauchy completion.

To sum up we have the following result.

3.3. Proposition. Let Q be an integral and involutive quantaloid. If the Cauchy comple-

tion preserves symmetry (i.e. the assertion (ii) in Proposition 3.1 holds), then the Cauchy

completion can be restricted to sCat(Q) and the monad associated with the Cauchy com-

pletion is a submonad of the weak singleton monad.

4. Presheaves on symmetric Q-categories andW-subalgebras

We begin with the classi�cation problem of presheaves on symmetric Q-categories.
Classification Problem. For every object a ∈ Q let 1 Sa-ta be the Q-functor
de�ned by

ta(b) =
∨

Q(b, a), b ∈ obj(Q). (4.1)

Since 1 is symmetric ta can also be viewed as a Q-functor from 1 to the symmetrization
Ssa of Sa. Further, let X be a symmetric Q-category and φ be a covariant presheaf on X
of type a . Then φ can also be considered as Q-functor from X to Ssa. Since sCat(Q) is
complete, we can form the pullback of ta along φ in sCat(Q) � i.e.

U 1

X Ssa

-!

?
ι

?
ta

-
φ

(4.2)

Hence the carrier set U of the subobject U X-ι classi�ed by φ is given by:

U = {x ∈ X | φ(x) = ta(eX(x))}

where ι denotes the inclusion map from U toX. On the other hand, the covariant presheaf
ψ on X of type a de�ned by

g(x) =
∨
u∈U

ta(eX(u)) · dX(u, x), x ∈ X

classi�es also U X-ι in the sense of (4.2). But, unfortunately this classi�cation is
not unique. In general, the presheaves φ and ψ are di�erent. Simple counterexamples can
be given among other things in the context of pseudo-metric spaces (cf. Example 2.4(a)).

The aim of the following considerations is to overcome the non-uniqueness of the clas-
si�cation in sCat(Q) where we might pay the price that not every subobject is classi�able.
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We will show that in the case of integral and involutive, small quantaloids there exists a
bijection between covariant presheaves on symmetric Q-categories and special subalgebras
(cf. [15, 17]) in the sense of the weak singleton monad (cf. Section 2). For this purpose
we exhibit a W-algebra structure on the symmetric Q-category Ssa.

We �x an object a of Q and de�ne a map ξ from W (Ssa) to Sa as follows:

ξ(b, σ) =
∨{

κ ∈ Q(b, a) | ∀λ ∈ Sa : κ · σ(λ) ≤ λ
}
. (4.3)

Because of

ξ(b1, σ1) · dsℓ
(
(b1, σ1), (b2, σ2)

)
· σ2(λ) ≤ ξ(b1, σ1) · σ1(λ) ≤ λ

the map ξ is a Q-functor W(Ssa) Ssa.-ξ

In the next remark we explain the relationship between ξ and the free completion of
the trivial Q-category a.

4.1. Remark. First we notice that Ssa is not necessarily complete. But there exists a

Q-functor Ssa Pℓ(a)-φ induced by the involution of the underlying quantaloid �

i.e. φ(λ) = λo, λ ∈ Sa. Moreover, the evaluation of covariant presheaves determines a
distributor Θ from Ssa to W(Ssa) by:

Θ((b, σ), λ) = σ(λ),
(
(b, σ), λ

)
∈ W (Ssa)× Sa.

Then the Θ-weighted limit W(Ssa) Pℓ(a)-ψ of φ has the following form:

ψ(b, σ) =
∨
λ∈Sa

σ(λ) · λ0, (b, σ) ∈ W (Ssa).

In particular, ψ factors through φ. Hence we conclude from (S1) that ξ is the unique
Q-functor satisfying the condition that φ · ξ coincides with the Θ-weighted limit of φ.

4.2. Proposition. The pair (Ssa, ξ) is a W-algebra.

Proof. The relation ηX · ξ = idX follows immediately from the de�nition of ηX and ξ.
In order to verify the commutativity of the following diagram

W(W(Ssa)) W(Ssa)

W(Ssa) Ssa

-W(ξ)

?

µSsa

?
ξ

-
ξ

we choose a weak singleton (b,Σ) of W(Ssa) and conclude from (2.2), (2.4) and (2.5):

µSsa(b,Σ)(z) ≤ [W(ξ)(b,Σ)](z), z ∈ X. (4.4)
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Then the commutativity of the previous diagram follows from (4.4) and the following
implication:(

∀λ ∈ Sa : κ · µSsa(b,Σ)(λ) ≤ λ
)
=⇒

(
∀λ ∈ Sa : κ · [W(ξ)(b,Σ)](λ) ≤ λ

)
where κ ∈ Q(b, a). In fact, if κ · µSsa(b,Σ)(λ) ≤ λ, then the relations (2.5) and (4.3)
imply: κ · Σ(c, σ) ≤ ξ(c, σ). Now we obtain:

κ · [W(ξ)(b,Σ)](λ) ≤
∨

(c,σ)∈W (Ssa)

ξ(c, σ) · dsa(ξ(c, σ), λ) ≤ λ.

Hence the previous implication has been established.

Further, the Q-functor 1 Ssa-ta turns out to be W-homomorphism

(1, !W(1)) (Ssa, ξ).-ta

In fact, because of (4.1) the relation κ ·σ(c) · dsa(ta(c), λ) ≤ λ holds for all (b, σ) ∈ W (1)
and for all κ ∈ Q(b, a).

Now we make the following

Standing Assumption. Q is always an integral and involutive, small quantaloid.

4.3. Theorem. Let (X, ϑ) be a T-algebra and (X, ϑ) (Ssa, ξ)-φ be aW-homomorphism.

Further, let
(
(U, ζ), ι

)
be the subalgebra of (X, ϑ) determined by the following pullback di-

agram

(U, ζ) (1, !W(1))

(X, ϑ) (Ssa, ξ)
?
ι

-!U

?
ta

-
φ

in the category of W-algebras. Then the following relation holds:

φ(x) =
∨
u∈U

ta(eX(u)) · dX
(
ι(u), x

)
, x ∈ X. (4.5)

Proof. Since in the category of W-algebras pullbacks are computed at the level of
sCat(Q) (cf. [17]), the carrier set U of the subalgebra (U, ζ) together with its embedding
W-homomorphism ι is given by:

U =
{
x ∈ X

∣∣∣φ(x) = ta(eX(x))
}
, ι = inclusion map.

Then for all x ∈ X the inequality∨
u∈U

ta(eX(u)) · dX(u, x) ≤ φ(x) (4.6)



COVARIANT PRESHEAVES AND SUBALGEBRAS 357

follows from the right extensionality of φ. On the other hand, if we �x x0 ∈ X, then we
conclude from the standing assumption that σ with

σ(x) = φ(x0) · dX(x0, x), x ∈ X,

is a weak singleton of X of type a (cf. Remark 2.2(b)). Referring again to the right
extensionality axiom we obtain:

[W(φ)(a, σ)](λ) =
∨
x∈X

φ(x0) · dX(x0, x) · dsa(φ(x), λ) ≤ λ.

Since 1a is the universal upper bound in Q(a, a), the relation ξ(W(φ)(a, σ)) = ta(a)
follows immediately from the de�nition of ξ. Now we invoke the property that φ is a
W-homomorphism and obtain:

φ(ϑ(a, σ)) = ta(a), eX(ϑ(a, σ)) = a. (4.7)

Hence ϑ(a, σ) ∈ U . Finally, we conclude from (2.2):

φ(x0) = σ(x0) ≤ ta(a) · dX(ϑ(a, σ), x0). (4.8)

Thus (4.5) follows from (4.6), (4.7) and (4.8).

Theorem 4.3 suggests the following terminology: A subalgebra (U, ζ) (X, ϑ)-ι

is called ta-classi�able i� there exists a W-homomorphism (X, ϑ) (Ssa, ξ)-φ s.t. the

diagram

(U, ζ) (1, !W(1))

(X, ϑ) (Ssa, ξ)
?
ι

-!U

?
ta

-
φ

is a pullback square. Then Theorem 4.3 implies that every ta-classi�able subalgebra is
uniquely ta-classi�able.

As an application of the previous construction we describe those classi�able subalge-
bras which are classi�ed by covariant presheaves. Because of the universal property of
free W-algebras every covariant presheaf φ on a symmetric Q-category X of type a can
uniquely be extended to a W-homomorphism

(W(X), µX) (Ssa, ξ).-φ
♯

It is well known that φ♯ is given by (cf. I.4.12 in [17]): φ♯ = ξ · W(φ). Then the carrier
set U of the ta-classi�able subalgebra of (W(X), µX) classi�ed by φ♯ contains all weak
singletons σ of X of type b with

ta(b) · σ(x) · dsa
(
φ(x), λ

)
≤ λ.

In particular, U has the following form:

U =
{
(b, σ) ∈ W (X)

∣∣∣ ∀x ∈ X : ta(b) · σ(x) ≤ φ(x)
}
. (4.9)
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4.4. Remark. (a) In the case of pseudo-metric spaces (X, ϱX) (cf. Example 2.4(a))
it follows immediately from Theorem 4.3 and the subsequent considerations that every

non-expansive map X [0,+∞]-f can be identi�ed with the metric space of all non-

expansive functions X [0,+∞]-s provided with the following additional properties:

f(x) ≤ s(x), ϱX(x, y) ≤ s(x) + s(y), x, y ∈ X.

(b) Let Ω be a frame, and QΩ be the quantaloid induced by Ω in the sense of Example
1.3. If ⊤ denotes the universal upper bound in Ω, then (t⊤,Ss⊤) is the subobject clas-
si�er in the category CΩ-Set of complete Ω-sets (cf. [7]). Since in the case of QΩ the
Cauchy completion preserves the symmetry axiom (cf. [26] or Proposition 3.1), the monad
associated with the Cauchy completion is a submonad of W (cf. Proposition 3.3). Hence
the W-algebra (Ss⊤, ξ) and the W-homomorphism t⊤ form a modi�cation of (t⊤,Ss⊤).
Moreover, the formula (4.5) in Theorem 4.3 can be seen as an enlargement of the construc-
tion provided by the subobject classi�er axiom in CΩ-Set to the more general setting
determined by the category of W-algebras.

The next proposition shows that every W-algebra gives rise to a set-valued functor
with domain Q.

4.5. Proposition. Every W-algebra (X, ϑ) induces a functor Q Set-F by:

F(a) = Xa = {x ∈ X | eX(x) = a}, a ∈ obj(Q),

a b-λ (in Q), Xa Xb,-F(λ)
F(λ)(x) = ϑ(b, λ · x̃).

Proof. It is easily seen that F preserves the respective identities. In order to show that
F preserves also the composition, we �x x ∈ Xa and choose arrows a b c-λ1 -λ2 in
Q. Then we introduce a weak singleton Σ of W(X) of type c as follows:

Σ(k, σ) = λ2 · dsℓ
(
(b, λ1 · x̃), (k, σ)

)
, (k, σ) ∈ W (X).

Obviously, W(ϑ)(c,Σ) = (c, σ0) has the form

σ0(z) =
∨

(k,σ)∈S(X)
λ2 · dsℓ

(
(b, λ1 · x̃), (k, σ)

)
· dX

(
ϑ(k, σ), z

)
,

= λ2 · dX
(
ϑ(b, λ1 · x̃), z

)
.

Further, we obtain from (2.2):∨
(k,σ)∈S(X)

Σ(k, σ) · σ(z) = λ2 · λ1 · dX(x, z) = (λ2 · λ1) · x̃(z), z ∈ X.

Then F(λ2 · λ1) = F(λ2) ◦ F(λ1) follows from ϑ · µX = ϑ · W(ϑ).
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It is not di�cult to see that the object function speci�ed in Proposition 4.5 can be
completed to a functor from the category of all W-algebras to SetQ which obviously
preserves monomorphisms. Hence covariant presheaves are not only subalgebras, but also
set-valued functors on Q from which the given covariant presheaf can be reconstructed.
In fact, if F is the set-valued functor on Q induced by the free W-algebra

(
W(X), µX

)
� i.e.

F(b) = {σ | (b, σ) ∈ W (X)}, b c-λ , F(λ)(σ) = λ · σ,

and S be the subfunctor of F induced by the subalgebra (U, ζ) (W(X), µX)-ι cor-

responding to a covariant presheaf φ on X of type a, then theW-homomorphism φ♯ can
be reconstructed from S in the following way. Since S is given by (cf. (4.9))

S(b) =
{
σ ∈ F(b)

∣∣∣ ta(b) · σ ≤ φ
}
, b ∈ obj(Q),

the corresponding characteristic morphism F Ω-χ has the form (cf. pp. 38-39 in
[16]):

F(b) Ω(b),-χb
χb(σ) = {λ ∈ mor(Q) | dom(λ) = b, λ · σ ∈ S(codom(λ)}, σ ∈ F(b)

where Ω is the subobject classi�er in SetQ. Then we reconstruct φ♯ from χ as follows:

φ♯(b, σ) = ξ(W(φ))(b, σ) =
∨

λ∈χb(s)

ta(codom(λ)) · λ, (b, σ) ∈ W (X).

5. Classi�able subalgebras

Let a be an object of the underlying quantaloid Q. Since not every subalgebra is
ta-classi�able (i.e. there exist more subalgebras than �characteristic morphisms�), it is
important to show that the ta-classi�able hull of subalgebras exists.

Since the maximal covariant presheaf φa on X of type a is the composition of eX with
ta, it is easily seen that φa is always a W-homomorphism for any structure morphism

W(X) X.-ϑ Hence every W-algebra (X, ϑ) viewed as subalgebra of itself is trivially

ta-classi�able.
In the next step we show that the non empty intersection of ta-classi�able subalgebras

is again ta-classi�able.
We begin with the internalization of the conjunction of type a. The product

(Ssa, ξ)× (Ssa, ξ) = (Ta, ζ)

of the W-algebra (Ssa, ξ) with itself can be speci�ed as follows. First we compute the
product Ssa × Ssa = Ta in sCat(Q):

Ta = {(λ1, λ2) ∈ Sa × Sa | ea(λ1) = ea(λ2},

dTa
(
(λ1, λ2), (λ̂1, λ̂2)

)
= da(λ1, λ̂1) ∧ da(λ2, λ̂2), eTa(λ1, λ2) = ea(λ1) (= ea(λ2)).
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Then the structure morphism ζ is given by ⟨ξ · W(π1), ξ · W(π2)⟩ where Ta Sa-πi is

the projection onto the i-th coordinate (i = 1, 2). Finally, we de�ne a covariant presheaf
f∧ on Ssa × Ssa of type a as follows:

f∧(λ1, λ2) = λ1 ∧ λ2, (λ1, λ2) ∈ Ta.

Since for any weak singleton (b, σ) of Ta the implication

κ1 · σ(λ1, λ2) ≤ λ1, κ2 · σ(λ1, λ2) ≤ λ2 =⇒ (κ1 ∧ κ2) · σ(λ1, λ2) ≤ λ1 ∧ λ2.

is obvious, it is easily seen that f∧ is aW-homomorphism from (Ssa, ξ)× (Ssa, ξ) to (Ssa, ξ).
In particular, the diagram

1 (Ssa, ξ)

1 (Ssaξ)× (Ssa, ξ)

-ta

6

-
⟨ta,ta⟩

6
f∧

is a pullback square. Hence, by analogy to topos theory we call f∧ the conjunction of

type a in the category of W-algebras.

5.1. Theorem.The binary intersection of ta-classi�ableW-subalgebras is again ta-classi�able.

Proof. Let (Ui, ζi) (X, ϑ)-ιi be a ta-classi�able W-subalgebra classi�ed by a W-

homomorphism (X, ϑ) (Ssa, ξ)-φi
(i = 1, 2). Then we form the pullback square

(U0, ζ0) (U2, ζ2)

(U1, ζ1) (X, ϑ)

-

?

p p p p p p p p psι0 ?
ι2

-
ι1

and observe that the outer rectangle of the following diagram

(U0, ζ0) (X, ϑ)

1 (Ssa, ξ)× (Ssa, ξ)

1 (Ssa, ξ)

-ι0

?

!

?

⟨φ1,φ2⟩

-⟨ta,ta⟩

? ?

f∧

-ta

is also a pullback square.
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Since the category of W-algebras is complete, the previous proof holds also for any
non empty family of ta-classi�able W-subalgebras. Just for the record we state:

5.2. Corollary. The non empty intersection of ta-classi�able W-subalgebras is again

ta-classi�able.

We can summarize the previous results in the following statement:

For any subalgebra (V, ζ) of (X, ϑ) the ta-classi�able hull of (V, ζ) exists and co-

incides with the intersection of all ta-classi�able subalgebras of (X, ϑ) containing

(V, ζ).

We hope that the previous result might play a signi�cant role in the development of a
non-commutative model theory.

6. An application to the spectrum of C∗-algebras

We begin with a concretization of Example 1.4. For this purpose let H be a Hilbert
space, and MH be the complete lattice of all closed, linear subspaces ℓ of H provided
with the ortho-complement ⊥ as order reversing involution. In particular 1 (0) denotes the
universal upper (lower) bound inMH. Now we consider the involutive and unital quantale
Q(MH) induced by (MH,

⊥) in the sense of Remark 1.1. Since the universal upper bound
in Q(MH) has the form:

⊤(ℓ) =

{
1 : ℓ ̸= 0,
0 : ℓ = 0,

we can give a simple description of left- and right-sided elements in Q(MH). An element
σ ∈ Q(MH) is left-sided i� there exists b ∈MH s.t. for all ℓ ∈MH:

σ(ℓ) =

{
1 : ℓ ̸≤ b,
0 : ℓ ≤ b.

An element σ ∈ Q(MH) is right-sided i� there exists a ∈MH s.t. for all ℓ ∈MH:

σ(ℓ) =

{
a : ℓ ̸= ⊥,
⊥ : ℓ = 0.

Obviously, the subquantale of all two-sided elements coincides with {⊥,⊤} � i.e. Q(MH)
is simple.

In order to avoid super�uous information we wish that the semigroup operation is only
determined by the multiplication of right-sided elements with left-sided ones. Hence we
replace & by the semigroup operation ⊙ de�ned by

σ1 ⊙ σ2 = σ1 &⊤&σ2
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Again we obtain an involutive and simple quantale Q(H) = (Q(MH),⊙,≤, o). Even
though Q(H) is not unital, the universal upper bound is still extensive � i.e.

σ ≤ (⊤ ⊙ σ) ∧ (σ ⊙ ⊤).

Moreover, stable and symmetric elements in Q(H) have a simple form. The details are
as follows: since ⊙ coincides with & on all left-sided (resp. right-sided) elements, the
subquantale of all left-sided (resp. right-sided) elements is idempotent. Hence ⊙ ful�lls
the following properties:

(σ1 ⊙ σ2) ⊙ (σ3 ⊙ σ4) = (σ1 ⊙ σ3) ⊙ (σ2 ⊙ σ4), (6.1)

σ1 ⊙ σ1 ⊙ σ2 = σ1 ⊙ σ2 = σ1 ⊙ σ2 ⊙ σ2. (6.2)

Property (6.1) means bi-symmetry, while (6.2) is a kind of generalized idempotency of
⊙. An important corollary from these properties is the fact that σ ∈ Q(H) is stable (cf.
Example 1.3) i� σ is idempotent w.r.t. ⊙. Hence σ is stable and symmetric in Q(H) i�
there exists a ∈MH s.t. σ has the following form for all ℓ ∈MH:

σ(ℓ) = σa(ℓ) =

{
a : ℓ ̸≤ a⊥,
0 : ℓ ≤ a⊥.

(6.3)

Finally, with every pair (a, b) ∈ MH × MH we associate an element σab of Q(MH)
de�ned by:

σab (ℓ) =

{
a : ℓ ̸≤ b,
0 : ℓ ≤ b.

(6.4)

The product w.r.t. ⊙ has always the form described in (6.4). In fact, if σ1(⊤) = a and
b =

∨
{ℓ ∈MH | σ2(ℓ) = 0}, then σ1 ⊙ σ2 = σab . Also the following relations hold:

σa = σaa⊥ ,
(
σab

)o
= σb

⊥

a⊥ , ⊤ = σ1
0.

After these preparations we consider the involutive and integral quantaloid QH in-
duced by Q(MH) in the sense of Example 1.4. It is not di�cult to see that the set of
objects and hom-sets have the form:

• obj(QH) = {σa | a ∈MH}
·∪
{ω}.

• QH(σa, σb) =

{ {⊥, σa}, a = b,

{⊥}, a ̸= b.

• QH(ω, σa) = {σb
a⊥ | b ≤ a}, QH(σa, ω) = {σab | a⊥ ≤ b}, QH(ω, ω) = {0, 1}.

• The partial ordering on the hom-sets is inherited from Q(MH).
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As special properties of the composition in QH we �rst note that all hom-sets QH(α, α)
are isomorphic to the Boolean algebra 2. Hence QH can be viewed as the quantisation of
2. Furthermore, in the case of b ̸= c it is remarkable to see that QH(b, c) has the structure
of an idempotent quantale. Of course, the multiplication in QH(b, c) is induced by ⊙ and
is compatible with the composition in the following sense:

(σ1 ⊙ σ2) · τ = (σ1 · τ)⊙ (σ2 · τ), (σ1, σ2) ∈ QH(β, γ), τ ∈ QH(α, β), β ̸= γ (6.5)

where we have made use of (6.1) and (6.2).
Now we turn to spectra of unital C∗-algebras which are understood as the quantale of

all closed left-ideals (see also [22]). Further, we agree with the conception that irreducible
representations play the role of �points� for non-commutative C∗-algebras (cf. pp. 14
in [1]). By means of the Gelfand-Neumark-Segal-construction every pure state ϱ of a
C∗-algebra A induces an irreducible representation (Hϱ, ϑϱ) of A (cf. [12]). In contrast
to the commutative setting it is interesting to note that in the case of non-commutative
C∗-algebras the Hilbert space dimension of the underlying Hilbert space Hϱ depends on
the pure state ϱ and might possibly vary. In order to overcome this obstacle and to
choose an underlying Hilbert space which is independent from the respective pure states,
we �rst recall some terminology from [10].

6.1. Remark. Let P(A) be the set of all pure states of a unital C∗-algebra A. With every
pure state ϱ we associated the irreducible representation (Hϱ, ϑϱ) given by the Gelfand-
Naimark-Segal-construction.
(a) A Hilbert space H is admissible for A i� for every pure state ϱ ∈ P(A) there exists an

isometry Hϱ H.-Φϱ

It is easily seen that for every C∗-algebra an admissible Hilbert

space exists.
(b) A representation (H, ϑ) of A is called locally irreducible i� H is admissible for A and

there exists a pure state ϱ of A and an isometry Hϱ H-Φϱ

s.t. for all a ∈ A the

following relation holds:

π(a) = Φϱ ◦ ϑϱ(a) ◦ Φ∗
ϱ, a ∈ A (6.6)

where H Hϱ
-

Φ∗
ϱ

denotes the adjoint operator corresponding to Φϱ.

In the following considerations we �x a unital C∗-algebra A. Then we choose an
admissible Hilbert space H for A and consider the involutive and unital quantale Q(MH)
� the Hilbert quantale associated with H (cf. Remark 1.1, [20]). Further, let sp(A) be
the spectrum of A, and L(H) be the C∗-algebra of all bounded linear operators on H.
From [10] we quote the following result.

6.2. Theorem. Let A L(H)-ϑ be a ∗-homomorphism s.t. (H, ϑ) is a locally irredu-

cible representation of A. Then ϑ induces a quantale homomorphism σ(A) Q(MH)-hϑ
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de�ned by

[hϑ(I)](ℓ) = top. closure(lin. hull{ϑ(a)(x) | a ∈ I, x ∈ ℓ}), I ∈ sp(A), ℓ ∈MH. (6.7)

Moreover hϑ ful�lls the following properties:

(i) hϑ(A) is an idempotent and symmetric element of Q(MH).

(ii) hϑ(I1 · I2) = hϑ(I1)&⊤&hϑ(I2) where I1, I2 ∈ sp(A).

Further, let XA be the set of all ∗-homomorphisms A L(H)-ϑ s.t. (H, ϑ) is

a locally irreducible representation of A. We conclude from Theorem 6.2 that every
element ϑ ∈ XA induces a quantale homomorphism hϑ from sp(A) to Q(H) s.t. hϑ(A) is

symmetric and stable in the sense of Q(H). Hence there exists a map XA obj(QH)-e

determined by
e(ϑ) = hϑ(A), ϑ ∈ XA. (6.8)

Moreover, every closed left-ideal I of A induces a map XA mor(QH)-fI satisfying

the following property

fI(ϑ) = hϑ(I) ∈ QH(e(ϑ), ω), ϑ ∈ XA. (6.9)

Now we provide (XA, e) with the structure of a symmetric QH-category and de�ne a map

XA ×XA mor(QH)-d by:

d(ϑ1, ϑ2) =
∨{

σ ∈ QH
(
e0(ϑ2), e0(ϑ1)

) ∣∣∣ ∀I ∈ sp(A) :

fI(ϑ1) · σ ≤ fI(ϑ2), σ · fI(ϑ2)
o ≤ fI(ϑ1)

o
}

Then Iloc = (XA, e, d) is a symmetric QH-category, and every map fI is a covariant
presheaf on Iloc of type ω.

Further, the correspondence I 7−→ fI is injective, because every closed left-ideal is an
intersection of maximal left-ideals and every maximal left-ideal can be identi�ed with a
pure state (cf. 10.2.10 in [13]). If we make use of the quantale structure on QH(e(ϑ), ω)
induced by ⊙ (see above), then the property (ii) of Theorem 6.2 means: fI1·I2 = fI1 ⊙ fI2 .
Hence the spectrum of A is isomorphic to {fI | I ∈ sp(A)} � a result which is closely
related to Proposition 4 in [4] (see also Remark (ii) in [24]).

If we now speculate and view closed left-ideals I (resp. fI) as �open subsets� of
a non-commutative topological space (cf. [5, 18]), then the problem arises that all fI
are covariant presheaves (in particular QH-functors) and not QH-subcategories. Because
of the methods in Section 4 we can solve this problem. First, we extend the covariant
presheaf fI to aW-homomorphism f ♯I on the freeW-algebra (W(Iloc), µIloc). Secondly, we



COVARIANT PRESHEAVES AND SUBALGEBRAS 365

identify f ♯I with a speci�c subalgebra of (W(Iloc), µIloc) whose carrier set is determined by
formula (4.9). Hence (W(Iloc), µIloc) is the non-commutative space of the C∗-algebra A. In
particular, �open subsets� corresponding to closed left-ideals of A are certain subalgebras

of (W(Iloc), µIloc).

Acknowledgement. I am very grateful to the referee for his helpful suggestions and his
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