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THE COMPREHENSIVE FACTORIZATION AND TORSORS

Dedicated to Dominique Bourn on the occasion of his 60th birthday.

ROSS STREET AND DOMINIC VERITY

Abstract. This is an expanded, revised and corrected version of the �rst author's
preprint [1]. The discussion of one-dimensional cohomology H1 in a fairly general cate-
gory E involves passing to the (2-)category Cat(E) of categories in E . In particular, the
coe�cient object is a category B in E and the torsors that H1 classi�es are particular
functors in E . We only impose conditions on E that are satis�ed also by Cat(E) and
argue that H1 for Cat(E) is a kind of H2 for E , and so on recursively. For us, it is too
much to ask E to be a topos (or even internally complete) since, even if E is, Cat(E) is
not. With this motivation, we are led to examine morphisms in E which act as internal
families and to internalize the comprehensive factorization of functors into a �nal functor
followed by a discrete �bration. We de�ne B-torsors for a category B in E and prove
clutching and classi�cation theorems. The former theorem clutches �ech cocycles to
construct torsors while the latter constructs a coe�cient category to classify structures
locally isomorphic to members of a given internal family of structures. We conclude
with applications to examples.

1. Introduction

For an abelian group B in a Grothendieck topos E , there are two constructions for the
abelian cohomology groups Hn(E ;B). The �rst of these uses the existence of enough
injective abelian groups in E and will not be considered here. The second is a modi�cation
of �ech cohomology involving a certain colimit over the directed set of hypercovers of the
terminal object 1 in E . We have

H0(E ;B) ∼= E(1, B),

the abelian group of global sections of B. In the calculation of H1(E ;B), we only need to
consider covers in place of the more elaborate hypercovers: a cover in E is an epimorphism
R // 1.

With suitable choice of E the above cohomology amounts to the usual cohomology of a
space with coe�cients in a sheaf B of abelian groups over the space, the usual cohomology
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of a group with coe�cients in a module B over the integral group-ring of the group, etale
cohomology, and so on.

Giraud [2] generalized the constructions Hn(E ;B) for n = 0, 1, 2 to accommodate a
group B which is not necessarily abelian. There is no di�culty with n = 0 where we
take the group E(1, B). For n = 1, the notion of B-torsor is required: this is an object
E of E on which B acts such that E is locally isomorphic to B acting on itself (�locally�
here means �on passing to a cover�). Then H1(E ;B) is the pointed set of isomorphism
classes of B-torsors. A basic result of Giraud is that, given an object X of E enriched with
some structure, if B denotes the group of structure automorphisms of X, then H1(E ;B)
classi�es the objects of E locally structure isomorphic to X.

The de�nitions of Giraud can be generalized to an elementary topos E ([3] and [4]).
The purpose of the present paper is to present a generalization for n = 1 to the case

where E is a �nitely complete, �nitely cocomplete, cartesian closed category and B is a
category in E . There have been two basic sources of inspiration for this work. One is
the observation of Roberts [5] that what one needs in order to be able to express the
n-cocycle condition is an n-category (any set is a 0-category, a group gives a 1-category
with one object, an abelian group gives an n-category with one (n − 1)-cell for all n).
This suggests that there should be an n-category of n-cocycles with coe�cients in an n-
category; 0-cohomology would then be the set of 0-cocycles, 1-cohomology would be the
set of isomorphism classes of 1-cocycles, 2-cohomology would be the set of equivalence
classes of 2-cocycles, and so on.

André Joyal's lectures in the Category Seminar at Macquarie University (22 October
and 5 November 1980) were the other source of inspiration. André stressed the important
case where B is a groupoid in a fairly general category E (a groupoid is a category in
which every morphism is invertible; a group is a groupoid with one object). He de�ned
a B-torsor to be a discrete �bration E over B which is locally representable and said
that the relationship between B-torsors and cocycles could be explained in terms of the
comprehensive factorization of a functor into a �nal functor followed by a discrete �bration
[6].

In a topos it is rewarding to view a morphism u : L // K as an internal expression of
a family of objects parametrized by K. In a merely �nitely complete category in general
this point of view makes little sense, so in Section 2 we have suggested the notion of
powerful morphisms should play this role. Every morphism in a topos is powerful. The
powerful morphisms in the category of categories are known (originally due to [11] and
[12]; also see Theorem 2.37 of [3]) and include both �brations and op�brations. Via the
inverse of the Grothendieck construction (see Section 1 of [15] for example) a �bration
certainly represents a family of categories parametrized by a category.

In an arbitrary �nitely complete and �nitely cocomplete category we provide, in Sec-
tion 2, an e�cient proof that each functor into an amenable category factors compre-
hensively and that this factorization is functorial. A category B is amenable when the
codomain morphism d1 : B1

// B0 is powerful. The case of internal groupoids was devel-
oped by Dominique Bourn [7].
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Section 3 brings us to the notion of a B-torsor where B is a category in a �nitely
complete category E . In topos theory it has been suggested that (in view of Section 8.3
of Johnstone [3]) a B-torsor in a topos E should perhaps be a �at discrete �bration E
over B. However, we know of no results concerning such torsors with B not a groupoid
except that the topos EB would then be the B-torsor classi�er. Instead, the de�nition
taken here is that a B-torsor is a discrete �bration over B which is locally representable
(that is, on passing to a cover, looks like some d0 : (B/x) // B). This leads to a category
Tors(B) of B-torsors. We contend that one-dimensional cohomology is the study of the
categories Tors(B).

It will be clear (after Theorem 4.8) that a B-torsor amounts precisely to a Bg-torsor
where Bg is the groupoid obtained from B by restricting to invertible morphisms in B.
So one may ask: is it not su�cient to consider B-torsors where B is a groupoid? No! For
what we in fact have is an equivalence of categories

Tors(B)g ' Tors(Bg), (1)

and it is not possible to glean all the important information about a category Tors(B)
from the associated groupoid. For example, in Section 6 we give a technique for deriving
results about �niteness in a topos, vector bundles, and other local structures, which could
not be obtained by restricting to groupoids.

Here, a cover is taken to mean an object R of E for which R // 1 is a regular epimor-
phism (that is, a coequalizer of some pair of morphisms). When E is cartesian closed,
covers are closed under �nite products. All our results apply equally well when covers are
replaced by any subclass closed under �nite products.

Apart from some basics about powerful morphisms and an internalization of the com-
prehensive factorization [6] the two main results of this paper are the Clutching Theorem
4.10 and the Classi�cation Theorem 5.11. The �rst of these establishes the relationship
between B-torsors and �ech B-cocycles when B is an amenable category in E . The sec-
ond, which warrants some explanation here, generalizes the result of Giraud mentioned
near the beginning of this Introduction.

When viewing a category E as a universe of discourse and categories in E as �small
categories�, a useful concept of �large category� is that of homomorphism X : Eop // Cat
(or �pseudofunctor�, or, equivalently, �bration over E); for K in E , we think of the objects
of XK as �K-indexed families of objects of the large category X�. In accordance with
our view of powerful morphisms, E becomes the underlying external category for the large
category P with PK taken to be the category of powerful morphisms into K. Categories
constructed as consisting of structures in E (for example, the category of rings in E) also
underlie large categories (this means more than the observation that the category of rings
in E has homs enriched in E). The Classi�cation Theorem concerns suitably cocomplete
large categories X in E and K-indexed families x of X-objects; it states that X-objects
locally isomorphic to some member of the family x are classi�ed by X[x]-torsors, where
X[x] is the small category in E �of members of the family x and all X-arrows between
them�.
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Finally, note that, if C is a �nitely complete, �nitely cocomplete, cartesian closed
category then so too is the category E underlying the 2-category Cat(C) of categories
in C. Thus by recursion, we can apply our results to multiple categories [15] in a topos:
wherein it can be seen (using Theorem 2.16) that n-categories are amenable. For example,
an abelian group G in a topos C gives rise to a group B in E (as above); with the notion
of cover in E taken to be that of connected groupoid, B-torsors in E are closely related to
elements of H2(C;G).

To realise our program of obtaining higher cohomologies as one-dimensional cohomolo-
gies under this kind of recursion, we must �rst further generalise the techniques presented
here to a quasi-categorical setting. In that context our category E would come equipped
with a homotopy theory, usually given as a Quillen model structure. Furthermore Cat(E)
would be replaced by the category of simplicial objects in E along with a derived homotopy
theory whose �brant objects are certain kinds of internal quasi-categories (or equivalently
complete Segal spaces). Much of the theory presented here then generalises to that kind
of setting, while retaining the conceptual structure presented here.

So why have we not gone straight to describing that generalisation here? Our answer
to this question comes in two parts. Firstly, the results we present here already have
important applications which cannot be derived from classical presentations of this mate-
rial. Secondly, in this work we have tried to present the overall structure of our approach
to this topic without confusing the reader (or indeed ourselves) with the technical detail
involved in its homotopy theoretic generalisation. This enables us to present a simpli�ed
conceptual road map which we intend to build upon elsewhere.

2. Powerful morphisms

Considerable use will be made of the Adjoint Triangle Theorem of Dubuc [25] in the
following form.

2.1. Lemma. Suppose the functor F : B // X has a right adjoint U with the all compo-
nents of the unit η : 1 // UF regular monomorphisms in B. Any functor S : A // B has
a right adjoint if and only if the composite FS does.

Proof. Suppose FS has right adjoint Q. Each morphism ηB : B // UFB is an equalizer
of two morphism into some object C of B. But ηC is a monomorphism. So B is an
equalizer of two morphisms UFB // UFC and it follows that B(SA,B) is the equalizer
of two morphisms B(SA,UFB) // B(SA,UFC), naturally in A. Using F a U , we see
that B(SA,B) is the equalizer of two morphisms X (FSA, FB) // X (FSA, FC), natu-
rally in A. Using FS a Q, we see that B(SA,B) is the equalizer of two morphisms
A(A,QFB) // A(A,QFC), naturally in A. By Yoneda's Lemma, we obtain two mor-
phisms QFB // QFC whose equalizer TB has A(A, TB) ∼= B(SA,B), naturally in A.

2.2. Remark. The assumptions in the �rst sentence of the lemma hold if F is comonadic.
On the other hand, the assumptions on F generally imply that it is conservative (that
is re�ects invertibility). A related observation is that restriction along (pre-composition
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by) U re�ects the invertibility of natural transformations α : H +3 K : A // B between
equalizer-preserving functors H and K.

2.3. Definition. Let E denote a �nitely complete category. A morphism p : E // B in
E is called powerful when the functor

−×
B
E : E/B

// E , (2)

which assigns to each object of the slice category E/B its pullback with p, has a right adjoint.
(The term �exponentiable� instead of �powerful� has been used in the literature.)

The following result is adapted to this terminology from Freyd [8].

2.4. Proposition. The following conditions on a morphism p : E // B in E are equiv-
alent:

(1) the morphism p is powerful;

(2) the functor
p∗ : E/B

// E/E , (3)

de�ned by pulling back along p, has a right adjoint Πp;

(3) exponentiation exists with respect to the index p : E // B in the category E/B.

Proof. Consider the functor ΣE : E/E // E taking each morphism into E to its domain.
It has a right adjoint ΣE a ∆E taking X to X ×E over E via the second projection. The
unit of the adjunction is a componentwise regular monomorphism. By Lemma 2.1, the
functor p∗ : E/B // E/E has a right adjoint if and only if −×

B
E = ΣE p

∗ does. This proves

the equivalence of (1) and (2).
Product with the object p of E/B is the composite

E/B
p∗ // E/E

Σp // E/B

where Σp a p∗. It follows that (2) implies (3).
To see that (3) implies (1), notice that the functor −×

B
E is the composite

E/B
p∗ // E/E

Σp // E/B
ΣB // E .
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2.5. Definition. In a category C with �nite products, an object P is said to be powerful
when the functor P ×− : C // C has a right adjoint.

So, by Proposition 2.4(3), a morphism p : E // B in E is powerful if and only if it is
powerful as an object of the category E/B. An object E of E is powerful if and only if the
morphism E // 1 is powerful.

2.6. Corollary.

(1) Isomorphisms are powerful.

(2) The composite of powerful morphisms is powerful.

(3) The pullback of a powerful morphism is powerful.

Proof. The only one of these that needs any comment is (3) and this follows from Lemma
2.1 since the unit of each adjunction Σf a f ∗ is a regular monomorphism.

Given a functor F : E // X , we write FB : E/B // X/FB for the functor induced by F
in the obvious way on slice categories.

2.7. Definition. For a powerful morphism p : E // B, a pullback preserving functor
F : E // X is said to preserve internal p-products when Fp is powerful and the canon-
ical morphism

FBΠp
// ΠFpFE, (4)

obtained as the mate of the inverse of the canonical isomorphism

FE p
∗ // (Fp)∗ FB, (5)

is invertible.

2.8. Example.

(1) When E is a category of sets, or more generally a topos, every morphism is powerful.
A category in which each morphism is powerful is called internally complete (or
�locally cartesian closed� [9] or �a closed span category� [10]).

(2) When E is the category Cat of categories, the powerful morphisms have been identi-
�ed by Giraud [11] and Conduché [12] (also see [3] and [13]). Moreover, the simplicial
nerve functor N : Cat // ∆̂ preserves internal p-products for all powerful functors
p (we leave this as an exercise using the references; however, see Proposition 2.10).
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2.9. Proposition. Suppose S a T : E // X is an adjunction between �nitely com-
plete categories and let ε : ST +3 1 denote the counit. Suppose p : E // B in E and
Tp : TE // TB in X are powerful. If S preserves pullbacks along Tp and the following
naturality square

STE
STp //

εE

��

STB

εB

��
E p

// B

=

is a pullback then T preserves internal p-products.

Proof. We are required to prove that TBΠp
// ΠTpTE is invertible. That is, we must

show that, for all f : X // TB and g : Y // E, the canonical

X/T B(X
f

// TB, TBΠp(Y
g

// E)) // X/T B(X
f

// TB, ΠTpTE(Y
g

// E)) (6)

is a bijection. Put Πp(Y
g // E) = (V h // B) and form the following pullback.

P
v //

u

��

X

f

��
TE

Tp
// TB

=

Using our hypotheses on S and ε, it follows that SP Su // STE
εE // E is the pullback

of SX
Sf // STB

εB // B along p. So the function (6) decomposes as the composite of
bijections:

X/T B(X
f // TB, TV Th // TB) ∼= E/B (SX

Sf // STB
εB // B, V h // B) ∼=

E/E (SP Su // STE
εE // E, Y

g // E) ∼= X/T E(P u // TE, TY
Tg // TE) ∼=

X/T B(X
f // TB, ΠTpTE(Y

g // E)).

Choose a category Set of sets containing E as an internal category. We write Ê for the
topos of Set-valued presheaves on E .

2.10. Proposition. Suppose that E and X are �nitely complete categories and that
F : E // X is a dense, fully faithful, left exact functor. Assume further that p : E // B
is a powerful arrow in E and that Fp : FE // FB is a powerful arrow in X . Then F
preserves internal p-products.
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Proof. Start by considering the sliced functor FB : E/B // X/FB for any object B ∈ E
and observe that:

• FB is left exact. To prove this, simply consider the commutative square of functors

E/B
FB //

πB

��

X/FB
πFB

��
E

F
// X

in which the vertical functors are the canonical projections, which preserve and
re�ect all �nite limits. So we may infer from the assumption that F preserves �nite
limits that FB also preserves all �nite limits as required.

• FB is fully faithful. Consider the following, serially commutative, diagram

E/B(f : E // B, f ′ : E ′ // B)

FB

��

� � // E(E,E ′)

∼= F

��

pfq◦! //

E(E,f ′)
// E(E,B)

∼=F

��
X/FB(FB(f), FB(f ′)) � � // X (FE,FE ′)

pFB(f)q◦! //

X (FE,FB(f ′))
// X (FE,FB)

in which the horizontal forks are the equalisers used to de�ne the homsets of the
slice categories E/B and X/FB. Here the right hand and central verticals are both
isomorphisms since F is fully faithful. So it follows that the left hand vertical is also
an isomorphism, since pointwise isomorphisms of diagrams induce isomorphisms of
limits, as required.

• FB is dense. Of course, a functor F : E // X is dense if and only if the associated
functor

F̃ : X // Ê
X � // X (F (−), X)

is fully faithful. So to show that FB : E/B // X/FB is dense we must show that its
associated functor

F̃B : X/FB // Ê/B
is fully faithful. To do this, consider �rst the sliced functor:

F̃FB : X/FB // Ê/F̃FB

From the assumption of the density of F we may infer that the associated functor
F̃ is fully faithful, from which it follows, by the argument of the last point of this
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proof, that our sliced functor F̃FB is also fully faithful. Now observe that

F̃FB(B′) = X (FB′, FB) by de�nition of F̃
∼= E(B′, B) since F fully faithful

so F̃FB ∼= YEB. Now we may apply the fact that a slice Ê/X of a presheaf category

is itself equivalent to the presheaf category Ĝ(X) on the Grothendieck category
constructed from X, to show that:

Ê/F̃FB '
̂G(F̃FB)

∼= Ĝ(YEB) since F̃FB ∼= YEB

∼= Ê/B since G(YEB) ∼= E/B.

Now calculating the e�ect of this equivalence explicitly, we see that it is simply the
functor ((F̃F )B)

∼
associated with the sliced functor (F̃F )B : E/B // Ê/F̃FB. So it is

easily checked that we have an (essentially) commutative triangle

Ê/F̃FB

' ((F̃F )B)
∼

��

X/FB

F̃FB
55kkkkkkkkkkk

F̃B ))SSSSSSSSSSSS

Ê/B

∼=

and it follows, from the fact that F̃FB is fully faithful, that F̃B is fully faithful and
thus that FB is dense as required.

Having established these properties of the sliced versions of F let us return to our
powerful arrow p : E // B. Observe that for any pair of objects f : D // B in E/B and
g : C // E in E/E, we have a sequence of isomorphisms

X/FB(FB(f),ΠFpFE(g))
∼= X/FE((Fp)∗FB(f), FE(g)) Fp powerful so (Fp)∗ a ΠFp

∼= X/FE(FE p
∗(f), FE(g)) F preserves pullbacks so (Fp)∗FB ∼= FE p

∗

∼= E/E(p∗(f), g) FE is fully faithful (see above)
∼= E/B(f,Πp(g)) p powerful so p∗ a Πp

∼= X/FB(FB(f), FBΠp(g)) FB is fully faithful.

which are natural in f and g. In other words, by composing these we obtain isomor-
phisms F̃B(FBΠp(g)) ∼= F̃B(ΠFpFE(g)) in Ê/B which are themselves natural in the object
g ∈ E/E. However FB is dense, as demonstrated above, so F̃B is fully faithful and it
follows that there are unique isomorphisms FBΠp(g) ∼= ΠFpFE(g) which are mapped to
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the isomorphism of the last sentence by F̃B. These isomorphisms are again natural in
g ∈ E/E (since F̃B is faithful) providing us with a natural isomorphism FBΠp

∼= ΠFpFE.
It is now a matter of routine computation to check that this latter isomorphism is indeed
the mate described in De�nition 2.7 and thus that F preserves p-products as postulated
in the statement.

2.11. Corollary. The Yoneda embedding YE : E // Ê preserves internal p-products for
all powerful morphisms p in E.

Proof. The Yoneda embedding is dense, fully faithful and left exact. Furthermore, all
arrows are powerful in Ê . It follows that the conditions of the last proposition hold for
the Yoneda embedding and any powerful arrow p in E . So applying that proposition, we
get the result of the statement.

We are interested in �nding some powerful morphisms in a functor category [C, E ] in
terms of those in E . We are grateful to Steve Lack for vastly simplifying our proof of:

2.12. Theorem. Suppose C is a category and suppose E is �nitely complete and has
products indexed by the set C1 of morphisms of C. A morphism p : E // B in the functor
category [C, E ] is powerful if it is componentwise powerful; that is, for all objects U ∈ C,
the component pU : EU // BU is powerful in E.

Proof. Let J : C0
// C denote the inclusion of the set of objects C0 as a discrete category.

The hypothesis of the �rst sentence is used to obtain the functor

RanJ : [C0, E ] // [C, E ] ,

RanJ(T )U =
∏
V ∈C0

(TV )C(U,V ),

(7)

which is right Kan extension along J . Consider the following square of functors.

[C, E ]/B
p∗ //

[J,1]B
��

[C, E ]/E

[J,1]E
��

[C0, E ]/BJ
(pJ)∗

// [C0, E ]/E J

∼=

(8)

The vertical functors are comonadic with right adjoints easily obtained from RanJ and
pullback along the unit. In particular, the units of the adjunctions are pointwise regular
monomorphisms. The bottom functor has a right adjoint precisely because each compo-
nent pU : EU // BU is powerful in E . So Lemma 2.1 applies to yield a right adjoint for
the top functor. So p : E // B is powerful.
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2.13. Theorem. Let C be a category and let E and F be �nitely complete categories
which possess all products indexed by C1. Furthermore let F : E // F be a �nite limit
preserving functor which also preserves products indexed by C1. Finally let p : E // B be
an arrow of the functor category [C, E ].

Now suppose that p and its composite Fp with F are both pointwise powerful. Further-
more assume that F preserves internal pU-products for each component pU : EU // BU
of p. Then it follows that [C, E ] has internal p-products, [C,F ] has internal Fp-products
and the functor [1, F ] : [C, E ] // [C,F ] preserves internal p-products.

Proof. Applying theorem 2.12 to the assumption that p and Fp are both pointwise
powerful allows us to infer that these two maps are themselves powerful in [C, E ] and
[C,F ] respectively. To show that [1, F ] preserves these internal p-products consider the
following cube of functors and natural isomorphisms:

[C, E ]/B
p∗ //

[1,F ]B

��

[C, E ]/E
[J,1]E

%%LLLLLLLLLLLL

[1,F ]E

��
[C,F ]/FB

[J,1]FB %%JJJJJJJJJJJ

(Fp)∗ // [C,F ]/FE

[J,1]FE

LLL

%%LLL

[Co, E ]/EJ

[1,F ]EJ

��
[C0,F ]/FBJ

(FpJ)∗
// [C0,F ]/FEJ

(a)∼=

(c)∼=

(b)
= =

[C, E ]/B
p∗ //

[1,F ]B

��
[J,1]B

JJJ

%%JJJ

[C, E ]/E
[J,1]E

%%LLLLLLLLLLLL

[C,F ]/FB

[1,J ]FB %%JJJJJJJJJJJ
[C0, E ]/BJ

(pJ)∗
//

[1,F ]BJ

��

[C0, E ]/EJ

[1,F ]EJ

��
[C0,F ]/FBJ

(FpJ)∗
// [C0,F ]/FEJ

(e)
=

(d)∼=

(f)∼=

(9)
Notice here that the commutativity of the squares marked (b) and (e) above goes without
comment. To construct the remaining isomorphisms here, simply observe that the each
of these squares contains a canonical natural transformation induced by the universal
property of one of the horizontal pullback functors. The uniqueness of such induced maps
ensures that the composites of the two faces of our cube are equal. Furthermore the
pullbacks used to construct our pullback functors are all constructed pointwise and are
thus preserved by the pre- and post-composition functors [J, 1] and [1, F ]. This then is
enough to show that each induced 2-cell is actually a natural isomorphism as drawn.

Now observe, as above, that by assumption each of the maps p, pJ , Fp and FpJ is
pointwise powerful, so theorem 2.12 tells us that each one is powerful and thus that we
have right adjoints (internal product) to each of the horizontal functors in display (9).
Now, arguing as in the proof of that theorem we know that we may also use the �nite
limits of E or F to construct right adjoints (Kan extension) RanJ to each of the pre-
composition functors [J, 1], so it follows that each of the diagonal functors in display (9)
has a right adjoint. Furthermore, just as in that proof we also know that the components
of the units of these latter adjunctions are all regular monomorphisms.

Taking mates of the squares labelled (a), (b), (e) and (f) under the right adjoints to
the various functors surrounding the squares labelled (c) and (d), and applying the usual
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properties of mates, we obtain the following commutative cube of natural transformations:

[C, E ]/B oo Πp

[1,F ]B

��

[C, E ]/Eee
(RanJ )E

LLLLLLLLLLLL

[1,F ]E

��
[C,F ]/FBee

(RanJ )FB JJJJJJJJJJJ
oo
ΠFp

[C,F ]/FEee

(RanJ )FE

LLL

LLL

[Co, E ]/EJ

[1,F ]EJ

��
[C0,F ]/FBJ

ΠFpJ

// [C0,F ]/FEJ

(a′)
��

***
***

(c′)∼=

(b′)
��

444
444

=

[C, E ]/B oo Πp

[1,F ]B

��

ee

(RanJ )B

JJJ

JJJ

[C, E ]/Eee
(RanJ )E

LLLLLLLLLLLL

[C,F ]/FBee

(RanJ )FB JJJJJJJJJJJ
[C0, E ]/BJ oo

ΠpJ

[1,F ]BJ

��

[C0, E ]/EJ

[1,F ]EJ

��
[C0,F ]/FBJ oo

ΠFpJ
[C0,F ]/FEJ

(e′)
��

)))
)))

(d′)∼=

(f ′)
��

666
666

(10)
Now, just as in the proof of theorem 2.12 the internal pJ- and FpJ-products may be
constructed pointwise, since C0 is discrete, so by applying the assumption that F preserves
internal pU -products for each component pU of p we �nd that the 2-cell labelled (f ′) above
is actually a natural isomorphism.

Turning now to squares (b′) and (e′), observe that the Kan extension functors RanJ
are constructed using limits indexed by C1 in E and F and these are preserved by F , so
it follows that [1, F ] RanJ ∼= RanJ [1, F ]. Furthermore the functors (RanJ)B and (RanJ)E
are constructed by applying RanJ and taking a pullback along the component of the unit
of [J, 1] a RanJ at B and E respectively. These pullbacks are constructed pointwise and
so are also preserved by [1, F ]. Finally we can combine these facts to demonstrate that the
2-cells in (b′) and (e′) are also natural isomorphisms, since their components are induced
by a universal property which is held in common by their domains and codomains.

At this point, by composing the diagram of natural isomorphisms on the right of dis-
play (10) and then �cancelling� by the isomorphisms in squares (b′) and (c′) on its left
hand side we �nd that the 2-cell obtained by pre-composing the cell in (a′) by the func-
tor (RanJ)E is itself a natural isomorphism. But notice that Πp and ΠFp both preserve
�nite limits, since they are right adjoints, as do [1, F ]B and [1, F ]E since limits are con-
structed pointwise in [C, E ] and the �nite limits of E are preserved by F . Furthermore, we
know that the unit of the adjunction [J, 1] a RanJ has components which are all regular
monomorphisms, so we may apply the cancellation result of remark 2.2 to demonstrate
that the 2-cell in (a′) is itself a natural isomorphism. Finally, this simply tells us that
[1, F ] preserves internal p-products as postulated.

Our next result concerns powerful morphisms in pseudopullbacks. Consider the fol-
lowing square (commutative up to isomorphism) made up at the vertices of categories
admitting pullbacks and at the edges of pullback-preserving functors.

P
Q //

P

��

∼=

B

G

��
A

F
// X

(11)
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2.14. Proposition. Assume that the diagram (11) is the pseudopullback of a pair of
pullback-preserving functors F and G. Suppose the morphism p : E // B in P is such
that:

• both Pp and Qp are powerful; and,

• the functors F and G preserve internal Pp-products and internal Qp-products, re-
spectively.

Then p : E // B is powerful in P.

Proof. The adjunction p∗ a Πp : P/E // P/B is induced on pseudopullbacks by the ad-
junction

A/PE
FPE //

ΠPp





JJ

(Pp)∗ a ∼=

X/FPE oo
∼= //

ΠFPp





JJ

(FPp)∗ a ∼=

X/GQE oo
GQE

ΠGQp





JJ

(GQp)∗ a ∼=

B/QE

ΠQp





JJ

(Qp)∗ a

A/PB
FPB

// X/FPB oo
∼=

// X/GQB oo
GQB

B/QB

between cospan diagrams.

2.15. Definition. A morphism p : E // B in a 2-category K is called representably
powerful when, for all objects X of K, the functor K(X, p) : K(X,E) // K(X,B) is
powerful (see Example 2.8).

Both �brations and op�brations in K (in the sense of [14]) are representably powerful
since they are de�ned representably, and �brations and op�brations are powerful in Cat.

2.16. Theorem. A morphism p : E // B in Cat(E) is powerful if

(a) the morphisms pi : Ei // Bi in E are powerful for i = 0, 1, 2, and

(b) the morphism p : E // B in Cat(E) is representably powerful.

Proof. Let ∆�2 denote the (�nite) full subcategory of the usual category ∆ of non-
empty �nite ordinals consisting of the ordinals [0], [1], [2] of cardinality ≤ 3. We have the
following pseudopullback.

Cat(E) Y //

��

∼=

[Eop,Cat]

[Eop,N ]

��[
∆op
�2 , E

]
[∆op

�2 ,YE ]
// [(∆�2 × E)op, Set]

(12)

By Proposition 2.10, Theorem 2.13 and Theorem 2.12, the morphism p : E // B satis�es
the conditions of Proposition 2.14.
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2.17. Corollary. If p : E // B is either a �bration or op�bration in Cat(E) and p0,
p1, p2 are powerful in E then p is powerful in Cat(E).

2.18. Corollary. A discrete (op)�bration p : E // B in Cat(E) is powerful if and only
if p0 : E0

// B0 is powerful in E.

Proof. In this case, p1 and p2 are pullbacks of p0. The result follows from Corollary
2.6(3) and the fact that a right adjoint for −×

B
E restricts to one for −×

B0

E0.

Recall (from Section 6 of [15] for example) that an internal full subcategory of E is a
category B in E together with a discrete op�bration q : J // B such that, for all objects
X of E , the functor

JX : E(X,B) // E/X ,

JX(u) =

(
pr1 : X ×

B
J // X

) (13)

is fully faithful. We say �B consists of the �bres of q0 : J0
// B0�.

2.19. Corollary. If f : M // K is a powerful morphism in E then the internal full
subcategory q : J // B of E consisting of the �bres of f exists and is a powerful morphism
in Cat(E).

Proof. By Corollary 2.6(3), the morphism f × 1: M × K // K × K is powerful in E .
By Proposition 2.4(3), the cartesian internal hom (s, t) : B1

// K ×K of the two objects
f × 1: M ×K // K×K and 1× f : K×M // K×K exists in the slice category E/K×K .
It is easy to see that this property of B1

// K×K is equivalent to a natural isomorphism

E/K×K (X
(u,v) // K ×K,B1

(s,t) // K ×K) ∼= E/X (u∗(f), v∗(f)). (14)

The underlying graph of the category B is

B1

s
**

t

44 K .

From (14) we see that the graph E(X,B) is isomorphic to the underlying graph of the
full subcategory of E/X consisting of objects of the form u∗(f). So B is a full subcategory
of E and we have our fully faithful pseudonatural transformation E(−, B) // E/−. Recall
that the generalized Yoneda lemma of [15] gives an explicit equivalence

Hom(Eop,Cat)
(
E(−, B), E/−

)
' EB (15)

where the right-hand side is the full subcategory of Cat(E)/B consisting of the discrete
op�brations into B. Using this, we obtain a discrete op�bration q : J // B inducing
E(−, B) // E/− as J− as in (13) and with q0 = f which is powerful.
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3. Internal comprehensive factorization

Let E denote a �nitely complete and �nitely cocomplete category. Let K denote the 2-
category Cat(E) of categories in E . We identify E with the sub-2-category of K consisting
of the discrete categories in E .

For each object A of K, the coequalizer

A1

d0 //

d1
// A0

// π0(A) (16)

in E yields a coidenti�er (in the sense of [16])

A2

d0
))

d1

55 A // π0(A)λ�� (17)

in K. Then π0 : K // E is left adjoint to the inclusion 2-functor. This implies that, if
there is a 2-cell f +3 g in K, then π0(f) = π0(g) in E ; so that adjoint morphisms in K are
taken by π0 to isomorphisms.

Using Day's Re�ection Theorem (see Theorems (3.10) and (3.24) of [15]), we deduce
the following.

3.1. Proposition. If E is cartesian closed then π0 preserves �nite products.

3.2. Proposition. If p : E // B is a discrete �bration and b : X // B has discrete
domain X in K then the composite

Eb = E×
B
X // (b/p) // π0(b/p) (18)

is an isomorphism.

Proof. Since p is a �bration, the inclusion Eb // (b/p) of the pullback into the comma
object has a right adjoint. Since both X and p are discrete, π0(Eb) = Eb.

3.3. Definition. A morphism j : A // B in K is said to be �nal when, for all powerful
discrete op�brations q : F // B, the projection A×

B
F // F is inverted by the 2-functor

π0.

3.4. Proposition. Suppose j : A // B is �nal. A morphism k : B // C is �nal if and
only if kj is �nal.

Proof. If q : F // C is a powerful discrete op�bration, so too is B×
C
F // B (using

Corollary 2.6(3)). Since j is �nal, it follows that π0 inverts A×
C
F // B×

C
F . So π0

inverts A×
C
F // B×

C
F // F if and only if it inverts B×

C
F // F .
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3.5. Proposition. Right adjoints are �nal.

Proof. Suppose j : A // B has a left adjoint and q : F // B is a powerful discrete op�-
bration. Let g : P // F be the pullback of j along q. Since j has a left adjoint, so too does
the projection (q/j) // F . Yet g factors through (q/j) // F via a morphism P // (q/j)
which has a left adjoint, since q is an op�bration. So g has a left adjoint and hence induces
π0(P ) ∼= π0(F ).

3.6. Proposition. Coidenti�ers are �nal.

Proof. Suppose j : A // B is a coidenti�er of some 2-cell and q : F // B is a powerful
discrete op�bration. Then pullback with q has a right adjoint and so preserves coidenti-
�ers. So A×

B
F // F is a coidenti�er in K. Since π0 : K // E is a left adjoint, it preserves

coidenti�ers. Yet coidenti�ers in E are invertible! So π0 inverts A×
B
F // F .

3.7. Definition. An object B of K is called amenable when d1 : B1
// B0 is powerful

in E.

3.8. Proposition. If p : E // B is a discrete �bration and B is amenable then E is
amenable.

Proof. d1 : E1
// E0 is a pullback of d1 : B1

// B0 along p0. So the result follows from
Corollary 2.6(3).

3.9. Proposition. Each �nal discrete �bration into an amenable object is invertible.

Proof. Suppose p : E // B is a �nal discrete �bration with B amenable. Furthermore
let i : B0

// B be the inclusion. Then d1 : (i/B) // B is a powerful discrete op�bration
by Corollary 2.18. So the pullback g : (i/p) // (i/B) of p along d1 : (i/B) // B is inverted
by π0. Using Proposition 3.2, we see that π0(g) is isomorphic to p0 : E0

// B0. A discrete
�bration p with p0 invertible is clearly invertible.

3.10. Proposition. If B is amenable then the category EBop
of discrete �brations over

B is �nitely cocomplete.

Proof. EBop
is monadic over E/B0 , and the functor underlying the monad is the composite

E/B0

d1
∗

// E/B1

Σd0 // E/B0 . (19)

If B is amenable this functor has a right adjoint and so preserves colimits. So EBop
has

whatever colimits E has.
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Let KBop
denote the sub-2-category of K/B consisting of the split �brations into B

and split-cartesian morphisms between them. The inclusion 2-functor KBop // K/B is
monadic and its left adjoint takes f : A // B to d0 : (B/f) // B. Recall (see Theorem
4.13 of [15]) that there is an equivalence of 2-categories

KBop ' Cat(EBop

). (20)

We identify EBop
with the sub-2-category of KBop

consisting of the discrete objects.
If B is amenable, it follows from Proposition 3.10 that we can apply the construction

of (17) to EBop
and KBop

in place of E and K

π0B : KBop // EBop

(21)

to the inclusion 2-functor de�ned by the coidenti�er

(E, p)2
d0

**

d1

44 E // π0B(E)λ�� (22)

for each split �bration p : E // B, where (E, p)2 denotes the cotensor in K/B constructed
by pulling back p2 : E2 // B2 along the diagonal B // B2.

The composite 2-functor
EBop // KBop // K/B (23)

is fully faithful (see subsection (2.9) of [15]). If B is amenable, it follows from (20) and
(21) the composite 2-functor (23) f : A // B is the composite

A
i //

f

��
=

(B/f) n //

d0
��

=

π0B(B/f)

p

��
B

1
// B

1
// B

(24)

where i has a left adjoint d1 : (B/f) // A and n is the coidenti�er of the 2-cell

(d1/A)
++

33 (B/f)λ�� (25)

3.11. Theorem. Suppose E is a �nitely complete and �nitely cocomplete category. For
each amenable object B of K = Cat(E):

(1) each morphism f : A // B in K factors as f = pj where p is a discrete �bration
and j is �nal;

(2) for all discrete �brations p : E // C and �nal j : A // B, the following square of
functors is a pullback.

K(B,E)
K(1,p) //

K(j,1)

��
=

K(B,C)

K(j,1)

��
K(A,E)

K(1,p)
// K(A,C)

(26)
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Proof.

(1) In (24) f = pni where p is a discrete �bration. Also, i has a left adjoint and n is a
coidenti�er. By Propositions 3.4, 3.5 and 3.6, it follows that j = ni is �nal.

(2) Since K admits (−)2, the pullback condition only needs to be veri�ed on objects.
By Propositions 3.4 and 3.9, the re�ection of a �nal j : A // B into the discrete
�brations over B is invertible. So j : j // 1B in K/B has the property of the unit
at j for the re�ection. This means that, for all u : j // p with p a discrete �bration
into B, there exists a unique w : 1B // p with wj = u.

A
j //

u

��

B

1
��w~~~~~~~~~

E p
// B

(27)

We must show more generally that, for all �nal j : A // B and discrete �brations
p : E // C, if pu = vj then there exists a unique w with pw = v and wj = u.
Form the pullback P of p and v. Let u′ : A // P have projections u and j from the
pullback. Note that j = p′u′ where p′ = pr2 is a discrete �bration using Corollary
2.6(3). By (27), there exists a unique w′ : B // P such that p′w′ = 1 and w′j = u′.
So there exists w = pr1w

′ satisfying pw = v and wj = u. Finally, uniqueness is
a consequence of the uniqueness of w′ since any such w would induce a w′ with
p′w′ = 1 and w = pr1w

′, which imply the condition w′j = u′.

3.12. Corollary. If B is amenable, the following conditions on j : A // B are equiv-
alent:

(a) the morphism j in K is �nal;

(b) the object π0B(B/j) of K/B is terminal;

(c) the following diagram in K is a coidenti�er

(d1/A)
++

33 (B/j)
d0 // Bλ��

(d) any pullback of j along a powerful op�bration in K is inverted by π0.

3.13. Corollary. Any pullback along a powerful op�bration of a �nal morphism into
an amenable object in K is �nal.
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4. Torsors

Let E be a �nitely complete category and let K = Cat(E) be the 2-category of categories
in E .

4.1. Definition. A discrete �bration p : E // B in K is said to be representable when
there exist a morphism x : 1 // B and an isomorphism (B/x) ∼= E over B.

Suppose p : E // B is a discrete �bration in K and R is an object of E. Then p ×
R : E × R // B × R is a discrete �bration in the 2-category K/R of categories in E/R.
When p×R : E ×R // B ×R is representable, one says p is representable over R.

Suppose B is a category in E. A B-torsor is a discrete �bration p : E // B in K for
which there exists an object R of E with R // 1 a regular epimorphism and p representable
over R.

4.2. Proposition. The following conditions on a discrete �bration p : E // B and an
object R of E are equivalent:

(i) the discrete �bration p is representable over R;

(ii) there exists a morphism y : R // E and a 2-cell χ : pr1
+3 y pr2 : E×R // E whose

restriction along (y, 1) : R // E ×R is the identity 2-cell of y;

(iii) the category K(R,E) has a terminal object which is preserved by composition with
all u : R′ // R in E;

(iv) (for R powerful in E) the morphism ER // 1 in K has a right adjoint.

Furthermore, the pair (y, χ) is unique up to isomorphism when it exists.

Proof. To say that p is representable over R is to say that there exists x : R // B and a
morphism of spans

t : (d0, (B/x) , d1) // (p pr1, E ×R,R) (28)

from R to B with t invertible. By Yoneda's Lemma in a 2-category, morphisms of spans
t are in bijection with morphisms of spans

k : (x,R, 1) // (p pr1, E ×R, pr2) . (29)

Such a k must have the form k = (y, 1) for a unique y with py = x. On the other hand,
morphisms of spans

t′ : (p pr1, E ×R,R) // (d0, (B/x) , d1) (30)

are in bijection with 2-cells µ : p pr1
+3 x pr2 : E × R // B via the universal property of

(B/x). Since p is a discrete �bration, there exists a unique 2-cell χ with pχ = µ. The
condition tt′ = 1 becomes pr1 tt

′ = pr1 and pr2 tt
′ = pr2. The second of these is automatic

while the �rst means that χ has domain pr1. The condition t
′t = 1 becomes µ(y, 1) = 1x

which amounts to χ(y, 1) = 1y since p is discrete. This proves (i)⇔(ii).
Assuming (ii), we easily see that yu is terminal in K(R′, E) which gives (iii).
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It is easy to see that (iv) amounts to saying that there exists y : R // E such that, for
all X in E , the composite y pr2 : X × R // E is terminal in K(X × R,E). So certainly
(iii)⇒(iv). Yet (iv) easily implies that, for all A in K, the composite y pr2 : A×R // E is
terminal in K(A×R,E). With A = E, there is therefore a unique χ : pr1

+3 y pr2 : E ×
R // E. With X = 1, we see that y has only one endomorphism; thus χ(y, 1) = 1. So
�nally (iv)⇒(ii).

4.3. Corollary. If one discrete �bration with domain E is representable over R then
all are.

4.4. Definition. For each object R of E, let Rc denote the chaotic (also called �coarse�
or �indiscrete�) category in E as displayed in the diagram:

R×R×R

pr1 //
pr2 //
pr3 //

R×R

pr1 //
oo δ

pr2 //
R . (31)

A morphism Rc
// B is termed a �ech cocycle, de�ned over R, with coe�cients in B.

4.5. Definition. Let Tors(R,B) denote the full subcategory of EBop
consisting of the

objects which are the discrete �brations in K representable over R.

There is a functor
Θ = ΘR : Tors(R,B) // K(Rc, B) (32)

de�ned as follows. Take a discrete �bration p : E // B which is representable over R. Let
y and χ be as in Proposition 4.2(ii). Let j : Rc

// E denote the following morphism of
graphs.

R×R
pr1

��

pr2

��

χ(y×1) //

=

E1

d0

��
d1

��
R y

// E0

(33)

For all 2-cells ξ : e +3 e′ : X // E and all r : X // R, we have that the composite

e = pr1(e, r)
χ(e,r) // y pr2(e, r) = yr

j pr2(ξ,1)=1 // y pr2(e′, r) = yr

is equal to the composite

e = pr1(e, r)
ξ=pr2(ξ,1) // e′ = pr1(e′, r)

χ(e′,r) // y pr2(e′, r) = yr.

This gives χ(yr, t) = χ(ys, t)χ(yr, s) which, together with χ(y, 1) = 1, means that j is a
functor. It also implies that χ extends to a 2-cell

χ : pr1
+3 j pr2 : E ×Rc

// E. (34)
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De�ne
ΘR(p) = pj : Rc

// B. (35)

For any morphism w : E // E ′ in Tors(R,B), construct j′ and χ′ from E ′ just as we
constructed j and χ from E. De�ne

ΘR(w) : pj +3 p′j′ : Rc
// B

to be the 2-cell

pj = p′ pr1(wj, 1)
p′χ′(wj,1) // p′j′ pr2(wj, 1) = p′j′.

4.6. Proposition. Suppose E is cartesian closed and R // 1 is a regular epimorphism
in E. If p : E // B is a discrete �bration which is representable over R then the morphism
j : Rc

// E de�ned in (33) is �nal.

Proof. Take a discrete op�bration q : F // E (not necessarily powerful) and form the
pullback

P
g //

h

��
=

F

q

��
Rc j

// E

.

Let φ : pr1
+3 w be the unique 2-cell with

qφ = χ (q × 1Rc) : q pr1 = pr1(q × 1Rc) +3 j pr2(q × 1Rc) = qw.

From the pullback property, there exists a unique u : F × Rc
// P with hu = pr2 and

gu = w. Since R // 1 is a regular epimorphism, we have the coequalizer

R×R
pr1 //

pr2
// R // 1

so π0(Rc) ∼= 1. By Proposition 3.1,

π0(pr1) : π0(F ×Rc) ∼= π0(F )× π0(Rc) // π0(F )

is invertible. Since we have φ : pr1
+3 w, it follows that π0(w) is invertible. Notice that

qφ (g, h) = χ (q × 1) (g, h) = χ (qg, h) = χ (jh, h) = 1;

so there exists a unique β : 1P +3 u(g, h) such that hβ = 1 and gβ = φ(g, h). Thus
1 = π0(u)π0(g, h) and π0(u) is a retraction. But π0(g)π0(u) = π0(w) is invertible. So
π0(g) is invertible, as required.
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4.7. Proposition. Suppose E is a cartesian closed and �nitely cocomplete category.
Suppose p : E // B is a discrete �bration with E amenable and suppose R is an object of
E. If there exists a �nal j : Rc

// E then p is representable over R; moreover, j is unique
up to isomorphism.

Proof. The e�ect of j on objects gives a morphism y : R // E and the e�ect on mor-
phisms gives a 2-cell

φ : j pr1
+3 y pr2 : Rc ×R // E.

This last 2-cell induces a functor h : Rc × R // (E/y) with d0h = j pr1, d1h = pr2,
and λh = φ. Since E is cartesian closed, R // 1 is powerful. So pr1 : E × R // E is a
powerful discrete op�bration (using Corollary 2.6(3)). Consequently the top morphism in
the following square is �nal.

Rc ×R
j×1 //

h

��

E ×R
pr1

��
(E/y)

d0
// E

=

Since E is amenable, so too is E×R. By Theorem 3.11(2), there exists a unique morphism
x : E × R // (E/j) such that x(j × 1) = h and d0x = pr1. The two morphisms d1x and
pr2 : E ×R // R determine a 2-cell

θ : d1x +3 pr2 : E ×R // Rc.

De�ne χ to be the composite 2-cell

χ : pr1 = d0x
λx +3 yd1x

jθ +3 y pr2 .

Using x(j×1) = h, we deduce that χ(y, 1) = 1. So p is representable over R by Proposition
4.2. Notice that j arises from y and x via the construction (33); from uniqueness of y and
x (Proposition 4.2), we deduce that of j.

4.8. Theorem. Suppose E is �nitely complete, �nitely cocomplete and cartesian closed.
Suppose R // 1 is a regular epimorphism in E and B is an amenable category in E. Then
the functor

ΘR : Tors(R,B) // K(Rc, B)

of (32) is an equivalence of categories.

Proof. Take any f : Rc
// B and factorize it as f = pj as in Theorem 3.11(a). By

Proposition 4.7, p is an object of Tors(R,B). Then ΘR(p) = pj′ for some �nal j′ by
Proposition 4.6. By uniqueness in 4.7, j ∼= j′. So ΘR(p) ∼= pj = f .

Suppose ω : ΘR(p) +3 ΘR(p′) is a morphism inK(Rc, B). Let ΘR(p) = pj and ΘR(p′) =
p′j′ where j and j′ are �nal. Since p′ is a discrete �bration, there exists a unique φ : u +3 j′

with p′φ = ω. Since pj = p′u and E is amenable (by Proposition 3.8), Theorem 3.11(b)
gives a unique w with wj = u and p′w = p. Thus we have w : p +3 p′ in Tors(R,B) which
is unique with ΘR(p) = ω.
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Let R denote the ordered set whose elements are the objects R of E for which R // 1
is a regular epimorphism; the order is

R′ ≤ R if and only if there exists R′ // R in E .

If R′ ≤ R then Tors(R,B) is a full subcategory of Tors(R′, B). So we have a functor

Tors(−, B) : Rop // Cat . (36)

4.9. Proposition. Assume E is cartesian closed. Then Rop is a directed ordered set.
Moreover, if u : R′ // R is a morphism with R and R′ in R, then uc : R′c // Rc is �nal.

Proof. Since X × − preserves coequalizers, if R and R′ are in R, so is R × R′. This
proves the �rst sentence. There is a unique 2-cell χ : pr1

+3 u pr2 : Rc × R′ // Rc which
(by Proposition 4.2) implies 1Rc : Rc

// Rc is representable over R′. So ΘR′(1Rc) = uc is
�nal by Proposition 4.6.

Let Tors(B) denote the full subcategory of EBop
consisting of those discrete �brations

which are representable over some R in R. From Proposition 4.9 we have a �ltered colimit

Tors(B) ∼= colim
R∈Rop

Tors(R,B). (37)

Moreover, we obtain a pseudofunctor (homomorphism of bicategories)

K(−c, B) : Rop // Cat (38)

whose value at R is K(Rc, B) and whose value at R′ ≤ R is composition with some
uc : R′c // Rc. Then the functors ΘR of (32) become the components of a pseudonatural
transformation in R ∈ Rop. From Theorem 4.8 and the isomorphism (37), we deduce the
following result on the construction of torsors from �ech cocycles.

4.10. Theorem. [Clutching] If E is �nitely complete, �nitely cocomplete, and cartesian
closed, and B is amenable, the functors (32) induce an equivalence of categories:

Tors(B) ' bicolim
R∈Rop

K(Rc, B)

5. Classi�cation of objects locally isomorphic to some member of a given

internal family

Let E denote a �nitely complete category and let F = Hom(Eop,Cat) denote the 2-
category of homomorphisms of bicategories (pseudofunctors) from Eop to Cat, strong
transformations, and modi�cations. Recall from [17] that F is a cartesian closed bicat-
egory in the sense that it has an internal hom Y X which appears in an equivalence of
categories

F(Z, Y X) ' F(X × Z, Y ).

Each category B in E will be identi�ed with E(−, B) : Eop // Cat in F .
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5.1. Definition. We identify K = Cat(E) with its image in F under this embedding
K // F . Objects in this image are, of course, called categories internal to E.

If K ∈ E and X ∈ F then there is a canonical equivalence

F(K,X) ' XK, x � // x(1K), (39)

and we tend to identify objects and morphisms in F(K,X) with their images in XK.

5.2. Definition. An object X of F is called a category with homs internal to E
when, for all K ∈ E and x, x′ ∈ XK, there exists a morphism X(x, x′) // K in E and a
bijection

E/K (L,X(x, x′)) ∼= (XL) ((Xu)x, (XU)x′) (40)

which is natural in u : L // K.

5.3. Proposition. Categories internal to E have homs internal to E.

Proof. To obtain B(b, b′) for a category B in E simply take the pullback of the morphism
(d0, d1) : B1

// B0 ×B0 along (b, b′) : K // B0 ×B0.

5.4. Definition. An object X of F is said to be cocomplete at 1 when the following
conditions hold:

(1) coequalizers exist in X1;

(2) for each !K : K // 1 in E, the functor X!K : X1 // XK preserves coequalizers;

(3) for objects K and L of E, the functor X pr1 : XK // X(K × L) has a left adjoint
X̃ pr1 and the canonical natural transformation (X̃ pr1)(X pr2) // (X!K)(X̃!L) is
invertible.

5.5. Theorem. If C is a category internal to E and X ∈ F is cocomplete at 1 then each
morphism g : C // X in F has a left extension colim g : 1 // X along !C : C // 1 such
that, for all K ∈ E, the following diagram exhibits (colim g)!K as a left extension of g pr1

along pr2.

C ×X
pr2 //

pr1
��

=

K

!K
��

C //

g ��??????? 1

colim g���������

X

+3
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Proof. We seek, in the �rst instance, a left adjoint to the functor F(1, X) // F(C,X).
Recall the extension of Yoneda's Lemma given in Section 5 of [15]: namely, there is a
canonical equivalence

F(C,X) ' G(X)C

where G(X) // E is the �bration arising on application of the Grothendieck construction
to X : Eop // Cat, and G(X)C denotes the category of categories T in G(X) which lie
over C and have d0 : T1

// T0 cartesian (the word �full� on the second line of (5.13) in [15]
should obviously be deleted!). We seek a left adjoint to the functor

∆: X1 // G(X)C

which takes z to the category in G(X) with object of objects (B0, (X!B0)z) and each di
cartesian. (When X has small coproducts, G(X)C is monadic over XC0 and an adjoint
triangle gives the result (compare (9.10) and (9.15) of [15]).

Let θi : (X̃!B1)(Xdi) // X̃!B0 be the 2-cell corresponding under adjunction to the iso-
morphism (Xdi)(X!B) ∼= X!B1 where di : B1

// B0. Take T in G(X)C. The morphism
d1 : T1

// T0 consists of d1 : B1
// B0 and a morphism ξ : (Xd0)t // (Xd1)t inXB1, where

Tn = (Bn, tn).
Let c ∈ X1 be the coequalizer of the two morphisms(

X̃!B1

)
(Xd0) t0

θ0t0 //
(
X̃!B0

)
t0 and(

X̃!B1

)
(Xd0) t0

(X̃!B1)ξ //
(
X̃!B1

)
(Xd1) t0

θ1t0 //
(
X̃!B0

)
t0.

A morphism c // z in X1 then amounts to a morphism (B0, t0) // (B0, (X!B0)z), which
has a unique extension to a morphism T // ∆(z) in G(X)C.

So take colim g = c where g corresponds to T . Conditions (2) and (3) of �cocomplete
at 1� yield the property of (colim g)!K in a straightforward manner.

Suppose f : B // X is a morphism in F . An object z ∈ X1 is locally isomorphic to
a value of f when there exist a regular epimorphism R // 1, an object b ∈ BR, and an
isomorphism

fR(b) ∼= (X!) z (41)

in XR. Let LocX(f) denote the full subcategory of X1 consisting of such z.
De�ne the pseudofunctor

S : Eop // Cat (42)

by SK = E/K and

S(L u // K) = E/K
u∗ // E/L . (43)

Recall from [15] that this is the object of F which gives rise to the Yoneda structure on
F for which

X̂ = PX = [Xop, S] (44)
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and X is admissible when it has homs internal to E , in which case X has a Yoneda
morphism

YX : X // X̂ (45)

de�ned as follows: for x ∈ XK, the pseudonatural transformation

(YXK)x : E(−, K)× (X−)op // S− (46)

has component at L that functor which takes u : L // K, y ∈ XL to X((Xu)x, y) // L
in E/L.

5.6. Remark. For B ∈ K, we have B̂K ' EBop×K . So an object of B̂1 amounts to a
discrete �bration p : E // B. Then the discrete �bration p : E // B is locally isomorphic
to a value of YB : B // B̂ precisely when it is a B-torsor. In fact, we have an equivalence
of categories

LocB̂(YB) ' Tors(B). (47)

5.7. Corollary. Suppose X ∈ F is cocomplete at 1 and p : E // B in K is a B-torsor.
Then colim(fp) ∈ X1 is locally isomorphic to a value of f for all f : B // X in F .
Proof. Suppose that E is representable over R by b : R // B. Since f is a pointwise left
extension along 1B [14], the following diagram has the left extension property.

B/b
d1 //

d0

��

R

fb

��
B

f
// X

fλ +3

The span (d0, B/b, d1) is isomorphic to (p pr1, E×R, pr2). It follows that fb is isomorphic
to colim(fp)!R, and the result is proved.

Consider an object X of F . Categories constructed internally out of E have the form
X1 for some such X. Objects x of XK for K ∈ E are K-indexed families of objects of X.
Objects z ∈ X1 which are locally isomorphic to a value of x : K // X are de�ned to be
locally isomorphic to a member of the family x. Our purpose now is to classify all such z
for a given x using torsors.

Suppose X has homs internal to E and x ∈ XK. Form the comma object

x/x
d1 //

d0

��

K

x

��
K x

// X

+3

(48)

in F . Since X is admissible and K ∈ E , it follows from [15] that x/x is isomorphic to an
object of E . Thus the category

x/x
d0

++

d1

33 K (49)
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in F is represented by a category X[x] in E . This category should be thought of as
�consisting of the members of the family x and all the X-morphisms between them�
(compare [18], [9], [19], and [20]). We obtain the factorization

K // X[x]
jx // X (50)

of x : K // X into a �bijective-on-objects� followed by a �fully faithful� jx.

5.8. Proposition. In the situation of (48), (49) and (50) an object z ∈ X1 is lo-
cally isomorphic to a member of x if and only if z is locally isomorphic to a value of
jx : X[x] // X. Thus

LocX(x) = LocX(jx)

and there is a functor
jx/− : X1 // EX[x]op

which assigns to each z ∈ X1 a discrete �bration p : E // X[x] in K for which there is
diagram with the comma property in F as follows.

E
!E //

p

��

1

z

��
X[x]

jx
// X

+3

Proof. It only remains to point out that jx/z is isomorphic to an object E of K by (9.7)
of [15].

5.9. Proposition. In the situation of Proposition 5.8, if X is cocomplete at 1 then
jx/− has a left adjoint whose value at p : E // X[x] is colim(jxp).

Proof. This is an immediate consequence of Theorem 5.5and the universal property of
comma objects.

5.10. Proposition. In the situation of Proposition 5.8, E is an X[x]-torsor if and only
if z is locally isomorphic to a value of jx.

Proof. For b : R // K in E , consider the following two diagrams.

E ×R
pr2 //

pr1

��
=

R

!R

��
E

!E //

p

��

1

z

��
X[x]

jx
// X

+3

(51)
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X[x]/b
d1 //

��
=

R

b

��
X[x]2

d0

��

d1 // X[x]

jx

��
X[x]

jx
// X

+3

(52)

The top squares are pullbacks. The bottom squares have the comma property since jx is
fully faithful and E ∼= jx/z. Therefore z!R ∼= jxb if and only if E×R ∼= X[x]/b as spans.

5.11. Theorem. [Classi�cation] Suppose E is �nitely complete and cartesian closed.
Suppose X ∈ F has homs internal to E, is cocomplete at 1, and is such that the functor
X!R : X1 // XR is conservative for each regular epimorphism !R : R // 1 in E. For all
K ∈ E and x ∈ XK, the adjunction of Proposition 5.9 restricts to an equivalence of
categories

Tors(X[x]) ' LocX(x).

Proof. Consider the unit E // jx/ colim(jxp) of the adjunction of Proposition 5.9 at
p : E // X[x] in Tors(X[x]). Since E is cartesian closed, pullback along a regular epimor-
phism R // 1 is conservative. So it su�ces to prove that the unit becomes invertible after
applying − × R for some such R. But E becomes representable over some such R and
the result then is clear.

Consider the counit colim(jxd0) // z at z ∈ Loc(x). But z becomes isomorphic to a
value of jx on pulling back along some regular epimorphism R // 1 and it is easy to see
that the unit then becomes invertible. Since X!R is conservative, the result follows.

We shall consider the question of existence of objects X of F satisfying the hypotheses
of Theorem 5.11. Recall from [15] that S ∈ F as described by (42) and (43) has homs
internal to E if and only if E is internally complete (see Example 2.8(1)). This is too
restrictive for our purposes here so we need to consider a certain full subcategory of S.

Consider the pseudofunctor
P : Eop // Cat (53)

whose value at K is the full subcategory of E/K consisting of the powerful morphisms
into K and whose value at u : L // K is pullback u∗ along u. Recall the Chevalley-Beck
condition as in [21] and [14].

5.12. Proposition. For any �nitely complete category E,

(1) P has homs internal to E;

(2) for each powerful morphism u : L // K, the functor Pu has a left adjoint P̂ u and
satis�es the Chevalley-Beck condition on pullbacks along powerful morphisms.

If further E is cartesian closed,
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(3) the functor P !R : P1 // PR is conservative for all R ∈ R.

If further E has coequalizers,

(4) P is cocomplete at 1.

Proof.

(1) If x and x′ are powerful morphisms into K, take X(x, x′) // K to be their internal
hom (see Proposition 2.4(3)) in E/K .

(2) For u : L // K powerful, P̂ u : PL // PK is de�ned by composition with u (see
Corollary 2.6(3)). The Chevalley-Beck pullback condition follows from that for S.

(3) K ×R // K is a regular epimorphism.

(4) P1 = E and L×− preserves coequalizers.

Suppose E is �nitely complete, cartesian closed and has coequalizers. For K ∈ E , an
object x of PK is a powerful morphism x : M // K in E . The category P [x] is the internal
full subcategory of E determined by �the �bres of x� (see Corollary 2.19). For B ∈ K, it
follows from Section 5 of [15] that morphisms f : B // P in F amount to powerful discrete
op�brations q : F // B. So jx : P [x] // P gives a powerful discrete op�bration J // P [x].
The equivalence of Theorem 5.11

Tors(P [x]) ' LocP (x) (54)

and takes a torsor E // P [x] to the tensor product E ⊗ J of the profunctors E and J
which is locally isomorphic to some �bre of x. Consequently:

5.13. Proposition. The P [x]-torsors classify objects of E locally isomorphic to �bres
of x.

Theorem 4.8 can be used to show that, if B is a model in E for a �nite limit theory
richer than the theory of categories, one can deduce that Tors(B) is a model in Set of
that theory. We shall make a lot of use of this in the next section. The following simple
case however admits an easy direct proof.

5.14. Proposition. If E is �nitely complete and cartesian closed and if B is a groupoid
in E then Tors(B) is a groupoid.

Proof. For R ∈ R, the functor E // E/R is conservative. However, by Yoneda's lemma,
morphisms between representable discrete �brations over groupoids are invertible.
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Consider the sub-pseudofunctor

Q : Eop // Cat (55)

of the pseudofunctor P of (53) for which the objects of each QK are the same as those of
PK and the morphisms of QK are the invertible morphisms in PK. Notice that Q lands
in the 2-category Gpd of groupoids.

5.15. Proposition. The object Q ∈ F satis�es all the properties stated for P in Propo-
sition 5.12

Proof. The only statement which is not completely obvious is (1). This follows from the
observation that in a �nitely complete category C, if exponentiation exists with respect
to the two indices A and B, then one can construct an object Iso(A,B) (by equalizing
certain pairs of morphisms out of BA × AB into AA and BB) with the property that
morphisms C // Iso(A,B) are in natural bijection with isomorphisms C×A // C×B.

Suppose E is �nitely complete, cartesian closed and has coequalizers. Suppose that the
morphism x : M // K is powerful in E . The category Q[x] is the internal subcategory of
E determined by �the �bres of x and all the isomorphisms between them�; it is a groupoid
in E . In particular, if K = 1 then Q[x] is the group Aut(M) in E of automorphisms of
M . The equivalence (54) restricts to an equivalence

Tors(Q[x]) ' LocQ(x). (56)

As we shall see in the next section, the equivalence (54) contains quite a bit more useful
information than (56).

6. Applications

6.1. Finiteness in a topos. As a special case of Proposition 5.13, suppose E is an
elementary topos with a natural numbers objectN . Following [22], we take x : N×N // N
to be the composite of �addition� N×N // N with �successor� N // N . Then P [x] = S[x]
is the internal full subcategory Efin of �nite objects of E . The �bres of x are the �nite
cardinals in E . Objects of E locally isomorphic to the �bres of x are the Kuratowski-�nite
decidable objects of E (see [3]). Let Elocfin denote the full subcategory of E consisting of
the Kuratowski-�nite decidable objects of E ; that is, Elocfin = LocP (x). Thus we have an
equivalence

Tors(Efin) ' Elocfin (57)

which means that Efin-torsors classify Kuratowski-�nite decidable objects of E .
It is well known (see [22] and [3]) that Efin is an elementary topos object in E and that

the theory of elementary toposes is a model of a �nite-limit theory (see [8]). It follows
from Theorem 4.8 that each Tors(R,B) is an elementary topos and hence from (37) that
Tors(B) is an elementary topos (since the �nite limits needed to express the structure of
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elementary topos commute with �ltered colimits. This gives a simple conceptual proof
that Elocfin is an elementary topos; see [23] even includes the case where E has no natural
numbers object.

6.2. Vector bundles. Let C denote the category of compactly generated spaces and
let T denote a weakly separated space in C. Put E = C/T which is a cartesian closed
category by [24].

Let N denote the discrete space of natural numbers and let R denote the space of real
numbers. Put

V =
∞∑
n=0

Rn (58)

There is a morphism ` : V // N in C which is constant at n on the factor Rn of the
coproduct.

In (54) take x to be the powerful morphism ` × T : V × T // N × T in E . Thus we
obtain an internal full subcategory P [x] = MatT (R) of E and an equivalence of categories

Tors(MatT (R)) ' LocP (`× T ). (59)

The category MatT (R) in E has the form M × T // T where M is a category in C whose
underlying category in Set is equivalent to the category of �nite dimensional vector spaces
over R.

A regular epimorphism R // 1 in E amounts to a quotient map S // T in C. Recall
that surjective local homeomorphisms are quotient maps and are stable under pullback.
Let R′ denote the directed ordered subset of R (as in (36)) consisting of surjective local
homeomorphisms. We obtain, by restriction, an equivalence of categories

Tors′(MatT (R)) ' Loc′P (`× T ) (60)

between those torsors which become representable on pulling back along some S // T in
R′ and those maps into T which become isomorphic to some �bre of `×T on pulling back
along some S // T in R′. Furthermore, (37) yields an isomorphism

Tors′(MatT (R)) ∼= colim
R∈R′op

Tors′(R,MatT (R)). (61)

It is an easy matter to see that Loc′P (`×T ) is precisely the category Vect(T ) of vector
bundles over T . Putting together the above results with Theorem 4.8, we obtain the
essence of some usual applications of the �clutching construction for vector bundles� and
K-theory:

6.3. Proposition. The category Vect(T ) of vector bundles over T possesses all the
structure de�nable by �nite limits possessed by the category MatT (R). In particular, idem-
potents split in Vect(T ).
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6.4. Local monadicity. Let C denote a �nitely cocomplete, internally complete cat-
egory (such as a topos). Let D denote a category in C. Let M denote the category in C
�consisting of the monads on D�: one easily constructs this using limits as a subobject of
the cartesian hom DD in Cat(C). There is an action of M on D de�ned by composition.
Let A denote the subobject of the inserter of the two morphisms

M ×D
action //

pr2
// D (62)

consisting of �the algebras for all monads on D�.
In (54) E to be the underlying category of the 2-category Cat(C) and take x to be the

�bration A // M (which is powerful by Corollary 2.17). Notice that R // 1 is a regular
epimorphism in E if and only if R0

// 1 is a regular epimorphism in C.
The category P [x] in E is the double category Alg(D) in C �whose objects are cat-

egories monadic over D, whose vertical morphisms are arbitrary functors, and, whose
horizontal morphisms are algebraic functors�. Thus we obtain an equivalence of cate-
gories

Tors(Alg(D)) ' LocAlg(D) (63)

between the category of torsors over Alg(D) and the category of categories in C which are
locally monadic over D.

Using Corollary 2.17, we can see that Alg(D) is an amenable category in E . So The-
orem 4.8 applies here which, with (37), yields that all the �nite-limit structure possessed
by Alg(D) transports to LocAlg(D). In particular, LocAlg(D) becomes a double category
in a natural way.
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