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TENSOR-TRIANGULATED CATEGORIES AND DUALITIES

BAPTISTE CALMÈS AND JENS HORNBOSTEL

Abstract. In a triangulated closed symmetric monoidal category, there are natural
dualities induced by the internal Hom. Given a monoidal exact functor f∗ between
two such categories and adjoint couples (f∗, f∗), (f∗, f !), we establish the commutative
diagrams necessary for f∗ and f∗ to respect certain dualities, for a projection formula to
hold between them (as duality preserving exact functors) and for classical base change
and composition formulas to hold when such duality preserving functors are composed.
This framework allows us to define push-forwards for Witt groups, for example.
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Introduction

Several cohomology theories on schemes use the concept of a duality in their definition.
In fact, these cohomology theories are usually defined at a categorical level; a group is
associated to a category with some additional structure, including a duality which is then
a contravariant endofunctor of order two (up to a natural isomorphism) on the category.
The main example that we have in mind is the Witt group, defined for a triangulated
category with duality, the (coherent or locally free) Witt groups of a scheme then being
defined by using one of the various bounded derived categories of a scheme endowed with
a duality coming from the derived functor RHom. Of course, most of the structural
properties of these cohomology theories should be proved at a categorical level. For
example, Paul Balmer has proved localization for Witt groups directly at the level of
triangulated categories by using localization properties of such categories [B00]. In the
rest of the article, we only discuss the example of Witt groups, but everything works
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exactly the same way for Grothendieck-Witt groups. The reader should also have in mind
that similar considerations should apply to hermitian K-theory and Chow-Witt theory,
etc.

We are interested in the functoriality of Witt groups along morphisms of schemes. At
the categorical level, this means that we are given functors between categories (such as
the derived functors of f ∗ or f∗) and that we would like to use them to induce morphisms
between Witt groups. Let us elaborate on this theme. The basic ideas are:

• a functor between categories respecting the duality induces a morphism of groups
and

• two such morphisms can be compared if there is a morphism of functors between
two such functors, again respecting the duality.

By “respecting the duality”, we actually mean the following. Let (C, D,$) be a category
with duality, which means that D : C → C is a contravariant functor, that $ : IdC → D2

is a morphism of functors1 and that for any object A, we have

D($A) ◦$DA = IdDA. (1)

A duality preserving functor from (C1, D1, $1) to (C2, D2, $2) is a pair {F, φ} where F :
C1 → C2 is a functor and φ : FD → DF is a morphism of functors, such that the diagram
of morphism of functors

F
F$1 //

$2F
��

FD1D1

φD1

��
D2D2F

D2φ // D2FD1

(2)

commutes. In practice, the functor F is usually given. For example, in the context of
schemes, it can be the derived functor of the pull-back or of the push-forward along a mor-
phism of schemes. It then remains to find an interesting φ and to check the commutativity
of diagram (2), which can be very intricate.

A morphism of duality preserving functors {F, φ} → {G,ψ} is a morphism of functors
ρ : F → G such that the diagram

FD1
ρD1 //

φ
��

GD1

ψ
��

D2F D2GD2ρ
oo

(3)

commutes. This situation with two functors arises when we want to compare what two
different functors (respecting the dualities) yield as Witt group morphisms. For example,

1By default, all dualities considered in this article are weak, which means that we do not require $ to
be an isomorphism, because we are only interested in the commutativity of diagrams.
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we might want to compare the composition of two pull-backs and the pull-back of the
composition, in the case of morphisms of schemes. In this kind of situation, usually {F, φ}
and {G,ψ} are already given, ρ has to be found and the commutative diagram (3) has to
be proved.

It turns out that in the context of closed symmetric monoidal categories, this type of
diagram commutes for certain dualities, functors and morphisms of functors arising in a
natural way. The main object of this article is to prove it. The main results of the paper
are in sections 4 and 5 and the reader might want to have a quick look at them before
reading the other sections.

Our original motivation for dealing with the questions of this paper was to define push-
forward morphisms for Witt groups with respect to proper maps of schemes and study
their properties, which in turn should be useful both for general theorems and concrete
computations of Witt groups of schemes. The article [CH08] uses the results of this article
to establish these push-forwards. We refer the reader to loc. cit. for details. As Witt
groups are the main application that we have in mind, we have stated in corollaries of
the main theorems what they imply for Witt groups. The proofs of these corollaries are
trivial, and just rely on the classical propositions 2.2.3 and 2.2.4. This should be seen
as some help for the reader familiar with cohomology theories and geometric intuition.
The reader not interested in Witt groups or other Witt-like cohomology theories might
just skip the corollaries. In all of them, the triangulated categories are assumed to be
Z[1/2]-linear (to be able to define triangulated Witt groups). Also note that our formalism
applies to other settings such as Witt groups in topology.

We now give a more precise description of the functors and morphisms of functors we
consider.

Dualities. Assume we are given a closed symmetric monoidal category C where the
tensor product is denoted by ⊗ and its “right adjoint”, the internal Hom, is denoted by
[−,−]. Then, as recalled in Section 3, fixing an object K and setting DK = [−, K], a
natural morphism of functors $K : Id→ DKDK can be defined using the symmetry and
the adjunction of the tensor product and the internal Hom and the formula (1) is satisfied.
This is well known and recalled here just for the sake of completeness.

Pull-back. Assume now that we are given a monoidal functor denoted by f ∗ (by analogy
with the algebro-geometric case) from C1 to C2, then, for any object K, as explained above,
we can consider the categories with duality (C1, DK , $K) and (C2, Df∗K , $f∗K). There is a
natural morphism of functors βK : f ∗DK → Df∗Kf

∗ such that diagram (2) is commutative
(see Proposition 4.1.1 and Theorem 4.1.2). In other words, {f ∗, βK} is a duality preserving
functor from (C1, DK , $K) to (C2, Df∗K , $f∗K).

Push-forward. Assume furthermore that that we are given a right adjoint f∗, then
there is a natural morphism of projection π : f∗(−)⊗∗ → f∗(−⊗ f ∗(∗)) (see Proposition
4.2.5). When f∗ also has a right adjoint f !, we can consider the categories with duality
(C1, DK , $K) and (C2, Df !K , $f !K). There is a natural isomorphism ζK : f∗Df !K → DKf∗
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such that diagram (2) is commutative. In other words, {f∗, ζK} is a duality preserving
functor from (C2, Df !K , $f !K) to (C1, DK , $K).

Product. Theorems involving products of dualities are stated. Given a pair of categories
with duality (C1, D1, $1) and (C2, D2, $2), there is an obvious structure of a category
with duality (C1 × C2, D1 × D2, $1 × $2). If C is closed monoidal symmetric, there is
a natural morphism of (bi)functors τK,M : DK ⊗ DM → D(− ⊗ −)K⊗M (see Definition
4.4.1). Proposition 4.4.6 recalls that {− ⊗ −, τK,M} is a duality preserving functor from
(C ×C, DK ×DM , $K ×$M) to (C, DK⊗M , $K⊗M). This gives a product on Witt groups.

We now explain relations between the functors {f ∗, β}, {f∗, ζ} and {⊗, τ} in different
contexts. Before going any further, let us remark that a morphism ι : K → M induces a
morphism of functors ι̃ : DK → DM which is easily shown to yield a duality preserving
functor Iι = {Id, ι̃} from (C, DK , $K) to (C, DM , $M).

Composition. There is a natural way to compose duality preserving functors given by
{F, f} ◦ {G, g} := {FG, gF ◦ fG}. Suppose that we are given a pseudo contravariant
functor (−)∗ from a category B to a category where the objects are closed symmetric
monoidal categories and the morphisms are monoidal functors. As usual, “pseudo” means
that we have almost a functor, except that we only have a natural isomorphism ag,f :
f ∗g∗ ' (gf)∗ instead of an equality. Then an obvious question arises: can we compare
{(gf)∗, βK} with {f ∗, βg∗K} ◦ {g∗, βK} for composable morphisms f and g in B. The
answer is that the natural isomorphism a is a morphism of duality preserving functors
from Iag,f,K ◦ {f ∗, βg∗K} ◦ {g∗, βK} to {(gf)∗, βK}, i.e. the diagram (3) commutes (see
5.1.3) with ρ = a. The correction by Iag,f,K is necessary for otherwise, strictly speaking,
the target categories of the two duality preserving functors are not equipped with the
same duality.

A similar composition question arises when some f ∈ B are such that there are ad-
junctions (f ∗, f∗) and (f∗, f

!). On the subcategory B′ of such f , there is a way of defining
natural (with respect to the adjunctions) pseudo functor structures b : (gf)∗ ' g∗f∗ and
c : f !g! ' (gf)!, and we can compare {(gf)∗, ζK} and {g∗, ζg,f !K} ◦ {f∗, ζf,K} using the
natural morphism of functors b up to a small correction of the duality using c as above
(see Theorem 5.1.9).

Base change. A “base change” question arises when we are given a commutative diagram

V
ḡ //

f̄
��

Y

f
��

X g
// Z

in B such that g and ḡ are in B′. Then, there is a natural morphism ε : f ∗g∗ → ḡ∗f̄
∗ (see

Section 5.2). When ε is an isomorphism, there is a natural morphism γ : f̄ ∗g! → ḡ!f ∗.
Starting from an object K ∈ CZ , the morphism of functors γ is used to define a duality
preserving functor IγK from (CV , Df̄∗g!K , $f̄∗g!K) to (CV , Dḡ!f∗K , $ḡ!f∗K). How can we
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compare {f ∗, βK} ◦ {g∗, ζK} and {ḡ∗, ζf∗K} ◦ IγK ◦ {f̄ ∗, βg!K}? Theorem 5.2.1 proves that
ε defines a duality preserving functor from the first to the second.

Pull-back and product. Given a monoidal functor f ∗ the isomorphism making f ∗ a
monoidal functor and called α : f ∗(−)⊗ f ∗(−)→ f ∗(−⊗−) defines a duality preserving
functor IαK,M from (C, Df∗K⊗f∗M , $f∗K⊗f∗M) to (C, Df∗(K⊗M), $f∗(K⊗M)). Proposition
5.4.1 shows that the morphism of functors α then defines a duality preserving morphism
of functors from IαK,M◦{−⊗−, τf∗K,f∗M}◦{f ∗×f ∗, βK×βM} to {f ∗, βK⊗M}◦{−⊗−, τK,M}.
It essentially means that the pull-back is a ring morphism on Witt groups.

Projection formula. Given a monoidal functor f ∗ with adjunctions (f ∗, f∗), (f∗, f
!)

such that the projection morphism π is an isomorphism, there is a natural morphism of
functors θ : f !(−)⊗ f ∗(−)→ f !(−⊗−). This defines a duality preserving functor IθK,M
from (C2, Df !K⊗f∗M , $f !K⊗f∗M) to (C2, Df !(K⊗M), $f !(K⊗M)). Theorem 5.5.1 proves that π
is a duality preserving morphism of functors from {− ⊗ −, τK,M} ◦ {f∗ × Id, ζK × id} to
{f∗, ζK⊗M} ◦ IθK,M ◦ {− ⊗ −, τf !K,f∗M} ◦ {Id× f ∗, id× βM}.

Suspensions and triangulated structures. As it is required for the example of
Witt groups, all the results are proved as well in the setting of triangulated symmet-
ric monoidal categories, functors and morphisms of functors respecting the triangulated
structure. This means essentially two things. First, the categories are endowed with
an autoequivalence T (called suspension in the article) and the tensor products defining
monoidal structures respect this suspension, i.e. such a tensor product comes equipped
with a pair of isomorphism of functors such that a certain diagram anticommutes (see
Definition 1.4.12). As proved in the article, it follows that all the other functors (or bifunc-
tors) mentioned above can be endowed by construction (see Point 1 of Propositions 1.5.3
and 1.5.8) with morphisms of functors to commute with the suspensions in a suitable way
involving commutative diagrams (similar to (2) with T instead of D). All the morphisms
of functors involved then also respect the suspension, i.e. satisfy commutative diagrams
similar to (3). This is important, because in the main applications, checking this kind of
thing by hand amounts to checking signs involved in the definitions of complexes or maps
of complexes, and it has been the source of errors in the literature. Here, we avoid such
potential errors by construction (there are no signs and no complexes). Second, using
these morphisms of functors to deal with the suspensions, the functors should respect the
collection of distinguished triangles. This is easy and has nothing to do with commuta-
tive diagrams. It is again obtained by construction (see Point 2 of Propositions 1.5.3 and
1.5.8), except for the first variable of the internal Hom, for which it has to be assumed.
The reader who is not interested in triangulated categories, but rather only in monoidal
structures can just forget about all the parts of the statements involving T . What remains
is the monoidal structure.

These functors and morphisms between them are discussed in the first five sections
of this article. Section 6 is devoted to reformulations of the main results when the base
category B is enriched in order that the objects also specify the duality: they are pairs
(X,K) where K ∈ X∗ is used to form the duality DK . The morphisms can then be
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chosen in different ways (see Sections 6.1, 6.2 and 6.3). These sections are directed
towards geometric applications. In particular, the object ωf introduced at the beginning
of 6.1 has a clear geometric interpretation in the case of morphisms of schemes: it is the
relative canonical sheaf. Finally, we have included an appendix to recall closed symmetric
monoidal structures on categories involving chain complexes and to relate the sign choices
involved with the ones made by various authors working with Witt groups.

Remarks on the proofs. Nearly every construction of a morphism in the article is
based on variations on a single lemma on adjunctions, namely Lemma 1.2.6. Its re-
finements are Theorem 1.2.8, Lemma 1.3.5 and Theorem 1.5.10. Similarly, to establish
commutativities of natural transformations arising from by Lemma 1.2.6 the main tool is
Lemma 1.2.7. The whole Section 1 is devoted to these formal results about adjunctions.

In some applications, certain natural morphisms considered in this article have to be
isomorphisms. For example, to define Witt groups, one requires that the morphism of
functors $K is an isomorphism. This is not important to prove the commutativity of the
diagrams, therefore it is not part of our assumptions. Nevertheless, in some cases, it might
be useful to know that if a particular morphism is an isomorphism, then another one is
also automatically an isomorphism. When possible, we have included such statements,
for example in Propositions 4.3.1 and 4.3.3. The attribute “strong” in Definitions 2.1.1,
2.2.1 and 2.2.2 is part of this philosophy. By contrast, two isomorphism assumptions
are important to the abstract setting regardless of applications. This is the case of the
assumption on π, since the essential morphism θ is defined using the inverse of π, as well
as the assumption on ε whose inverse is involved in the definition of γ. These isomorphism
assumptions are listed at the beginning of Section 4 and are recalled in every theorem
where they are used.

Considering possible future applications (e.g. motivic homotopy categories or the
stable homotopy category), we have presented some aspects in as much generality as
possible. Conversely, we do not attempt to provide a complete list of articles where parts
of the general framework we study has already been considered. See however [FHM03] for
a recent reference written by homotopy theorists which contains many further references.

Finally, let us mention a question a category theorist might ask when reading such
a paper: are there coherence theorems, in the spirit of [KML71], that would prove sys-
tematically the needed commutative diagrams? As far as the authors know, there are no
such coherence theorems available for the moment. Although it is certainly an interesting
question, it is unclear (to the authors) how to formulate coherence statements. The in-
terested reader might consider this article as a source of inspiration for future coherence
theorems.

1. Adjunctions and consequences

1.1. Notations and conventions. The opposite category of a category C is denoted
by Co.
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When F and G are functors with same source and target, we denote a morphism of
functors between them as t : F → G. When s : G→ H is another one, their composition
is denoted by s ◦ t. When F1, F2 : C → D, G1, G2 : D → E , f : F1 → F2 and g : G1 → G2,
let gf denote the morphism of functors defined by (fg)A = G2(fA)◦gF1(A) = gF2(A)◦G1(fA)
on any object A. When F1 = F2 = F and f = idF (resp. G1 = G2 = G and g = idG), we
usually use the notation gF (resp. Gf). With this convention, gf = G2f◦gF1 = gF2◦G1f .
When a commutative diagram is obtained by this equality or other properties immediate
from the definition of a morphism of functors, we just put an mf label on it and avoid
further justification. To save space, it may happen that when labeling maps in diagrams,
we drop the functors from the notation, and just keep the important part, that is the
morphism of functors (thus FgH might be reduced to g). Many of the commutative
diagrams in the article will be labeled by a symbol in a box (letters or numbers, such
as in H or 3 ). When they are used in another commutative diagram, eventually after
applying a functor to them, we just label them with the same symbol, so that the reader
recognizes them, but without further comment.

1.2. Useful properties of adjunctions. This section is devoted to easy facts and
theorems about adjunctions, that are repeatedly used throughout this article. All these
facts are obvious, and we only prove the ones that are not completely classical. A good
reference for the background on categories and adjunctions as discussed here is [ML98].

1.2.1. Definition. An adjoint couple (L,R) is the data consisting of two functors L :
C → D and R : D → C and equivalently:

• a bijection Hom(LA,B) ' Hom(A,RB), functorial in A ∈ C and B ∈ D, or

• two morphism of functors η : IdC → RL and ε : LR→ IdD, called respectively unit

and counit, such that the resulting compositions R
ηR→ RLR

Rε→ R and L
Lη→ LRL

εL→ L
are identities.

In the couple, L is called the left adjoint and R the right adjoint. When we want to
specify the unit and counit of the couple and the categories involved, we say (L,R, η, ε) is
an adjoint couple from C to D.

When the commutativity of a diagram follows by one of the above compositions giving
the identity, we label it adj .

1.2.2. Remark. Adjunctions between functors that are contravariant can be considered
in two different ways, by taking the opposite category of the source of L or R. This does
not lead to the same notion, essentially because if (L,R) is an adjoint couple, then (Ro, Lo)
is an adjoint couple (instead of (Lo, Ro)). For this reason, we only use covariant functors
in adjoint couples.
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1.2.3. Lemma. Let (L,R, η, ε) and (L′, R′, η′, ε′) be two adjoint couples between the same
categories C and D, and let l : L → L′ (resp. r : R → R′) be an isomorphism. Then,
there is a unique isomorphism r : R → R′ (resp. l : L → L′) such that η′ = rl ◦ η
and ε′ = ε ◦ l−1r−1. In particular, a right (resp. left) adjoint is unique up to unique
isomoprhism.

Proof. The morphism r is given by the composition R′ε ◦ R′l−1R ◦ η′R and its inverse
by the composition Rε′ ◦RlR′ ◦ ηR′.
1.2.4. Lemma. An equivalence of categories is an adjoint couple (F,G, a, b) for which
the unit and counit are isomorphisms. In particular, (G,F, b, a) is also an adjoint couple.

1.2.5. Lemma. Let (L,R, η, ε) (resp. (L′, R′, η′, ε′)) be an adjoint couple from C to D
(resp. from D to E). Then (L′L,RR′, Rη′L ◦ η, ε′ ◦ L′εR′) is an adjoint couple from C to
E.

We now turn to a series of less standard results, nevertheless very easy.

1.2.6. Lemma. (mates) Let H, H ′, J1, K1, J2 and K2 be functors with sources and
targets as on the following diagram.

C1

K1

��

H // C2

K2

��
C ′1

J1

OO

H′
// C ′2

J2

OO

Consider adjoint couples (Ji, Ki, ηi, εi) for i = 1, 2. Assume a : J2H
′ → HJ1 (resp.

b : H ′K1 → K2H) is a morphism of functors. Then there exists a unique morphism of
functors b : H ′K1 → K2H (resp. a : J2H

′ → HJ1) such that the diagrams

J2H
′K1

aK1

��

J2b //

H

J2K2H

ε2H

��
HJ1K1 Hε1

// H

and

H ′

η2H′

��

H′η1 //

H′

H ′K1J1

bJ1

��
K2J2H

′
K2a

// K2HJ1

are commutative. Furthermore, given two morphisms of functors a and b, the commuta-
tivity of one diagram is equivalent to the commutativity of the other one. In this situation,
we say that a and b are mates with respect to the rest of the data.

Proof. We only prove that the existence of a implies the uniqueness and existence of
b, the proof of the other case is similar. Assume that b exists and makes the diagrams
commutative. The commutative diagram

H ′K1

η2H′K1

��

H′η1K1//

H′

H ′K1J1K1
H′K1ε1//

��
mf

H ′K1

b
��

K2J2H
′K1K2aK1

// K2HJ1K1 K2Hε1
// K2H
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in which the upper horizontal composition is the identity of H ′K1 (by adjunction) shows
that b has to be given by the composition

H ′K1
η2H′K1 // K2J2H

′K1
K2aK1 // K2HJ1K1

K2Hε1 // K2H .

This proves uniqueness. Now let b be given by the above composition. The commutative
diagram

J2H
′K1

//

GF EDJ2b
��

OOOOOOOOOOO

OOOOOOOOOOO
J2K2J2H

′K1

��

//

mf

J2K2HJ1K1

��

//

mf

J2K2H

ε2H

��

adj

J2H
′K1 aK1

// HJ1K1 Hε1
// H

proves H and the commutative diagram

H ′K1J1
//

GF EDbJ1

��

mf

K2J2H
′K1J1

//

mf

K2HJ1K1J1
//

adj

K2HJ1

H ′

H′η1

OO

η2H′
// K2J2H

′

OO

K2a
// K2HJ1

OO ooooooooooo

ooooooooooo

proves H′ . The fact that the commutativity of one of the diagrams implies commutativity
to the other is left to the reader.

1.2.7. Lemma. Let us consider a cube of functors and morphisms of functors

• //

��???? •
��????

•

;C����
���� // q

p

OO

��????

•

PX*************

*************

OO

// •

[c ??????????

??????????

OO

front

• // •
��????

q

p

OO

��????
// •

[c ??????????

??????????

OO

��????

•

;C����
���� // •

PX*************

*************

OO

back

that is commutative in the following sense: The morphism between the two outer composi-
tions of functors from p to q given by the composition of the three morphisms of functors
of the front is equal to the composition of the three morphism of functors of the back.
Assume that the vertical maps have right adjoints. Then, by Lemma 1.2.6 applied to
the vertical squares, we obtain the following cube (the top and bottom squares have not
changed).

r

��

//

��???? •
��????

•

��

;C����
���� // •

��

•

;C����
����

��????

•

;C����������

���������� // s
front

r

��

// •

��

��????

•

��

•
��????

;C����������

���������� // •
��????

;C����
����

•

;C����
���� // s

back
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This cube is commutative (in the sense just defined, using r and s instead of p and q).

Proof. This is straightforward, using the commutative diagrams of Lemma 1.2.6, and
left to the reader.

We now use Lemma 1.2.6 to prove a theorem, which doesn’t contain a lot more than
the lemma, but is stated in a convenient way for future reference in the applications we
are interested in.

1.2.8. Theorem. Let L, R, L′, R′, F1, G1, F2, G2 be functors whose sources and targets
are specified by the diagram

C1

G1

��

L // C2
R

oo

G2

��
C ′1

F1

OO

L′ // C ′2.

F2

OO

R′
oo

We will study morphisms of functors fL, f ′L, gL, g′L, fR, f ′R, gR and g′R whose sources and
targets will be as follows:

LF1

fL //
F2L

′
f ′L

oo L′G1

g′L // G2L
gL

oo

F1R
′

f ′R // RF2
fR

oo G1R
gR //

R′G2
g′R

oo

Let us consider the following diagrams, in which the maps and their directions will be
the obvious ones induced by the eight maps above and the adjunctions accordingly to the
different cases discussed below.

F2L
′G1

L

LF1G1

F2G2L L

L′

L′

G2F2L
′

L′G1F1 G2LF1

F1R
′G2

R

RF2G2

F1G1R R

R′

R′

G1F1R
′

R′G2F2 G1RF2

G1

��

//

G1

G1RL

R′L′G1 R′G2L

L′G1R

G2

G2LR

��
L′R′G2

// G2

F1

��

//

F1

F1R
′L′

RLF1 RF2L
′

LF1R
′

F2

F2L
′R′

��
LRF2

// F2
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Then

1. Let (Gi, Fi), i = 1, 2 be adjoint couples. Let gL (resp. fL) be given, then there is a
unique fL (resp. gL) such that L and L′ are commutative. Let gR (resp. fR) be
given, then there is a unique fR (resp. gR) such that R and R′ are commutative.

1’. Let (Fi, Gi), i = 1, 2 be adjoint couples. Let g′L (resp. f ′L) be given, then there is a
unique f ′L (resp. g′L) such that L and L′ are commutative. Let g′R (resp. f ′R) be
given, then there is a unique f ′R (resp. g′R) such that R and R′ are commutative.

2. Let (L,R) and (L′, R′) be adjoint couples. Let fL (resp. f ′R) be given, then there is
a unique f ′R (resp. fL) such that F1 and F2 are commutative. Let g′L (resp. gR) be
given, then there is a unique gR (resp. g′L) such that G1 and G2 are commutative.

3. Assuming (Gi, Fi), i = 1, 2, (L,R) and (L′, R′) are adjoint couples, and gL, g′L = g−1
L

are given (resp. fR and f ′R = f−1
R ). By 1 and 2, we obtain fL and gR (resp. gR and

fL). We then may construct fR and f ′R (resp. gL and g′L) which are inverse to each
other.

3’. Assuming (Fi, Gi), i = 1, 2, (L,R) and (L′, R′) are adjoint couples, fL and f ′L = f−1
L

are given (resp. gR and g′R = g−1
R ). By 1’ and 2, we obtain g′L and f ′R (resp. f ′R and

g′L). We then may construct g′R and gR (resp. f ′L and fL) which are inverse to each
other.

Proof. Points 1, 1’ and 2 are obvious translations of the previous lemma. We only prove
Point 3, since 3’ is dual to it. Let (L,R, η, ε), (L′, R′, η′, ε′) and (Gi, Fi, ηi, εi), i = 1, 2, be
the adjoint couples. Using 1 and 2, we first obtain fL and gR, as well as the commutative
diagrams L , L′ (both involving gL = (g′L)−1), G1 and G2 (both involving g′L = (gL)−1).
The morphisms of functors f ′R and fR are respectively defined by the compositions

F1R
′ ηF1R′ // RLF1R

′ RfLR
′
// RF2L

′R′
RF2ε′ // RF2

and

RF2
η1RF2 // F1G1RF2

F1gRF2// F1R
′G2F2

F1R′ε2// F1R
′ .

We compute fR ◦f ′R as the upper right composition of the following commutative diagram

F1R
′

η1
��

η //

mf

RLF1R
′

��

fL //

mf

RF2L
′R′

��

ε′ //

mf

RF2

η1
��

F1G1F1R
′ //

G1

η′

''

F1G1RLF1R
′

��

//

mf

F1G1RF2L
′R′

��

//

mf

F1G1RF2

gR
��

F1R
′G2LF1R

′

(g′L)−1=gL
��

//

L′

F1R
′G2F2L

′R′

��

//

mf

F1R
′G2F2

ε2
��

F1R
′L′G1F1R

′
ε1

// F1R
′L′R′

ε′
// F1R

′
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The lower left composition in the above diagram is the identity because it appears as the
upper right composition of the commutative diagram

F1R
′ η1 //

MMMMMMMMM

MMMMMMMMM
F1G1F1R

′

��

η′ //

mf

F1R
′L′G1F1R

′

ε1
��

adj

F1R
′ //

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR F1R
′L′R′

ε′
��

adj

F1R
′

.

The composition f ′R ◦ fR = id is proved in a similar way, involving the diagrams L and
G2 .

The reader has certainly noticed that there is a statement 2′ which we didn’t spell out
because we don’t need it.

1.3. Bifunctors and adjunctions. We have to deal with couples of bifunctors that
give adjoint couples of usual functors when one of the entries in the bifunctors is fixed. We
need to explain how these adjunctions are functorial in this entry. The standard example
for that is the classical adjunction between tensor product and internal Hom.

1.3.1. Definition. Let X , C, C ′ be three categories, and let L : X × C ′ → C and
R : X o × C → C ′ be bifunctors. We say that (L,R) form an adjoint couple of bifunctors
(abbreviated as ACB) from C ′ to C with parameter in X if we are given adjoint couples
(L(X,−), R(X,−), ηX , εX) for every X and if furthermore η and ε are generalized trans-
formations in the sense of [EK66], i.e. for any morphism f : A→ B in X , the diagrams

L(A,R(B,C))
L(f,id)//

L(id,R(f,id))

��
gen

L(B,R(B,C))

εB

��
L(A,R(A,C))

εA // C

C ′
ηA //

ηB
��

gen

R(A,L(A,C ′))

R(id,L(f,id))

��
R(B,L(B,C ′))

R(f,id)// R(A,L(B,C ′))

commute. We sometimes use the notation (L(∗,−), R(∗,−)), where the ∗ is the entry in
X and write

C
L //
X C ′
R

oo

in diagrams.

1.3.2. Example. Let C = C ′ = X be the category of modules over a commutative ring.
The tensor product (with the variables switched) and the internal Hom form an ACB,
with the usual unit and counit.

1.3.3. Lemma. Let F : X ′ → X be a functor, and (L,R) be an ACB with parameter in
X . Then (L(F (∗),−), R(F o(∗),−)) is again an ACB in the obvious way.
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1.3.4. Lemma. Let (L,R) be an ACB from C ′ to C with parameter in X and let (F,G)
be an adjoint couple from D to C ′, then (L(∗, F (−)), GR(∗,−)) is an ACB with unit and
counit defined in the obvious and natural way.

Proof. Left to the reader.

We now give a version of Lemma 1.2.6 for ACBs.

1.3.5. Lemma. For i = 1 or 2, let (Ji, Ki, ηi, εi) be an ACB from C ′i to Ci with parameter
in X , let H : C1 → C2 and H ′ : C ′1 → C ′2 be functors. Let a : J2(∗, H ′(−)) → HJ1(∗,−)
(resp. b : H ′K1(∗,−) → K2(∗, H(−))) be a morphism of bifunctors. Then there exists a
unique morphism of bifunctors

b : H ′K1(∗,−)→ K2(∗, H(−)) (resp. a : J2(∗, H ′(−))→ HJ1(∗,−))

such that the diagrams

J2(X,H ′K1(X,−))

aK1

��

J2b //

H

J2(X,K2(X,H(−)))

η2H

��
HJ1(X,K1(X,−))

Hε1
// H

and

H ′

η2H′

��

H′η1 //

H′

H ′K1(X, J1(X,−))

bJ1

��
K2(X, J2(X,H ′(−)))

K2a
// K2(X,HJ1(X,−))

are commutative for every morphism X ∈ X .

Proof. We only consider the case when a is given. For every X ∈ X , we apply Lemma
1.2.6 to obtain b : H ′K1(X,−)→ K2(X,H(−)). It remains to prove that this is functorial
in X. This is an easy exercise on commutative diagrams which we leave to the reader (it
involves that both η1 and ε2 are generalized transformations as in Definition 1.3.1).

1.3.6. Lemma. Let (L,R, η, ε) and (L′, R′, η′, ε′) be ACBs, and let l : L → L′ (resp.
r : R→ R′) be an isomorphism of bifunctors. There is a unique isomorphism of bifunctors
r : R → R′ (resp. l : L → L′) such that η′X = rXR(X, l)ηX and ε′X = εXL(X, r−1

X )l−1
X for

every X ∈ X . In other words, a right (resp. left) bifunctor adjoint is unique up to unique
isomorphism.

Proof. We only give the proof in case l is given, the case with r given is similar. Apply
Lemma 1.3.5 with H and H ′ being identity functors. Starting with l−1, we get r, and
starting with l we get a morphism r′ : R′ → R. The morphisms r and r′ are inverse to
each other as in the usual proof of the uniqueness of adjunction (which applies to every
parameter X ∈ X ).
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1.4. Suspended and triangulated categories. We recall here what we need about
triangulated categories. The reason why we make a distinction between suspended cat-
egories and triangulated ones is because all the commutative diagrams that we are in-
terested in are just related to the suspension, and not to the exactness of the functors
involved. So when we need to prove the commutativity of those diagrams, we forget about
the exactness of our functors, and just think of them as suspended functors, in the sense
described below.

1.4.1. Definition. A suspended category is an additive category C together with an
adjoint couple (T, T−1) from C to C which is an equivalence of category (the unit and
counit are isomorphisms).

1.4.2. Remark. We assume furthermore in all what follows that TT−1 and T−1T are
the identity of C and that the unit and counit are also the identity. This assumption is
not true in some suspended (triangulated) categories arising in stable homotopy theory.
Nevertheless, it simplifies the exposition which is already sufficiently technical. When
working in an example where this assumption does not hold, it is of course possible to
make the modifications to get this even more general case.

Between suspended categories (C, TC) and (D, TD), we use suspended functors:

1.4.3. Definition. A suspended functor (F, f) from C to D is a functor F together
with an isomorphism of functors f : FTC → TDF . We sometimes forget about f in the
notation.

Without the assumption in Remark 1.4.2, we would need yet another isomorphism
f ′ : FT−1 → T−1F and compatibility diagrams analogous to the ones in Lemma 1.2.6.
Then, we would have to carry those compatibilities in our constructions. Again, this
would not be a problem, just making things even more tedious.

Suspended functors can be composed in an obvious way, and (T, idT 2) and (T−1, idId)
are suspended endofunctors of C that we call T and T−1 for short.

1.4.4. Definition. To a suspended functor F , one can associate “shifted” ones, com-
posing F by T or T−1 several times on either sides. The isomorphisms T iFT j ' T kFT l

with i + j = k + l constructed using f , f−1, T−1T = Id and TT−1 = Id all coincide, so
whenever we use one, we label it “f” without further mention.

1.4.5. Definition. The opposite suspended category Co of a suspended category C is
given the suspension (T−1

C )o.

With this convention, we can deal with contravariant suspended functors in two differ-
ent ways (depending where we put the ”op”), and this yields essentially the same thing,
using the definition of shifted suspended functors.
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1.4.6. Definition. A morphism of suspended functors h : (F, f) → (G, g) is a mor-
phism of functors h : F → G such that the diagram

FT

hT
��

f //

sus

TF

Th
��

GT g
// TG

is commutative.

1.4.7. Lemma. The composition of two morphisms of suspended functors yields a mor-
phism of suspended functors.

Proof. Straightforward.

A triangulated category is a suspended category with the choice of some exact trian-
gles, satisfying some axioms. This can be found in text books as [W94](see also the nice
introduction in [B00, Section 1]). We include the enriched octahedron axiom in the list
of required axioms as it is suitable to deal with Witt groups, as explained in loc. cit.

1.4.8. Definition. (see for example [GN03, 1.1]) Let (F, f) : C → D be a covariant
(resp. contravariant) suspended functor. We say that (F, f) is δ-exact (δ = ±1) if for
any exact triangle

A
u−→ B

v−→ C
w−→ TA

the triangle

FA
Fu−→ FB

Fv−→ FC
δfA◦Fw−→ TFA

respectively

FC
Fv−→ FB

Fu−→ FA
δfC◦FT−1w−→ TFC

is exact.

1.4.9. Remark. With this definition, T and T−1 are (−1)-exact functors, because of the
second axiom of triangulated categories, and the composition of exact functors multiplies
their signs. Thus, if F is δ-exact, then T iFT j is (−1)i+jδ-exact.

To define morphisms between exact functors F and G, the signs δF and δG of the
functors have to be taken into account, so that the morphism of functors induces a mor-
phism between the triangles obtained by applying F or G to a triangle and making the
sign modifications.

1.4.10. Definition. We say that h : F → G is a morphism of exact functors if the
diagram sus in Definition 1.4.6 is δF δG commutative.

On the other hand, we have the following lemma.

1.4.11. Lemma. Let h : F → G be an isomorphism of suspended functors such that sus

is ν-commutative. Assume F is δ-exact. Then G is δν-exact.
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Proof. For any triangle
A

u−→ B
v−→ C

w−→ TA

the triangle

GA
Gu−→ GB

Gv−→ FC
δgA◦Gw−→ TGA

is easily shown to be isomorphic to

FA
Fu−→ FB

Fv−→ FC
νδfA◦Fw−→ TFA

We also need to deal with bifunctors from two suspended categories to another one.
These are just suspended functors in each variable, with a compatibility condition. Ex-
amples are the internal Hom or the tensor product in triangulated categories.

1.4.12. Definition. Let C1, C2 and D be suspended categories. A suspended bifunctor
from C1 × C2 to D is a triple (B, b1, b2) where B : C1 × C2 → D is a functor and two
morphisms of functors b1 : B(T (−), ∗) → TB(−, ∗) and b2 : B(−, T (∗)) → TB(−, ∗),
such that the diagram

B(TA, TC)

b1,A,TC
��

b2,TA,C//

−1

TB(TA,C)

b1,A,C
��

TB(A, TC)
b2,A,C

// T 2B(A,C)

anti-commutes for every A and C.

1.4.13. Remark. As in Definition 1.4.4, we have shifted versions of b1 (or b2) which we
will sometimes label “b1” (or “b2”) below. It is important to describe precisely in which
order morphisms are applied when combining b1 and b2.

1.4.14. Definition. A morphism of suspended bifunctors from a suspended bifunctor
(B, b1, b2) to a suspended bifunctor (B′, b′1, b

′
2) is a morphism of functors f : B → B′ such

that the two diagrams

B(TA,C)

fTA,C
��

b1,A,C // TB(A,C)

TfA,C
��

B(A, TC)
b2,A,Coo

fA,TC
��

B′(TA,C)
b′1,A,C // TB′(A,C) B′(A, TC)

b′2,A,Coo

are commutative for every A and C.

By composing with a usual suspended functor to C1 or C2 or from D, we get other
suspended bifunctors (the verification is easy). But, if we do that several times, using
different functors, the order in which the suspended functors to C1 or C2 are used does
matter. For example, as with usual suspended functors, it is possible to define shifted
versions by composing with the suspensions in each category as mentioned in Remark



152 BAPTISTE CALMÈS AND JENS HORNBOSTEL

1.4.13. This can be useful. Unfortunately, according to the order in which we do this (if
we mix functors to C1 and to C2), we don’t get the same isomorphism of functors, even
though we get the same functors in the pair. One has to be careful about that.

1.5. Suspended adjunctions. As with usual functors, there is a notion of adjunction
well suited for suspended functors.

1.5.1. Definition. A suspended adjoint couple (L,R) is an adjoint couple in the usual
sense in which L and R are suspended functors and the unit and counit are morphisms of
suspended functors.

1.5.2. Definition. When (L,R) is an adjoint couple of suspended functors, using
Lemma 1.2.5 we obtain shifted versions (T iLT j, T−jRT−i). Using Definition 1.4.4, we ob-
tain isomorphisms exchanging the T ’s. Applying Lemma 1.2.3 to them, we get an adjoint
couple of suspended bifunctors (T iLT j, T−iRT−j).

The following proposition seems to be well-known.

1.5.3. Proposition. Let (L,R) be an adjoint couple from C to D (of usual functors)
and let (L, l) be a suspended functor. Then

1. there is a unique isomorphism of functors r : RT → TR that turns (R, r) into a
suspended functor and (L,R) into a suspended adjoint couple.

2. if furthermore C and D are triangulated and (L, l) is δ-exact, then (R, r) is also
δ-exact (with the same δ).

(When starting with a suspended functor (R, r), the dual statement holds.)

Proof. Point 1 is a direct corollary of Point 3 of Theorem 1.2.8, by taking L = L′,
R = R′, F1 = TC, G1 = T−1

C , F2 = TD, G2 = T−1
D , gL = (g′L)−1 = T−1lT−1. This gives

fR = r. The commutative diagrams F1 and F2 exactly tell us that the unit and counit
are suspended morphisms of functors with this choice of r. To prove Point 2, we have to
show that the pair (R, r) is exact. Let

A
u−→ B

v−→ C
w−→ TA

be an exact triangle. We want to prove that the triangle

RA
u−→ RB

v−→ RC
rA◦Rw−→ TRA

is exact. We first complete RA
u−→ RB as an exact triangle

RA
u−→ RB

v′−→ C ′
w′−→ TRA

and we prove that this triangle is in fact isomorphic to the previous one. To do so, one
completes the incomplete morphism of triangles

LRA
LRu //

��

LRB
LRv //

��

LC ′
fRA◦LRw //

h
��

TLRA

��
A u

// B v
// C w

// TA

.
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Looking at the adjoint diagram, we see that ad(h) : C ′ → RC is an isomorphism by the
five lemma for triangulated categories.

1.5.4. Theorem. Lemma 1.2.6, Lemma 1.2.7 and Theorem 1.2.8 hold when we replace
every functor by a suspended functor, every adjoint couple by a suspended adjoint couple
and every morphism of functor by a morphism of suspended functors.

Proof. The same proofs hold, since they only rely on operations and properties of func-
tors and morphism of functors, such as composition or commutative diagrams, that exist
and behave the same way in the suspended case.

We now adapt the notion of an adjoint couple of bifunctors to suspended categories.

1.5.5. Definition. Let (L,R) be an ACB from C ′ to C with parameter in X , where
C, C ′ and X are suspended categories. Assume moreover that (L, l1, l2) and (R, r1, r2) are
suspended bifunctors. We say that (L,R) is a suspended adjoint couple of bifunctors if

1. ((L(X,−), l2), (R(X,−), r2)) is a suspended adjoint couple of functors for every pa-
rameter X,

2. the following diagrams commute:

TC
ηX,TC //

TηTX,C
��

R(X,L(X,TC))
“r1” // TR(TX,L(X,TC))

TR(TX,l2)
��

TR(TX,L(TX,C))
TR(X,l1) // TR(TX, TL(X,C))

TL(X,R(TX,C))
l−1
1 //

l−1
2

��

L(TX,R(TX,C))

εTX,C

��
L(X,TR(TX,C))

“r1”−1
// L(X,R(X,C))

εX,C // C

1.5.6. Remark. Note that (2) ensures the compatibility of the suspension functor on
the parameter with the other ones.

1.5.7. Lemma. Let (F, f) : X ′ → X be a suspended functor, and (L,R) a suspended
ACB with parameter in X . Then (L(F (∗),−), R(F o(∗),−)) is again a suspended ACB in
the obvious way.

Proof. Left to the reader.
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The following proposition is an analogue of Proposition 1.5.3 for suspended bifunctors.

1.5.8. Proposition. Let (L,R) be an ACB such that (L, l1, l2) (resp. (R, r1, r2)) is a
suspended bifunctor. Then

1. there exist unique r1, r2 (resp. l1, l2) such that (R, r1, r2) (resp. (L, l1, l2)) is a
suspended bifunctor and (L,R) is a suspended ACB,

2. if (L(X,−), l2) is δ-exact for some object X, then so is (R(X,−), r2).

Proof. The existence and uniqueness of r2 follows (for every parameterX) from Point 1 of
Proposition 1.5.3. That r1 is also natural in the first variable follows from a large diagram
of commutative squares of type mf and gen . This yields in particular morphisms of
suspended functors ηX and εX for every X. For the existence and uniqueness of r1, we use
Lemma 1.3.5 applied to H ′ = T , H = Id, J1 = L(∗,−), K1 = R(∗,−), J2 = L(T−1(∗),−),
K2 = R(T−1(∗),−) and a = “l1”“l2” (the order is important). We obtain two diagrams
which are easily seen to be equivalent to the ones required for (L,R) to be a suspended
ACB (Point 2 of Definition 1.5.5). The anticommutativity required by Definition 1.4.12
for r2 and r1 may be proved using the anticommutativity of l1 and l2 and the fact that
ηX and εT−1X are morphisms of suspended functors. Point 2 is proved in the same way
as Point 2 of Proposition 1.5.3.

We need a version of Lemma 1.3.5 for suspended bifunctors.

1.5.9. Lemma. Lemma 1.3.5 holds when all the functors, bifunctors and adjunctions
become suspended ones.

Proof. The proof of Lemma 1.3.5 works since it only involves compositions and commu-
tative diagrams that exist in the suspended case.

Finally, there is also a version of Theorem 1.2.8 for (suspended) bifunctors, which is
our main tool for the applications. For this reason, we state it in full detail.

1.5.10. Theorem. Let L, R, L′, R′, F1, G1, F2, G2 be (suspended) functors whose
sources and targets are specified by the diagram (recall the notation of Definition 1.3.1),

C1

G1

��
X

L // C2

G2

��
X

R
oo

C ′1

F1

OO

L′ // C ′2

F2

OO

R′
oo

and let fL, f ′L, gL, g′L, fR, f ′R, gR and g′R be morphisms of bifunctors (resp. suspended
bifunctors) whose sources and targets will be as follows:

LF1(∗,−)
fL // F2(∗, L′(−))
f ′L

oo L′G1(∗,−)
g′L // G2(∗, L(−))
gL

oo

F1(∗, R′(−))
f ′R // RF2(∗,−)
fR

oo G1(∗, R(−))
gR // R′G2(∗,−)
g′R

oo
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Let us consider the following diagrams, in which the maps and their directions will be the
only obvious ones in all the cases discussed below.

F2(X,L′G1(X,−))

L

LF1(X, G1(X,−))

F2(X, G2(X, L(−)) Loo

OO
G1(C,−)

��

//

G1

G1(C, RL(−))

R′L′G1(C,−) R′G2(C, L(−))

F1(X, R′G2(X,−))

R

RF2(X, G2(X,−))

F1(X, G1(X, R(−))) Roo

OO
F1(C,−)

��

//

F1

F1(C, R′L′(−))

RLF1(C,−) RF2(C, L′(−))

L′

L′

G2(X, F2(X, L′(−)))oo

L′G1(X,F1(X,−))

OO

G2(X, LF1(X,−))

L′G1(C, R(−))

G2

G2(C, LR(−))

��
L′R′G2(C,−) // G2(C,−)

R′

R′

G1(X, F1(X, R′(−)))oo

R′G2(X,F2(X,−))

OO

G1(X, RF2(X,−))

LF1(C, R′(−))

F2

F2(C, L′R′(−))

��
LRF2(C,−) // F2(C,−)

Then

1. Let (Gi, Fi), i = 1, 2 be ACBs (resp. suspended ACBs). Let gL (resp. fL) be given,
then there is a unique (suspended) fL (resp. gL) such that L and L′ are commu-
tative for any X. Let gR (resp. fR) be given, then there is a unique (suspended) fR
(resp. gR) such that R and R′ are commutative for any X.

2. Let (L,R) and (L′, R′) be adjoint couples (resp. suspended adjoint couples). Let
fL (resp. f ′R) be given, then there is a unique (suspended) f ′R (resp. fL) such that
F1 and F2 are commutative. Let g′L (resp. gR) be given, then there is a unique

(suspended) gR (resp. g′L) such that G1 and G2 are commutative.

3. Assuming (Gi, Fi), i = 1, 2, are ACBs (resp. suspended ACBs), (L,R) and (L′, R′)
are (suspended) adjoint couples, and gL and g′L = g−1

L are given (resp. fR and
f ′R = f−1

R ). By 1 and 2, we obtain fL and gR (resp. gR and fL). We then may
construct fR and f ′R (resp. gL and g′L) which are inverse to each other.

Proof. The proof is the same as for Theorem 1.2.8, but using Lemma 1.3.5 (or 1.5.9)
instead of Lemma 1.2.6 for Points 1 and 2.
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1.5.11. Remark. We didn’t state the analogues of Points 1’ and 2’ of Theorem 1.2.8
in this context because we don’t need them.

2. Dualities

We now introduce our main subject of interest: duality. As before, we state everything
for the suspended (or triangulated) case and the usual case in a uniform way.

2.1. Categories with duality.

2.1.1. Definition. A category with duality is a triple (C, D,$) where C is a category
with an adjoint couple (D,Do, $,$o) from C to Co. When $ is an isomorphism, D is
an equivalence of categories and we say that the duality is strong. A suspended (resp.
triangulated) category with duality is defined in the same way, but (D, d) is a suspended
(resp. δ-exact) functor on a suspended (resp. triangulated) category C, and the adjunction
is suspended.

2.1.2. Remark. Observe that the standard condition (Do$o)◦($oD) = idDo is satisfied
by the definition of an adjunction. The only difference between our definition and Balmer’s
definition [B00, Def. 2.2] is that we don’t require the isomorphism d : DT → T−1D to be
an equality in the suspended or triangulated case. Assuming that duality and suspension
strictly commute is as bad as assuming that the internal Hom and the suspension strictly
commute, or (by adjunction) that the tensor product and the suspension strictly commute.
This is definitely a too strong condition when checking strict commutativity of diagrams in
some derived category. Dropping all signs in this setting when defining these isomorphisms
just by saying “take the canonical ones” may even lead to contradictions as the results of
the Appendix show. When d = id, we say that the duality is strict.

2.1.3. Definition. Let (C, D,$) be a triangulated category with duality for which (D, d)
is δ-exact. By Definition 1.5.2 we get T (D,Do) = (TD, TDo, $′, ($′)o), the shifted ad-
joint couple. We define the suspension of (C, D,$) as T (C, D,$) = (C, TD,−δ$′). Note
that (TD, Td) is (−δ)-exact because T is (−1)-exact.

2.1.4. Remark. This is the definition of [B00, Definition 2.8] adapted to cover the non
strict case, and the next one generalizes [B00, Definition 2.13] to the non strict case.

2.1.5. Definition. For any triangulated category with strong duality (C, D,$), we de-
fine its i-th Witt group W i by Wi(C, D,$) := W (T i(C, D,$)) (extending [B00, 2.4 and
Definitions 2.12 and 2.13] in the obvious way). If D and $ are understood, we sometimes
also write Wi(C) or Wi(C, D)) for short.

2.1.6. Remark. In concrete terms, this means that the condition of loc. cit. for an
element in W 1(C) represented by some φ to be symmetric is that (TdT−1)◦φ = (DoTφ)◦$
whereas in the strict case the (TdT−1) may be omitted.
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2.1.7. Remark. To define a Witt group, the duality has to be strong (that is $ has to
be an isomorphism), but this is not necessary to prove all sorts of commutative diagrams,
so there is no reason to assume it here in general.

2.2. Duality preserving functors and morphisms.

2.2.1. Definition. A duality preserving functor from a (suspended, triangulated) cat-
egory with duality (C1, D1, $1) to another one (C2, D2, $2) is a pair {F, f} where F is
a (suspended, δ-exact) functor from C1 to C2, and f : FDo

1 → Do
2F

o is a morphism (in
C2) of (suspended, δ-exact) functors where f and f o are mates as in Lemma 1.2.6 (resp.
Theorem 1.5.4) when setting J1 = D1, K1 = Do

1, J2 = D2, K2 = Do
2, H = F o, H ′ = F ,

a = f o and b = f . In other words, the diagram H (equivalent to H′ ) of Lemma 1.2.6
must commute:

F

$2F
��

F$1 //

P

FDo
1D1

fD1

��
Do

2D2F
Do2f

o
// Do

2F
oD1

We sometimes denote the functor simply by {F} if f is understood. When f is an iso-
morphism, we say the functor is strong duality preserving.

When the dualities are both strict and strong and the functor is strongly duality
preserving, then this coincides with the usual definition (see for example [G02, Definition
2.6] where Point 2 corresponds to the fact that f is a morphism of suspended functors in
our definition and is only used in the suspended case). Duality preserving functors are
composed in the obvious way by setting {F ′, f}{F, f} = {F ′F, f ′F o ◦ F ′f}.
2.2.2. Definition. A morphism of (suspended, exact) duality preserving functors from
{F, f} to {F ′, f ′} (with same source and target) is a morphism of the underlying (sus-
pended, exact) functors ρ : F → F ′ such that the diagram

FDo
1

ρDo1
��

f //

M

Do
2F

o

Do2ρ
o

��
F ′Do

1 f ′
// Do

2(F ′)o

commutes. We say that such a morphism is strong if the underlying morphism of functors
is an isomorphism.

Composing two morphisms between duality preserving functors obviously gives an-
other one, and composition preserves being strong.

The proofs of following two propositions are straightforward (see also [G02, Theorem
2.7] for a proof of the first one in the strict case).

2.2.3. Proposition. A 1-exact strong duality preserving functor {F, f} between trian-
gulated categories with strong dualities induces a morphism on Witt groups by sending an
element represented by a form ψ : A→ D1(A) to the class of the form fA ◦ F (ψ).
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2.2.4. Proposition. A duality preserving isomorphism between 1-exact strong duality
preserving functors ensures that they induce the same morphism on Witt groups.

The following definition and lemma will be used when deriving applications of the main
theorems : often, the strongness assumptions on the functors and morphisms necessary
to define Witt groups, morphisms of Witt groups and to compare them only hold on
subcategories that are not stable by the tensor product.

2.2.5. Definition.

1. Let (C, D,$) be a triangulated category with duality and let A be a full triangulated
subcategory of C preserved by D. Then, (A, D|A, $|A) is trivially a triangulated
category with duality, and we say that the duality of C restricts to A.

2. Let {F, f} : (C1, D1, $1) → (C2, D2, $2) be a duality preserving functor between
triangulated categories with dualities as in Definition 2.2.1. Assume that there are
full triangulated subcategories Ai ⊂ Ci, i = 1, 2 such that Di restricts to Ai and such
that F |A1 factors through A2. Then we say that the duality preserving pair {F, f}
restricts to the subcategories A1 and A2.

3. Let ρ be a morphism between two such restricting functors {F, f} and {F ′, f ′}, as
in Definition 2.2.2, then the restriction of ρ automatically defines a morphism of
exact duality preserving functors between the restricted functors.

2.2.6. Lemma. Let {F, f} : (C1, D1, $1) → (C2, D2, $2) be a duality preserving functor
between triangulated categories with duality that restricts to the subcategories A1 and A2.

1. Assume that the restricted dualities on A1 and A2 are strong and that f |F (Ao1) is
an isomorphism. Then the restriction of the duality preserving pair {F, f} to A1

and A2 is a strongly duality preserving functor between triangulated categories with
strong duality and therefore induces a morphism

W(A1, D1|A1 , $1|A1)→W(A2, D2|A2 , $2|A2)

on Witt groups.

2. If a morphism ρ between two such duality preserving functors is strong when re-
stricted to A1, then they induce the same morphisms on Witt groups.

Proof. One has to check that certain diagrams in A2 are commutative. This follows
as they are already commutative in C2 by assumption. Now Propositions 2.2.3 and 2.2.4
prove the claims.
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3. Consequences of the closed monoidal structure

We now recall a few notions on tensor products and internal Hom functors (denoted by
[−, ∗]) and prove very basic facts related to the suspension. A category satisfying the ax-
ioms of this section deserves to be called a “ (suspended or triangulated) closed symmetric
monoidal category”. Then we prove that the dualities defined using the internal Hom on
such a category are naturally equipped with the necessary data to define (triangulated)
categories with dualities.

3.1. Tensor product and internal Hom. Let (C,⊗) be a symmetric monoidal
category (see [ML98, Chapter VII]) with an internal Hom [−,−] adjoint to the tensor
product. More precisely, we assume that (− ⊗ ∗, [∗,−]) is an ACB. Let s = s−1 denote
the symmetry isomorphism and call this datum a “closed symmetric monoidal category”.

When talking about a “suspended closed symmetric monoidal category”, we assume
that we have a suspended bifunctor (−⊗ ∗, tp1, tp2) (see Definition 1.4.12) such that the
diagram

(TA⊗B)⊗ C //

tp1⊗id ��
assoc

TA⊗ (B ⊗ C)

tp1

��

T (A⊗B)⊗ C
tp1 ��

T ((A⊗B)⊗ C) // T (A⊗ (B ⊗ C))

commutes, as well as the two similar ones in which the suspension starts on one of the
other variables. We also assume that the diagram

T (−)⊗ ∗
tp1

��

s //

s

∗ ⊗ T (−)

tp2

��
T (−⊗ ∗)

Ts
// T (∗ ⊗ −)

commutes. By Proposition 1.5.8, we get morphisms

th1 : [T−1(∗),−]→ T [∗,−] th2 : [∗, T (−)]→ T [∗,−]

that make ([∗,−], th1, th2) a suspended bifunctor and (− ⊗ ∗, [∗,−]) a suspended ACB
(Definition 1.5.5). Using s, we obtain a new suspended ACB (∗ ⊗ −, [∗,−]) from the
previous one.

If C is triangulated, we furthermore assume that ⊗ is exact in both variables (by sym-
metry it suffices to check this for one of them). By Proposition 1.5.8, [∗,−] is suspended
in both variables and automatically exact in the second variable. We assume furthermore
that it is exact in the first variable, and say that we have a “triangulated closed symmetric
monoidal category”.

The morphisms

evlA,K : [A,K]⊗ A→ K coevlA,K : K → [A,K ⊗ A]
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respectively

evrA,K : A⊗ [A,K]→ K coevrA,K : K → [A,A⊗K]

induced by the counit and the unit of the (suspended) ACB (− ⊗ ∗, [∗,−]) (or resp.
(∗ ⊗ −, [∗,−])) are called the left (resp. right) evaluation and coevaluation.

3.1.1. Lemma. The following diagrams are commutative.

(T [A,K])⊗ A tp1 //

1

T ([A,K]⊗ A)

T evlA,K��
[A, TK]⊗ A
th2⊗id

OO

evlA,TK

// TK

A⊗ (T [A,K])
tp2 //

2

T (A⊗ [A,K])
T evrA,K

��
A⊗ [A, TK]

id⊗th2

OO

evrA,TK

// TK

TK
coevlA,TK //

T coevlA,K �� 3

[A, TK ⊗ A]

tp1��
T [A,K ⊗ A]

th−1
2

// [A, T (A⊗K)]

TK
coevrA,TK //

T coevrA,K �� 4

[A,A⊗ TK]

tp2��
T [A,A⊗K]

th−1
2

// [A, T (K ⊗ A)]

(T−1[A,K])⊗ TA
T−1th1,TA,K⊗id ��

tp2 //

5

T (T−1[A,K]⊗ A)
tp−1

1 // [A,K]⊗ A
evlA,K

��
[TA,K]⊗ TA

evlTA,K

// K

(TA⊗ T−1[A,K])

id⊗T−1th1,TA,K ��

tp1 //

6

T (A⊗ T−1[A,K])
tp−1

2 // A⊗ [A,K]
evrA,K

��
TA⊗ [TA,K]

evrTA,K

// K

K
coevlTA,K //

coevlA,K �� 7

[TA,K ⊗ TA]

T−1th−1
1,TA,K⊗TA��

[A,K ⊗ A]
T−1th−1

2

// T−1[A, T (K ⊗ A)]
tp−1

2 // T−1[A,K ⊗ TA]

K
coevrTA,K //

coevrA,K �� 8

[TA, TA⊗K]

T−1th−1
1,TA,TA⊗K��

[A,A⊗K]
T−1th−1

2

// T−1[A, T (A⊗K)]
tp−1

1 // T−1[A, TA⊗K]

Proof. This is a straightforward consequence of Point 1 of Definition 1.5.5 for the first
four diagrams and of Point 2 of Definition 1.5.5 for the other four.
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3.2. Bidual isomorphism. We still assume that (C,⊗) is a monoidal category with
an internal Hom as in the previous section. We now show that the functor DK = [−, K]
naturally defines a duality on the category C, and that in the suspended case that the
dualities DTK and TDK are naturally isomorphic.

To form the adjoint couple (DK , D
o
K , $K , $

o
K), we define the bidual morphism of

functors $K : Id → Do
KDK as the image of the right evaluation by the adjunction

(−⊗ ∗, [∗,−]) isomorphism

Hom(A⊗ [A,K], K) ∼ // Hom(A, [[A,K], K]) .

It is functorial in A and defines a morphism of functors from Id to Do
KDK . Note

that its definition uses the adjunction (− ⊗ ∗, [∗,−]) and the right evaluation, which is
not the counit of this adjunction but of the one obtained from it by using s; so the fact
that the monoidal category is symmetric is essential, here. One cannot proceed with only
one of these adjunctions. In the suspended case, DK becomes a suspended functor via
T−1th−1

1,−,KT : DKT → T−1DK .

3.2.1. Proposition. In the suspended (or triangulated) case, $K is a morphism of
suspended (or exact) functors.

Proof. First note that in the exact case, whatever the sign of DK is, Do
KDK is 1-exact,

so there is no sign involved in the diagram

TA
T$K ��

$KT // [[TA,K], K]

T−1th1,TA,K��
T [[A,K], K]

th−1
1,[A,K],K

// [T−1[A,K], K]

that we have to check (see Definitions 1.4.10 and 1.4.6). It is obtained by (suspended)
adjunction from Diagram 6 in Lemma 3.1.1

3.2.2. Definition. We say that K is a dualizing object when $K is an isomorphism
of (suspended) functors.

3.2.3. Proposition. The functors [−, ∗] : C × Co → Co and [−, ∗]o : Co × C → C form
a (suspended) ACB with unit $ and counit $o.

Proof. We first have to prove that (DK , D
o
K , $K , $

o
K) is an adjoint couple in the usual

sense. We already know that $K is a suspended morphism. Consider the following
diagram, in which all vertical maps are isomorphisms. Let f ] : Hom(F ′, G)→ Hom(F,G)
and f] : Hom(G,F ) → Hom(G,F ′) be the maps induced by f : F → F ′. The unlabeled
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morphisms are just adjunction bijections, and we set $A,K := ($K)A.

Hom([A,K], [A,K]) Hom([A,K], [[[A,K], K], K])
([$A,K ,IdK ])]oo

Hom([A,K]⊗ A,K)

OO

Hom([A,K]⊗ [[A,K], K], K)
(Id[A,K]⊗$A,K)]

oo

OO

Hom(A⊗ [A,K], K)

s]
A,[A,K]

OO

��

Hom([[A,K], K]⊗ [A,K], K)
($A,K⊗Id[A,K])

]
oo

s]
[[A,K],K],[A,K]

OO

��
Hom(A, [[A,K], K]) Hom([[A,K], K], [[A,K], K])

($A,K)]
oo

The diagram commutes by functoriality of s and the adjunction bijections. Now Id[[A,K],K]

in the lower right set is sent to $[A,K],K in the upper right set, which is in turn sent to
[$A,K , K] ◦$[A,K],K in the upper left set. But Id[[A,K],K] is also sent to $A,K in the lower
left set, which is sent to Id[A,K] in the upper left set by definition of $A,K . This proves
the two required formulas (see Definition 1.2.1) for the composition of the unit and the
counit in the adjoint couple (which are identical in this case). We leave to the reader
the easy fact that $A,K is a generalized transformation (in K) (just using that the unit
of the adjunction (− ⊗ ∗, [∗,−]) is one). The adjoint couple is then a suspended adjoint
couple by Proposition 3.2.1. This proves Point 1 of Definition 1.5.5. Point 2 is proved
using diagrams 6 and 7 .

3.2.4. Corollary. The triple (C, DK , $K) is a (suspended) category with duality (see
Definition 2.1.1). When C is triangulated closed, DK is exact, and (C, DK , $K) is a
triangulated category with duality which we often denote by CK for short. When K is a
dualizing object, the duality is strong.

3.2.5. Proposition. The functors DK and DTK are exact. The isomorphism th2 :
[−, T (∗)] → T [−, ∗] defines a suspended duality preserving functor {IdC, th2,−,K} from
CTK to T (C, DK , $K). This functor is an isomorphism of triangulated categories with
duality and therefore induces an isomorphism on Witt groups.

Proof. We know by 1.4.9 that TDK is (−1)-exact. Diagram sus should therefore be
anti-commutative (see Definition 1.4.10). It follows from the fact that ([−, ∗], th1, th2) is
a suspended bifunctor. A square obtained by adjunction from 2 in Lemma 3.1.1 then
implies that th2 defines a duality preserving functor (see Definition 2.2.1).

We conclude this section by a trivial lemma for future reference.

3.2.6. Lemma. Let ι : K →M be a morphism. Then Iι = {Id, ι̃}, where ι̃ : DK → DM

is induced by ι, is a duality preserving functor. This respects composition: if κ : M → N
is another morphism, then Iκι = IκIι. Let ι be an isomorphism, then if K is dualizing
and DK δ-exact, the same is true for M and DM , and Iι induces an isomorphism on Witt
groups denoted by IWι .
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4. Functors between closed monoidal categories

Assume from now on that all categories C (maybe with an index) are symmetric monoidal
and equipped with an internal Hom, satisfying the set-up of the previous section. We
say that a functor f ∗ : C1 → C2 is a symmetric monoidal (suspended, exact in both vari-
ables) functor when it comes equipped with an isomorphism of (suspended) bifunctors
α : f ∗(−)⊗f ∗(∗)→ f ∗(−⊗∗) and, when a unit 1 for the tensor product is considered, an
isomorphism f ∗(1) ' 1 making the standard diagrams commutative (see [ML98, section
XI.2] for the details where such functors are called strongly monoidal).

We will consider the following assumptions (used in the definition of some morphisms
of functors):
(Af) The functor f ∗ : C1 → C2 is symmetric monoidal (suspended, exact in both vari-
ables).
(Bf) We have a functor f∗ : C2 → C1 that fits into an adjoint couple (f ∗, f∗, η

∗
∗, ε
∗
∗).

(Cf) We have a functor f ! : C1 → C2 that fits into an adjoint couple (f∗, f
!, η!
∗, ε

!
∗).

(Df) The morphism π : f∗(−)⊗ ∗ → f∗(−⊗ f ∗(∗)) from Proposition 4.2.5 is an isomor-
phism (the “projection formula” isomorphism).
(Ef,g) The morphism of functors ε of Section 5.2 is an isomorphism.

In the following, we will define several natural transformations and establish commu-
tative diagrams involving them. Since there are so many of them, for the convenience of
the reader, we include a Table 1, which displays (from the left to the right): the name of
the natural transformation, its source and target functor, the necessary assumptions to
define the natural transformation and where it is defined.

4.1. The monoidal functor f ∗. In this section, we obtain duality preserving functors
and morphisms related to a monoidal functor f ∗.

4.1.1. Proposition. Under Assumption (Af), there is a unique morphism

β : f ∗[∗,−]→ [f ∗(∗), f ∗(−)]

of (suspended) bifunctors such that the diagrams

[f ∗X, f ∗(−⊗X)]

9

f ∗[X,−⊗X]
βoo

[f ∗X, f ∗(−)⊗ f ∗X]

α

OO

f ∗(−)oo

OO
f ∗(−)

10

[f ∗X, f ∗(−)]⊗ f ∗Xoo

f ∗([X,−]⊗X)

OO

f ∗[X,−]⊗ f ∗Xαoo

β

OO

commute for every X ∈ C1. For any A and B, β is given by the composition

f ∗[A,B] coevl // [f ∗A, f ∗[A,B]⊗ f ∗A] α // [f ∗A, f ∗([A,B]⊗ A)] evl // [f ∗A, f ∗B].

Proof. Apply Lemma 1.3.5 to H = H ′ = f ∗, J1 = −⊗∗, K1 = [∗,−], J2 = (−⊗ f ∗(∗)),
K2 = [f ∗(∗),−] and a = α (recall that in an ACB, the variable denoted ∗ is the parameter,
as explained in Definition 1.3.1). Then define β = b.
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α f ∗(−)⊗ f ∗(∗)→ f ∗(−⊗ ∗) (Af) Section 4
β f ∗[−, ∗]→ [f ∗(−), f ∗(∗)] (Af) Prop 4.1.1
λ f∗(−)⊗ f∗(∗)→ f∗(−⊗ ∗) (Af) (Bf) Prop. 4.2.1
µ f∗[−, ∗]→ [f∗(−), f∗(∗)] (Af) (Bf) Prop. 4.2.2
π f∗(−)⊗ ∗ → f∗(−⊗ f ∗(∗)) (Af) (Bf) Prop. 4.2.5
κ [−, f∗(∗)]→ f∗[f

∗(−), ∗] (Af) (Bf) Prop. 4.2.5
ζ f∗[∗, f !(−)]→ [f∗(∗),−] (Af) (Bf) (Cf) Thm. 4.2.9
θ f !(−)⊗ f ∗(∗)→ f !(−⊗ ∗) (Af) (Bf) (Cf) (Df) Prop. 4.3.1
ν f ![∗,−]→ [f ∗(∗), f !(∗)] (Af) (Bf) (Cf) (Df) Prop. 4.3.1

τK,M DK ⊗DM → DK⊗M Def. 4.4.1

ξ ḡ∗f ∗ → f̄ ∗g∗
(Af) (Af̄) (Ag) (Aḡ)

(Bg) (Bḡ) (Cg) (Cḡ) Section 5.2

ε f ∗g∗ → ḡ∗f̄
∗

(Af) (Af̄) (Ag) (Aḡ)

(Bg) (Bḡ) (Cg) (Cḡ) Section 5.2

γ f̄ ∗ḡ! → g!f ∗
(Af) (Af̄) (Ag) (Aḡ) (Bg)

(Bḡ) (Cg) (Cḡ) (Ef,g) Section 5.2

Table 1: Morphisms of functors

4.1.2. Theorem. (existence of the pull-back) Under Assumption (Af), the morphism

βK : f ∗Do
K → Do

f∗K(f ∗)o

defines a duality preserving functor {f ∗, βK} of (suspended, triangulated) categories with
duality from (C1)K to (C2)f∗K.

4.1.3. Corollary. (Pull-back for Witt groups) When the dualities and the duality pre-
serving functor are strong (i.e. $K, $f∗K and βK are isomorphisms), {f ∗, βK} induces
a morphism of Witt groups f ∗W : W ∗(C1, K)→ W ∗(C2, f

∗K) by Proposition 2.2.3.

Proof Proof of Theorem 4.1.2. We need to show that the diagram

f ∗

$Kf
∗

��

f∗$K // f ∗Do
KDK

βKDK
��

Do
f∗KDf∗Kf

∗ Do
f∗Kβ

o
K // Do

f∗K(f ∗)oDK
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commutes. This follows from the commutative diagram (for all A in C1)

f ∗A

coevl ��

coevl //

9

f ∗[[A,K], A⊗ [A,K]]

β
��

evr //

mf

f ∗[[A,K], K]

β
��

[f ∗[A,K], f ∗A⊗ f ∗[A,K]] α //

10′β
��

[f ∗[A,K], f ∗(A⊗ [A,K])] // [f ∗[A,K], f ∗K]

[f ∗[A,K], f ∗A⊗ [f ∗A, f ∗K]] evr

22

[[f ∗A, f ∗K], f ∗K]

β
OO

[[f ∗A, f ∗K], f ∗A⊗ [f ∗A, f ∗K]]

β
OO

evr

22
mf

where 10′ is obtained from 10 by using the compatibility of α with s. By functoriality of
coev, the counit of the adjunction of bifunctors (− ⊗ ∗, [−, ∗]), we can complete the left
vertical part of the diagram as a commutative square by a morphism coevl from f ∗A to
the bottom entry. The outer part of this bigger diagram is therefore the one we are looking
for. In the suspended (or triangulated) case, β is a morphism of suspended functors by
Proposition 4.1.1.

4.2. Adjunctions (f ∗, f∗) and (f∗, f
!) and the projection morphism. In this

section, we will assume that we have adjoint couples (f ∗, f∗) and (f∗, f
!), and obtain the

projection morphism f∗(−) ⊗ ∗ → f∗(− ⊗ f ∗(∗)) as well as several related commutative
diagrams. We also construct the morphism ζ which turns f∗ into a duality preserving
functor (Theorem 4.2.9).

4.2.1. Proposition. Assume (Af) and (Bf). Then there is a unique morphism of
(suspended) bifunctors

λ : f∗(−)⊗ f∗(−)→ f∗(−⊗−)

such that the diagrams

−⊗X

��

//

11

f∗f
∗(−)⊗ f∗f ∗X

λ
��

f∗f
∗(−⊗X) α−1

// f∗(f
∗(−)⊗ f ∗X)

f ∗(f∗(−)⊗ f∗X)

λ
��

α−1
//

12

f ∗f∗(−)⊗ f ∗f∗X

��
f ∗f∗(−⊗X) // −⊗X

commute for every X ∈ C1. For any A and B, λ is given by the composition

f∗A⊗ f∗B
η∗∗ // f∗f

∗(f∗A⊗ f∗B) α−1
// f∗(f

∗f∗A⊗ f ∗f∗B)
ε∗∗⊗ε∗∗ // f∗(A⊗B).

Proof. Apply Lemma 1.2.6 (resp. Theorem 1.5.4) to H = H ′ = (−⊗−), J1 = f ∗ × f ∗
K1 = f∗ × f∗, J2 = f ∗, K2 = f∗, and a = α−1 to obtain a unique λ = b satisfying 11

and 12 and given by the above composition. In the suspended case, λ is a morphism
of suspended bifunctors because it is given by a composition of morphisms of suspended
functors and bifunctors.



166 BAPTISTE CALMÈS AND JENS HORNBOSTEL

4.2.2. Proposition. Assume (Af) and (Bf). Then, there is a unique morphism

µ : f∗[∗,−]→ [f∗(∗), f∗(−)]

of (suspended) bifunctors such that the diagrams

[f∗X, f∗(−⊗X)]

13

f∗[X,−⊗X]
µoo

[f∗X, f∗(−)⊗ f∗X]

λ

OO

f∗(−)oo

OO
f∗(−)

14

[f∗X, f∗(−)]⊗ f∗Xoo

f∗([X,−]⊗X)

OO

f∗[X,−]⊗ f∗Xλoo

µ⊗id

OO

commute for every X ∈ C1. For any A and B, µ is given by the composition

f∗[A,B] coevl // [f∗A, f∗[A,B]⊗ f∗A] λ // [f∗A, f∗([A,B]⊗ A)] evl // [f∗A, f∗B].

Proof. Apply Lemma 1.3.5 (resp. Lemma 1.5.9) to the functors J1 = (−⊗∗), K1 = [∗,−],
J2 = (−⊗ f∗(∗)), K2 = [f∗(∗),−], H = H ′ = f∗ and a = λ.

4.2.3. Lemma. The diagram

f∗A⊗ f∗B
s(f∗⊗f∗)

��

λ //

15

f∗(A⊗B)

f∗s
��

f∗B ⊗ f∗A λ // f∗(B ⊗ A)

is commutative.

Proof. Apply Lemma 1.2.7 to the cube

C2 × C2
⊗ //

x

��?????? C2
Id

��??????

C2 × C2

c
;C�����

����� ⊗ // C2

C1 × C1

f∗×f∗

OO

x ��??????

C1 × C1

id*********

*********

*********

*********

f∗×f∗

OO

⊗
// C1

α−1

[c ???????????????

???????????????

f∗

OO

C2 × C2
⊗ // C2

Id

��??????

C2

C1 × C1

f∗×f∗

OO

x ��??????
// C1

α−1

[c ???????????????

???????????????

f∗

OO

Id ��??????

C1 × C1

c
;C�����

�����

⊗
// C1

*******************

*******************

f∗

OO

where x is the functor exchanging the components. Note that the morphism of functors
f∗(−⊗ ∗)→ f∗(−)⊗ f∗(∗) obtained on the front and back squares indeed coincides with
λ by construction.

4.2.4. Proposition. In the suspended case, under Assumption (Bf) there is a unique
way of turning f∗ into a suspended functor such that (f ∗, f∗) is a suspended adjoint couple.
If further Assumption (Cf) holds, then there is a unique way of turning f ! into a suspended
functor such that (f∗, f

!) is a suspended adjoint couple.

Proof. Both results follow directly from Proposition 1.5.3.
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4.2.5. Proposition. Under assumptions (Af) and (Bf), there is a unique morphism

π : f∗(−)⊗ ∗ → f∗(−⊗ f ∗(∗))

and a unique isomorphism

κ : [∗, f∗(−)]→ f∗[f
∗(∗),−]

of (suspended) bifunctors such that the diagrams

[X, f∗(−⊗ f ∗X)]

16

f∗[f
∗X,−⊗ f ∗X]

κ−1
oo

[X, f∗(−)⊗X]

π

OO

f∗oo

OO
f ∗

17

[X, f∗(−)]⊗Xoo

f∗([f
∗X,−]⊗ f ∗X)

OO

f∗[f
∗X,−]⊗Xπoo

κ−1

OO

−⊗X

��

//

18

f∗f
∗(−)⊗X

π

��
f∗f

∗(−⊗X) α−1
// f∗(f

∗(−)⊗ f ∗X)

f ∗(f∗(−)⊗X)

π

��

α−1
//

19

f ∗f∗(−)⊗ f ∗X

��
f ∗f∗(−⊗ f ∗X) // −⊗ f ∗X

[X,−]

��

//

20

[X, f∗f
∗(−)]

κ

��
f∗f

∗[X,−]
β // f∗[f

∗X, f ∗(−)]

f ∗[X, f∗(−)]

κ

��

β
//

21

[f ∗X, f ∗f∗(−)]

��
f ∗f∗[f

∗X,−] // [f ∗X,−]

commute for any X ∈ C1. For any A and B, π is given by the composition

f∗A⊗B
η∗∗ // f∗f

∗(f∗A⊗B) α // f∗(f
∗f∗A⊗ f ∗B)

ε∗∗ // f∗(A⊗ f ∗B)

κ by

[A, f∗B]
η∗∗ // f∗f

∗[A, f∗B]
β // f∗[f

∗A, f ∗f∗B]
ε∗∗ // f∗[f

∗A,B]

and κ−1 by

f∗[f
∗A,B] coevl // [A, f∗[f

∗A,B]⊗ A] π // [A, f∗([f
∗A,B]⊗ f ∗A)] evl // [A, f∗B].

Proof. Apply Point 3 of Theorem 1.5.10 with L = L′ = f ∗, R = R′ = f∗, G1 = − ⊗ ∗,
G2 = − ⊗ f ∗(∗), F1 = [∗,−], F2 = [f ∗(∗),−], gL = (g′L)−1 = α. Then define π = gR and
κ = f ′R.
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4.2.6. Lemma. The composition

f∗(−)⊗ (−)
id⊗η∗∗ // f∗(−)⊗ f∗f ∗(−) λ // f∗(−⊗ f ∗(−))

coincides with π.

Proof. This follows from the commutative diagram (for any A and B in C2)

f∗A⊗B

��

π

''

//

mf

f∗A⊗ f∗f ∗B

��
λ

��

f∗f
∗(f∗A⊗B)

α−1
��

//

mf

f∗f
∗(f∗A⊗ f∗f ∗B)

α−1
��

f∗(f
∗f∗A⊗ f ∗B)

��

//

mf

f∗(f
∗f∗A⊗ f ∗f∗f ∗B)

��
f∗(A⊗ f ∗B) //

Id

adj

66
f∗(A⊗ f ∗f∗f ∗B) // f∗(A⊗ f ∗B)

in which the curved maps are indeed λ and π by construction.

4.2.7. Lemma. The composition

f∗(−)⊗ f∗(−) π // f∗(−⊗ f ∗f∗(−))
f∗(id⊗ε∗∗)// f∗(−⊗−)

coincides with λ.

Proof. This follows directly from the construction of π and diagram 11 .

4.2.8. Lemma. The composition

f∗[f
∗(−), ∗] µ // [f∗f

∗(−), f∗(∗)]
η∗∗ // [−, f∗(∗)]

coincides with κ.

Proof. This follows from the commutative diagram (for any A in C1 and B in C2)

f∗[f
∗A,B]

coevl
��

µ

((

coevl //

gen

[A, f∗[f
∗A,B]⊗ A]

η∗∗
��

π

xx

[f∗f
∗A, f∗[f

∗A,B]⊗ f∗f ∗A]

λ
��

η∗∗ //

mf

[A, f∗[f
∗A,B]⊗ f∗f ∗A]

λ
��

[f∗f
∗A, f∗([f

∗A,B]⊗ f ∗A)]

evl
��

//

mf

[A, f∗([f
∗A,B]⊗ f ∗A)]

evl
��

[f∗f
∗A, f∗B]

η∗∗ // [A, f∗B]

in which the left curved arrow is µ by construction, the right one is π by Lemma 4.2.6 and
the composition from the top left corner to the bottom right one along the upper right
corner is then κ by construction.
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4.2.9. Theorem. (existence of the push-forward) Under assumptions (Af), (Bf) and
(Cf), let ζ be the (suspended, exact) bifunctor defined by the composition

f∗[−, f !(−)]
µ // [f∗(−), f∗f

!(−)]
ε!∗ // [f∗(−),−] .

Then {f∗, ζK} is a (suspended, exact) duality preserving functor from (C2, Df !K , $f !K) to
(C1, DK , $K).

Proof. We need to prove that the diagram P in Definition 2.2.1 is commutative. We
consider the commutative diagram

f∗A
coevl //

coevl �� 13

f∗[[A, f
!K], A⊗ [A, f !K]]

evr //

µ
��

f∗[[A, f
!K], f !K]

µ

gg

mf

[f∗[A, f
!K], f∗A⊗ f∗[A, f !K]] //

id⊗µ
�� 14′

[f∗[A, f
!K], f∗(A⊗ [A, f !K])]

evr ��
[f∗[A, f

!K], f∗A⊗ [f∗A, f∗f
!K]]

evr //

id⊗ε!∗ ��
mf

[f∗[A, f
!K], f∗f

!K]

ε!∗ ��
[f∗[A, f

!K], f∗A⊗ [f∗A,K]]
evr // [f∗[A, f

!K], K]

where 14′ is obtained from 14 by using s. The top row is f∗$f !K and the composition
from the top right corner to the bottom one is ζ, both by definition. The result follows if we
prove that the composition from the top left corner to the bottom right one, going through
the bottom left corner, is $Kf∗ followed by Do

Kζ
o. This follows from the commutative

diagram

f∗A
coevl //

coevl

��
gen

[f∗[A, f
!K], f∗A⊗ f∗[A, f !K]]

id⊗ζ
��

[[f∗A,K], f∗A⊗ [f∗A,K]]
ζ //

evr

��
mf

[f∗[A, f
!K], f∗A⊗ [f∗A,K]]

evr

��
[[f∗A,K], K]

ζ // [f∗[A, f
!K], K]

in which the left vertical composition is $Kf∗ and the composition along the upper right
corner is the composition along the lower left corner of the previous diagram.

4.3. When the projection morphism is invertible. In this section, we prove that
the projection morphism is an isomorphism if and only if the morphism ζ is. In that case,
we obtain a new morphism θ that will be used in Section 5.5 to state a projection formula.

4.3.1. Proposition. Under assumptions (Af), (Bf) and (Cf), there is a unique mor-
phism

ν ′ : [f ∗(∗), f !(−)]→ f ![∗,−]
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of (suspended) bifunctors such that the diagrams

[f ∗X,−] //

��
22

[f ∗X, f !f∗(−)]

ν′

��
f !f∗[f

∗X,−]
κ−1

// f ![X, f∗(−)]

f∗[f
∗X, f !(−)]

ν′

��

κ−1
//

23

[X, f∗f
!(−)]

��
f∗f

![X,−] // [X,−]

commute for any X ∈ C1. The morphism of bifunctors ν ′ is invertible if and only if π is
invertible (Assumption (Df)). In that case, let ν denote the inverse of ν ′, and there is a
unique morphism of (suspended) bifunctors

θ : f !(−)⊗ f ∗(∗)→ f !(−⊗ ∗)

such that the diagrams

[f ∗X, f !(−⊗X)]

24

f ![X,−⊗X]ν
oo

[f ∗X, f !(−)⊗ f ∗X]

θ

OO

f !oo

OO
f !

25

[f ∗X, f !(−)]⊗ f ∗Xoo

f !([X,−]⊗X)

OO

f ![X,−]⊗ f ∗Xθoo

ν

OO

−⊗ f ∗X

��

//

26

f !f∗(−)⊗ f ∗X

θ
��

f !f∗(−⊗ f ∗X)
π−1

// f !(f∗(−)⊗X)

f∗(f
!(−)⊗ f ∗X)

θ
��

π−1
//

27

f∗f
!(−)⊗X

��
f∗f

!(−⊗X) // −⊗X

commute for any X ∈ C1. For any A and B, ν ′ is given by the composition

[f ∗A, f !B]
η!
∗ // f !f∗[f

∗A, f !B]
κ−1

// f ![A, f∗f
!B]

ε!∗ // f ![A,B]

and θ by

f !A⊗ f ∗B
η!
∗ // f !f∗(f

!A⊗ f ∗B)
π−1

// f !(f∗f
!A⊗B)

ε!∗ // f !(A⊗B)

or equivalently by

f !A⊗ f ∗B coevl // f ![B,A⊗B]⊗ f ∗B ν // [f ∗B, f !(A⊗B)]⊗ f ∗B evl // f !(A⊗B).

Proof. Apply Point 2 of Theorem 1.5.10 with L = L′ = f∗, R = R′ = f !, G1 = −⊗f ∗(∗),
G2 = − ⊗ ∗, F1 = [f ∗(∗),−], F2 = [∗,−] and fL = κ−1 to obtain ν ′ = f ′R and diagrams
22 and 23 . Then Point 3 of the same Theorem tells us that ν ′ = f ′R is invertible if and

only if π = gL is (Note that π and κ−1 indeed correspond to each other through Point 1
of the Theorem by construction). In that case, we can use Point 2 to obtain θ = gR from
π−1 = g′L and diagrams 24 , 25 , 26 and 27 .
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In particular, under Assumption (Df), this gives for each K an isomorphism of func-
tors νK : f !Do

K → Do
f !K

(f ∗)o (in C2).

4.3.2. Lemma. The composition

f∗[−, f !(−)]
ε∗∗ // f∗[f

∗f∗(−), f !(−)]
ν′ // f∗f

![f∗(−),−]
ε!∗ // [f∗(−),−]

coincides with ζ.

Proof. This follows from the commutative diagram (for every A in C2 and K in C1)

f∗[A, f
!K]

µ
��

//

mf

f∗[f
∗f∗A, f

!K]
µ

��

ν′
//

23

f∗f
![f∗A,K]

ε!∗

��

[f∗A, f∗f
!K] //

adjTTTTTTTTTT

TTTTTTTTTT
[f∗f

∗f∗A, f∗f
!K]

η∗∗��
[f∗A, f∗f

!K]
ε!∗ // [f∗A,K]

identifying the vertical composition in the middle with κ−1 by Lemma 4.2.8 to recognize
23 .

4.3.3. Proposition. Under assumptions (Af), (Bf), (Cf), ζ is an isomorphism if
and only if (Df) holds.

4.3.4. Corollary. (Push-forward for Witt groups) When the dualities Df !K and DK

are strong and Assumption (Df) is satisfied, then {f∗, ζK} is a strong duality preserving
functor and thus induces a morphism of Witt groups

fW∗ : W ∗(C2, f
!K)→ W ∗(C1, K).

Proof. This follows from Definition 2.1.5, Theorem 4.2.9, Proposition 4.3.3 and Propo-
sition 2.2.3.

Proof Proof of Proposition 4.3.3. Let us first recall that ([−, ∗], [−, ∗]o, $,$o) is
a (suspended) ACB from C1 to Co1 with parameter in Co1 by Proposition 3.2.3, and thus
([−, (f !)o(∗)], [−, f !(∗)]o, $,$o) is a (suspended) ACB from C2 to Co2 with parameter in Co1
by Lemma 1.5.7. We then apply Theorem 1.5.10 with the square

C1

[−,∗]
��

Co1

f∗ // C2

[−,(f !)o(∗)]
��

Co1
f∗

oo

Co1

[−,∗]o
OO

(f !)o // Co2

[−,f !(∗)]o
OO

fo∗

oo

starting with g′L = (ν ′)o. By Point 2 of loc. cit., we obtain a unique gR such that diagrams
G1 and G2 commute. This gR coincides with ζo by Lemma 4.3.2. By Point 1 of loc.

cit., we then obtain a unique fR such that diagrams R and R′ commute. But fR has to
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coincide with ζ by uniqueness, since those commutative diagrams were already proven in
Theorem 4.2.9 with ζ and ζo. By Point 3 of loc. cit., fR is an isomorphism if and only if
g′L = (ν ′)o is, which is an isomorphism if and only if (Df) holds by Proposition 4.3.1. We
have thus proved that ζ is an isomorphism if and only if (Df) holds.

4.4. Products. We now define one more classical morphism related to products for
Witt groups. It is easily checked that since (−⊗∗, [∗,−]) forms an ACB from C to C with
parameter in C, ((−1 ⊗ ∗1) × (−2 ⊗ ∗2), [∗1,−1] × [∗2,−2]) forms an ACB from C × C to
C × C with parameter in C × C, and (−⊗ (∗1 ⊗ ∗2), [∗1 ⊗ ∗2,−]) forms an ACB from C to
C with parameter in C × C. We can thus consider the situation of Lemma 1.3.5 applied
to the square

C × C ⊗ //

[∗1,−1]×[∗2,−2]

��
C×C

C
[∗1⊗∗2,−]

��
C

C × C ⊗
//

(−1⊗∗1)×(−2⊗∗2)

OO

C

−⊗(∗1⊗∗2)

OO

and to the morphism of bifunctors % : (−1⊗−2)⊗ (∗1⊗∗2)→ (−1⊗∗1)⊗ (−2⊗∗2). We
thus obtain its mate, a morphism of bifunctors

τ : [∗1,−1]⊗ [∗2,−2]→ [∗1 ⊗ ∗2,−1 ⊗−2]

which, for any A,B,K,M is given by the composition

[A,K]⊗ [B,M ] coevl // [A⊗B, ([A,K]⊗ [B,M ])⊗ (A⊗B)]
%��

[A⊗B,K ⊗M ] [A⊗B, ([A,K]⊗ A)⊗ ([B,M ]⊗B)]
evl⊗evloo

and obtain the following commutative diagrams

([X1, K]⊗ [X2,M ])⊗ (X1 ⊗X2)
% ��

τ //

28

[X1 ⊗X2, K ⊗M ]⊗ (X1 ⊗X2)
evl��

([X1, K]⊗X1)⊗ ([X2,M ]⊗X2)
evl⊗evl

// K ⊗M

K ⊗M coevl⊗coevl //

coevl �� 29

[X1, K ⊗X1]⊗ [X2,M ⊗X2]
τ��

[X1 ⊗X2, (K ⊗M)⊗ (X1 ⊗X2)] %
// [X1 ⊗X2, (K ⊗X1)⊗ (M ⊗X2)]

as well.

4.4.1. Definition. Consider objects K,M ∈ C. We write τK,M for the morphism of
functors DK(−1)⊗DM(−2)→ DK⊗M(−1⊗−2) defined above where −1 = K and −2 = M .

The proofs of the next two results are left to the reader. They are not difficult although
they require large commutative diagrams.
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4.4.2. Proposition. The morphism τK,M is a morphism of suspended bifunctors.

The proof of the following lemma uses the unit of the tensor product.

4.4.3. Lemma. If K is dualizing, M is dualizing and τK,M is an isomorphism, then the
object K ⊗M is dualizing. If βf,K, βf,M and τK,M are isomorphisms, then βf,K⊗M is an
isomorphism.

In [GN03], Gille and Nenashev define two natural products for Witt groups. These
products coincide up to a sign. We just choose one of them (the left product, for example),
and refer to it as the product, but everything works fine with the other one too. Let us
recall the basic properties of the product, rephrasing [GN03] in our terminology.

4.4.4. Theorem. ([GN03, Definition 1.11 and Theorem 2.9]) Let C1, C2 and C3 be
triangulated categories with dualities D1, D2 and D3. Let (B, b1, b2) : C1 × C2 → C3

be a suspended bifunctor (see Definition 1.4.12) and d : B(Do
1 × Do

2) → Do
3B

o be an
isomorphism of suspended bifunctors (see Definition 1.4.14) that makes {B, d} a duality
preserving functor (see Definition 2.2.1, here C1×C2 is endowed with the duality D1×D2).
Then {B, d} induces a product

W(C1)×W(C2)→W(C3).

The following proposition is not stated in [GN03], but easily follows from the con-
struction of the product.

4.4.5. Proposition. Let σ : B → B′ be an isomorphism of suspended bifunctors that
is duality preserving. Then B and B′ induce the same product on Witt groups.

Let us now apply this to our context.

4.4.6. Proposition. (product) The morphism of functors τK,M turns the functor ⊗
into a duality preserving functor {−1 ⊗−2, τK,M} from (C × C, DK ×DM , $K ×$M) to
(C, DK⊗M , $K⊗M).

4.4.7. Corollary. (product for Witt groups) By Theorem 4.4.4, when the dualities
and the functor are strong (i.e. $K, $M and τK,M are isomorphisms, and thus $K⊗M as
well by Lemma 4.4.3), {−1 ⊗−2, τK,M} induces a product

W(C, DK)×W(C, DM) . // W(C, DK⊗M)

on Witt groups.

5. Relations between functors

In this section, we prove the main results on composition, base change, and the projection
formula.
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5.1. Composition. This section studies the behavior of pull-backs and push-forwards
with respect to composition. Let K be a category whose objects are (suspended, trian-
gulated) closed categories as in Section 3.1, and whose morphisms are (suspended, exact)
functors. Let B be another category, and let (−)∗ be a contravariant pseudo functor from
B to K, i.e. a functor, except that instead of having equalities f ∗g∗ = (gf)∗ when f and g
are composable, we only have isomorphisms of (suspended) functors ag,f : f ∗g∗ → (gf)∗.
We also require that (−)∗ sends the identity of an object to the identity. Let X∗ be
denoted by CX . When, moreover, the diagram

f ∗g∗h∗

ah,g

��

ag,f //

30

(gf)∗h∗

ah,gf

��
f ∗(hg)∗

ahg,f // (hgf)∗

is commutative, we say that the pseudo functor is associative.

5.1.1. Remark. An example for this setting is to take for B the category of schemes
(or regular schemes) and CX = Db(V ect(X)) (or CX = Db(OX −Mod)).

We require that (−)∗ is a monoidal associative pseudo functor, which means that each
f ∗ is symmetric monoidal (Assumption (Af)) and that the diagram

g∗f ∗ ⊗ g∗f ∗

a⊗a
��

α //

31

g∗(f ∗ ⊗ f ∗) α // g∗f ∗(−⊗−)

a

��
(fg)∗ ⊗ (fg)∗ α // (fg)∗(−⊗−)

commutes for any two composable f and g.

5.1.2. Notation. Let X be an object in B and K an object in CX . Let CX,K denote
the (suspended, triangulated) category with duality (CX , DK , $K) obtained by Corollary
3.2.4. When K is dualizing, let Wi(X,K) denote the i-th shifted Witt group of CX,K .

We have already seen in Theorem 4.1.2 that under Assumption (Af), the couple
{f ∗, βK} is a duality preserving functor between (suspended, triangulated) categories
with dualities. Recall the I-notation of Lemma 3.2.6.

5.1.3. Theorem. (composition of pull-backs) For any two composable f and g in B, the
isomorphism of functors ag,f : f ∗g∗ → (gf)∗ is a morphism of duality preserving functors
from Iag,f,K{f ∗, βf,g∗K}{g∗, βg,K} to {(gf)∗, βgf,K}.

5.1.4. Corollary. (composition of pull-backs for Witt groups) By Proposition 2.2.4,
for composable morphisms f and g in B, the pull-back on Witt groups defined in Corollary
4.1.3 satisfies (gf)∗W = IWag,f,Kf

∗
Wg
∗
W .
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Proof Proof of Theorem 5.1.3. The claim amounts to checking that the diagram

f ∗g∗[−, K]

a
��

β // f ∗[g∗(−), g∗K]
β // [f ∗g∗(−), f ∗g∗K]

a
��

(gf)∗[−, K]
β // [(gf)∗(−), (gf)∗K] ao // [f ∗g∗(−), (gf)∗K]

is commutative. Since by construction of β (Proposition 4.1.1), α and β are mates, this
commutativity follows from Lemma 1.2.7 applied to the cube

CZ
(gf)∗ //

g∗

��??????? CX
Id

��???????

CY

a
;C�������

������� f∗ // CX

CZ

−⊗K

OO

g∗ ��???????

CY

α

PX**********************

**********************
−⊗g∗K

OO

f∗
// CX

α

[c ??????????????????

??????????????????

−⊗f∗g∗K

OO

CZ
(gf)∗ // CX

Id

��???????

CX

CZ

−⊗K

OO

g∗ ��???????

(gf)∗ // CX

α

[c ??????????????????

??????????????????

−⊗(gf)∗K

OO

Id ��???????

CY

a
;C�������

�������

f∗
// CX

id⊗a**********

**********

PX**********

**********

−⊗f∗g∗K

OO

which is commutative as Diagram 31 is.

A covariant pseudo functor (−)∗ is defined in the same way as a contravariant one,
except that we are given isomorphisms in the other direction: bg,f : (gf)∗ → g∗f∗.

5.1.5. Definition. Let (−)∗ (resp. (−)∗) be a (suspended, exact) contravariant (resp.
covariant) pseudo functor from B to K. We say that ((−)∗, (−)∗) is an adjoint couple of
pseudo functors if (f ∗, f∗) is a (suspended, exact) adjoint couple for every f (in particular
(−)∗ and (−)∗ coincide on objects), and the diagrams

Id

��

//

32

(gf)∗(gf)∗

b
��

g∗f∗f
∗g∗

a // g∗f∗(gf)∗

and

f ∗g∗(gf)∗

a

��

b //

33

f ∗g∗g∗f∗

��
(gf)∗(gf)∗ // Id

commute for any composable f and g.

Spelling out the symmetric notion when the left adjoint pseudofunctor is covariant
and the right one contravariant is left to the reader.

As usual, the right (or left) adjoint is unique up to unique isomorphism.

5.1.6. Lemma. Let (−)∗ be a contravariant pseudo-functor. Assume that for any f ∗,
we are given a right (suspended, exact) adjoint f∗ which is the identity when f is the
identity. Then there is a unique collection of isomorphisms bg,f : (gf)∗ → g∗f∗ such that
((−)∗, (−)∗) forms an adjoint couple of pseudo functors.

Proof. Apply Theorem 1.2.8 (or 1.5.4 in the suspended case) to (L,R) = (f ∗, f∗),
(F1, G1) = (g∗, g∗), (F2, G2) = (Id, Id) and (L′, R′) = ((gf)∗, (gf)∗). This gives the
required isomorphism (gf)∗ → g∗f∗ and the diagrams 32 and 33 .
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5.1.7. Lemma. The right (resp. left) adjoint of an associative pseudo functor is asso-
ciative.

Proof. Left to the reader.

5.1.8. Lemma. Let ((−)∗, (−)∗) be an adjoint pair of pseudo-functors (left contravariant
and right covariant). If (−)∗ satisfies the commutativity of 31 , then the diagram

(gf)∗A⊗ (gf)∗B

b⊗b
��

λ //

34

(gf)∗(A⊗B)

b��
g∗f∗A⊗ g∗f∗B λ // g∗(f∗A⊗ f∗B) λ // g∗f∗(A⊗B)

is commutative for every A and B.

Proof. The commutative diagram

g∗(A⊗B) α−1
//

η∗∗ ��
mf

g∗A⊗ g∗B η∗∗⊗η∗∗ //

�� 11

f∗f
∗g∗A⊗ f∗f ∗g∗B

λ��
f∗a⊗f∗a

tt

f∗f
∗g∗(A⊗B) //

f∗a �� 31

f∗f
∗(g∗A⊗ g∗B) // f∗(f

∗g∗A⊗ f ∗g∗B)

ssggggggggggggg
mf

f∗(gf)∗(A⊗B) α
−1

// f∗((gf)∗A⊗ (gf)∗B) f∗(gf)∗A⊗ f∗(gf)∗Bλoo

shows that the cube

CX × CX
−⊗− //

f∗×f∗
��??????? CX

f∗

��???????

CY × CY
λ

;C�������

������� −⊗− // CY

CZ × CZ

(gf)∗×(gf)∗

OO

Id×Id ��???????

CZ × CZ

(a×a)◦
(η∗∗×η∗∗)*********

*********

PX*********

*********

g∗×g∗

OO

−⊗−
// CZ

α−1

[c ??????????????????

??????????????????

g∗

OO

CX × CX
−⊗− // CX

f∗

��???????

CY

CZ × CZ

(gf)∗×(gf)∗

OO

Id×Id ��???????
−⊗− // CZ

α−1

[c ??????????????????

??????????????????

(gf)∗

OO

Id ��???????

CZ × CZ

id
;C�������

�������

−⊗−
// CZ

a

PX**********************

**********************

g∗

OO

is commutative. We apply Lemma 1.2.7 to it and obtain a new commutative cube which
is Diagram 34 . Note that the morphism of functors on the left face of our first cube
indeed gives b in the resulting cube, by construction of b.

Let us now consider the subcategory B′ of B with the same objects, but whose mor-
phisms are only those f : X → Y satisfying assumptions (Af), (Bf) and (Cf). We then
choose successive right adjoints f∗ and f ! for each morphism f (they are unique up to
unique isomorphism, and we choose (IdX)∗ = Id!

X = IdCX for simplicity), and by Lemma
5.1.6, using (−)∗, we turn them into (suspended, exact) pseudo functors

(−)∗ : B′ → K (−)! : B′ → K

with structure morphisms bg,f and cg,f . They are associative by Lemma 5.1.7.
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5.1.9. Theorem. For morphisms f : X → Y and g : Y → Z in B′ and K an object
of CZ, the isomorphism of functors bg,f : (gf)∗ → g∗f∗ defined above is a morphism of
duality preserving functors from {(gf)∗, ζK}Icg,f,K to {g∗, ζK}{f∗, ζg!K}.

5.1.10. Corollary. (composition of push-forwards) By Proposition 2.2.4, for compos-
able morphisms f and g in B′, the push-forward on Witt groups defined in Corollary 4.3.4
satisfies (gf)W∗ I

W
cg,f,K

= gW∗ f
W
∗ .

Proof Proof of Theorem 5.1.9. We have to prove that the diagram M of Definition
2.2.2 which is here

(gf)∗[A, f
!g!K]

c //

b
��

35

(gf)∗[A, (gf)!K]
ζ // [(gf)∗A,K]

g∗f∗[A, f
!g!K]

ζ // g∗[f∗A, g
!K]

ζ // [g∗f∗A,K]

bo

OO

is commutative (for any A and B). The commutative diagram 34 may be written as the
commutative cube

CZ Id //

Id

��??????? CZ
Id

��???????

CZ

id
;C�������

�������
Id // CZ

CX

g∗f∗(−⊗B)

OO

Id ��???????

CX

b

PX**********************

********************** (gf)∗(−⊗B)

OO

(gf)∗
// CZ

λ

[c ??????????????????

??????????????????

−⊗(gf)∗B

OO

CZ Id // CZ
Id

��???????

CZ

CX

g∗f∗(−⊗B)

OO

Id ��???????
f∗ // CY

λ

[c ??????????????????

??????????????????

g∗(−⊗f∗B)

OO

g∗

��???????

CX

b
;C�������

�������

(gf)∗
// CZ

λ◦(id⊗b)**********

**********

PX**********

**********

−⊗(gf)∗B

OO

out of which we get a new commutative cube by Lemma 1.2.7, whose commutativity is
equivalent to that of Diagram 35 .

5.2. Base change. The next fundamental theorem that we will prove is a base change
formula. In this section, we fix a commutative diagram in B with g and ḡ in B′.

V

f̄
��

ḡ //

36

Y

f

��
X g

// Z

Using Lemma 1.2.6 (or its suspended version 1.5.4) with J1 = g∗, K1 = g∗, J2 = ḡ∗,
K2 = ḡ∗, H = f̄ ∗, H ′ = f ∗ and the isomorphism of (suspended) functors

ξ : ḡ∗f ∗ → (fḡ)∗ = (gf̄)∗ → f̄ ∗g∗



178 BAPTISTE CALMÈS AND JENS HORNBOSTEL

for a, we obtain its mate, a morphism

ε : f ∗g∗ → ḡ∗f̄
∗

and two commutative diagrams. Assuming (Ef,g) (i.e. ε is an isomorphism) and applying
the same lemma to J1 = g∗, K1 = g!, J2 = ḡ∗, K2 = ḡ!, H = f ∗, H ′ = f̄ ∗ and a = ε−1, we
obtain a morphism

γ : f̄ ∗g! → ḡ!f ∗

and two commutative diagrams.

ḡ∗f̄
∗g!

γ //

ε−1

��
37

ḡ∗ḡ
!f ∗

��
f ∗g∗g

! // f ∗

f̄ ∗ //

��
38

f̄ ∗g!g∗

γ

��
ḡ!ḡ∗f̄

∗ ε−1
// ḡ!f ∗g∗

5.2.1. Theorem. (base change) Let f and f̄ be morphisms in B and g and ḡ be mor-
phisms in B′ fitting in the commutative diagram 36 such that Assumption (Ef,g) is sat-
isfied. Then, the isomorphism of functors ε : f ∗g∗ → ḡ∗f̄

∗ from {f ∗, βK}{g∗, ζK} to
{ḡ∗, ζf∗K}IγK{f̄ ∗, βg!K} is duality preserving.

This together with Proposition 2.2.4 immediately implies the following.

5.2.2. Corollary. If in the situation of the theorem above γK : f̄ ∗g!K → ḡ!f ∗K is an
isomorphism, then the pull-backs and push-forwards on Witt groups defined in corollaries
4.1.3 and 4.3.4 satisfy f ∗Wg

W
∗ = ḡW∗ I

W
γK
f̄ ∗W .

Proof Proof of Theorem 5.2.1. We have to prove that the diagram

f ∗g∗[A, g
!K]

ζ //

ε
�� 39

f ∗[g∗A,K]
β // [f ∗g∗A, f

∗K]

ḡ∗f̄
∗[A, g!K]

β // ḡ∗[f̄
∗A, f̄ ∗g!K]

γ // ḡ∗[f̄
∗A, ḡ!f ∗K]

ζ // [ḡ∗f̄
∗A, f ∗K]

εo
OO

(corresponding to Diagram M of Definition 2.2.2) is commutative. We first prove the
two following lemmas.

5.2.3. Lemma. The composition

ḡ∗(f̄
∗(−)⊗ f̄ ∗(∗)) α // ḡ∗f̄

∗(−⊗ ∗) ε−1
// f ∗g∗(−⊗ ∗)

and the composition

f̄ ∗[∗, g!(−)]
β // [f̄ ∗(∗), f̄ ∗ḡ!(−)]

γ // [f̄ ∗(∗), ḡ!f ∗(−)]

are mates in Lemma 1.3.5 when J1 = g∗(− ⊗ ∗), K1 = [∗, g!(−)], J2 = ḡ∗(− ⊗ f̄ ∗(∗)),
K2 = [f̄ ∗(∗), ḡ!(−)], H = f ∗ and H ′ = f̄ ∗.
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Proof. By uniqueness, this follows from the proof of one of the commutative diagrams
in Lemma 1.3.5. We choose H which is as follows.

ḡ∗(f̄
∗[X, g!A]⊗ f̄ ∗X)

β //

α
�� 10

ḡ∗([f̄
∗X, f̄ ∗g!A]⊗ f̄ ∗X)

��

γ //

mf

ḡ∗([f̄
∗X, ḡ!f ∗A]⊗ f̄ ∗X)

��
ḡ∗f̄

∗([X, g!A]⊗X) //

ε−1
��

mf

ḡ∗f̄
∗g!A

γ //

ε−1

��
37

ḡ∗g
!f ∗A

��
f ∗g∗([X, g

!A]⊗X) // f ∗g∗g
!A // f ∗A

5.2.4. Lemma. The composition

ḡ∗(−)⊗ f ∗g∗(∗)
id⊗ε // ḡ∗(−)⊗ ḡ∗f̄ ∗(∗)

λ // ḡ∗(−⊗ f̄ ∗(∗))

and the composition

ḡ∗[f̄
∗(∗), ḡ!(−)]

ζ // [ḡ∗f̄
∗(∗),−]

εo // [f ∗g∗(∗),−]

are mates in Lemma 1.3.5 when using the functors J1 = ḡ∗(−⊗f̄ ∗(∗)), K1 = [f̄ ∗(∗), ḡ!(−)],
J2 = (−⊗ f ∗g∗(∗)), K2 = [f ∗g∗(∗),−], H = Id and H ′ = ḡ∗.

Proof. Similarly to the proof of the previous lemma, this follows from the commutative
diagram

ḡ∗[f̄
∗X, ḡ!A]⊗ f ∗g∗X

id⊗ε ��

ζ⊗id//

mf

[ḡ∗f̄
∗X,A]⊗ f ∗g∗X

εo //

�� gen

[f ∗g∗X,A]⊗ f ∗g∗X

��

ḡ∗[f̄
∗X, ḡ!A]⊗ ḡ∗f̄ ∗X

λ ��

ζ⊗id
// [ḡ∗f̄

∗X,A]⊗ ḡ∗f̄ ∗X

**VVVVVVVVVVVVVVVVV
14′′

ḡ∗([f̄
∗X, ḡ!A]⊗ f̄ ∗X) // ḡ∗ḡ

!A // A

where 14′′ is easily obtained from 14′ by looking at the definition of ζ in Theorem 4.2.9.

The commutative diagram 31 easily implies (by definition of ξ) that the diagram

ḡ∗(f ∗A⊗ f ∗B)

α
��

α−1
// ḡ∗f ∗A⊗ ḡ∗f ∗B ξ⊗ξ // f̄ ∗g∗A⊗ f̄ ∗g∗B

α
��

ḡ∗f ∗(A⊗B)
ξ // f̄ ∗g∗(A⊗B)

α−1
// f̄ ∗(g∗A⊗ g∗B)
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is commutative for any A and B. It can be written as the commutative cube

CX × CX
−⊗− //

f̄∗×f̄∗

��??????? CX
f̄∗

��???????

CV × CV

α

;C�������

������� −⊗− // CV

CZ × CZ

g∗×g∗

OO

f∗×f∗ ��???????

CY × CY

ξ×ξ***********

***********

PX**********

**********

ḡ∗×ḡ∗

OO

−⊗−
// CY

α−1

[c ??????????????????

??????????????????

ḡ∗

OO

CX × CX
−⊗− // CX

f̄∗

��???????

CV

CZ × CZ

g∗×g∗

OO

f∗×f∗ ��???????
−⊗− // CZ

α−1

[c ??????????????????

??????????????????

g∗

OO

f∗ ��???????

CY × CY

α
;C�������

�������

−⊗−
// CY

ξ

PX**********************

**********************

ḡ∗

OO

out of which Lemma 1.2.7 gives the commutative cube

CX × CX

g∗×g∗

��

−⊗− //

f̄∗×f̄∗

��??????? CX
f̄∗

��???????

CV × CV

ḡ∗×ḡ∗

��

α

;C�������

������� −⊗− // CV

ḡ∗

��

CZ × CZ

f∗×f∗ ��???????

ε×ε
����

;C����

CY × CY −⊗−
//

λ

;C������������������

������������������
CY

CX × CX

g∗×g∗

��

−⊗− // CX
f̄∗

��???????

g∗

��

CV

ḡ∗

��

CZ × CZ

λ

;C������������������

������������������

f∗×f∗ ��???????
−⊗− // CZ

ε

;C�������

�������

f∗ ��???????

CY × CY

α
;C�������

�������

−⊗−
// CY

The commutativity of the last cube implies the commutativity of the following cube for
any A.

CZ
f∗ //

Id

��??????? CY
Id

��???????

CZ

id
;C�������

������� f∗ // CY

CX

g∗(−⊗A)

OO

g∗ ��???????

CZ

λ

PX**********************

**********************
−⊗g∗A

OO

f∗
// CY

α

[c ??????????????????

??????????????????

−⊗f∗g∗A

OO

CZ
f∗ // CY

Id

��???????

CY

CX

g∗(−⊗A)

OO

g∗ ��???????
f̄∗ // CV

x

[c ??????????????????

??????????????????

ḡ∗(−⊗f̄∗A)

OO

ḡ∗ ��???????

CZ

ε
;C�������

�������

f∗
// CY

y

PX**********************

**********************

−⊗f∗g∗A

OO

where x is the first composition in Lemma 5.2.3 and y is the first composition in Lemma
5.2.4. Applying Lemma 1.2.7 to this new cube gives a cube in which the mates of x and
y may be described using lemmas 5.2.3 and 5.2.4, and whose commutativity is the one of
Diagram 39 .
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Let us now establish two more commutative diagrams that will be useful in applica-
tions. In geometric situations they allow us to check whether θ is an isomorphism by
restricting to open subsets.

5.2.5. Proposition. The diagram

f ∗g∗(−)⊗ f ∗(∗)

α

��

ε //

40

ḡ∗f̄
∗(−)⊗ f ∗(∗) π // ḡ∗(f̄

∗(−)⊗ ḡ∗f ∗(∗))
ξ

��
ḡ∗(f̄

∗(−)⊗ f̄ ∗g∗(∗))
α

��
f ∗(g∗(−)⊗ ∗) π // f ∗g∗(−⊗ g∗(∗)) ε // ḡ∗f̄

∗(−⊗ g∗(∗))

is commutative. If furthermore ε is an isomorphism (Assumption (Ef,g)), γ is defined
and the diagram

f̄ ∗g!(−)⊗ f̄ ∗g∗(∗)
α

��

γ⊗ξ−1
//

41

ḡ!f ∗(−)⊗ ḡ∗f ∗(∗) θ // ḡ!(f ∗(−)⊗ f ∗(∗))
α

��
f̄ ∗(g!(−)⊗ g∗(∗)) θ // f̄ ∗g!(−⊗ ∗) γ // ḡ!f ∗(−⊗ ∗)

is commutative.

Proof. To get the first diagram, apply Lemma 1.2.7 to the cube

CX × CZ
f̄∗×Id//

Id⊗g∗
��?????? CV × CZ

Id⊗ḡ∗f∗
��??????

CX
α−1

;C�����
�����

f̄∗
// CV

CZ × CZ

g∗×Id

OO

⊗ ��??????

CZ

α−1
*********

*********

PX********

********

g∗

OO

f∗
// CY

ξ

[c ???????????????

???????????????

ḡ∗

OO

CX × CZ
f̄∗×Id// CV × CZ

Id⊗ḡ∗f∗
��??????

CV

CZ × CZ

g∗×Id

OO

⊗ ��??????
f∗×Id// CY × CZ

ξ×id

[c ???????????????

???????????????

ḡ∗×Id

OO

Id⊗f∗ ��??????

CZ

α−1
;C�����

�����

f∗
// CY

PX******************

******************

ḡ∗

OO

which is commutative by 31 (using fḡ = gf̄). This gives a cube whose commutativity is
the one of 40 . Exchanging the top and bottom faces of this new cube (thus reversing the
vertical arrows), inverting the front (ε), back (ε×Id) and sides (π) morphisms of functors
and applying again Lemma 1.2.7 to this new cube shows that 41 is commutative too.

5.3. Associativity of products. We now establish a few commutative diagrams
implied by the compatibility of f ∗ with the associativity of the tensor product. For
simplicity, we hide in diagrams all associativity morphisms and bracketing concerning the
tensor product (as if the tensor product was strictly associative).
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Since f ∗ is monoidal, the diagram (involving α)

f ∗A⊗ f ∗B ⊗ f ∗C //

�� 42

f ∗(A⊗B)⊗ f ∗C

��
f ∗A⊗ f ∗(B ⊗ C) // f ∗(A⊗B ⊗ C)

is commutative.

5.3.1. Lemma. Under assumptions (Af) and (Bf), the diagram (involving λ)

f∗A⊗ f∗B ⊗ f∗C //

�� 43

f∗(A⊗B)⊗ f∗C

��
f∗A⊗ f∗(B ⊗ C) // f∗(A⊗B ⊗ C)

is commutative

Proof. Left to the reader.

5.3.2. Proposition. Under assumptions (Af) and (Bf), the following diagrams are
commutative.

f∗A⊗B ⊗ C
π

��

π
//

44

f∗(A⊗ f ∗B)⊗ C
π

��
f∗(A⊗ f ∗(B ⊗ C)) α−1

// f∗(A⊗ f ∗B ⊗ f ∗C)

f∗A⊗ f∗B ⊗ C
id⊗π

��

λ⊗id
//

45

f∗(A⊗B)⊗ C
π

��
f∗(A⊗ f∗(B ⊗ f ∗C)) λ // f∗(A⊗B ⊗ f ∗C)

Proof. Using Lemma 4.2.6 to decompose π, Diagram 44 is

f∗A⊗B ⊗ C
η∗∗ //

η∗∗

��

11

f∗A⊗ f∗f ∗B ⊗ C
η∗∗ ��

λ //

mf

f∗(A⊗ f ∗B)⊗ C
η∗∗��

f∗A⊗ f∗f ∗B ⊗ f∗f ∗C //

λ �� 43

f∗(A⊗ f ∗B)⊗ f∗f ∗C
λ��

f∗A⊗ f∗f ∗(B ⊗ C)α
−1

//

λ ++VVVVVVVVVVVV
f∗A⊗ f∗(f ∗B ⊗ f ∗C)

λ
//

mf

f∗(A⊗ f ∗B ⊗ f ∗C)

f∗(A⊗ f ∗(B ⊗ C))
α−1

33ggggggggggggg

and Diagram 45 is

f∗A⊗ f∗B ⊗ C
η∗∗ //

λ ��
mf

f∗A⊗ f∗B ⊗ f∗f ∗C
λ��

λ //

43

f∗A⊗ f∗(B ⊗ f ∗C)

λ��
f∗(A⊗B)⊗ C η∗∗ // f∗(A⊗B)⊗ f∗f ∗C λ // f∗(A⊗B ⊗ f ∗C)
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5.4. The monoidal functor f ∗ and products. We have the following diagram of
duality preserving functors

(C1)K × (C1)M
{f∗×f∗,βK×βM} ��

{−⊗∗,τK,M} // (C1)K⊗M
{f∗,βK⊗M}��

(C2)f∗K × (C2)f∗M

{−⊗∗,τf∗K,f∗M}
// (C2)f∗K⊗f∗M

IαK,M // (C2)f∗(K⊗M)

where Iα : (C2)f∗K⊗f∗M → (C2)f∗(K⊗M) is the duality preserving functor induced by α by
Lemma 3.2.6).

5.4.1. Proposition. (the pull-back respects the product) Under Assumption (Af), the
isomorphism of suspended bifunctors α : f ∗(−) ⊗ f ∗(∗) → f ∗(− ⊗ ∗) is an isomorphism
of duality preserving functors between the two duality preserving functors defined by the
compositions above.

5.4.2. Corollary. The pull-back and the product defined in Corollary 4.1.3 and Propo-
sition 4.4.6 satisfy

f ∗W (x.y) = IWαK,M (f ∗W (x).f ∗W (y))

for all x ∈ W((C1)K) and y ∈ W((C1)M) by Proposition 2.2.4 provided all necessary
assumptions about being strong are satisfied.

Proof Proof of Proposition 5.4.1. We start with a lemma.

5.4.3. Lemma. The composition

f ∗(−)⊗ (f ∗A⊗ f ∗B)
id⊗α // f ∗(−)⊗ f ∗(A⊗B) α // f ∗(−⊗ (A⊗B))

and the composition

f ∗[A⊗B,−]
β // [f ∗(A⊗B), f ∗(−)] αo // [f ∗A⊗ f ∗B,−]

are mates in Lemma 1.2.6 when J1 = −⊗(A⊗B), K1 = [A⊗B,−], J2 = −⊗(f ∗A⊗f ∗B),
K2 = [f ∗A⊗ f ∗B,−], H = f ∗ and H ′ = f ∗.

Proof. By uniqueness, it suffices to establish the commutativity of diagram H which is

f ∗[A⊗B,−]⊗ (f ∗A⊗ f ∗B)
β⊗id //

id⊗α ��
mf

[f ∗(A⊗B), f ∗(−)]⊗ (f ∗A⊗ f ∗B)

αo

vv

id⊗α��

gen

f ∗[A⊗B,−]⊗ f ∗(A⊗B) //

α
�� 10

[f ∗(A⊗B), f ∗(−)]⊗ f ∗(A⊗B)

coevl

uujjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

f ∗([A⊗B,−]⊗ (A⊗B))

coevl ��

[f ∗A⊗ f ∗B, f ∗(−)]⊗ (f ∗A⊗ f ∗B)

coevlrreeeeeeeeeeeeeeeeeeeeeeeeee

f ∗(−)
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Now, according to Definition 2.2.2, we need to prove that the following diagram is
commutative for any A,B,K and M .

f ∗[A,K]⊗ f ∗[B,M ]

α

��

β⊗β//

46

[f ∗A, f ∗K]⊗ [f ∗B, f ∗M ] τ // [f ∗A⊗ f ∗B, f ∗K ⊗ f ∗M ]

α
��

[f ∗A⊗ f ∗B, f ∗(K ⊗M)]

f ∗([A,K]⊗ [B,M ]) τ // f ∗[A⊗B,K ⊗M ]
β // [f ∗(A⊗B), f ∗(K ⊗M)]

αo
OO

We apply Lemma 1.2.7 to the cube

C1 × C1
−⊗− //

f∗×f∗

��??????? C1

f∗

��???????

C2 × C2

α
;C�������

������� −⊗− // C2

C1 × C1

(−⊗A)
×(−⊗B)

OO

f∗×f∗ ��???????

C2 × C2

α×α**********

**********

PX**********

**********

(−⊗f∗A)
×(−⊗f∗B)

OO

−⊗−
// C2

%

[c ??????????????????

??????????????????

−⊗(f∗A⊗f∗B)

OO

C1 × C1
−⊗− // C1

f∗

��???????

C2

C1 × C1

(−⊗A)
×(−⊗B)

OO

f∗×f∗ ��???????
−⊗− // C1

%

[c ??????????????????

??????????????????

−⊗(A⊗B)

OO

f∗ ��???????

C2 × C2

α
;C�������

�������

−⊗−
// C2

α◦(id⊗α)**********

**********

PX**********

**********

−⊗(f∗A⊗f∗B)

OO

which is easily shown to be commutative using the compatibility of f ∗ with the symmetry
and the associativity of the tensor product (diagrams 15 and 42 ). This yields a new cube
whose commutativity is the one of 46 using Lemma 5.4.3 to recognize the right face.

5.5. Projection formula. The last theorem we want to prove is a projection formula.

5.5.1. Theorem. (projection formula) Let C1 and C2 be closed categories and let f ∗ be
a monoidal functor (Assumption (Af)) from C1 to C2 satisfying Assumptions (Bf), (Cf)
and (Df). Let K and M be objects of C1. Then, π is a morphism of duality preserving
functors from

{Id⊗ Id, τK,M}{f∗ × Id, ζK × id}

to
{f∗, ζK⊗M}IθK,M{Id⊗ Id, τf !K,f∗M}{Id× f ∗, id× βM}.

5.5.2. Corollary. (projection formula for Witt groups) By Proposition 2.2.4, under
strongness assumptions necessary for their existence and when furthermore the morphism
θK,M : f !K ⊗ f ∗M → f !(K ⊗M) is an isomorphism, the pull-back, push-forward and
product on Witt groups defined in corollaries 4.1.3, 4.3.4 and Proposition 4.4.6 satisfy the
equality

fW∗ (IWθK,M (x.f ∗W (y))) = fW∗ (x).y

in W((C1)K⊗M) for all x ∈W((C2)f !K) and y ∈W((C1)M).
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Proof Proof of Theorem 5.5.1. According to Definition 2.2.2, we have to prove that
the following diagram is commutative for any A, B, K and M .

f∗[A, f
!K]⊗ [B,M ]

π
��

ζ //

47

[f∗A,K]⊗ [B,M ] τ // [f∗A⊗B,K ⊗M ]

f∗([A, f
!K]⊗ f ∗[B,M ])

β
��

[f∗(A⊗ f ∗B), K ⊗M ]

πo
OO

f∗([A, f
!K]⊗ [f ∗B, f ∗M ])

τ // f∗[A⊗ f ∗B, f !K ⊗ f ∗M ]
θ // f∗[A⊗ f ∗B, f !(K ⊗M)]

ζ

OO

Decomposing ζ as in its definition (see Theorem 4.2.9) and using a few mf diagrams and
Diagram 27 , it is easy to reduce this to the commutativity of the following diagram (with
N = f !K).

f∗[A,N ]⊗ [B,M ]
µ //

π
��

48

[f∗A, f∗N ]⊗ [B,M ] τ // [f∗A⊗B, f∗N ⊗M ]

f∗([A,N ]⊗ f ∗[B,M ])

β
��

[f∗(A⊗ f ∗B), f∗N ⊗M ]

πo
OO

f∗([A,N ]⊗ [f ∗B, f ∗M ]) τ // f∗[A⊗ f ∗B,N ⊗ f ∗M ]
µ // [f∗(A⊗ f ∗B), f∗(N ⊗ f ∗M)]

π−1

OO

which requires the following preliminary lemmas.

5.5.3. Lemma. The composition

f∗(−1 ⊗−2)⊗ f∗(A⊗ f ∗B) λ // f∗((−1 ⊗−2)⊗ (A⊗ f ∗B))
%��

f∗((−1 ⊗ A)⊗ (−2 ⊗ f ∗B))

and the composition

f∗([A,−1]⊗ [f ∗B,−2]) τ // f∗[A⊗ f ∗B,−1 ⊗−2]
µ // [f∗(A⊗ f ∗B), f∗(−1 ⊗−2)]

are mates in Lemma 1.2.6 when J1 = (−1 ⊗ A)× (−2 ⊗ f ∗B), K1 = [A,−1]× [f ∗B,−2],
J2 = −⊗ f∗(A⊗ f ∗B), K2 = [f∗(A⊗ f ∗B),−], and H = H ′ = f∗(−1 ⊗−2).

Proof. By uniqueness, it suffices to prove Diagram H which is here

f∗([A,−1]⊗ [f ∗B,−2])⊗ f∗(A⊗ f ∗B) τ //

λ
��

mf

f∗[A⊗ f ∗B,−1 ⊗−2]⊗ f∗(A⊗ f ∗B)

λ
��

µ

ww

f∗(([A,−1]⊗ [f ∗B,−2])⊗ (A⊗ f ∗B)) τ //

%
��

28

f∗([A⊗ f ∗B,−1 ⊗−2]⊗ (A⊗ f ∗B))

kkkkkkkkkkkkk
evl

uukkkkkkkkkkkkk

14

f∗(([A,−1]⊗ A)⊗ ([f ∗B,−2]⊗ f ∗B))

evl
��

[f∗(A⊗ f ∗B), f∗(−1 ⊗−2)]⊗ f∗(A⊗ f ∗B)

evlrreeeeeeeeeeeeeeeeeeeeeeeeee

f∗(−1 ⊗−2)
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5.5.4. Lemma. The composition

(−1 ⊗−2)⊗ f∗(A⊗ f ∗B)π
−1

// (−1 ⊗−2)⊗ (f∗A⊗B)
% // (−1 ⊗ f∗A)⊗ (−2 ⊗B)

and the composition

[f∗A,−1]⊗ [B,−2] τ // [f∗A⊗B,−1 ⊗−2]
(π−1)o// [f∗(A⊗ f ∗B),−1 ⊗−2]

are mates in Lemma 1.2.6 when J1 = (−1 ⊗ f∗A)× (−2 ⊗ B), K1 = [f∗A,−1]× [B,−2],
J2 = −⊗ f∗(A⊗ f ∗B), K2 = [f∗(A⊗ f ∗B),−], and H = H ′ = ⊗.

Proof. By uniqueness, it suffices to prove that diagram H commutes, which is

([f∗A,−1]⊗ [B,−2])⊗ f∗(A⊗ f ∗B) τ //

π−1

��
mf

[f∗A⊗B,−1 ⊗−2]⊗ f∗(A⊗ f ∗B)

π−1

��
(π−1)o

yy

([f∗A,−1]⊗ [B,−2])⊗ (f∗A⊗B) τ //

%
��

28

[f∗A⊗B,−1 ⊗−2]⊗ (f∗A⊗B)

lllllllllllll
evl

uulllllllllllllll

gen

([f∗A,−1]⊗ f∗A)⊗ ([B,−2]⊗B)

evl
��

[f∗(A⊗ f ∗B),−1 ⊗−2]⊗ f∗(A⊗ f ∗B)

evlrreeeeeeeeeeeeeeeeeeeeeeeee

(−1 ⊗−2)

The cube

C2 × C2
⊗ //

(−⊗f∗M)
×(−⊗f∗B)

??

��???

C2

−⊗(f∗M⊗f∗B)

��???????

C2 ⊗ C2

%

;C�������

������� ⊗ // C2

C1 × C1

f∗×f∗

OO

(−⊗M)⊗(−⊗B)
��???????

C1 × C1

α−1×α−1***********

***********

PX**********

**********

f∗×f∗

OO

⊗
// C1

α−1

[c ??????????????????

??????????????????

f∗

OO

C2 × C2
⊗ // C2

−⊗(f∗M⊗f∗B)

��???????

C2

C1 × C1

f∗×f∗

OO

(−⊗M)×(−⊗B)
��???????
⊗ // C1

α−1????????

????????

[c ????????

????????
f∗

OO

−⊗(M⊗B)
????

��??

C1 × C1

%
;C�������

�������

⊗
// C1

(id⊗α−1)
◦α−1**********

**********

PX*********

*********

f∗

OO

is commutative by a classical exercise on monoidal functors, symmetry and associativity.
Applying Lemma 1.2.7 to it, we get a new cube, in which the morphism of functors on
the right face is (id⊗α−1)◦π, simply because π is the mate of α−1 (by Proposition 4.2.5)
and (id ⊗ α−1) is just a change in the parameter. The commutativity of the cube thus
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obtained can be rewritten as the commutativity of the cube

C2 × C1
f∗×Id //

Id×f∗

��??????? C1 × C1

⊗

��???????

C2 × C2

π−1

;C�������

������� f∗(−⊗−) // C1

C2 × C1

(−⊗A)
×(−⊗B)

OO

Id×f∗ ��???????

C2 × C2

id×α***********

***********

PX**********

**********

(−⊗A)
×(−⊗B)

OO

f∗(−⊗−)
// C1

x

[c ??????????????????

??????????????????

−⊗f∗(A⊗f∗B)

OO

C2 × C1
f∗×Id // C1 × C1

⊗

��???????

C1

C2 × C1

(−⊗A)
×(−⊗B)

OO

Id×f∗ ��???????
f∗×Id // C1 × C1

λ×id?????????

?????????

[c ????????

????????

(−⊗f∗A)
×(−⊗B)

OO

⊗ ��???????

C2 × C2

π−1
;C�������

�������

f∗(−⊗−)
// C1

y

PX**********************

**********************

−⊗f∗(A⊗f∗B)

OO

where x and y are the first compositions in lemmas 5.5.3 and 5.5.4. Applying one more
time Lemma 1.2.7 to this new cube yields another one whose commutativity is the one of
48 .

6. Various reformulations

This section is devoted to reformulations of the main theorems in view of applications.
The corollaries on Witt groups show that these reformulations are useful. The reformu-
lations are obtained by changing the duality at the source or at the target using functors
Iι (see Lemma 3.2.6) with ι adapted to the situation. For this reason, deriving those
reformulations from the original theorems is very easy and most of the times follows from
simple commutative diagrams involving functors of the form Iι. We therefore leave all
proofs of Sections 6.1, 6.2 and 6.3 as exercises for the reader.

6.1. Reformulations using f ! of unit objects. In this section, we use the unit
objects in the monoidal categories to formulate the main theorems in a different way.
In the application to Witt groups and algebraic geometry, this will relate f ! to f ∗ using
canonical sheaves. Let B′′ denote the subcategory of B′ in which the morphisms f are
such that (Df) is satisfied (π is an isomorphism).

For any morphism f : X → Y in B′, we define

ω′f = f !(1Y ).

To every morphism f , we associate a number df such that dgf = df + dg for composable
morphisms f and g. For example, for every object X we may choose a number dX and
set df = dX − dY . We define

ωf = T−dff !(1Y ).

6.1.1. Remark. In applications to schemes, df can be the relative dimension of a mor-
phism f and dX can be the relative dimension of a smooth X over a base scheme. In
that case, ω′f is isomorphic to a shifted line bundle and ωf to a line bundle (the canonical
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sheaf). This explains why we introduce df and ωf . On the other hand, it is always pos-
sible to set df = 0 for any morphism f , in which case ωf = ω′f , thus statements in terms
of ωf also apply to ω′f .

For any two composable morphisms f and g in B′′, let us denote by i′g,f the composition

ω′f ⊗ f ∗(ω′g) = f !(1Y )⊗ f ∗(ω′g)
θ→ f !(ω′g) = f !g!(1Z)

c' (gf)!(1Z) = ω′gf

and
ig,f : ωf ⊗ f ∗(ωg) −→ ωgf

the composition obtained by the same chain of morphisms and then desuspending.

6.1.2. Lemma. For any composable morphisms X
f //Y

g //Z
h //V in B′′, the dia-

gram of isomorphisms

ωf ⊗ f ∗(ωhg)ihg,f
qqdddddddddddd ωf ⊗ f ∗(ωg ⊗ g∗(ωh))id⊗f∗ih,g

oo

o (id⊗a)◦(id⊗α−1)��
ωhgf

ωgf ⊗ (gf)∗(ωh)
ih,gf

mmZZZZZZZZZZZ
ωf ⊗ f ∗(ωg)⊗ (gf)∗(ωh)

ig,f⊗idoo

is commutative. In other words, ig,f (as well as i′g,f) satisfies a cocycle condition.

We can then reformulate the main theorems 4.2.9, 5.1.9, 5.2.1 and 5.5.1 and their
corollaries for Witt groups as follows.

6.1.3. Definition. (push-forward) Let f : X → Y be a morphism in B′′ and K be an
object in CY . We define a duality preserving functor CX,ω′f⊗f∗K → CY,K by the composi-

tion {f∗, ζK}Iθ1,K . We denote it simply by {f∗} in the rest of the section (K is always
understood).

6.1.4. Definition. (push-forward for Witt groups) When the dualities are strong and
θ1,K is an isomorphism, {f∗} induces a push-forward

fW∗ : Wi+df (X,ωf ⊗ f ∗K)→Wi(Y,K)

on Witt groups (recall Proposition 3.2.5 to switch from suspending ω′f to the suspended
duality used in Definition 2.1.5 of shifted Witt groups).

6.1.5. Theorem. (composition of push-forwards) Let f : X → Y and g : Y → Z be
morphisms in B′′ and K be an object of CZ. The morphism bg,f : (gf)∗ → g∗f∗ (see
Section 5.1) is duality preserving between the compositions of duality preserving functors
in the diagram

CX,ω′f⊗f∗(ω′g⊗g∗K)

{f∗} ��

Iι // CX,ω′gf⊗(gf)∗K

{(gf)∗}
��

bg,f

px jjjjjjjjjj
jjjjjjjjjj

CY,ω′g⊗g∗K {g∗}
// CZ,K

where ι is the composition

ω′f ⊗ f ∗(ω′g ⊗ g∗K) Id⊗α−1
// ω′f ⊗ f ∗ω′g ⊗ f ∗g∗K

i′g,f⊗ag,f // ω′gf ⊗ (gf)∗K.
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6.1.6. Corollary. (composition of push-forwards for Witt groups) For f and g as in
the theorem, the push-forwards on Witt groups of Definition 6.1.4 satisfy

gW∗ f
W
∗ = (gf)W∗ I

W
ι .

6.1.7. Theorem. (base change) In the situation of Theorem 5.2.1, with furthermore g
and ḡ in B′′, the morphism of functors ε : g∗f

∗ → f̄ ∗ḡ∗ is duality preserving between the
two compositions of duality preserving functors in the diagram

CV,f̄∗(ω′g⊗g∗K)
Iι // CV,ω′ḡ⊗ḡ∗f∗K

{ḡ∗}

''PPPPPPPP

CX,ω′g⊗g∗K

{f̄∗} 66lllllllll

{g∗}
// CZ,K {f∗}

//

ε

KS

CY,f∗K

where ι is defined as the composition

f̄ ∗(ω′g ⊗ g∗K) α−1
// f̄ ∗ω′g ⊗ f̄ ∗g∗K

Id⊗ξ
��

f̄ ∗ω′g ⊗ ḡ∗f ∗K
γ1⊗Id// ḡ!f ∗1⊗ ḡ∗f ∗K ' ω′ḡ ⊗ ḡ∗f ∗K.

6.1.8. Corollary. (base change for Witt groups) In the situation of the theorem, when
furthermore γ1 : f̄ ∗g!1 → ḡ!f ∗1 is an isomorphism, the push-forwards and pull-backs for
Witt groups of Definition 6.1.4 and Corollary 4.1.3 satisfy

f ∗Wg
W
∗ = ḡW∗ I

W
ι f̄

∗
W .

6.1.9. Theorem. (projection formula) In the situation of Theorem 5.5.1, π is a mor-
phism of duality preserving functors between the two compositions in the diagram

Cω′f⊗f∗K × Cf∗M
{⊗} // Cω′f⊗f∗K⊗f∗M

IId⊗αK,M // Cω′f⊗f∗(K⊗M)

{f∗}
��

Cω′f⊗f∗K × CM
{Id×f∗}

OO

{f∗×Id} // CK × CM

π
KS

{⊗} // CK⊗M

6.1.10. Corollary. (projection formula for Witt groups) In the situation of the theo-
rem, the push-forward, pull-back and product on Witt groups of Definition 6.1.4, Corollary
4.1.3 and Proposition 4.4.6 satisfy

fW∗ I
W
Id⊗αK,M (x.f ∗W (y)) = fW∗ (x).y

in Wi+j(Y,K ⊗M) for any x ∈Wi+df (X,ωf ⊗ f ∗K) and y ∈Wj(Y,M).

6.2. Reformulations using morphisms to correct the dualities. We now
reformulate the main results using a convenient categorical setting which allows us to
display the previous results in an even nicer way. This will be useful in applications.

We define new categories.
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6.2.1. Definition. Let B∗ be the category whose objects are pairs (X,K) with X ∈ B,
K ∈ CX , and whose morphisms from (X,K) to (Y, L) are pairs (f, φ) where f : X → Y is
a morphism in B and φ : f ∗L→ K is a morphism in CX . The composition is defined by
(g, ψ)(f, φ) = (gf, φ ◦ f ∗(ψ) ◦ (ag,f )

−1). The identity morphism on (X,K) is (IdX , IdK)
and the composition is clearly associative.

6.2.2. Definition. Let B! be the category whose objects are pairs (X,K) with X ∈ B′,
K ∈ CX , and whose morphisms from (X,K) to (Y,M) are pairs (f, φ) where f : X → Y
is a morphism in B′ and φ : K → f !M is a morphism in CX . The composition is defined
by (g, ψ)(f, φ) = (gf, cg,f ◦ f !(ψ) ◦ φ). The identity morphism on (X,K) is (IdX , IdK)
and the composition is clearly associative.

For applications to Witt groups, we need the objects defining the dualities to be
dualizing and the duality preserving functors to be strong. We thus define two more
categories.

6.2.3. Definition. Let B∗W denote the subcategory of B∗ in which the objects (X,K) are
such that K is dualizing ($K is an isomorphism) and the morphisms (f, φ) from (X,K)
to (Y, L) are such that φ and βf,L are isomorphisms.

6.2.4. Definition. Let B!
W denote the subcategory of B! in which the objects (X,K)

are such that K is dualizing ($K is an isomorphism) and the morphisms (f, φ) are such
that φ is an isomorphism.

Using the categories B! and B∗ and their subcategories, the main theorems 4.1.2, 4.2.9,
5.1.3, 5.1.9, 5.2.1, 5.5.1 and their corollaries on Witt groups can be rephrased as follows.

6.2.5. Definition. (pull-back) For any morphism (f, φ) : (X,K) → (Y, L) in B∗, we
define a duality preserving functor |f, φ|∗ : CY,L → CX,K by the composition

CY,L
{f∗,βL} // CX,f∗L

Iφ // CX,K .

6.2.6. Definition. (pull-back on Witt groups) For any morphism (f, φ) from (X,K)
to (Y, L) in B∗W , the duality preserving functor |f, φ| induces a morphism

|f, φ|∗W : Wi(Y, L)→Wi(X,K)

on Witt groups.

6.2.7. Theorem. (composition of pull-backs) Let (f, φ) and (g, ψ) be composable mor-
phisms in B∗. The morphism ag,f : f ∗g∗ → (gf)∗ is a morphism of duality preserving
functors as in the following diagram.

CY,L
|f,φ|∗

%%KKKKKK
ag,f

��CZ,M |(g,ψ)(f,φ)|∗
//

|g,ψ|∗ 99ssssss
CX,K
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6.2.8. Corollary. (composition of pull-backs for Witt groups) Let (f, φ) and (g, ψ) be
composable morphisms in B∗W . Then the pull-backs for Witt groups of Definition 6.2.6
satisfy |(g, ψ)(f, φ)|∗W = |f, φ|∗W |g, ψ|

∗
W . In other words, W∗ is a contravariant functor

from B∗W to graded abelian groups.

6.2.9. Definition. (push-forward) For any morphism (f, φ) : (X,K) → (Y, L) in B!,
we define a duality preserving functor |f, φ|∗ : CX,K → CY,L by the composition

CX,K
Iφ // CX,f !L

{f∗,ζL} // CY,L.

6.2.10. Definition. (push-forward for Witt groups) For any morphism (f, φ) from
(X,K) to (Y, L) in B!

W , the duality preserving functor |f, φ|∗ induces a morphism on

Witt groups |f, φ|W∗ : Wi(X,K)→Wi(X,L).

6.2.11. Theorem. (composition of push-forwards) Let (f, φ) and (g, ψ) be composable
morphisms in B!. The morphism bg,f : (gf)∗ → g∗f∗ is a morphism of duality preserving
functors as in the following diagram.

CY,L
|g,ψ|∗

%%KKKKKK

CX,K |(g,ψ)(f,φ)|∗
//

|f,φ|∗ 99ssssss bg,f

KS

CZ,M

6.2.12. Corollary. (composition of push-forwards for Witt groups) Let (f, φ) and
(g, ψ) be composable morphisms in B!

W . Then the push-forwards for Witt groups of Def-
inition 6.2.10 satisfy |(g, ψ)(f, φ)|W∗ = |g, ψ|W∗ |f, φ|

W
∗ . In other words, W∗ is a covariant

functor from B!
W to graded abelian groups.

6.2.13. Theorem. (base change) Let (f, φ) and (f̄ , φ̄) be morphisms in B∗, (g, ψ), and
(ḡ, ψ̄) be morphisms in B! fitting in the diagram

(V,N)
(ḡ,ψ̄) //

(f̄ ,φ̄) ��

(Y, L)

(f,φ)
��

(X,M)
(g,ψ)

// (Z,K)

such that fḡ = gf̄ ∈ B, such that Assumption (Ef,g) is satisfied and such that the diagram

f̄ ∗Mφ̄

rrfffffffffff
f̄∗(ψ) // f̄ ∗g!K

γK��N
ψ̄

,,XXXXXXXXXXXX

ḡ!L ḡ!f ∗K
ḡ!(φ)

oo
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is commutative. Then the morphism ε : f ∗g∗ → ḡ∗f̄
∗ is duality preserving between the

compositions of duality preserving functors in the diagram.

CV,N
|ḡ,ψ̄|∗ // CY,L

CX,M
|f̄ ,φ̄|∗

OO

|g,ψ|∗
// CZ,K

|f,φ|∗
OO

ε

ai KKKKKK

KKKKKK

6.2.14. Corollary. (base change for Witt groups) In the situation of the theorem,
assuming furthermore that (f, φ) and (f̄ , φ̄) are in B∗W , (g, ψ) and (ḡ, ψ̄) are in B!

W and
γK : f̄ ∗g!K → ḡ!f ∗K is an isomorphism, the pull-backs and push-forwards on Witt groups

of definitions 6.2.6 and 6.2.10 satisfy |ḡ, ψ̄|W∗ |f̄ , φ̄|
∗
W = |f, φ|∗W |g, ψ|

W
∗ .

6.2.15. Theorem. (projection formula) Let f : X → Y be a morphism in B′′. Let
K,M ∈ CX and L,N ∈ CY be objects,

φ : f ∗L→ K, ψ : M → f !N and χ : M ⊗K → f !(N ⊗ L)

be morphisms such that

M ⊗K χ // f !(N ⊗ L)

M ⊗ f ∗L
Id⊗φ

OO

ψ⊗Id// f !N ⊗ f ∗L
θN,L

OO

is commutative.
Then, the morphism π is duality preserving between the compositions in the diagram

CX,M × CX,K
{⊗} // CX,M⊗K

|f,χ|∗
&&MMMMMMM

CX,M × CY,L

Id×|f,φ|∗ 55lllllllll |f,ψ|∗×Id // CY,N × CY,L
π

KS

{⊗} // CY,N⊗L
6.2.16. Corollary. (projection formula for Witt groups) In the situation of the the-
orem, assuming furthermore that (f, φ) is in B∗W and (f, ψ) and (f, χ) are in B!

W , the
push-forward, pull-back and product for Witt groups of Definition 6.2.10, Definition 6.2.6
and Proposition 4.4.6 satisfy |f, χ|W∗ (x.|f, φ|∗W (y)) = |f, ψ|W∗ (x).y in Wi+j(Y,N ⊗ L) for
any x ∈Wi(X,M) and y ∈Wj(Y, L).

6.3. Reformulations using a final object. When the category B has a final object
denoted by Pt that is also a final object for the subcategory B′′, there is a reformulation
of the main results using absolute (that is relative to the final object) canonical objects
rather than relative ones as in section 6.1. For any object X ∈ B′, let pX denote the
unique morphism X → Pt. We define dX = dpX , ω′X = ω′pX and ωX = ωpX .

6.3.1. Definition. Let B∗ be the category whose objects are pairs (X,K) with X ∈ B′′,
K ∈ CX , and whose morphisms from (X,K) to (Y, L) are pairs (f, φ) where f : X → Y is
a morphism in B′′ and φ : K → f ∗L is a morphism in CX . The composition is defined by
(g, ψ)(f, φ) = (gf, bg,f )f

∗(ψ)φ. The identity of (X,K) is (IdX , IdK) and the composition
is clearly associative.
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6.3.2. Definition. Let BW∗ be the subcategory of B∗ in which the objects (X,K) are
such that ωX ⊗K is dualizing and the morphisms (f, φ) : (X,K) → (Y, L) are such that
ι defined as the composition

ω′X ⊗K
(cf,pY )−1⊗φ

// f !ω′Y ⊗ f ∗L
θω′
Y
,L

// f !(ω′Y ⊗ L).

is an isomorphism.

6.3.3. Definition. (push-forward) For any morphism (f, φ) : (X,K) → (Y, L) in B∗,
we define a duality preserving functor |f, φ|∗ : CX,ω′X⊗K → CY,ω′Y ⊗L by the composition

CX,ω′X⊗K
Iι // CX,f !(ω′Y ⊗L)

{f∗,ζω′
Y
⊗L}

// CY,L.

where ι is defined as in Definition 6.3.2 (but not necessarily an isomorphism).

6.3.4. Definition. (push-forward for Witt groups) Let (f, φ) be a morphism in BW∗ .
Then the duality preserving functor |f, φ|∗ of Definition 6.3.3 induces a morphism

|f, φ|W∗ : Wi+dX (X,ωX ⊗K)→Wi+dY (Y, ωY ⊗ L)

on Witt groups.

6.3.5. Theorem. (composition of push-forwards) Let (f, φ) and (g, ψ) be composable
morphisms in B∗. Then the morphism bg,f : (gf)∗ → g∗f∗ is a morphism of duality
preserving functors as in the following diagram.

CY,ω′Y ⊗L |g,ψ|∗
''OOOOOOOO

CX,ω′X⊗K |(g,ψ)(f,φ)|∗
//

|f,φ|∗ 77oooooooo bg,f

KS

CZ,ω′Z⊗M

6.3.6. Corollary. (composition of push-forwards for Witt groups) Let (f, φ) and (g, ψ)
be composable morphisms in BW∗ . Then the push-forwards of Definition 6.3.4 satisfy
|(g, ψ)(f, φ)|W∗ = |g, ψ|W∗ |f, φ|

W
∗ . In other words, W∗ is a covariant functor from BW∗ to

graded abelian groups.

To state a base change theorem, we need the following. Let (f, φ) and (f̄ , φ̄) be
morphisms in B∗ and (g, ψ) and (ḡ, ψ̄) be morphisms in B∗ with sources and targets as
on the diagram

(V, ω′V ⊗N)

(f̄ ,φ̄) ��

(V,N)
(ḡ,ψ̄) // (Y, L) (Y, ω′Y ⊗ L)

(f,φ)
��

(X,ω′X ⊗M) (X,M)
(g,ψ)

// (Z,K) (Z, ω′Z ⊗K)
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such that fḡ = gf̄ ∈ B and such that Assumption (Ef,g) is satisfied. The morphism φ
induces a morphism “φ” defined by the composition

f̄ ∗(ω′X ⊗ g∗K)

“φ”
���
�

α−1
// f̄ ∗ω′X ⊗ f̄ ∗g∗K

f̄∗(cpZ,g)−1⊗Id
// f̄ ∗g!ω′Z ⊗ f̄ ∗g∗K

γ⊗ξ−1

��
ḡ!(ω′Y ⊗ L) ḡ!f ∗(ω′Z ⊗K)

ḡ!(φ)
oo ḡ!f ∗ω′Z ⊗ ḡ∗f ∗Kα◦θ

oo

The morphism ψ̄ induces a morphism “ψ̄” defined by the composition

ω′V ⊗N
(cpY ,ḡ)−1⊗ψ̄

// ḡ!ω′Y ⊗ ḡ∗L
θ // ḡ!(ω′Y ⊗ L)

6.3.7. Theorem. (base change) Let (f, φ), (f̄ , φ̄), (g, ψ) and (ḡ, ψ̄) be as above. We
assume that the diagram

ω′V ⊗N
“ψ̄” // ḡ!(ω′Y ⊗ L)

f̄ ∗(ω′X ⊗M)

φ̄

OO

ψ // f̄ ∗(ωX ⊗ g∗K)

“φ”
OO

is commutative. Then, ε : f ∗g∗ → ḡ∗f̄
∗ is a morphism of duality preserving functors as

in the following diagram.

CV,ω′V ⊗N
|ḡ,ψ̄|∗ // CY,ω′Y ⊗L

CX,ω′X⊗M
|f̄ ,φ̄|∗

OO

|g,ψ|∗
// CZ,ω′Z⊗K

|f,φ|∗
OO

ε

ck PPPPPPP

PPPPPPP

6.3.8. Corollary. (base change for Witt groups) In the situation of the theorem, as-
suming furthermore that (f, φ) and (f̄ , φ̄) are in B∗W and (g, ψ) and (ḡ, ψ̄) are in BW∗ and
γωZ : f̄ ∗g!ωZ → ḡ!f ∗ωZ is an isomorphism. Then the pull-backs and push-forwards on
Witt groups of definitions 6.2.6 and 6.3.4 satisfy

|ḡ, ψ̄|W∗ |f̄ , φ̄|
∗
W = |f, φ|∗W |g, ψ|

W
∗ .

6.3.9. Theorem. (projection formula) Let f : X → Y be a morphism in B′′. Let
K,M ∈ CX and L,N ∈ CY be objects,

φ : f ∗L→ K, ψ : M → f ∗N and χ : M ⊗K → f ∗(N ⊗ L)

be morphisms such that

M ⊗K χ //

ψ⊗Id
��

f ∗(N ⊗ L)

α−1

��
f ∗N ⊗K Id⊗φ// f ∗N ⊗ f ∗L
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is commutative. Then, the morphism π is duality preserving between the compositions in
the diagram

CX,ω′X⊗M × CX,K
{⊗} // CX,ω′X⊗M⊗K

|f,χ|∗
''NNNNNNN

CX,ω′X⊗M × CY,L

Id×|f,φ|∗ 55jjjjjjjjjj |f,ψ|∗×Id // CY,N × CY,L
π

KS

{⊗} // CY,N⊗L

6.3.10. Corollary. (projection formula for Witt groups) In the situation of the the-
orem, assuming furthermore that (f, φ) is in B∗W and (f, ψ) and (f, χ) are in BW∗ . Then
the pull-back, push-forwards and product for Witt groups of definitions 6.2.6, 6.3.4 and
Proposition 4.4.6 satisfy |f, χ|W∗ (x.|f, φ|∗W (y)) = |f, ψ|W∗ (x).y.

A. Signs in the category of complexes

Let E be an exact category E admitting infinite countable direct sums and products, with
a tensor product • adjoint to an internal Hom (denoted by h) in the sense of Definition
1.3.1. In this section, we explain how certain signs have to be chosen in order to induce
a suspended closed symmetric monoidal structure on the category of chain complexes of
E (resp. the homotopy category, the derived category). We use homological complexes,
as it is the usual convention in the articles about Witt groups, so the differential of a
complex is

dAi : Ai → Ai−1.

The suspension functor T is
(TA)n = An−1

and the tensor product and the internal Hom are given by

(A⊗B)n =
⊕
i+j=n

Ai •Bj

and
[A,B]n =

∏
j−i=n

h(Ai, Bj).

In table 2, we give a possible choice of signs for the translation functor, tensor product, the
associativity morphism (denoted by asso), the symmetry morphism and the adjunction
morphism (denoted by ath), and what it induces on the internal Hom using Proposition
1.5.8. In table 3 further below, we state the compatibility that these signs must satisfy
to ensure that all axioms of suspended closed symmetric monoidal categories considered
hold.

Balmer [B00], [B01], Gille and Nenashev [G02] [GN03] always consider strict dualities,
that is εth1 = 1. The signs chosen in [B01, 2.6] imply that ε1hi,0 = 1. The choices made by

[GN03, Example 1.4] are ε1⊗i,j = 1 and ε2⊗i,j = (−1)i. In [G02, p. 111] the signs ε1hi,j = 1 and
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Definition of Sign Choice Locus

TA εTi −1 dTAi+1 = εTi diA

A⊗B ε1⊗i,j 1 ε1⊗i,j d
A
i • idBj

ε2⊗i,j (−1)i ε2⊗i,j idAi • dBj
tp1,A,B εtp1i,j 1 εtp1i,j idAi•Bj

tp2,A,B εtp2i,j (−1)i εtp2i,j idAi•Bj

assoA,B,C εassoi,j,k 1 εassoi,j,k ((Ai •Bj) • Ck → Ai • (Bj • Ck))
sA,B εsi,j (−1)ij εsi,j(Ai •Bj → Bj • Ai)

athA,B,C εathi,j (−1)i(i−1)/2 εathi,j (Hom(Ai •Bj, Ci+j)

→ Hom(Ai, h(Bj, Ci+j)))

[A,B] ε1hi,j 1 ε1hi,j(d
A
i+1)]

ε2hi,j (−1)i+j+1 ε2hi,j(d
B
j )]

th1,A,B εth1
i,j 1 εth1

i,j idh(Ai,Bj)

th2,A,B εth2
i,j (−1)i+j εth2

i,j idh(Ai,Bj)

Table 2: Sign definitions

ε2hi,j = (−1)i+j+1 are chosen. Finally, the sign chosen for $ in [G02, p. 112] corresponds

via our definition of $ (see Section 3.2) to the equality εathj−i,iε
ath
i,j−iε

s
j−i,i = (−1)j(j−1)/2. It is

possible to choose the signs in a way compatible with all these choices and our formalism.
It is given in the third column of Table 2. More precisely, we have the following theorem.

A.0.11. Theorem. Let a, b ∈ {+1,−1}. Then

ε1⊗i,j = 1 εtp1i,j = a

ε2⊗i,j = (−1)i εtp2i,j = a(−1)i

ε1hi,j = 1 εth1
i,j = 1

ε2hi,j = (−1)i+j+1 εth2
i,j = a(−1)i+j

εathi,j = b(−1)i(i−1)/2 εsi,j = (−1)ij

εTi = −1

satisfies all equalities of Table 3 as well as εathj−i,iε
ath
i,j−iε

s
j−i,i = (−1)j(j−1)/2. Therefore,

for any exact category E the category of chain complexes Ch(E) and its bounded variant
Chb(E) may be equipped with the entire structure of suspended symmetric monoidal cat-
egory discussed in Section 3.1. Moreover, all signs may be chosen in a compatible way
with all the above sign choices of Balmer, Gille and Nenashev.

Proof. Straightforward.
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These structures trivially pass to the homotopy category. If the exact category E one
considers has enough injective and projective objects, one obtains a left derived functor
of the tensor product and a right derived functor of the internal Hom which are exact in
both variables.
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compatibility reason

1 ε1⊗i,j ε
1⊗
i,j−1ε

2⊗
i,j ε

2⊗
i−1,j = −1 A⊗B is a complex

2 ε⊗1
i,j ε
⊗1
i,j+kε

⊗1
i+j,kε

asso
i,j,k ε

asso
i−1,j,k asso is a morphism

3 ε⊗2
i,j ε
⊗1
j,kε
⊗1
i+j,kε

⊗2
i,j+kε

asso
i,j,k ε

asso
i,j−1,k

4 ε⊗2
i+j,kε

⊗2
j,kε
⊗2
i,j+kε

asso
i,j,k ε

asso
i,j,k−1

5 εassoi,j,k ε
asso
i,j+k,lε

asso
j,k,l ε

asso
i,j,k+lε

asso
i+j,k,l = 1 the pentagon of [ML98, p. 252] commutes

6 ε1⊗i,j ε
2⊗
j,i ε

s
i,jε

s
i−1,j = 1 sA,B is a morphism

7 ε1⊗j,i ε
2⊗
i,j ε

s
i,jε

s
i,j−1 = 1

8 εsi,jε
s
j,i = 1 s is self-inverse

9 εsj,kε
s
i,kε

s
i+j,kε

asso
i,j,k ε

asso
k,i,jε

asso
i,k,j = 1 the hexagons of [ML98, p. 253] commutes

10 εTi ε
T
i+jε

1⊗
i,j ε

1⊗
i+1,jε

tp1
i,j ε

tp1
i−1,j = 1 tp1,A,B is a morphism

11 εTi+jε
2⊗
i,j ε

2⊗
i+1,jε

tp1
i,j ε

tp1
i,j−1 = 1

12 εTj ε
T
i+jε

2⊗
i,j ε

2⊗
i,j+1ε

tp2
i,j ε

tp2
i,j−1 = 1 tp2,A,B is a morphism

13 εTi+jε
1⊗
i,j ε

1⊗
i,j+1ε

tp2
i,j ε

tp2
i−1,j = 1

14 εtp1i,j ε
tp1
i,j+1ε

tp2
i,j ε

tp2
i+1,j = −1 the square in Definition 1.4.12

anti-commutes

15 εtp1i,j ε
tp1
i+j,kε

tp1
i,j+kε

asso
i,j,k ε

asso
i+1,j,k = 1 assoc et al. commute

16 εtp2i,j ε
tp1
i+j,kε

tp2
i,j+kε

tp1
j,k ε

asso
i,j,k ε

asso
i,j+1,k = 1

17 εtp2i+j,kε
tp2
i,j+kε

tp2
j,k ε

asso
i,j,k ε

asso
i,j,k+1 = 1

18 εtp1i,j ε
tp2
j,i ε

s
i,jε

s
i+1,j = 1 the square s commutes

19 ε1hi,jε
1h
i,j−1ε

2h
i,jε

2h
i+1,j = −1 [A,B] is a complex

20 ε1⊗i,j ε
2⊗
i,j ε

1h
j−1,i+j−1ε

ath
i,j−1ε

ath
i−1,j = −1 ath is well defined

21 ε1⊗i,j ε
2h
j,i+jε

ath
i−1,jε

ath
i,j = 1

Table 3: Sign definitions
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