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CATEGORIES WITH SLICING

THORSTEN PALM

Abstract. Prior work towards the subject of higher-dimensional categories gives rise
to several examples of a category over Cat to which the slice-category construction can
be lifted universally. The present paper starts by supplying this last clause with a precise
meaning. It goes on to establish for any such category a certain embedding in a presheaf
category, to describe the image, and hence to derive conditions collectively sufficient
for that functor to be an equivalence. These conditions are met in the foremost of the
examples: the category of dendrotopic sets.

Introduction

One of the fundamental concepts of category theory is the category-of-elements construc-
tion. For a fixed category s it associates with each presheaf (= contravariant set-valued
functor) X on s a category s↓X, thus giving rise to a functor s↓( ) from Setsop

to Cat
(provided s is small). This functor is faithful and conservative, and so it is not surprising
that it allows for many presheaf concepts to be discussed at the level of categories. Here
are some paradigmatic facts. A presheaf is representable if and only if its image has a
terminal object. The presheaf morphism constructed in (the proof of) the Yoneda lemma
is mapped to the slice-category projection.

In this paper we examine a more general situation. Let A be a category, and let ∂
be a conservative functor from A to Cat. Suppose that the following two conditions are
satisfied.

(i) For any object A of A and any object a of A∂, the slice-category projection A∂↓a //

A∂ has a cartesian lifting A↓a // A. This morphism is to be called the slice-object
projection associated with A and a.

(ii) For any small category a and any a-shaped diagram P( ) in A mapped by ∂ to the
slice-category diagram a↓( ), the cocone a↓( ) // a of slice-category projections has
a cocartesian lifting P( )

// A (or, equivalently, P( ) has a colimit that is respected
by ∂).

We then call A together with ∂ a conservative category with slicing . The reader may want
to check at this point that Setsop

together with s↓( ) is an example indeed.
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Following the presheaf example we call an object A ∈ A represented iff it comes
equipped with a distinguished terminal object of A∂. We form the category Ǎ of represent-
ed objects and all their morphisms in A. A rather direct consequence of the axioms is
that the projection Ǎ // A is dense. We can accordingly view A as a full subcategory of

SetǍop

(provided A has small hom-sets).
The main theorem of this paper goes on to characterize the objects of A among the

presheaves on Ǎ. The statement involves the restriction X � // X> of a presheaf X on Ǎ to
the all-object subcategory Ǎ> whose morphisms are mapped by ∂ to functors respecting
the distinguished terminal objects “on the nose”: X belongs to A if and only if X> is a
small sum of representable presheaves on Ǎ> whose universal elements are respected by
the slice-object projections of Ǎ.

My first version of this theorem dealt with a single instance. In [5] I had introduced
the notions of ‘polytopic set ’ and of ‘dendrotopic set ’, the former as a basis for the latter,
and the latter as a replacement for the notion of ‘multitopic set’, which is central to
M. Makkai’s approach to the subject of weak higher-dimensional categories. A replacement,
that is, in the best possible sense: [5] and [2] together yield an equivalence between the
two categories in question. The paper [3], which had introduced multitopic sets, had also
shown that they form a presheaf category. Thus it was clear that dendrotopic sets form
a presheaf category. I now wanted to capture the extent to which polytopic sets, in spite
of all analogies, fall short of this ideal.

The proof I was pencilling down turned out to rely entirely on just a few properties.
Thus an axiomatic approach suggested itself (ultimately leading to the present account).
Once carried out, it brought the immediate boon that the result could easily be transferred
to the many variants of polytopic sets, some of which appear more or less implicitly in
[5], and the salient one of which is dendrotopic sets.

If A = Poly Set, the category of polytopic sets, with ∂ understood to assign to
each object its “face lattice”, then Ǎ = Poly, the full subcategory of polytopes , and
Ǎ> =

∑
n∈N Polyn, where Polyn is the full subcategory of n-dimensional polytopes. An

elementary combinatorial argument shows Polyn to be essentially small, and so the size
issue raised by the theorem in its general form can be disregarded here. The analogous
statements hold true for A = Dend Set, the category of dendrotopic sets. But a morphism
between two dendrotopes of the same dimension is unique and invertible. Thus the
conditions characterizing dendrotopic sets among the presheaves on the full subcategory
of dendrotopes are automatically met. Along these lines we obtain what is probably the
most direct proof of the fact that Dend Set is a presheaf category.

In the meantime Makkai wrote the paper [4], in one section of which he explores a
theme similar to ours. The main difference is that his underlying concrete objects are not
categories but mere sets.

The theorem applies even to situations where ∂ is not conservative. The precise
requirements are more complicated: roughly, we add the new condition that the cocones
arising by virtue of either one of the two old conditions arise for the other one as well. We
then simply speak of a category with slicing . The primary non-conservative example



CATEGORIES WITH SLICING 99

was the category of all (small) category presentations. It includes many interesting
conservative ones, such as Poly Set or the category of (upward) forests.

In view of the theorem we can recover the category A, as such, from the category Ǎ

and its subcategory Ǎ>. Can we also recover its structure as a category with slicing? Yes,
if we retain a structure on Ǎ analogous to the one in question. This structure comes in
the form of a functor to Čat, the category of small categories with designated terminal
object and all functors between them. In order for an arbitrary category with a functor
to Čat to occur as Ǎ in this way, it is necessary and sufficient that it satisfy a single
condition, namely (i) above. We call such a category a slicing site. A more abstract form
of this answer will be presented as a subordinate theorem.

This paper is divided into five sections. The odd-numbered ones properly contain the
bare logical necessities with regard to its central result: section 1 presents the axioms on
a category with slicing, section 3 the main theorem and section 5 its proof. Section 2
and the first half of section 4 are devoted to examples of categories with slicing, and the
remainder of section 4 treats slicing sites.

Before we start, a few conventions. We shall be dealing with two fairly distinct kinds
of categories. On the one hand, categories as ordinary mathematical objects. They are
small and of interest up to isomorphism; they are the objects of the large 1-category Cat.
On the other hand, categories as metamathematical objects. They are large (that is, in
general not small) and of interest up to equivalence; they are the objects of the “extra
large” 2-category CAT. It seems desirable to keep the two apart notationally: we use lower-
case letters for the first kind and upper-case letters for the second kind. This rule does
not only apply to the categories themselves, but also to the functors between them and
to the objects and morphisms they contain. Categories and functors take Fraktur type,
objects and morphisms take the usual italic type. Inconsistencies may be feared when
functors from a small category a to a large category A are concerned. In these situations,
however, we speak of a-shaped diagrams in A and use family notation (inasmuch as the
letters denoting diagrams in A are the same as the ones denoting objects in A, while the
arguments appear as subscripts). By a morphism between diagrams we of course mean a
natural transformation. Most of these rules will be proved by their exceptions, which will
therefore not have to be pointed out.

1. The Axioms

Let a be a category. Given an object a of a, we denote by a↓a the slice category of objects
over a and by ∆a

a the associated projection a↓a // a. The slice category has a terminal
object (a, 1a), which the projection maps to a. It moreover is universal with respect to
these data: for any category b with a terminal object b and any functor f : b // a with
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b · f = a, there is a unique functor f> : b // a↓a with b · f> = (a, 1a) and f> ·∆a
a = f(

b

a↓a a

b

(a, 1a) a
)
.

f>

��

f

$$JJJJJJJJJJJ

∆a
a

//

_

��




$$JJJJJJJJJJJJ

� //

Thus, in the large category 1↓Cat of categories with base object, the full subcategory of
categories with terminal base object is coreflective.

Any morphism α : a′ // a of a induces a functor a↓α : a↓a′ // a↓a, and we have
a↓α ·∆a

a = ∆a
a′ (

a↓a′

a↓a
a
)
.a↓α

��

∆a
a′

++WWWWWWWWWWWW

∆a
a

33ggggggggggggg

If a is small, we thus obtain an a-shaped diagram a↓( ) and a cocone ∆a
( ) : a↓( ) // a in

Cat. This cocone is in fact a universal one, that is: a colimit.
Now let f : b // a be a functor. It induces for each object b of b the slice functor

b↓b // a↓(b · f), which we shall (not entirely satisfactorily) denote by f↓b, and we have
f↓b ·∆a

b·f = ∆b
b · f (

b↓b

a↓(b · f)

b

a
)
.

f↓b
��

∆a
b·f

//

∆b
b //

f

��

In fact, using the universality of (a↓(b · f),∆a
b·f) we can express this functor as f↓b =

(∆b
b ·f)>, where the designated terminal object of b↓b is of course (b, 1b). Also the equations

f↓b′ · a↓(β · f) = b↓β · f↓b hold

(
b↓b′

a↓(b′ · f)

b↓b

a↓(b · f)
)
,

f↓b′
��

a↓(β·f)
//

b↓β //

f↓b
��

wherefore the f↓b form a morphism b↓( ) // a↓(( ) · f) of b-shaped diagrams in Cat.

We now turn to categories over Cat to which the slice-category construction, along with its
two universal properties, can be lifted. Thus we let A be a category that comes equipped
with a functor A // Cat, called the structural one and denoted by ∂, and we require that
four conditions are satisfied. The first two in all their explicitness are as follows.

(Sl 1) Let A ∈ A and a ∈ Cat be two objects with (an isomorphism) u : a
' // A∂.

For any object a ∈ a, there are an object Pa ∈ A with va : a↓a ' // Pa∂ and
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a cartesian morphism Da : Pa // A with Da∂ = va
−1 ·∆a

a · u

(
A 3 ∈ Cat

)
.

•
a

•
A∂

•
a↓a

◦
Pa∂

•
A

◦
Pa

'
u //

'
va //

∆a
a

��

Da∂

��

Da

��

Cartesianness ofDa means that for any objectQ ∈ A and any two morphisms
F : Q // A and g : Q∂ // Pa∂ with g · Da∂ = F∂, there is a unique
morphism G : Q // Pa with G ·Da = F and G∂ = g

(
A 3 ∈ Cat

)
.

•
A∂

•
Q∂

•
Pa∂

•
A

•
Q

•
Pa g //

Da∂

��
F∂

��??????????
G //

Da

��
F

��??????????

(Sl 2) Let a be a small category, and let P( ) be an a-shaped diagram in A with

v( ) : a↓( )
' // P( )∂ and each Pα : Pa′ // Pa (α : a′ // a ∈ a) cartesian.

There are an object A in A with u : a
' // A∂ and a cocartesian cocone

D( ) : P( )
// A with D( )∂ = v−1

( ) ·∆a
( ) · u

(
A 3 ∈ Cat

)
.

•
a

◦
A∂

•
a↓( )

•
P( )∂

◦
A

•
P( )

'
u //

'
v( ) //

∆a
( )

��

D( )∂

��

D( )

��

Cocartesianness of D( ) means that for any object B ∈ A, any cocone F( ) :
P( )

// B and any morphism g : A∂ // B∂ with D( )∂ · g = F( ), there is a
unique morphism G : A // B with D( ) ·G = F( ) and G∂ = g

(
A 3 ∈ Cat

)
.

•
A∂

•
B∂

•
P( )∂

•
A

•
B

•
P( )

g
//

F( )∂

��??????????

D( )∂

��
G

//

F( )

��??????????

D( )

��

We can bring these statements into a more digestible form by introducing the following
conventions. Here, as on certain other occasions, we let A live over an arbitrary base
category I, while we maintain the notation for our standard case I = Cat. By a diagram
A( ) in A above a diagram a( ) in I of the same shape let us mean one that comes equipped
with an isomorphism a( ) ' A( )∂. The definition specializes to the case of objects (shape 1),
morphisms (shape 2) and so on. Now if, say, an object A above a is already under

consideration, where u : a
' // A∂ is the implicit isomorphism, then a morphism F :
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B // A above f : b // a is understood to have this very u as the second constituent of
its own implicit isomorphism.

Our two conditions can now be restated as follows.

(Sl 1) For any small category a, any object A in A above a and an object a ∈ a,
there is a cartesian morphism to A above ∆a

a : a↓a // a.

(Sl 2) For any small category a and any a-shaped diagram P( ) in A above a↓( ),
there is a cocartesian cocone from P( ) above ∆a

( ) : a↓( ) // a.

In a sense we can do better than just hide the obtrusive isomorphisms behind a word.
Call a category A over I replete iff it “treats the objects of the base category as abstract”.

By this we mean that for two objects A ∈ A and b ∈ I and an isomorphism u : b
' // A∂,

there are always an object B ∈ A with B∂ = b and an isomorphism U : B ' // A with
U∂ = u. This lifting condition on isomorphisms of objects implies an analogous one on
isomorphisms of diagrams. We conclude that a category replete over Cat satisfies (Sl 1) or
(Sl 2) if and only if it satisfies the corresponding ‘strict’ condition, obtained by replacing
‘'’ with ‘=’.

Any category over I is equivalent as such to a replete one, for instance the “iso-comma”
category of the structural functor and the identity of I, while properties (Sl 1) and (Sl 2),
as well as all further properties we give prominence to, are passed along equivalences over
Cat. We can therefore assume all our abstract categories over Cat to be replete without
losing generality; in fact we shall often do so tacitly.

A special kind of category over I is a subcategory A ⊆ I, the structural functor being
the inclusion. Here ‘replete’ has its standard meaning: if a belongs to A, then so does

every isomorphism b
' // a of I. We may occasionally want to replace an arbitrary category

A over I with a replete subcategory equivalent over I. This is possible if and only if the
structural functor is faithful as well as full on isomorphisms, the latter statement meaning

that for any two objects A and B of A, any isomorphism u : B∂ ' // A∂ in I is the image

U∂ of an isomorphism U : B ' // A in A. (In fact, with the faithfulness condition in place
there is no need to demand explicitly that U be invertible.)

A few comments on the notions of a cartesian morphism and, more so, a cartesian cone (of
which the notion of a cocartesian cocone arises by dualization) may be due. The former
is standard, being essential in the definition of ‘fibration’. The latter is a generalization
(morphisms can be viewed as cones for 1-shaped diagrams) which suggests itself; not
surprisingly it has already appeared elsewhere ([7]). There is no room here to praise their
utility in full. What is relevant to us are the following facts.
• Cartesian morphisms are closed under composition and right division(1).
• A cone above a universal one is cartesian if and only if it is universal itself.

The second statement is immediately, up to dualization, related to axiom (Sl 2): we could
have just as well required that D( ) be a colimit (except that this alternative formulation

1When we say that a class of morphisms is closed under right division, we mean that with F and H ·F
it also contains H.
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would be less “symmetric”). The 1-shaped case is the well-known fact that a morphism
above an invertible one is cartesian if and only if it is invertible itself.

The idea of lifting the two universal properties enjoyed by the slice-category con-
struction would be implemented more accurately if we imposed the condition defining
cartesianness in (Sl 1) only on situations in which Q∂ has a terminal object and F∂ maps
it to a (we are tacitly assuming repleteness), so that g = F∂>. In fact, in this work the
relevant part of axiom (Sl 1) will only ever be applied to these situations. I have forgone
the modification thus suggested since on the one hand the added generality is spurious,
as will follow from the previous sentence and the second proposition below, while on
the other hand I have as yet been unable to find an instance for which the restricted
cartesianness is any easier to verify than full cartesianness.

Axiom (Sl 1) invites us to put the following conventions into place. The object Pa and the
cartesian morphism Da : Pa // A (which together are unique up to isomorphism) will be
called, respectively, the slice object of objects over a and the associated projection. (While
we are assuming that (Sl 1) holds as a whole, this definition may be applied whenever Da

and Pa exist for individual (A, a).) The notations Pa = A↓a and Da = ∆A
a suggest

themselves. For any morphism α : a′ // a of A∂, cartesianness of ∆A
a , existence part,

yields a morphism A↓α : A↓a′ // A↓a above A∂↓α with A↓α ·∆A
a = ∆A

a′

(
A 3 ∈ Cat

)
.

•
A∂↓a′

•
A∂↓a

•A∂

•
A↓a′

•
A↓a

•A A∂↓α

��

∆A∂
a′

''OOOOOOOO

∆A∂
a

77oooooooo

A↓α

��

∆A
a′

''OOOOOOOO

∆A
a

77oooooooo

Since ∆A
a′ is cartesian as well, closedness under right division ensures that A↓α is. The

uniqueness part of cartesianness guarantees that A↓( ) is an A∂-shaped diagram, so that
∆A

( ) is a cocone A↓( ) // A. Thus, applying (Sl 1) to all objects of a establishes the premiss
of (Sl 2).

Now let F : B // A be a morphism of A. For any object b of B∂, cartesianness
(existence part) of ∆A

b·F∂ yields a morphism F↓b : B↓b // A↓(b · F∂) above F∂↓b with
F↓b ·∆A

b·F∂ = ∆B
b · F

(
A 3 ∈ Cat

)
.

•
B∂↓b

•B∂

•
A∂↓(b·F∂)

•
A∂

•
B↓b

•B

•
A↓(b·F∂)

•
A

F∂↓b

��
∆A∂

b·F∂

//

∆B∂
b //

F∂

��

F↓b

��
∆A

b·F∂

//

∆B
b //

F

��

Further, for any morphism β : b′ // b of B∂, cartesianness (uniqueness part) of ∆A
b·F∂

gives B↓β · F↓b = F↓b′ · A↓(β · F∂).

Given an object A of A as in (Sl 1), we can apply axiom (Sl 2) to the a-shaped diagram
P( ) = A↓( ) of slice objects. Conversely, given an a-shaped diagram P( ) as in (Sl 2), we
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can apply (Sl 1) to the colimit object A. In both instances we are already presented with
candidates for the required liftings; only the correct kind of universality may be lacking.
Our final two axioms say that it must not.

(Sl 3) In the situation of (Sl 2), each cocone constituent Da : Pa // A is cartesian.

(Sl 4) In the situation of (Sl 1), the induced cocone D( ) : P( )
// A from the slice-

object diagram P( ) = A↓( ) is cocartesian.

A category A over Cat satisfying (Sl 1), (Sl 2), (Sl 3) and (Sl 4) will be said to have slicing .
The cartesian morphisms and cocartesian cocones whose existence is required by (Sl 1)

and (Sl 2) turn out to be essentially the same as those for which merely the respective
property is required in (Sl 3) and (Sl 4). This insight allows us to streamline the verification
of these axioms. Suppose that A is a category over Cat satisfying (Sl 1) (so that a slice
object is always available) and (Sl 4). For convenience suppose also that A is replete.
In order for A to have slicing, it suffices (and is of course necessary) that for any small
category a and any a-shaped diagram P( ) in A with each Pα cartesian and P( )∂ = a↓( ),

there are an object A in A with A∂ = a and an isomorphism U( ) : P( )
' // A↓( ) of a-shaped

diagrams with U( )∂ = 1a↓( ). Without the repleteness assumption, three more isomorphisms
would enter this statement (replacing the equations P( )∂ = a↓( ), (A↓( ))∂ = A∂↓( ) and
A∂ = a) and together occur in the final equation (replacing U( )∂ = 1a↓( )). The “dual”
statement, having (Sl 2) and (Sl 3) as its suppositions, is also valid, but seems to be less
useful.

My original intention was to work with the following two additional axioms (instead
of (Sl 3) and (Sl 4)).

(Sl 3′) Under the premiss of (Sl 1), all morphisms to A above each of the ∆a
a are

cartesian.

(Sl 4′) Under the premiss of (Sl 2), all cocones from P( ) above ∆a
( ) are cocartesian.

Their advantage is that they are meaningful irrespective of whether (Sl 1) and (Sl 2) are
satisfied. Of course (Sl 3′) implies (Sl 3) and (Sl 4′) implies (Sl 4).

Let us call a category over an arbitrary base category conservative iff its structural
functor is. As a consequence of the following proposition, a category A over Cat satisfies
(Sl 1), (Sl 2), (Sl 3′) and (Sl 4′) if and only if it has slicing and is conservative.

Proposition. For a category A over Cat satisfying (Sl 1) and (Sl 2) the following three
conditions are equivalent.

(a) A is conservative.
(b) A satisfies (Sl 4′).
(c) A satisfies (Sl 3′) and (Sl 4).

Proof. Clearly if A is conservative, then cartesianness or cocartesianness of one instance
of Da above ∆a

a as in (Sl 1) or D( ) above ∆a
( ) as in (Sl 2) carries over to all instances; thus

(a) implies (b) and (since (Sl 4′) entails (Sl 4)) also (c). We are now going to show that
under the assumption of either (b) or (c), A is conservative. So let F : B // A be a
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morphism in A for which the functor F∂ is invertible; we have to show that F itself is
invertible.

First consider (b). Apply (Sl 1) to A to obtain a cocone ∆A
( ) : A↓( ) // A. Now

by (Sl 4′) both the cocones ∆A
( ) and ∆A

( ) · F are cocartesian. It follows that the induced
morphism F is invertible.

Now consider (c). We proceed in two steps.
First consider the case that A∂ has a terminal object a. Then ∆A∂

a is an invertible
functor, and hence so is va = ∆A∂

a · F∂−1

(
A 3 ∈ Cat

)
.

•
A∂↓a

•B∂

•
A∂

•
A∂

•B

•
A

'
va //

F∂

��

∆A∂
a

��
=

//

F

��

By (Sl 3′) F is cartesian. But a cartesian morphism above an isomorphism is itself an
isomorphism.

We now turn to the general case. For each object b of B∂, the slice functor F∂↓b :
B∂↓b // A∂↓(b · F∂) is invertible, whence according to the previous paragraph so is the
morphism F↓b. Thus we have an invertible morphism F↓( ) : B↓( ) // A↓(( ) · F∂) of
A∂-shaped diagrams. By (Sl 4) the cocones ∆B

( ) and, since F∂ is invertible, ∆A
( )·F∂ are

universal. We conclude that F is a colimit morphism of F↓( ) and is hence invertible too.

Even for a conservative category with slicing the structural functor may fail to be
faithful: see example 7 in the following section.

We now turn to another familiar notion that is important for this work. Recall that a
functor f : b // a is an (ordinary) discrete fibration if and only if all the slice functors
f↓b : b↓b // a↓(b · f) are invertible. We may take this statement as a definition.

Let A be a category over Cat. We define a discrete fibration in A to be a morphism that
is cartesian above an ordinary discrete fibration. The following three facts regarding A

can easily be derived from the familiar corresponding facts regarding Cat.
• Discrete fibrations are closed under composition and right division.
• If B∂ has a terminal object, then a morphism F : B // A is invertible if and only

if it is a discrete fibration and F∂ preserves terminality.
• Slice-object projections (where they exist) are discrete fibrations.
Many more facts on discrete fibrations carry over from Cat to categories with slicing.

Two of them will be shown from scratch in example 3 of section 2 and the lemma of
section 5. For now we deal with our characterization above.

Proposition. A morphism F : B // A in a category with slicing is a discrete fibration
if and only if all its slice morphisms F↓b : B↓b // A↓(b · F∂) are invertible.

Proof. First let F be a discrete fibration. For each b ∈ B∂ we have F↓b·∆A
b·F∂ = ∆B

b ·F ,
and since F and the slice-object projections are discrete fibrations, so is the left factor
F↓b. Since (F↓b)∂ also preserves terminality, F↓b is invertible indeed.
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Conversely let F have all its slice morphisms invertible; we are going to show that F
is a discrete fibration. Since (F↓b)∂ = F∂↓b is invertible, the functor F∂ is a discrete
fibration. The major part of the proof will establish that F is cartesian.

Let C be an object, G : C // A a morphism and h : C∂ // B∂ a functor with
h ·F∂ = G∂. We wish to show that there is a unique morphism H : C // B above h with
H · F = G

(
A 3 ∈ Cat

)
.

•
A∂

•B∂•C∂

•
A

•B•C
h //

F∂

��
G∂

��??????????
H //

F

��
G

��??????????

Since F is a discrete fibration, the morphism F↓(( ) · h) : B↓(( ) · h) // A↓(( ) · G∂) of
C∂-shaped diagrams is invertible. Now consider the cocone G↓( ) · (F↓(( ) · h))−1 · ∆B

( )·h :
C↓( ) // B, which lies above

G∂↓( ) · (F∂↓(( ) · h))−1 ·∆B∂
( )·h = h↓( ) ·∆B∂

( )·h = ∆C∂
( ) · h.

By (Sl 4) there is a unique morphism H : C // B above h with G↓( ) ·(F↓(( ) ·h))−1 ·∆B
( )·h =

∆C
( ) ·H

(
A 3 ∈ Cat

)
.

•
C∂↓( )

•

•
A∂↓(( )·G∂)

•C∂

•B∂

•
C↓( )

•
B↓(( )·h)

•
A↓(( )·G∂)

•C

•B

h↓( )

��

F∂↓(( )·h)'

��

G∂↓( )

##

∆C∂
( ) //

h

��
∆B∂

( )·h

//

F↓(( )·h)'

��

G↓( )

##

∆C
( ) //

H

��
∆B

( )·h

//

Thus ∆C
( ) · H · F = G↓( ) · (F↓(( ) · h))−1 · ∆B

( )·h · F = G↓( ) · ∆A
( )·G∂ = ∆C

( ) · G, whence by
(Sl 4) again it follows that indeed H · F = G. Conversely, given a morphism H ′ : C // B
above h with H ′ ·F = G, we have H ′↓( )·F↓(( )·h) = G↓( ) and thus ∆C

( ) ·H ′ = H ′↓( )·∆B
( )·h =

G↓( ) · (F↓(( ) · h))−1 ·∆B
( )·h, whence by uniqueness of H we get H ′ = H.

Suppose now that A is a conservative category with slicing. The proposition makes
clear that a morphism in A is a discrete fibration if and only if its underlying functor
is; in other words, a morphism above a discrete fibration is automatically cartesian. The
converse of this statement is false: see example 10.

2. Examples

The following list of examples (some of them being general constructions) should convince
the reader that categories with slicing abound. The foremost example mentioned in the
introduction appears at the end of this section. The list will be continued in section 4,
where there is also further discussion of some of the items presented here.
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Example 1. Cat, together with the identity functor, is a conservative category with
slicing.

Example 2. If A is a category with slicing, its all-object subcategory Acart of cartesian
morphisms is a conservative category with slicing.

Proof. Since cartesian morphisms are closed under right division, all morphisms in Acart

remain cartesian there. As an immediate consequence, Acart is conservative. Since the
slice-object projections are in Acart, we also have (Sl 1) right away. In order to see that
(Sl 2) carries over in the same fashion, we start by noting that by (Sl 3) the constituents
of the cocone in question do indeed belong to Acart. What is left to be proved is that a
morphism F : B // A in A with each ∆B

b · F : B↓b // A cartesian is so itself.
So let C ∈ A, G : C // A and h : C∂ // B∂ with h · F∂ = G∂; we wish to show that

there is a unique H : C // B above h with H · F = G. For each c ∈ C∂, the functor
h↓c : C∂↓c // B∂↓(c · h) satisfies h↓c · (∆B

c·h ·F )∂ = (∆C
c ·G)∂ and can hence uniquely be

lifted to Sc : C↓c // B↓(c · h) with Sc ·∆B
c·h · F = ∆C

c ·G

(
A 3 ∈ Cat

)
.

•
C∂↓c

•C∂

•
B∂↓(c·h)

•B∂

•
A∂

•
C↓c

•C

•
B↓(c·h)

•B

•
A

h //

∆C∂
c

��

G∂
��??????????

h↓c //

∆B∂
c·h

��

F∂

��

∆C
c

��

G
��??????????

Sc //

∆B
c·h

��

F

��

∈Acart

{{

Clearly S( ) ·∆B
( )·h is a cocone and therefore induces H : C // B above h with ∆C

( ) ·H =
S( ) ·∆B

( )·h. Now ∆C
( ) ·H ·F = S( ) ·∆B

( )·h ·F = ∆C
( ) ·G, from which we can conclude H ·F = G.

Thus we have shown existence of an H as required; uniqueness is established by following
the argument backwards.

Example 3. If A is a category with slicing, its all-object subcategory Adifi of discrete
fibrations is a conservative category with slicing.

Proof. We can copy the first paragraph from the previous proof, replacing ‘cartesian
morphism’, modulo grammatical variations, with ‘discrete fibration’. What remains to be
shown is that a morphism F : B // A for which all the ∆B

b · F are discrete fibrations is
one itself. Now ∆B

b · F = F↓b ·∆A
b·F∂, so the left factor F↓b is a discrete fibration. As it

preserves terminality as well, it is invertible as required.

Example 4. Let A be a category with slicing, and let T be an object of A. The slice
category A↓T , together with the functor ∆A

T∂, has slicing. If A is conservative, so is A↓T .

Proof. The slice-category projection ∆A
T is conservative, hence the second statement.

It creates (in the obvious sense) cartesian morphisms and cocartesian cocones, hence the
first statement.
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Example 5. Fix a set X. By an X-colouring of a category a we mean a map assigning
to each object of a an element (“colour”) of X. The category of X-coloured categories
and colour-preserving functors, together with the “decolourization” functor, is conservative
and has slicing.

Proof. View X as a category by giving it the chaotic preorder; then the category in
question is isomorphic over Cat to Cat↓X. Now apply examples 1 and 4.

We mention this example explicitly since it will be referred to in the following section.
It by the bye illustrates our treatment of small categories as objects of a one-dimensional
category, ignoring their natural transformations.

Example 6. Let k be a small category. The category Setkop

of left k-sets X, together
with the category-of-elements functor X � // k↓X, is conservative and has slicing.

Proof. It is well known that we have an equivalence Setkop ≈ // Catdifi↓k over Cat,
mapping a left k-set X to the category of elements k↓X, along with the associated
projection. Now apply examples 1, 3 and 4.

This example can be made work without the smallness assumption on k. To this end
we have to replace Setkop

with the full subcategory of those left k-sets that have small
categories of elements. Of course the proof will have to be adjusted.

Example 7. Let K be a category. We denote by K−−→Fam the category of (small) families
in K. An object of K−−→Fam consists of a small setX and anX-indexed family (Kx |x ∈ X ) =
K of objects Kx ∈ K. A morphism (X,K) // (Y, L) of K−−→Fam consists of a map
ϕ : X // Y and an X-indexed family (Ux | x ∈ X ) = U of morphisms Ux : Kx

// Lx·ϕ.
We have an embedding K � � // K−−→Fam, K � // ({∗}, K), where on the right-hand side K ∈ K

is viewed as the singleton-indexed family with itself as the only member, and we have
a projection K−−→Fam // Set, (X,K) � // X. The composite of the projection and the
discrete-category embedding Set � � // Cat makes K−−→Fam a category over Cat. The category
K−−→Fam, together with this composite, has slicing. It is conservative if and only if K is a
groupoid.

Proof. It is easy to check that a morphism (ψ,W ) : (Y, L) // (Z,M) is cartesian
if and only if each Wy : Ly // My·ψ is invertible in K. So if K is a groupoid, then
every morphism of K−−→Fam is cartesian, and hence K−−→Fam is conservative. Conversely,
a non-invertible morphism U : K // L in K gives rise to a non-invertible morphism
(1{∗}, U) : ({∗}, K) // ({∗}, L) above 1{∗}.

Now let (X,K) ∈ K−−→Fam. Since (X,K)∂ = X is discrete, each slice category (X,K)∂↓x
is a singleton, while the associated projection ∆

(X,K)∂
x is the element x, interpreted as a

map. Taking (X,K)↓x = ({∗}, Kx) and ∆
(X,K)
x = (x, 1Kx), we verify (Sl 1). As for (Sl 4),

we should have to confirm that these ∆
(X,K)
x exhibit (X,K) as a sum

∑
x∈X({∗}, Kx)

in K−−→Fam. But that they do is a well-known property of the −−→Fam-construction. Finally,
let a be a small category, and let (X ( ), K( )) be an a-shaped diagram in K−−→Fam with
X ( ) = (X ( ), K( ))∂ isomorphic to a↓( ). Since each category a↓a ' Xa is discrete, so
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must be a. On the other hand, the set Xa ' a↓a must be a singleton: Xa = {∗} and
Ka ∈ K. Starting the process described before with the object (a, (Ka | a ∈ a )) of K−−→Fam,
we clearly obtain a slice-object diagram isomorphic to (X ( ), K( )). This shows (Sl 2) and
(Sl 3).

If we take K to have a hom-set with more than one element, the functor ∂ : K−−→Fam //

Cat will not be faithful. If we take K to have a non-small hom-set, the category K−−→Fam
will have one as well. All the while K can be a groupoid. Thus neither faithfulness of the
structural functor nor even smallness of hom-sets is necessary for a conservative category
over Cat to have slicing.

Example 8. Let K be a category. We consider K←−Dgop, the opposite of the “projective
diagram category” of K. An object of K←−Dgop consists of a small category a and an a-
shaped diagram K( ) = K in K. A morphism (b, L) // (a, K) of K←−Dgop consists of a
functor f : b // a and a morphism U( ) = U : Kf

// L of b-shaped diagrams in K; these
data are summarized in the picture

b

a

K.f

��
K

55kkkkkkkk

L
))SSSSSSSS

U DD		

All the fixed-shape diagram categories Ka are included contravariantly in K←−Dgop, while
we have a covariant projection to Cat. The category K←−Dgop, together with this projection,
has slicing. It is conservative if and only if K is a groupoid.

Proof. Clearly a morphism (f, U) is cartesian if and only if (each constituent of) U is
invertible. The validity of the second statement follows.

Let (a, K) be an object of K←−Dgop, and let a be an object of (a, K)∂ = a. Above
∆a
a : a↓a // a we have a cartesian morphism (∆a

a, 1K∆a
a
) : (a↓a,K∆a

a
) // (a, K). This

settles (Sl 1). We now wish to show that the collection of these morphisms constitutes a
cocartesian cocone. So let f∗ : a // b be a functor, and let (f( ), U ( )) : (a↓( ), K∆a

( )
) // (b, L)

be a cocone above f( ) = ∆a
( ) · f∗. Each morphism

a↓a a

b

K

∆a
a //

K
''NNNNNN

fa ��444444

L

55kkkkkkkk

Ua JJ��

of (a↓a)-shaped diagrams in K amounts to an (a↓a)-shaped diagram Ua : a↓a // K2 in
the morphism category of K, and as such they together form a cocone U ( ) : a↓( ) // K2

in CAT. Since ∆a
( ) is universal, there is a unique diagram U∗ : a // K2 with U∗∆a

( )
= U ( ),

which in turn amounts to a diagram morphism

a

b

K.f∗

��
L

55kkkkkkkk

K
))SSSSSSSS

U∗ DD		
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with (∆a
( ), 1K∆a

( )

) · (f∗, U∗) = (f( ), U ( )). This settles (Sl 4).

In settling (Sl 2) and (Sl 3) we use the repleteness of K←−Dgop for convenience. Thus let
(a↓( ), K( )) be a diagram strictly above a↓( ), with each (a↓f,Kf ) : (a↓b,Kb) // (a↓a,Ka)
cartesian, that is, with Kf

(c,h) : Ka
(c,g)

// Kb
(c,h) invertible for each commutative triangle

c
b

a

h 77ooo

g
''OOO f�� in a. Now put K∗a = Ka

(a,1a) and K∗f = (Kf
(b,1b))

−1 ·Ka
f , the latter being visualized

by the picture

Kb
(b,1b) = K∗bKa

(b,f)

K∗a = Ka
(a,1a).

Kf
(b,1b)

'
//

Ka
f ��

Clearly K∗1a
= 1K∗a and, taking into account the commutativity of

Kb
(c,h)

Ka
(c,g)

Ka
(b,f) Kb

(b,1b),

Kf
(c,h) //

Kb
h��Ka

h ��

Kf
(b,1b)

//

K∗h ·K∗f = K∗h◦f=g. Thus we have obtained an a-shaped diagram K∗ in K, which amounts to
an object (a, K∗) strictly above a in K←−Dgop. For each a ∈ a the slice object (a, K∗)↓a =
(a↓a,K∗∆a

a
) is isomorphic to (a↓a,Ka) strictly above the identity of a↓a via (b, f) � //

Kf
(b,1b) : Ka

(b,f)
' // Kb

(b,1b) = K∗(b,f)·∆a
a
, and the family of these isomorphisms is clearly

natural in a ∈ a.

This proof can be reassembled in a more conceptual manner. The last part of what
we have done here establishes en passant the rather well known fact that ∆a

( ) : a↓( ) // a,
in addition to being a colimiting cocone in Cat, is also a bicolimiting cocone in CAT. We
shall revisit this idea in section 4.

If we take k or K in any of the previous three examples to be empty, we obtain a
trivial category with slicing: a category equivalent to 1 with a structural functor that
is constant with value 0. At this point it should be mentioned that by (Sl 2) a category
with slicing must have an initial object O with O∂ = 0, while by (Sl 4) every object O
with O∂ = 0 must be initial. From these two facts it follows that a category with slicing
whose structural functor is constant is automatically trivial.

We are now starting to close in on our motivating example. To aid the reader’s comprehens-
ion we develop in parallel one that is to some extent similar, but more familiar.

Example 9. The category Grph of (directed) graphs, together with the ‘paths’ functor
Grph // Cat (left adjoint to the forgetful one), is conservative and has slicing.
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Proof. The ‘paths’ functor is faithful and full on isomorphisms. Indeed, the structure
of a graph A can be recovered from the structure of its category A∂ of vertices and paths:
the arrows of A are the indecomposable morphisms of A∂. In this manner the structure
of A∂ also determines the length function of A. Functors corresponding to morphisms in
Grph are those that preserve indecomposability and hence also length.

For A a graph and a ∈ A∂ (that is, a a vertex in A), we can take A↓a to be the
evident graph whose vertices are paths in A ending in a, and ∆A

a to be the evident graph
morphism assigning to each such path its origin. The ∆A

a are cartesian, as in fact are
all morphisms of Grph: length preservation is closed under right division. Thus we have
(Sl 1). As Grph is small cocomplete and ∂ is small cocontinuous, we also have (Sl 2).

Example 10. A graph is called reflexive iff it comes equipped with a map associating
with each vertex a loop about it. These loops, along with the paths in which they occur,
will be called degenerate. A morphism between reflexive graphs is demanded to preserve
degeneracy. The category Refl Grph of reflexive graphs, together with the ‘non-degenerate
paths’ functor Refl Grph // Cat (left adjoint to the forgetful one), is conservative and
has slicing.

Proof. We can argue as in the previous proof, with one important difference. In the
present case the functors B∂ // A∂ corresponding to morphisms B // A are those that
do not increase (but not necessarily preserve) length. But ∆A

a still preserves length, and
this property is sufficient for cartesianness: if f preserves length and h · f does not increase
length, then neither does h.

This example shows that it is not necessary for a conservative category with slicing to
have all its morphisms be cartesian. In Refl Grph a morphism is cartesian if and only if it
maps none of two consecutive non-degenerate arrows (or, put positively, only degenerate
arrows and arrows from a “source” to a “sink”) to a degenerate one. (The honestly
degeneracy-reflecting morphisms, corresponding to the length-preserving functors, form
an all-object subcategory of Refl Grphcart equivalent to Grph over Cat.)

Example 11. We take an undirected graph to be an ordinary (directed!) graph together
with a direction-reversing involution fixing each vertex but no arrow. Thus, each arrow
u : a′ // a has an inverse u∗ : a // a′ with u∗ 6= u (if a = a′) and u∗∗ = u. An
arrow from a′ to a and its inverse, no matter in which order, together form an edge with
extremities a and a′. Given a (directed) path in an undirected graph, we call two successive
occurrences of an arrow and its inverse a degeneracy . Non-degenerate paths are composed
by first concatenating them as usual and then “cancelling out” the degeneracies that have
arisen about the joint. In this way vertices and non-degenerate paths form a category
(in fact, a free groupoid). Moreover, the assignment of this category to an undirected
graph is functorial. The category Undir Grph of undirected graphs, together with the
‘non-degenerate paths’ functor Undir Grph // Cat, is conservative and has slicing.

While forgoing the actual proof, we mention the complications it bears in comparison
to the previous two. Firstly, the structural functor is not full on isomorphisms (free
groupoids in general have many “bases”), and therefore Undir Grph is not equivalent over
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Cat to a replete subcategory. (The functor is, however, conservative, faithful and injective
on isomorphism classes.) Secondly, the category Undir Grph is not small cocomplete, so
that the verification of (Sl 2) requires a closer inspection of the diagrams in question.

The second complication would disappear if we dropped the condition u∗ 6= u in the
definition of an undirected graph. A loop u with u∗ = u would be considered degenerate
and having a single extremity (rather than the same extremity twice). The resulting
category over Cat has slicing as well. As a mere category it is small cocomplete (in fact,
it is the small-cocompletion of Undir Grph), while its structural functor is left adjoint.

Example 12. The concept of a category presentation should be familiar, at least as a
practical tool, but maybe less so as the subject of theoretical studies. In making it the
latter, we first have to say what exactly the term is to mean.

The definition most authoritative for category theorists takes a category presentation
to be a “computad” in Street’s original sense (that is, 2-dimensional). However, to
accommodate a certain purpose we shall instead consider computads carrying an additional
structure making the hom-graphs undirected in the sense of example 11 (that is, we want
the relators to be symmetric). We henceforth use the term ‘category presentation’, or
‘presentation’ for short, for the latter notion. The reader will find that the undirectedness
has little bearing on this example itself. In fact, practically any reasonable notion of
‘category presentation’ will analogously give rise to a category with slicing.

Let us state our definition more explicitly. A presentation A consists of objects forming
a set A0; generators that are the arrows of a graph A01 whose vertices are the objects;
and relators that are the edges of an undirected graph A12 =

∑
a,b∈A0

A(b, a), where the
vertices of A(b, a) are the paths from b to a in A01. The relators should be thought of as
equations to be enforced; its extremities are therefore called its sides . A relator can be
pictured

•

•

•

•

||·•

•

•

•
DDDDDD

""

zzzzzz
<<

zzzzzz
<<

DDDDDD
""
,

where in this case both sides have length 2. Presentations and their morphisms form a
large category Cat Pres.

To a presentation A we assign another presentation Ã as follows. The object–generator
graph of Ã is the same as for A, while a relator (for generator paths) from b to a in Ã
consists of two objects b′ and a′, two generator paths, one from b to b′, one from a′ to a,
and a relator from b′ to a′. From the perspective of A this may look as follows:

•

•

•

•

||·•

•

•

•
DDDDDD

""

zzzzzz
<<

zzzzzz
<<

DDDDDD
""

• • • • • • •b b′ aa′// // // // // // // .

Note that Ã naturally becomes a category enriched in (Undir Grph,⊗), where ⊗ is
geometric multiplication. Applying the strongly monoidal ‘components’ functor π0 :
(Undir Grph,⊗) // (Set,×) to the hom-objects of Ã, an ordinary category Aτ1 arises.
(Its objects are those of A, while the morphisms from b to a are the components of
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the undirected graph Ã(b, a).) This category is of course the one presented by A. The
assignment A � // Aτ1 can be naturally extended to become a functor τ1 : Cat Pres // Cat.
The category Cat Pres, together with the functor τ1 (which is far from being conservative),
has slicing.

Sketch of proof. The key step is to characterize the discrete fibrations of Cat Pres.
They turn out to be precisely those morphisms F : B // A satisfying the following two
conditions.
• For each object b of B and each generator u : a′ // b · F in A, there is a unique

generator v : b′ // b in B with v · F = u.

• For each two generator paths v, v′ : b′ // b in B and each relator r : v′ · F !
= v · F

in A, there is a unique relator s : v′
!

= v in B with s · F = r.
The remaining task is routine. Given a presentation A and an object a of A, the slice
presentation A↓a has objects those of the slice category Aτ1↓a, while the generators and
relators from (c, g) to (b, f) in A↓a are those generators and relators from c to b in A
representing morphisms h : c // b with h ◦ f = g. Given a category a and an a-shaped
diagram P( ) in Cat Pres with P( )τ1 ' a↓( ), we obtain an associated presentation of a by
using as generators and relators to a ∈ a those to the object corresponding to (a, 1a) ∈ a↓a
in Pa.

Example 13. A propolytopic set(2) is a category presentation with the following two
properties.
• Each path occurring as a side of a relator has length 2.
• Each path of length 2 occurs as a side of a relator precisely once.

Put more concisely, the ‘side’ relation is a two-to-one correspondence between length-2
paths of generators on the one hand and relators on the other hand. A propolytopic
map is a presentation morphism between propolytopic sets. The category Propoly Set of
propolytopic sets and maps, together with the functor Propoly Set � τ1, is conservative and
has slicing.

Sketch of proof. This is another example that has many relevant features in common
with number 9 (in fact, more than number 10). First one notices that by considering
indecomposable morphisms one can recover a propolytopic set from the abstract category
it presents. From here one deduces that the functor Propoly Set � τ1 is faithful, full on iso-
morphisms and, therefore, conservative. It remains to show that the category Propoly Set
over Cat has slicing. As it is a full subcategory of Cat Pres over Cat, which we know
to have slicing, we only have to check that its object class is closed with respect to the
operations given by (Sl 1) and (Sl 2). This is easily done: focus on the generator paths
and relators terminating in a given object.

2In [5] I introduced a slightly different notion under this name. There, all propolytopic sets are
“graded” and “finitary”. The reader, especially after skimming through the relevant part of section 4, will
find no difficulties in showing that the propolytopic sets with any given selection of these two attributes
form a category with slicing.
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Example 14. Let A be a conservative category with slicing. Let Θ be an object of A

for which Θ∂ is a singleton category and which has no non-trivial automorphisms (and
hence, by conservativeness, no non-trivial endomorphisms altogether). We consider the
following subcategory AΘ of A. Objects are those A for which A∂ has an initial object
⊥A with A↓⊥A isomorphic to Θ. Then ⊥A is the only object of A∂ to which there is no
non-trivial morphism; the uniqueness is expressed in the notation. Morphisms B // A
are those F for which F∂ maps ⊥B to ⊥A and all other objects of B∂ to other objects
of A∂ (so that the fibre over ⊥A is the singleton category consisting of ⊥B). This can be
expressed differently by saying that F∂ creates initiality. Note that Θ is an initial object
in AΘ.

Taking A = Cat (example 1) and Θ = 1, we obtain a subcategory Cat1 of Cat. As
a mere category, Cat1 is equivalent to Cat: the functor Cat // Cat1, a � // a+, which
to each object of Cat freely adjoins an initial object ⊥a+ , has as an up-to-isomorphism
inverse the functor Cat1 // Cat, b � // b−, which from each object of Cat1 extracts the full
subcategory of non-initial objects. Moreover, both these functors commute in an obvious
manner with the slice-category construction.

Now back to the general situation. The functor ∂ : A // Cat maps the subcategory AΘ

into the subcategory Cat1, so that we can form the composite ∂− : AΘ
// Cat1 // Cat.

The category AΘ, together with the functor ∂−, is conservative and has slicing.

Proof. Conservativeness of ∂ : A // Cat carries over to ∂ : AΘ
// Cat1, and ( )− :

Cat1 // Cat is an equivalence. Thus (AΘ, ∂
−) is conservative.

Let A be an object of AΘ, and let a be an object of A∂−. The slice object A↓a in A

belongs to AΘ, namely with ⊥A↓a = (⊥A, a · ¡A), where a · ¡A is the unique morphism
⊥A // a in A∂. Also the associated projection ∆A

a belongs to AΘ. Functors creating
initiality are closed under right division, whence all morphisms of AΘ cartesian in A are
also cartesian in AΘ; and in particular so is ∆A

a . This settles (Sl 1).
Now let a be a small category, and let P( ) be an a-shaped diagram in AΘ with P( )∂− '

a↓( ). Since Θ is initial in AΘ, there is a unique extension of P( ) to an a+-shaped diagram
P̂ ( ) with P̂⊥a+ = Θ. By commutation of ( )+ with the slice-category construction we

have P̂ ( )∂ ' a+↓( ), and by conservativeness of (A, ∂) all the morphisms P̂α : P̂ a′
// P̂ a

(α : a′ // a ∈ a+) are cartesian there. So in A there is a colimit D̂( ) : P̂ ( )
// A

with D̂( )∂ ' ∆a+

( ) : a+↓( ) // a+. Its restriction D( ) : P( )
// A is a cocone in AΘ

with D( )∂− ' ∆a
( ). All that remains to be shown is that D( ) is a colimit in AΘ. So

consider an arbitrary a-shaped cocone F( ) : P( )
// B in AΘ. It has a unique extension

to an a+-shaped cocone F̂ ( ) : P̂ ( )
// B. Clearly a morphism G : A // B in AΘ that

satisfies D( ) · G = F( ) also satisfies D̂( ) · G = F̂ ( ). Conversely, a morphism G : A // B
in A that satisfies D̂( ) · G = F̂ ( ) belongs to AΘ: since F̂ a belongs to AΘ, the object
a ·G∂ = (a, 1a) · D̂a∂ ·G∂ = (a, 1a) · F̂ a∂ of B∂ is ⊥B if a = ⊥A, otherwise 6= ⊥B. From
here it is obvious that (Sl 2) holds.

Example 15. An (upward) forest is a graph with a distinguished set of vertices, called
its roots , having the property that for each vertex a there is precisely one path from a root
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to a. Note that the set of roots is determined by the mere graph as the set of “sources”:
vertices without incoming arrows. A tree is a forest with precisely one root. A morphism
between forests (or trees) is a graph morphism respecting roots. We thus have a category
Frst of forests and a category Tree of trees. It turns out that the two are equivalent: the
functor Frst // Tree adjoining to each forest a new vertex, along with one arrow to each
(then former) root, and the functor Tree // Frst removing from each tree the root, along
with all its outgoing arrows, are up-to-isomorphism inverses of each other. The category
Frst of forests, together with the restricted ‘paths’ functor Frst // Cat, is conservative
and has slicing.

Proof. Use examples 9 and 14: take Θ to be the graph with one vertex and no arrow;
then GrphΘ = Tree as subcategories of Grph, and via the said equivalence GrphΘ ≈ Frst
over Cat.

Note that we did not require explicitly that a tree morphism map non-roots to non-
roots: it does so automatically. The situation is different when we develop the analogous
notions in the presence of degeneracies, as we (partially) do in the next example.

Example 16. A reflexive (upward) forest is a reflexive graph with a distinguished set of
vertices, called its roots, such that each vertex can be reached via a unique non-degenerate
path starting at a root. A morphism of reflexive forests is a morphism of reflexive graphs
respecting roots. The category Refl Frst of reflexive forests, together with the restricted
‘non-degenerate paths’ functor Refl Frst // Cat, is conservative and has slicing.

Proof. Use examples 10 and 14, taking Θ to be the graph with one vertex and only
the associated degenerate arrow.

We have finally arrived at the motivating example itself.

Example 17. An augmented polytopic set is a propolytopic set with an object ⊥
initial in the presented category.(3) An augmented polytopic map is a propolytopic map
between augmented polytopic sets respecting ⊥. A plain polytopic set is obtained from
an augmented polytopic set by removal of ⊥ along with the generators and relators
originating there. A plain polytopic map is obtained from an augmented one by restricting
domain and range accordingly. From the structure of a plain polytopic set one can recover
the structure of the augmented polytopic set that has given rise to it, namely by adding
the following: one object ⊥; one generator from ⊥ to each vertex , that is, object that was
not the target of any generator; relators in the only possible way, which makes one from ⊥
to each edge. We have thus constructed up-to-isomorphism inverses between the category
Aug Poly Set of augmented polytopic sets and maps and the category Pln Poly Set of
plain polytopic sets and maps. The category Pln Poly Set, together with the functor

Pln Poly Set � τ1, is conservative and has slicing.

3A more practical characterization of augmented polytopic sets has as its crucial condition the
connectedness of all dual graphs except the one for the initial object itself. See [5] for a treatment
of the graded case. (A grading is often naturally present, and the presence of an initial object implies
the presence of a grading.)
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Proof. Apply examples 13 and 14: take Θ to be the propolytopic set with one object
and no generator (and therefore no relator); then Propoly SetΘ = Aug Poly Set as mere
categories, while the said equivalence gives Propoly SetΘ ≈ Pln Poly Set over Cat.

3. The Main Theorem

Let A be a category with slicing. Following example 6 we may call an object A ∈ A

representable iff A∂ has a terminal object, which itself we may call a universal element
or a representation of A. We consider the category Ǎ described as follows. An object P
of Ǎ is an object PJ of A together with a terminal object >P of PJ∂, which we refer to as
the representation of P . A morphism F : Q // P is merely a morphism FJ : QJ // PJ.
Thus we have also described a full and faithful functor J : Ǎ // A.

Evidently Ǎ is equivalent over A to the full subcategory of representable objects.
But, because of the concrete nature of the situation, “simplifying” the definition of Ǎ

accordingly would only shift our dealing with a not-quite-subcategory to a less convenient
place. (Admittedly in our best examples — 9, 10, 13, 15, 16 and 17 —, Ǎ is canonically
isomorphic to said subcategory, because the terminal objects in question are unique. In
this sense we may as well elevate this uniqueness property to the rank of an axiom. But
after the initial kinks have been straightened out, the generality of our treatment will
cease to pose an extra burden.)

Henceforth we shall take the practical approach of writing P rather than PJ (somewhat
in spite of what was said in the previous paragraph) whenever the context makes clear
that the object we are referring to is one of A. In a similar vein we shall often take a
slice object A↓a of A to be an object of Ǎ, with >A↓a understood to be the “canonical”
representation (a, 1a) of A↓a.

The morphisms that one would have classically associated with the objects of Ǎ are
those whose underlying functors respect the distinguished terminal objects “on the nose”.
They play an important role for us too and therefore deserve a designation. It suggests
itself to say that they preserve representation. Examples are the slice morphisms F↓b :
B↓b // A↓(b · F∂).

We shall be discussing two all-object subcategories of Ǎ: in Ǎdifi the morphisms are
the discrete fibrations, and in Ǎ> the morphisms are the representation-preserving ones.
Note that a representation-preserving discrete fibration is automatically an isomorphism,
whose inverse of course preserves representation as well; in other words, Ǎdifi ∩ Ǎ> is a
groupoid. Note also that two objects isomorphic in Ǎ are not necessarily isomorphic in
Ǎ>, even if A is conservative, as example 5 (coloured categories) demonstrates. But if Ǎ

has small-many isomorphism classes, then so has Ǎ>: for a small representative system
{Pi = (Ai,>Pi

) | i ∈ I } of isomorphism classes of Ǎ, the small set

{ (Ai, a) | i ∈ I; a terminal in Ai∂ }

includes a representative system of isomorphism classes of Ǎ>.
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We may view Ǎ> as a full subcategory of 1↓∂, the category of A-objects above
categories equipped with a base object and A-morphisms above functors respecting base
objects. As such it is, as a consequence of (Sl 1) and the corresponding fact for A = Cat,
coreflective. Explicitly, for a morphism F : P // A ∈ A with P ∈ Ǎ, there is a unique
representation-preserving morphism F> : P // A↓(>P · F∂) with F> ·∆A

>P ·F∂ = F∂. We
shall call

P A↓(>P · F∂) A
F> //

∆A
>P ·F∂ //

the slice-object factorization of F ; it will be crucial in the last section of this work.
For P ∈ Ǎ, postcomposing with the respective morphism ∆A

a yields a bijection∑
a∈A∂

Ǎ>(P,A↓a) ' // A(P,A)

(with inverse F � // F>). For B ∈ A, precomposing with the cocone ∆B
( ) yields a bijection

A(B,A) ' //
←−−lim
b∈B∂

A(B↓b, A)

(since it is universal). We hence see that if any one of the categories A, Ǎ and Ǎ> has
small hom-sets, so have the other two.

Denote by YONJ the covariant functor represented by J, that is,

YONJ : A // SET
Ǎop

, A � // A(( )J, A).

Here SET is the “extra large” category of large sets. If A (or Ǎ, or Ǎ>) has small hom-sets,

we can adjust the range of YONJ to obtain a functor YonJ : A // SetǍop

. Given a left
Ǎ-set X, denote by X> the left Ǎ>-set obtained by restriction.

Having introduced all the players, we can now state our main result. The decisive
terms may still warrant an explanation, which we shall deliver afterwards.

Theorem. Let A be a category with slicing, and use the notations just introduced. The
functor YONJ is full and faithful, and a left Ǎ-set X is within an isomorphism of its image
if and only if the following three conditions are satisfied.

(i) X> is small generated.
(ii) X> is free.

(iii) Local universality in X> is preserved by discrete fibrations.

Let K be a category. We view the objects X of SET
Kop

as families of sets XP , indexed by
the objects P of K and acted upon by the morphisms F : Q // P of K. The contravariance
is expressed by writing the morphisms to the left of the elements: the image of x ∈ XP

under XF : XP
// XQ is written F · x. Thus the X are left K-sets . The morphisms of

SET
Kop

are treated accordingly and will be called left K-maps .
Category actions are essentially the same as many-sorted algebras with unary operat-

ions, so the terminology of Universal Algebra can be applied. Thus it should be clear
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what it means for a K-set to be “small generated” or “free”. Nevertheless we are going
to be explicit. Let Y be a subset of (the set of elements of) X. Associated with it is
the K-map ε :

∑
P∈K0

YP × K(( ), P ) // X given by the assignment (y, F ) � // F · y. The
subset Y is said to generate the image of ε, which is a K-subset of X; it is generating iff
(each constituent of) ε is surjective, and it is freely generating iff (each constituent of) ε
is bijective (whence ε is an isomorphism). The K-set X itself is small generated iff some
small subset generates it, and it is free iff some subset freely generates it. (One easily
sees that if X is small generated and free, then there is a subset that is small and freely
generating at once.)

We call a left K-set representable iff it is so as a set-valued functor, that is, iff it is
isomorphic to K(( ), P ) for some P ∈ K or, still equivalently, iff it has a freely generating
singleton. The member of such a singleton is known as a universal element. A morphism
F : Q // P of K is universal when viewed as an element of K(( ), P ) if and only if it is
invertible.

On a more geometric note we have the notion of connectedness, which we now briefly
recall. A K-set X is connected iff in any sum decomposition X '

∑
iX

(i) precisely
one summand X(i) is non-empty (has some non-empty constituent). One can give an
equivalent definition requiring the existence of an element and the existence of a zigzag
between each two elements, where the zigzags referred to here are those of the category
of elements. The representable K-sets are connected. Every K-set has a unique sum
decomposition into connected ones, called its components .

Now in order for a K-set X to be free it is not only necessary but also sufficient to
be a sum of representable K-sets (an apparent triviality resting on the Yoneda lemma).
But since representable K-sets are connected, they are components wherever they appear
as summands. Thus X is free if and only if each component of X is representable. Or,
equivalently, if and only if each component X ′ of X contains an element that is universal
within X ′. To express more concisely the relationship of such an element to the whole ofX,
we need an abbreviation for the phrase ‘within its component’. I have taken the liberty of
choosing the term ‘locally ’ (or ‘local’, depending on grammatical requirements).(4,∗) Thus,
using this newly designated piece of language, X is free if and only if each component
of X contains a locally universal element. But a locally universal element generates its
entire component. Thus another, and final, condition equivalent to the freedom of X is
for the set of locally universal elements to be generating. Spelt out this means that for
each element y ∈ XQ there is a locally universal element x ∈ XP and a (then necessarily
unique) morphism F : Q // P with F · x = y.

The term ‘local’ could be applied directly to the names of special kinds of universal

4While the term ‘local’ is already being used in too many other senses, the present definition does
not appear to give rise to new inconsistencies. As for alternative names, [4] has ‘partial initial object’ for
what we shall call a locally initial object, and [1] has ‘familial limit’ for what we shall call a local limit.

*After writing this I learnt that the very terminology initiated here had also been used, and in fact
developed further, in Y. Diers: ‘Catégories localisables’, Université des sciences et techniques de Lille I
(1976).
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elements. Thus a local limit of a diagram P( ) in K would be a locally universal element
of the functor sending each object Q to the set of cones Q // P( ). In particular a locally
terminal object in K is one that is terminal within its (category) component. (For instance,
in the category of fields the prime fields are locally initial.)

A slightly more hands-on characterization of local terminality and local universality
is provided by the following result.

Lemma. An object P of a category K is locally terminal if and only if for each situation

∈ K

R

Q P

H
��

G

��???????

there is a unique morphism F : Q // P . An element x ∈ XP of a left K-set X is
locally universal if and only if for each element y ∈ XQ and each situation as before with
H · y = G · x there is a unique morphism F : Q // P with F · x = y.

The identity H · F = G is not explicitly required; it can be derived by applying the
uniqueness requirement to the situation with H = 1R. Making it subject to the uniqueness
part would alter the condition so as to render both implications false.

Proof. The second statement just recounts what the first statement means when applied
to the category of elements of X. So we only have to prove the latter. The necessity of
the condition is clear. As for sufficiency consider an arbitrary object Q in the component
of P . There is a zigzag of morphisms

Q = Q0

R0

Q1

· · ·
Qn−1

Rn−1

Qn = P

H0

��

G0

��???????

�� ��????
��

Gn−1

��???????

in K. To show that there is a unique morphism Q // P we can proceed by induction
on the number n of “zigs” or “zags”. If n = 0 we use the condition with G = 1P and
H = 1P . If n ≥ 1 we use the condition with G = Gn−1 and H = Hn−1 and in the case
n ≥ 2 further replace Gn−2 with Gn−2 · F and then use the induction hypothesis.

By now all clauses of the theorem should be comprehensible, except perhaps (iii).
Here we mean that for any discrete fibration F : Q // P , if an element x ∈ XP is locally
universal in X>, then so is the element F · x ∈ XQ.

This raises an interesting question. Does an isomorphism of Ǎ necessarily preserve
local universality in X>? The representation-preserving ones surely do. For simplicity let
us assume that X> is free (condition (ii) of the theorem). Still, if Ǎ> were just any old
all-object subcategory, there would be no reason why the answer should be ‘yes’. Yet the
special nature of Ǎ> forces it to be just this, as we are about to witness.

Proposition. Let X be a left Ǎ-set for which X> is free. Local universality in X> is
preserved by all isomorphisms of Ǎ.
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Proof. For utter clarity, let us denote a typical object of Ǎ by (A, a) (A ∈ A; a ∈ A∂
terminal) and a typical morphism (B, b) // (A, a) of Ǎ by (F, b, a) (F : B // A ∈ A).

Without loss of generality we can consider only those isomorphisms of Ǎ that are
identities of A relating objects differing only by their base objects; thus (1A, a

′, a) :
(A, a′) // (A, a). Let x ∈ X(A,a) be locally universal in X>; we have to show that so
is x′ = (1A, a

′, a) · x ∈ X(A,a′).
Since X> is free, there are an element y′ ∈ X(B,b′) locally universal in X> and a

representation-preserving morphism (G, a′, b′) : (A, a′) // (B, b′) with (G, a′, b′) · y′ = x′.
Putting b = a · G∂ we obtain another representation-preserving morphism (G, a, b) :
(A, a) // (B, b). Now consider the element y = (1B, b, b

′) · y′ ∈ X(B,b). It shares its
X>-component with (G, a, b) · y = (1A, a, a

′) · (G, a′, b′) · (1B, b′, b) · y = x, by whose local
universality there hence is a representation-preserving morphism (F, b, a) : (B, b) // (A, a)
with (F, a, b) · x = y. Since (G · F, a, a) · x = (G, a, b) · (F, b, a) · x = x, the morphism
G · F is the identity of A. It follows that b′ · F∂ = a′ · G∂ · F∂ = a′, so the morphism
(F, b′, a′) : (B, b′) // (A, a′) also preserves representation. Now

(F ·G, b′, b′) · y′ = (1B, b
′, b) · (F, b, a) · (1A, a, a′) · (G, a′, b′) · y′ = y′,

so by local universality of y′ the morphism F · G is the identity of B. Thus (G, a′, b′)
is a representation-preserving isomorphism. We conclude that with y′ also the element
x′ = (G, a′, b′) · y′ is locally universal in X>.

In many important cases the description of the full subcategory of the theorem can take
a simpler form.

Special case 1. Ǎ is essentially small , or, equivalently (we have considered number
of isomorphism classes and size of hom-sets separately), Ǎ> is essentially small . In this

situation, firstly, since A has small hom-sets, YONJ : A // SET
Ǎop

can be replaced with

YonJ : A // SetǍop

in the statement of the theorem. Secondly, since Ǎ> has small-many

isomorphism classes, every pointwise small Ǎ>-set (= object of SetǍop
> ) is small generated;

thus condition (i) can then be omitted.

Special case 2. All discrete fibrations in Ǎ are invertible. Since in particular the slice-
object projections are discrete fibrations, the following two conditions are equivalent to the
first: if A is representable, all objects of A∂ are terminal (and hence A∂ is a chaotically
preordered set); every underlying category A∂ is an equivalenced set(5). The preceding
proposition grants us that in this (admittedly rather degenerate) situation condition (iii)
can be omitted.

5An equivalenced set is evidently meant to be a preordered set for which the preorder relation is
an equivalence relation (that is, symmetric). The phrase ‘essentially discrete category’ expresses an
equivalent notion (at least to us believers in the axiom of choice), but has the drawback of referring to
more complicated concepts.
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Special case 3. All representation-preserving morphisms are invertible. Since the
inverses preserve representation as well, equivalently Ǎ> is a groupoid. Two further clearly
equivalent conditions are: all representation-preserving morphisms of Ǎ are discrete fibrat-
ions ; all morphisms of A are discrete fibrations . (Since all discrete fibrations are carte-
sian, the latter condition implies that A is conservative.) In this situation an Ǎ>-set is
representable if and only if all its elements are universal, and hence an Ǎ>-set is free if
and only if all its elements are locally universal. Thus condition (iii) can be omitted.

Special case 4. All representation-preserving morphisms are invertible and moreover
all representation-preserving automorphisms are trivial. Equivalently, Ǎ> is essentially
discrete. In this situation every Ǎ>-set is free. Thus condition (ii) (along with condition (iii))
can be omitted.

Thus, if we are in special cases 1, 3 and 4 at a time, the functor YonJ exists and maps

essentially onto SetǍop

. This result is worth being stated officially.

Corollary. Let A be a category with slicing, and use the notations introduced at the
beginning of this section. If Ǎ is essentially small and Ǎ> is essentially discrete, then

YonJ : A // SetǍop

exists and is an equivalence of categories.

4. Miscellaneous

We start this section by relating the theorem to some of the examples of section 2. To
avoid size issues, I shall only in passing mention examples not falling under special case 1.

Example 6, continued. Put Setkop

= A. Here Ǎ is the category of those (small)
k-sets that are represented in the usual sense and all their k-maps. Particular objects are
the “prototypical” represented k-sets k(( ), k), with the distinguished universal elements
taken to be the respective identities. Now if P and Q are two represented k-sets, the
distinguished elements being >P ∈ Pk and >Q ∈ Ql, then a representation-preserving
morphism Q // P exists if and only if the “sorts” k and l agree, and such a morphism
then is unique (and hence invertible). As a consequence the isomorphism classes of Ǎ> are
in a one-to-one correspondence with the objects of k. In summary, we are in special cases

1 and 4, and so the corollary applies: YonJ (exists and) is an equivalence Setkop ≈ // SetǍop

.
Of course there is little surprise here (and in fact quite the contrary is intended): already
the functor k // Ǎ sending k to k(( ), k) is an equivalence, which, when followed by
J : Ǎ // A, yields the Yoneda embedding k // Setkop

; by the Yoneda lemma it hence
induces an up-to-isomorphism inverse for YonJ.

Example 7, continued. Put K−−→Fam = A. Since all underlying categories (X,K)∂ = X
are discrete, we are in special case 2. The ones with terminal objects are precisely the
singleton sets. Thus the issue of distinguishing a particular terminal object does not
arise: we can identify Ǎ with a full subcategory of A. We have a projection Ǎ // K,
({x}, K) � // Kx, which clearly is an equivalence. Thus we are in special case 1 if and
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only if K is essentially small. So let us suppose K has this property. Now the theorem

tells us that the functor YonJ : K−−→Fam // SetǍop

is full and faithful, and that its image

essentially consists of those left Ǎ-sets that are free. Again we should not be surprised.
Suppose for the sake of this argument that K is genuinely small. In this case K−−→Fam can

easily be seen to be the Kleisli category for the monad on SetK0 (where K0 is the set of
objects of K) whose Eilenberg–Moore algebras are left K-sets. The Kleisli category is by
design isomorphic to the full category of free Eilenberg–Moore algebras, and the property
of freedom is invariant under equivalences of the operating categories. Our functor YonJ

turns out to be isomorphic to the composite of the embedding K−−→Fam // SetKop

and the

functor induced by the equivalence Ǎ
≈ // K.

Examples 9 and 15, continued. First consider A = Grph. Here Ǎ is the category of
downward trees and all graph morphisms. By graph duality, Ǎ> is equivalent as a category
to Tree. Neither of the two is essentially small, for which reason we immediately move
on to A = Frst. Here the size aspect of the situation is fundamentally different. A graph
that is both an upward forest and a downward tree is just a single finite “branch” or path,
and the isomorphism classes of paths correspond via the length function to the natural
numbers. As the roots for the upward forest are respected by the morphisms of A = Frst,
the category Ǎ is clearly equivalent to N as an ordered set. The morphisms of Ǎ> respect
the roots for the downward trees as well and therefore are invertible; the corresponding
all-object subcategory of N is the discrete one. Thus we are in special cases 1 and 4,

and the corollary tells us that YonJ is an equivalence Frst
≈ // SetǍop

. Since Frst ≈ Tree
and Ǎ ≈ N we also have Tree ≈ SetN

op

. Yet once more category theorists cannot be
surprised; many define the category of trees as suggested by the last equivalence.

Examples 10 and 16, continued. First consider A = Refl Grph. The objects of Ǎ

are reflexive downward trees (which are defined in the evident way); certainly Ǎ is not
essentially small. Thus consider A = Refl Frst instead. Here the objects of Ǎ are such
reflexive graphs as are reflexive upward forests and reflexive downward trees at a time.
As in the previous paragraph, the isomorphism classes correspond to natural numbers.
The morphisms, however, from a length-m reflexive path to a length-n reflexive path
correspond to functions ϕ : {0, . . . ,m} // {0, . . . , n} with (0)ϕ = 0 and (i)ϕ ≤ (i+1)ϕ ≤
(i)ϕ + 1. The discrete fibrations correspond to the inclusions, and the representation-
preserving morphisms correspond to the surjective (order-preserving) functions (which
coincide with the degeneracy maps in the topologist’s simplex category). From here the
reader can work out how according to the theorem Refl Frst can be viewed as a full
category of set-valued functors.

Examples 13 and 17, continued. This example pair agrees with the previous two
in that each object can have at most one representation. First consider A = Propoly Set.
We call the objects of Ǎ propolytopes . By “propolytopic duality” they correspond to
augmented polytopic sets. There are more than small-many isomorphism classes of them,
and so we instead consider A = Pln Poly Set (≈ Aug Poly Set). Here we call the objects
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of Ǎ plain polytopes . Contrary to the branches of example 15, a plain polytope P can
have many maximal generator paths; yet all their lengths agree. We call this number the
dimension of P .

It may be illustrative to mention the polytopes (the term is now used in the ‘up to
isomorphism’ sense) of the first three dimensions. There is one of dimension 0, called the
point ; its representation is a vertex. There is one of dimension 1, called the line segment ; it
has precisely two vertices; its representation is an edge. And for each m ∈ {1, 2, 3, . . . ;∞}
there is one of dimension 2 with precisely m vertices, called the m-gon (with any explicit
value of m to be expressed in Greek: monogon, digon, trigon, . . . ; apeirogon); it has also
precisely m edges. Here are the key ones pictured:
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(Items indicated lightly belong to the augmented but not the plain version.)
It is not difficult to show that all polytopes are countable (in the obvious sense) and

that hence there are at most continuum-many of them. Thus we are in special case 1.
The representation-preserving morphisms of Ǎ are the polytopic maps between polytopes
of the same dimension.(6) The discrete fibrations of A = Pln Poly Set can be described
roughly as those polytopic maps that “maintain the shape” of individual “cells”. (A
morphism from the m′-gon to the m-gon — there are 2m of them whenever m divides m′

— is a discrete fibration if and only if m = m′.) The theorem ensures that the better we
understand polytopes and their polytopic maps, the better we understand polytopic sets
and maps at large.

We now take a second look at our system of axioms of section 1, with the aim of convincing
ourselves that the most tempting omissions would change the notion at hand.

With axioms (Sl 1) and (Sl 2) in place, axioms (Sl 3) and (Sl 4) (unlike (Sl 3′) and
(Sl 4′)) are independent of each other. This is shown by the following two (parametrized)
counterexamples. Let A be a category with slicing. We consider its cartesian product
A × 2 with the ordered set 2 = {0, 1}, taken over Cat in the canonical way (that is, by
putting (A, i)∂ = A∂). We easily see that A × 2 satisfies (Sl 1) and (Sl 2). But A × 2
fails to satisfy (Sl 4) — consider an object (A, 1) with A initial in A — and, unless A is
trivial, also (Sl 3) — for two (possibly the same) non-initial objects A0, A1 of A, consider
the (A0∂ + A1∂)-shaped diagram which on the summand indexed by i takes the form
(Ai↓( ), i). The actual counterexamples I have in mind arise as full subcategories of A×2.

6The category of n-dimensional polytopes is equivalent to the full category of transitive Cn-sets having
certain properties. Here Cn is the Coxeter group whose Dynkin diagram is the n-vertex path with all
edges labelled ∞. (Examining the details of this assessment would lead us too far afield.) A certain
category resembling P̌oly Set> is being examined by Robin Cockett ([1]).
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The result of discarding all objects (A, 1) with A initial satisfies (Sl 4), but, unless A is
trivial, not (Sl 3). The result of instead discarding all objects (A, 0) for which there is a
morphism in A from A to a representable object satisfies (Sl 3), but, unless all A have the
stated property, not (Sl 4). For conservative A the latter full subcategory even satisfies
(Sl 3′), whence we see that the first proposition of section 1 cannot be improved. Here I
owe an example of an object in a (preferably non-trivial) conservative category A with
slicing from which there is indeed no morphism to a representable one. A such would be
the terminal object in Setkop

, provided (say) for each k ∈ k there is l ∈ k with k(l, k) = ∅.
We also set our sight on the phrase ‘with each Pα cartesian’ in (Sl 2). One may

wonder what would happen if we left it out. We may do so in two ways, retaining either
the wording or the meaning of (Sl 3) (that is, letting the latter axiom refer to either the
changed or the original version of the former). In the first case closedness under right
division leads to the conclusion that in fact all diagrams above a↓( ) are in Acart from
the outset. This condition is rather strange; it holds true in conservative categories
with slicing, but I know of no other example. The second case is more interesting.
The strengthened axiom (Sl 2) is satisfied by Cat Pres, to name an example that is
not conservative. Yet it is not satisfied by all categories with slicing. Indeed, consider
(m↓∗)←−Dgop, the opposite of the projective diagram category of the “Cayley category” of a
small commutative monoid m, viewed as a category with a single object ∗. If m contains a
non-invertible element, then there is no cocartesian lifting of ∆m

( ) to the m-shaped diagram
above m↓( ) whose object is the identity functor on m↓∗. (Exercise.)

We are now going to give further examples of categories with slicing, working our way
towards the remaining one mentioned prominently in the preface. At this point it is useful
to bring some “2-abstract nonsense” into the picture.

Let A and B be two categories over an arbitrary base category I. By a functor
F : B // A over I we mean one that comes equipped with a (natural) isomorphism

B

A

I.F
��

∂

33ggggggggggg

∂
++WWWWWWWWWWW

'

By a natural transformation over I between two such functors we mean one rendering the
evident cone-shaped figure commutative.

We are working with a universe of “small” sets and a universe of “large” sets, the
latter containing the former as an element.(7) We have an “extra large” 2-category CAT

of large categories, functors and natural transformations. The corresponding data over I

form the pseudo-slice 2-category CAT⇓I. We further have a projection CAT⇓I // CAT,
which is biconservative: a functor over I which is an equivalence as a plain functor (that
is, in CAT) is automatically an equivalence over I (that is, in CAT⇓I).(8)

7Elsewhere we follow the custom of using the term ‘small’ in the sense of ‘small up to isomorphism’
as well and concealing the process of overcoming the difference of the two meanings.

8Notwithstanding my adapted use of the term ‘above’, I am trying to follow standard 2-categorical
terminology.
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Now let A and B be two categories with slicing. We say that a functor F : B // A

over Cat preserves slicing iff it preserves cartesianness of the morphisms of (Sl 1) and
cocartesianness of the cocones of (Sl 2). This property of course comes for free if F is
an equivalence. It is also implied in the case that A is conservative. We have virtually
encountered some slicing-preserving functors already: the inclusions Adifi

� � // Acart
� � // A

(examples 2 and 3) and Pln Poly Set � � // Propoly Set � � // Cat Pres (examples 13 and 17;
also Grph, Refl Grph and Undir Grph can be viewed as subcategories-with-slicing of
Cat Pres) as well as the projection ∆A

T : A↓T // A (example 4). Categories with slicing,
slicing-preserving functors and natural transformations form a sub-2-category SL CAT of
CAT⇓Cat.

It is known that CAT is (strictly) large complete and hence bicategorically large
complete. For instance, bipulling back

B X

A

G
//

F
��

yields the iso-comma category (the full subcategory of G↓F having objects (B,U,A) with
U : BG // AF invertible), up to equivalence. (This representative is not a pseudo-
pullback!) It is also known that the property of bicategorical completeness is inherited
by pseudo-slice 2-categories, the connected bilimits (such as bipullbacks) being created
by the projection. Thus in particular CAT⇓Cat is bicategorically large complete. Further
it can be shown that SL CAT is closed in CAT⇓Cat with respect to bilimits.

Example 18. Let F : B // A be a slicing-preserving functor, and let T be an object
of A. The comma category F↓T has slicing.

Proof. The category in question comes about via a bipullback square

AB

A↓TF↓T

F
//

∆A
T

��

//

��

(which happens to be a pullback square as well) in SL CAT.

Let us apply this example to the situation where F is the inclusion Propoly Set � � //

Cat Pres and T is the presentation Tor with one object, two generators − and + and four
relators

•

•

•

•

||·•

•

•

•

+ DDDDDD
""

− zzzzzz
<<

+

zzzzzz
<<

+
DDDDDD

""
, •

•

•

•

||·•

•

•

•

+ DDDDDD
""

+ zzzzzz
<<

+

zzzzzz
<<

−
DDDDDD

""
, •

•

•

•

||·•

•

•

•

− DDDDDD
""

− zzzzzz
<<

−
zzzzzz

<<

+
DDDDDD

""
, •

•

•

•

||·•

•

•

•

− DDDDDD
""

+ zzzzzz
<<

−
zzzzzz

<<

−
DDDDDD

""
.

(Tor is not a propolytopic set: each of the four length-2 paths occurs as a side of two
relators.) The structure on a propolytopic or augmented polytopic set conveyed by a
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presentation morphism to Tor is an orientation. (For plain polytopic sets there is an
additional condition.) Thus our result is that the category Or Propoly Set of oriented
propolytopic sets has slicing. Applying example 14 next we further infer that so has the
category Or Propoly SetΘ = Or Aug Poly Set of oriented augmented polytopic sets, where
we understand that the structural functor drops the initial objects. (This modification
is the reason why we cannot arrive at the same conclusion by applying example 18
again: the inclusion Aug Poly Set � � // Cat Pres does not live over Cat, while the functor
Aug Poly Set // Cat Pres dropping initial objects would give rise to a different comma
category.)

Our last official example has as its instances arbitrary full and replete subcategories
inheriting slicing.

Example 19. Let A be a category with slicing. Any full and replete subcategory of A

that contains an object A if and only if it contains all the associated slice objects A↓a
(a ∈ A∂) has itself slicing.

We have already used this fact, namely in our proof for example 13. We could have
advantageously used it in our proof for example 7 too: clearly K−−→Fam is equivalent over
Cat to a full subcategory of Kop

←−Dgop, namely of those diagrams whose shapes are discrete
or, equivalently, whose slice diagrams all have shape (isomorphic to) 1.

An (augmented) dendrotopic set is an oriented augmented polytopic set in which
• each object except the initial one has finitely many negative and precisely one

positive incoming generators,
• each 3-codimensional morphism (that is, morphism represented by generator paths

of length 3) is represented in precisely one way by a configuration

•

•

•

•

||·•

•

•

•
DDDDDD

""

zzzzzz
<<

zzzzzz
<<

DDDDDD
""

•
+// .

It is fairly clear that an object of the category Or Aug Poly Set has these properties if and
only if all of its slice objects have. From the example we infer that the full subcategory
Dend Set of dendrotopic sets has slicing. Moreover, Dend Set falls into special cases 1
and 4 of the previous section. I mentioned the reasons in [6]; I will supply more details in
a future paper. All said, we arrive at the conclusion that dendrotopic sets form a presheaf
category.

In example 19, the subcategory B of A is determined, as such, by the subcategory B̌

of Ǎ. This insight leads to a much further reaching idea: What if instead of B̌ we were
given an abstract category P with suitable extra structure? Explicitly, we are seeking a
construction assigning to P a category with slicing from which P can be recovered, up to
equivalence, as the full category of represented objects. Moreover, if P = Ǎ for a given
category A with slicing, we should like our construction to produce a category equivalent
to A over Cat. (The theorem of the previous section points in this direction, but leaves
the issue of structural functors aside.)
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We first have to determine what extra structure we need on P. If P = Ǎ, then we have
an induced functor P � // P∂ into Čat, the category of small categories with distinguished
terminal object and all functors between them. As a category over Čat, P will satisfy an
appropriately modified version of (Sl 1), namely:

(Šl 1) Let P ∈ P and p ∈ Čat be two objects with u : p
' // P∂ ∈ Čat>. For any

object a ∈ p, there are an object Q ∈ P with v : p↓a ' // Q∂ ∈ Čat> and a
cartesian morphism F : Q // P with F∂ = v−1 ·∆p

a · u.

(We continue to take automatically the distinguished terminal object of a slice category
to be the identity morphism.) Let us call an arbitrary category P over Čat satisfying
(Šl 1) a slicing site.

It should have become clear what we mean by the phrase ‘appropriately modified’: all
the small categories mentioned have to be represented (= equipped with a distinguished
terminal object); all their invertible functors mentioned have to respect representations.
The latter modification is particularly noteworthy. It leads us to limit accordingly the
meaning of the preposition ‘above’ in relation to a category over Čat. (There is a case here
for studying categories over a base category I with a distinguished all-object subgroupoid
of “true isomorphisms”.)

Note that any category over Čat trivially satisfies the appropriately modified versions
of the other three axioms on a category with slicing. (This is because a diagram whose
shape has a terminal object carries along its own colimit.) As a consequence, the main
results of section 1 on categories with slicing, appropriately modified, hold for slicing sites
as well. In particular, we can talk about discrete fibrations, which are those morphisms
F : Q // P for which all slice morphisms F↓b : Q↓b // P↓(b · F∂) are invertible or,
equivalently, the cartesian morphisms above discrete fibrations in Čat.

Given a slicing site P, we construct a category P̂ replete over Cat as follows. An
object strictly above a consists of an a-shaped diagram P( ) = P in P for which each

Pα : Pa′ // Pa is cartesian, and an isomorphism u( ) = u : a↓( )
' // P∂ for which each

ua : a↓a ' // Pa∂ respects representations. A morphism (b, Q, v) // (a, P, u) strictly
above f : b // a is a morphism Φ( ) = Φ : Q // Pf of b-shaped diagrams such that
Φ∂ = v−1 · f↓( ) · uf

(
a

b

P

Čat

f ���

LL���

Pdddddd
11dddddd

∂
%%%%%

��%%%%%

b↓( )

[[[[[[[[
--[[[[[[

Q
uuuuuuuu

::uuuuuuu
__ Φ>>

HHv '��

a

b

P

Čat
)
.

f ���

LL���

Pdddddd
11dddddd

∂
%%%%%

��%%%%%

b↓( )

[[[[[[[[
--[[[[[[

a↓( )

JJJJJJJJ

%%JJJJJJJ
VV

f↓( )
--

CCu
'��=

This last condition implies that each Φb : Qb
// Pb·f respects representations. Composition

in P̂ is carried out in the obvious way.
We are now going to show that P̂ has slicing. We start by noting that a morphism

(g, Φ) of P̂ is a discrete fibration if and only if the diagram morphism Φ is invertible.
Let (a, P, u) be an object of P̂. Any discrete fibration g : c // a has a cartesian lifting
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(g, 1Pg) : (c, Pg, g↓( ) · ug) // (a, P, u); in particular, so have the slice-category projections.
Next, consider a functor f∗ : a // b and let (fa, Φa) : (a↓a, P∆a

a
,∆a

a↓( ) · u∆a
a
) // (b, Q, v)

a↓a

(
b

P

Čat

fa

II���������

Q
dddddd

11dddddd

∂
%%%%%

��%%%%%

(a↓a)↓( )

00aaaaaaaaaaaaaaa

a∆a
a 99ssss

P
yyyyyy

<<yyyyy

a↓( )

VVVVVV
++VVVV

Φa
\\99

u '
II��

'QQ$$
a↓a

b
P

Čat
)fa

II���������

Q
dddddd

11dddddd

∂
%%%%%

��%%%%%

(a↓a)↓( )

00aaaaaaaaaaaaaaa

b↓( ) JJJJJJJJ

%%JJJJJJJ

fa↓( )
TT))

v
'
CC��=

form a cocone on the slice-object diagram, with fa = ∆a
a · f∗. The diagram morphisms

Φa : P∆a
a

// Qfa now form a modification between two (strict) cocones in CAT. Since ∆a
( )

is a bicolimit, there is a unique diagram morphism Φ∗ : P // Qf∗ with Φ∗∆a
a

= Φa. Now

(u · Φ∗∂)∆a
a

= u∆a
a
· Φa∂ = (∆a

a↓( ))−1 · fa↓( ) · vfa = f∗↓(( ) ·∆a
a) · vfa = (f∗↓( ) · vf∗)∆a

a

a↓a

(
b

a

P

Čat∆a
a

99ssss

Q
dddddd

11dddddd

∂
%%%%%

��%%%%%

a↓( )

VVVVVV
++VVVV

f∗

VV----- P
yyyyyy

<<yyyyy
ff

Φ∗
MM

IIu '��

a↓a

b

a

P

Čat
)
,∆a

a

99ssss

Q
dddddd

11dddddd

∂
%%%%%

��%%%%%

a↓( )

VVVVVV
++VVVV

f∗

VV-----

b↓( )

JJJJJJJJ

%%JJJJJJJ\\ ::

CCv
'��=

whence also Φ∗∂ = u−1 · f∗↓( ) · vf∗ . Thus indeed there is a unique morphism (f∗, Φ∗) :
(a, P, u) // (b, Q, v) with (∆a

a, 1P∆a
a
) · (f∗, Φ∗) = (fa, Φa).

Now suppose that (a↓( ), P ( ), u( )) is an arbitrary diagram strictly above a↓( ), with each

(a↓f, P f ) : (a↓b, P b, ub) // (a↓a, P a, ua)

cartesian, that is, each P f : P b // P a
a↓f invertible. Then the P a form a pseudo-cocone

a↓( ) // P in CAT. Since ∆a : a↓( ) // a is a bicolimit, there are an a-shaped diagram P ∗

and diagram isomorphisms Φa : P a ' // P ∗∆a
a

amounting to a modification of pseudo-

cocones, so that we have P f · Φaa↓f = Φb. Now note that the ∆a
a↓( ) : (a↓a)↓( )

' //

a↓(( ) ·∆a
a) as well as the ua : (a↓a)↓( )

' // P a∂ amount to a modification of pseudo-cocones
a↓( ) // Čat. It follows that so do the (∆a

a↓( ))−1 · ua · Φa∂ : (a↓( ))∆a
a

// P ∗∆a
a
∂ (both these

nominal pseudo-cocones are in fact strict). They therefore equal u∗∆a
a

for a unique diagram
morphism u∗ : a↓( ) // P ∗∂, which inherits invertibility and representation preservation

a↓a

(
a

P

Čat

∆a
a

LL������
∂

%%%%%

��%%%%%

P ∗ 11ddddddddddd

(a↓a)↓( )
--[[[[[[[[[[[[

a↓( )

%%JJJJJJJJJJJJJJ

'
VV--

u∗
' CC

a↓a

a
P

Čat
)
.

∆a
a

LL������
∂

%%%%%

��%%%%%

P ∗ 11ddddddddddd

(a↓a)↓( )
--[[[[[[[[[[[[

Pa

::uuuuuuuuuuuuu
ua' HH��

Φa

'
__>>

=
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We have thus constructed an object (a, P ∗, u∗) of P̂ and an isomorphism (1a↓( ), Φ
( )) :

(a, P ∗, u∗)↓( )
' // (a↓( ), P ( ), u( )) of a-shaped diagrams in P̂ strictly above the identity of

a↓( ). This completes our proof.
If P = Ǎ for a category A with slicing, then P̂ ≈ A over Cat. A functor from A to P̂

is obtained using (Sl 1); its object assignment is A � // (A∂,A↓( ), 1A↓( )). A functor in the
opposite direction is obtained using (Sl 2); its object assignment is (a, P, u) � // A, where
A denotes a colimit object of the diagram P . By (Sl 3) and (Sl 4) these two functors are
indeed pseudo-inverses of each other.

We also have
ˇ̂
P ≈ P over Čat, in the sense indicated above that the isomorphisms

involved preserve representation. Here the two pseudo-inverses have object assignments
P � // (P∂, P↓( ), 1P↓( )) and (a, P, u) � // P>a . The verification of the details is left to the
reader.

To put these results into a concise form, we introduce the 2-category SL SITE of slicing
sites. The objects are the ones suggested by the name. The 1-cells are the slicing-
preserving functors, that is, functors F : Q // P preserving cartesianness as required by

(Šl 1) and coming equipped with a representation-preserving isomorphism F∂
' // ∂. The

2-cells are those natural transformations satisfying the evident commutativity condition
(and hence preserving representation themselves). Of course SL SITE is a sub-2-category
of CAT⇓Čat, the pseudo-slice 2-category of categories over Čat.

The assignments A � // Ǎ and P � // P̂ can be extended in a straight-forward manner
to become 2-functors SL CAT // SL SITE and SL SITE // SL CAT. The equivalences

A ≈ ˆ̌A and P ≈ ˇ̂
P described above similarly become the constituents of pseudo-natural

transformations. Again I leave the verification of the details to the reader.
We can now summarize.

Theorem. The 2-categories SL CAT and SL SITE are biequivalent via the 2-functors

A � // Ǎ and P � // P̂.

5. The Proof

The main theorem consists of three parts, whose separate proofs are arranged here with
increasing difficulty and length. A theme common to the last two parts is treated in a
lemma.

We write P for Ǎ throughout.

(First part). YONJ is full and faithful.

Proof. Let A, B ∈ A and consider a P-map

ϕ : A(( )J, B) // A(( )J, A).

Applying ϕB↓b to the slice-object projection ∆B
b ∈ A(B↓b, B) we obtain a morphism

F ′b = (∆B
b )ϕB↓b ∈ A(B↓b, A). By naturality of ϕ these morphisms are the constituents of
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a B∂-shaped cocone F ′( ) : B↓( ) // A. Since ∆B
( ) is a universal cocone, there is precisely

one morphism F : B // A such that ∆B
( ) · F = F ′( ). All we need to show is that this

equation is equivalent to A(( )J, F ) = ϕ. But if the latter equation holds, the former is
just the definition of F ′( ). So what remains to be shown is that the former implies the
latter.

So suppose ∆B
( ) · F = (∆B

( ))ϕB↓( ), and let P ∈ P and H ∈ A(P,B). Using the slice-
object factorization of H we find that

H · F = H> ·∆B
>P ·H · F = H> · (∆B

>P ·H)ϕB↓(>P ·H) = (H> ·∆B
>P ·H)ϕP = (H)ϕP .

Lemma. Consider the situation

P

B

A
G

//

F
��

∈ A

with F a discrete fibration and P ∈ P. For any b ∈ B∂ with b · F∂ = >P · G∂ there is
precisely one morphism H : P // B with >P ·H∂ = b and H · F = G.

Proof. Glancing at the diagram

P

B

A,

P↓>P

B↓b

A↓a

G
//

F

��

G↓>P //

F↓b
'

��

∆P
>P'

��??????????

∆A
a

��??????????

∆B
b

��??????????

H

??

H↓>P

??

we see that H = (∆P
>P

)−1 ·G↓>P · (F↓b)−1 ·∆B
b meets the requirements. Conversely, if H

meets the requirements, then H = (∆P
>P

)−1 ·H↓>P ·∆B
b and H↓>P = G↓>P · (F↓b)−1.

(Second part). Each X = A(( )J, A) satisfies conditions (i), (ii) and (iii).

Proof. We first show that an element x ∈ XP is locally universal in X> if and only if
the morphism x : P // A is a discrete fibration.

As for the ‘if’ part, we apply the lemma on local universality (section 3). Thus we
have to consider a commutative square

R

Q

P

A

H ��

y
//

G //

x
��
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with x a discrete fibration and G and H preserving representation. Now since >P · x∂ =
>R · G∂ · x∂ = >R · H∂ · y∂ = >Q · y∂, the preceding lemma applies: there is precisely
one representation-preserving morphism F : Q // P with F · x = y. And this is what we
have had to show.

As for the ‘only if’ part, it suffices to show that in the slice-object factorization

P x> // A↓a ∆A
a // A, (1)

x> is an isomorphism. To this end, first note that since x> preserves representation, we
can apply the local universality of x in X> to the commutative square

P A↓a

P A

x>//

∆A
a��

=
��

x
//

U��

to obtain a representation-preserving morphism U as shown, making the lower right and,
as we know, also the upper left triangle commute. Thus x> · U = 1P . Then consider the
situation

A↓a

A↓a A.

∆A
a��

∆A
a

//
��

Since ∆A
a is a discrete fibration, the preceding lemma tells us that there is only one

representation-preserving morphism rendering the triangle commutative. Now U ·x>·∆A
a =

U · x = ∆A
a , so that U · x> = 1A↓a. In summary, U is an inverse for x>.

Now the assertions on X can easily be verified. Property (iii) is obvious since discrete
fibrations are closed under composition. As for properties (i) and (ii), the possibility of
a decomposition (1) makes clear that the elements ∆A

a ∈ XA↓a generate X>. They are
small many since A∂ ∈ Cat, and they are locally universal in X> since they are discrete
fibrations.

(Third part). A left P-set X satisfying conditions (i), (ii) and (iii) is isomorphic to
one of the form A(( )J, A).

Proof. We start by laying out the essential constructions. Write Jdifi for the projection
Pdifi

// Adifi. For each A ∈ A we have three functors

J↓A
A∂.

Jdifi↓A

τA
))SSSSSS

σA
uukkkkkρA

OO

? (2)

Namely, ρA is the inclusion, σA is the assignment a � // (A↓a,∆A
a ), and τA is defined as

follows. For P ∈ P and F : P // A ∈ A put

(P, F )τA = >P · F∂,
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and for H : Q // P ∈ P with H · F = G put

(H : (Q,G) // (P, F ))τA = >Q ·H∂ · !P · F∂,

where p · !P denotes the unique morphism p // >P . The process giving rise to the
morphism HτA is visualized by the diagram

Q

P

AH

��

G

**TTTTTTTTTTTTTTTTTT

F

44jjjjjjjjjjjjjjjjjj >Q·H∂ >P
//

>Q

>Q·G∂ >P ·F∂//

_

��

�

**TTTTTTTTTTTTTTTT

*

44jjjjjjjjjjjjjjjjj

.

The three categories displayed in (2) are the object values at A of three evident
functors of Adifi. Thus we can discuss naturality with respect to discrete fibrations for
the accompanying three families of functors: ρ self-evidently is natural, and τ can easily
be checked to be; from these two facts and the result of the following paragraph one can
infer that σ is pseudo-natural.

Let us compare the three ternary composites of (2) with the corresponding identities.
Firstly, we have a natural transformation

1J↓A // τAσAρA (3)

mapping (P, F ) ∈ J↓A to the representation-preserving morphism

F> : (P, F ) // (A↓(>P · F∂),∆A
>P ·F∂)

occurring in the slice-object factorization of F : P // A. If F is a discrete fibration, then
so is F> by closedness under right division; thus we can restrict domain and range of (3)
simultaneously to Jdifi↓A to obtain a natural transformation 1Jdifi↓A

// ρAτAσA. But a
representation-preserving discrete fibration is an isomorphism, and so we have, secondly,

1Jdifi↓A ' ρAτAσA.

The third and remaining composite is easily checked to be the identity:

1A∂ = σAρAτA. (4)

All said, the functor ρAτA has σA as both a (strict) section and a pseudo-inverse; it is
therefore a surjective equivalence.

We need to understand fully the “one-dimensional behaviour” of ρAτA. To achieve this
end we are going to prove the following statement: The functor ρAτA sends a morphism
H : (Q,G) // (P, F ) of Jdifi↓A to an identity in A∂ if and only if H : Q // P
preserves representation. It is clear that if H preserves representation, HρAτA is an
identity. Conversely, suppose that HρAτA is the identity of an object a. For both
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>Q ·H∂ · !P : >Q ·H∂ // >P and 1>P
: >P // >P the image under F∂ is 1a. Since F∂ is

a discrete fibration, we get >Q ·H∂ = >P , or in other words: H preserves representation.
After these preliminaries we now turn to the proof itself. Let X be a P-set satisfying

conditions (i), (ii) and (iii). Denote by X> and Xdifi the respective structures obtained
by restricting X to P> and Pdifi. The well-known “absorption” of the element-category
construction (of which the slice-category construction can be viewed as a special case via
the Yoneda embedding) associates with each element x ∈ XP an isomorphism

(Pdifi↓Xdifi)↓(P, x) ' // Pdifi↓P, (5)

whose inverse maps (Q,F ) to ((Q,F ·x), F ). The family of these isomorphisms, for (P, x)
varying in Pdifi↓Xdifi, is natural.

Form the full subcategory S of Pdifi↓Xdifi whose objects are those elements of Xdifi

that are locally universal in X>. Since X satisfies (iii), S is in fact a sieve in Pdifi↓Xdifi,
so that we have S↓(P, x) = (Pdifi↓Xdifi)↓(P, x) for all (P, x) ∈ S. Putting this equation
together with the functors (5) and ρP τP we obtain a surjective equivalence

S↓(P, x)
≈ // P∂ (6)

sending precisely the representation-preserving morphisms to identities.
Now choose a representative system for representation-preserving isomorphism in S

and form the corresponding full subcategory a. Since X satisfies (i), there are only
small-many such classes, whence we may without loss of generality assume that a ∈ Cat
(justifying our use of a lower-case letter). For each (P, x) ∈ a we consider the composite
u(P,x) of the inclusion a↓(P, x) � � // S↓(P, x) and (6). We claim that it is an isomorphism
of categories. It clearly is full and faithful, and in the next two paragraphs we show that
it is bijective on objects as well.

Surjectivity. Each a ∈ P∂ is the image under (6) of some ((Q, y), F ) ∈ S↓(P, x).

By choice of a there are (Q′, y′) ∈ a and a representation-preserving G : (Q′, y′) ' //

(Q, y) ∈ S. Put F ′ = G · F . Then ((Q′, y′), F ′) ∈ a↓(P, x) and G : ((Q′, y′), F ′) ' //

((Q, y), F ) ∈ S↓(P, x), so that ((Q′, y′), F ′) is mapped to a as well.
Injectivity. Suppose two objects ((Qi, yi), Fi) ∈ a (i ∈ {0, 1}) are mapped to the same

object of P∂. Then some representation-preserving isomorphism G : ((Q0, y0), F0) ' //

((Q1, y1), F1) is mapped to the associated identity. By choice of a we have (Q0, y0) =
(Q1, y1); so let us omit the subscripts here. Now G · y = y, so since y is locally universal
in X> (the only subtlety), we have G = 1Q and further F0 = G · F1 = F1.

The family of isomorphism

u(P,x) : a↓(P, x) ' // P∂

inherits the naturality of its defining factors. It thus determines a situation to which —
a flourish! — axioms (Sl 2) and (Sl 3) apply. There are hence an object A with A∂ = a

(assuming repleteness) and a family of isomorphisms

U(P,x) : A↓(P, x) ' // P
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with U(P,x)∂ = u(P,x), natural for (P, x) varying in a. Inspecting the process from the start
we find that in fact each U(P,x) preserves representation and therefore is an isomorphism
in P>.

We wish to construct an invertible P-map ε : A(( )J, A) ' // X. So let P ∈ P and
F : P // A ∈ A. Consider the slice-object factorization

P A↓(P ′, x′) A
F> //

∆A
(P ′,x′) //

of F and put (F )εP = F> · U(P ′,x′) · x′. For H : Q // P ∈ P and H · F = G we have a
commutative diagram

Q A↓(Q′, y′) Q′

P A↓(P ′, x′) P ′,

G> //
U(Q′,y′) //

F>
//

U(P ′,x′)

//

H
��

A↓H′
��

H′

��

where it is the functor τA : J↓A // A∂ = a that brings about the assignment

(H : (Q,G) // (P, F )) � // (H ′ : (Q′, y′) // (P ′, x′)).

From this it is clear that ε is P-natural. It remains to show that each εP is bijective.
We first show that εP is injective. Suppose (F0)εP = (F1)εP . That is, with the

evident notational convention, F>0 · U(P ′0,x
′
0) · x′0 = F>1 · U(P ′1,x

′
1) · x′1. Since both x′0 and x′1

are locally universal in X>, they are isomorphic in P>↓X>. Since they also belong to the
representative system chosen to obtain a, they in fact agree, say (P ′i , x

′
i) = (P ′, x′). Still

by local universality of x′ we have F>0 · U(P ′,x′) = F>1 · U(P ′,x′), whence F>0 = F>1 because
U(P ′,x′) is invertible. But Fi = F>i ·∆A

(P ′,x′), so we are done.

Finally we show that each εP is surjective. Since X satisfies (ii), it suffices to prove that
every element locally universal in X> is in the image of ε. By choice of the subcategory a

it even suffices to consider such elements as can be found there. Now if x ∈ XP is such
an element, we can put F = U−1

(P,x) ·∆A
(P,x); then clearly F> = U−1

(P,x) and so (F )εP = x.

References

[1] Robin Cockett: ‘Notes on Polytopes’
[2] V. Harnik, M. Makkai, M. Zawadowski: ‘Multitopic sets are the same as many-to-

one computads’, www.math.mcgill.ca/makkai
[3] C. Hermida, M. Makkai, A. J. Power: ‘On weak higher dimensional categories’,

Journal of Pure and Applied Algebra; part 1: 154 (2000), 221–246; part 2: 157
(2001), 247–277; part 3: 166 (2002), 83–104

[4] M. Makkai: ‘The word problem for computads’, www.math.mcgill.ca/makkai



CATEGORIES WITH SLICING 135

[5] Thorsten Palm: ‘Dendrotopic Sets’, Galois Theory, Hopf Algebras, and Semiabelian
Categories , Fields Institute Communications, vol. 43 (American Mathematical Society,
Providence, 2004), 393–443

[6] Thorsten Palm: ‘Dendrotopic Sets for Weak ∞-Categories’, Ph. D. dissertation,
York University, Toronto (2003)

[7] D. Schumacher, R. Street: ‘Some parametrized categorical concepts’, Communications
in Algebra 16 (1988), 2313–2347

[8] Ross Street: ‘Fibrations in bicategories’, Cahiers de topologie et géométrie différen-
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