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VECTOR FIELDS AND FLOWS ON DIFFERENTIABLE STACKS

RICHARD HEPWORTH

ABSTRACT. This paper introduces the notions of vector field and flow on a general
differentiable stack. Our main theorem states that the flow of a vector field on a compact
proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This
extends the usual result on the existence and uniqueness of flows on a manifold as well
as the author’s existing results for orbifolds. It sets the scene for a discussion of Morse
Theory on a general proper stack and also paves the way for the categorification of other
key aspects of differential geometry such as the tangent bundle and the Lie algebra of
vector fields.

1. Introduction

This paper extends the notions of vector field and flow from manifolds to differentiable
stacks. It is part of a programme to establish Morse Theory for stacks, where the princi-
pal tool will be the negative gradient flow of an appropriate Morse function. The Morse
Inequalities, Morse Homology Theorem and handlebody decompositions are powerful com-
putational and conceptual consequences of Morse Theory that we hope to bring to bear
on the study of differentiable stacks, or equivalently, the study Lie groupoids. The author
has already established the Morse Inequalities for orbifolds, which are the proper étale
differentiable stacks [Hep09].

Our results are an example of categorification [BD98]. In one sense categorification
means taking a familiar structure defined by sets, functions and equations among the
functions, and then considering an analogous structure determined by categories, func-
tors and natural isomorphisms among the functors. More generally, categorification can
refer to the process of taking notions phrased inside a 1-category and establishing ana-
logues inside a higher category; the sense we mentioned first promotes notions from the
1-category of sets to the 2-category of categories. Differentiable stacks, or rather an ap-
propriate subclass like the Deligne-Mumford stacks or proper stacks, are a categorification
of manifolds, just as groupoids are a categorification of sets. What this paper achieves,
then, is a categorification of vector fields and flows. We hope that it will open up the
possibility of categorifying other aspects of differential geometry via stacks and, perhaps
more interestingly, seeing which categorified structures will appear in the process. We
shall elaborate on this point later.
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The paper begins by defining a tangent stack functor. This is a lax functor from the 2-
category of differentiable stacks to itself and extends the functor that sends a manifold to
its tangent bundle and a map to its derivative. This allows us to give our first definition:

1.1.  DEFINITION. A vector field on a differentiable stack X is a pair (X, ax) consisting
of a morphism

X:X—-TX
and a 2-cell
XHXT&%. (1)
Idx

Here mx: TX — X is the natural projection map.

When X is a manifold M, there are no nontrivial 2-cells between maps M — M. Two
maps are either equal or are not related by any 2-cell. Thus (1) becomes the familiar
equation my; 0 X = Idy; and we recover the usual definition of vector field on M. However
for a general stack the equation my o X = Idyx may fail to hold while many different
2-morphisms ayx exist. The definition above is typical of categorification: the familiar
equation 7y 0 X = Idy, is ‘weakened’ to become the isomorphism ax. Another prominent
feature of categorification is that the isomorphisms by which one weakened the original
equations are often subjected to new equations of their own. This is apparent in the next
definition.

1.2.  DEFINITION. Let X be a vector field on X. A flow of X is a morphism

P: X xR—-X
equipped with 2-cells
T(X x R) L2~ 7% (2)
aT XTX
ot
XXR—Fp—X
and
X=X xR (3)
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for which the composition of 2-cells in

ExR—2 > 7% (4)

Corol e,
L

X xR o X

is trivial. (The upper square is obtained from the naturality of the projection maps TX —

X, T(XxR)— XxR.)

Consider again the case where X is a manifold M. Then (2) and (3) become the
familiar equations 0®/0t = X o ® and ®(z,0) = x that define the flow of X, while the
condition on the diagram (4) is vacuous. In general, though, there may be a choice of
te and e, and not all choices of tg will satisfy the condition (4). Again this is typical
categorification: familiar equations are weakened to isomorphisms and a new equation is
imposed on these isomorphisms. With this definition we are able to prove the following
theorem, which extends the usual result on the existence and uniqueness of flows on
manifolds.

1.3. THEOREM. Let X be a vector field on a proper differentiable stack X.
1. If X has compact support then a flow ®: X x R — X exists.

2. Any two flows
O U XXxR—X

of X are related by a 2-morphism ® = U that is uniquely determined by eq, ey, to
and ty.

(Recall that X is proper if the diagonal map A: X — X X X is proper. This is the case
for all manifolds, orbifolds, S*-gerbes, and global quotients by compact Lie groups.)

Where do these results lead? The definitions and theorems described above ignored
some of the finer structures available in the theory of tangent bundles, vector fields and
flows:

e The tangent bundle of a manifold is not just a manifold but a vector bundle.
e The set of vector fields on a manifold is not just a set but a Lie algebra.

e The set of vector fields on a compact manifold is isomorphic (by taking flows) to
the set of 1-parameter families of diffeomorphisms.

We conjecture that each of the above statements can be extended to stacks:
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e The tangent stack of a differentiable stack is a bundle of 2-vector spaces on the
stack.

e The groupoid of vector fields on a stack is a Lie 2-algebra.

e The groupoid of vector fields on a compact proper differentiable stack is equivalent
to the groupoid of weak actions of R on the stack.

The 2-vector spaces and Lie 2-algebras just mentioned should be understood in the sense
of Baez and Crans [BC04]. Regarding the tangent stack as a 2-vector bundle raises
the possibility of considering Riemannian metrics on a differentiable stack and thereby
constructing gradient vector fields. The gradient vector field of a Morse function, or rather
the flow of the gradient, is the fundamental tool in Morse Theory.

The paper is organized as follows. In §2 we recall some facts about differentiable stacks
and their relationship with Lie groupoids. In §3 we establish the existence of a tangent
stack functor T': StDiff — StDiff from stacks on Diff to stacks on Diff. This is a lax
functor that extends the usual tangent functor given by sending a manifold to its tangent
bundle and a map to its derivative. In §4 we give the full definition of vector fields and
equivalences of vector fields on a stack. Several key technical results are proved. We also
define vector fields on a Lie groupoid and prove that these are equivalent to vector fields
on the stack of torsors. In §5 we define integral morphisms and integral 2-morphisms —
these are the analogues of integral curves in a manifold — and we give the full definition of
flows. Then we state and prove theorems on the existence, uniqueness and representability
of integral morphisms and flows, including the theorem stated in this introduction. §6
explores these results in the case of a global quotient stack [M/G] with G a compact Lie
group. The vector fields on [M/G] are described entirely in terms of G-equivariant vector
fields on M, and their flows are described using the flows of these G-equivariant fields.
87 explores the results for étale stacks, and describes how the present results include as a
special case the results proved in [Hep09].

ACKNOWLEDGMENTS. Thanks to David Gepner and Jeff Giansiracusa for many interest-
ing and useful discussions about stacks. The author was supported by an E.P.S.R.C. Post-
doctoral Research Fellowship, grant number EP/D066980 during the preparation of this
work.

2. Recollection on differentiable stacks and Lie groupoids

The purpose of this brief section is to recall various aspects of the theory of differentiable
stacks that will be used in the rest of the paper. We recall the definition of differen-
tiable stacks and their relationship with Lie groupoids. In particular we recall how the
morphisms between two stacks are related to the morphisms between Lie groupoids that
represent the stacks. Then we recall what it means for a stack to be étale or proper, and
finally we look at some particular facts about proper stacks. These results are generally
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well known, but we wish to record them here, along with the relevant references, for use
in the rest of the paper.

2.1. DIFFERENTIABLE STACKS. Let Diff denote the category of smooth manifolds and
smooth maps, equipped with the usual Grothendieck (pre)topology determined by open
coverings. Then stacks on Diff, which are the lax sheaves of groupoids on Diff, form a
strict 2-category that we denote by StDiff. There is a Yoneda embedding y: Diff — StDiff,
and so we can think of stacks on Diff as a generalization of manifolds. For readable
introductions to the language of differentiable stacks we recommend [BX06], [Hei05],
[Moe02a]. The following definitions can be found in the first of these references.

o A stack is called representable if it is equivalent to a manifold, or in other words, if
it is in the essential image of the Yoneda embedding.

e A representable submersion is a morphism X — X whose domain is a manifold and
which has the following property: For any manifold Y and any morphism ¥ — X,
the fibre product X Xz Y is representable and X X3 Y — Y is a submersion. It
is a representable surjective submersion if in addition X xx Y — Y is surjective.
Representable surjective submersions are also called atlases.

o A differentiable stack is a stack on Diff that admits an atlas.

e A morphism X — 9) is representable if for any representable submersion Y — %),
or for a single atlas Y — ), the pullback X Xg Y is representable. It is called
submersive, €tale or proper if, in addition, X x9 Y — Y is submersive, étale or
proper.

Any manifold M can be regarded as a differentiable stack, and an atlas {U,} for M gives
amap | |U, — M that is an atlas in the sense defined above. We therefore regard atlases
for differentiable stacks as a generalisation of atlases for manifolds. The 2-category of
differentiable stacks is the full subcategory of StDiff whose objects are the differentiable
stacks, and we write it as DiffStacks.

2.2. 'THE RELATIONSHIP BETWEEN STACKS AND GROUPOIDS. We now discuss the re-
lationship between differentiable stacks and Lie groupoids. For the definition of Lie
groupoids, their torsors or principal bundles, and of Morita equivalences of groupoids,
we recommend that the reader consult [Moe02b] or [MMO03]. The material presented in
this subsection has a long history and can be approached from several points of view. For
details on this history we refer the reader to [MMO05, p.150] and the references therein.

The relationship between groupoids and stacks begins with the fact that for each Lie
groupoid I', the collection of I'-torsors and isomorphisms between them determines a stack
BI', and that Morita equivalent groupoids determine equivalent stacks. Now let X be a
differentiable stack and let U — X be an atlas. From this data we obtain a Lie groupoid
U xx U = U and an equivalence X ~ B(U xx U = U). See for example [Pro96, §5.4] or
[BX06, 2.20]. We say that X is represented by U xx U = U.
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Let LieGpd denote the strict 2-category of Lie groupoids, smooth functors and smooth
natural transformations, and write

B: LieGpd — StDiff

for the lax functor that sends a Lie groupoid to its stack of torsors. This functor sends
Morita equivalences into equivalences of stacks. In [Pro96] Dorette Pronk showed how to
construct the 2-category of fractions C[W ] from a 2-category C and an appropriate class
of morphisms W in C. This has the property that the category of functors C[W~'] — D
is equivalent to the 2-category of functors C — D that send all elements of W into equiva-
lences. In the situation at hand we therefore obtain a functor from LieGpd[Morita™'] into
StDiff whose image is contained in the full subcategory of differentiable stacks. Pronk
proved the following:

2.3. THEOREM. [Pro96, Corollary 7] The functor B: LieGpd — StDiff induces an equiv-
alence
LieGpd[Morita~'] = DiffStacks

between the 2-category of Lie groupoids with Morita equivalences weakly inverted and the
2-category of differentiable stacks.

(Pronk’s proof is only given for groupoids with source and target map étale, and for
stacks admitting an étale atlas, but the same techniques used there give the full result
above.)

This theorem establishes the precise relationship between differentiable stacks and Lie
groupoids. Just as one manifold has many different atlases, so one stack can be represented
by many different Morita equivalent Lie groupoids. The ability to vary the Lie groupoid
representing a given stack is fundamental to the results presented in this paper.

2.4. THE DICTIONARY LEMMA. In the rest of the paper we will frequently make use of
the dictionary lemma below. It explains how to relate morphisms and 2-morphisms of
Lie groupoids

/"’IL“‘\

F\_/

A
with morphisms and 2-morphisms of stacks

/’?
W

BI' BA.

The lemma forms part of the proof of Pronk’s theorem above (Theorem 2.3), and its proof
is essentially contained in [Pro96], but we also refer the reader to [BX06, 2.6] where it
appears explicitly.
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2.5. LEMMA. [The dictionary lemma.]
1. A groupoid morphism f: 1" — A determines a diagram

FO$AO

| o

BF?BA

for which the induced map I'y xXgr 'y — Ag Xpa Ao is just f1: 'y — Aq.

2. If a second diagram

Foi>A0

|
BT 7>/IBSA
has the same property as the diagram in part 1, then there is a unique e¢: f = f’
such that elToon=1n'.

3. Let f: ' — A be Lie groupoid morphisms and let

F0i>A0 F0i>A0

N

BF?BA BF?BA

be diagrams satisfying the property of part 1. Then any 2-morphism ¢: f = g can
be composed with these diagrams to obtain

1ﬂ0¢>Ao

d /l

AO HBA,

or in other words a map gz~5: I'v — Ay, This qg is in fact a groupoid 2-morphism
¢: [ — g. This process determines a correspondence between 2-morphisms f = g
and 2-morphisms f = g.

The dictionary lemma does not guarantee that all stack morphisms BI' — BA arise
from groupoid morphisms I' — A. In general one must first replace I' with some Morita
equivalent refinement T'. Thus, if one wants to understand a morphism of differentiable
stacks in terms of atlases for those stacks, then one is not necessarily able to choose the
atlas for the domain.
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The problem that not all morphisms of stacks lie in the essential image of B can be
solved by enlarging the 2-category of Lie groupoids, smooth functors and smooth natural
transformations to the 2-category Bi of Lie groupoids, bibundles and isomorphisms. The
following theorem, due to Moerdijk and Mrcun, describes the relation between the two
2-categories:

2.6. THEOREM. [MMO05, 2.11] There is an equivalence of 2-categories
LieGpd[Morita™'] = Bi.

(In the reference cited only the 1-categorical truncation of the above statement is
proved, but that proof can be easily modified to give the full result above.) Theorems 2.3
and 2.6 together show that the 2-category of differentiable stacks is equivalent to the
2-category of Lie groupoids, bibundles and isomorphisms.

2.7. ETALE AND PROPER STACKS AND GROUPOIDS. We now turn our attention to three
special classes of differentiable stacks and Lie groupoids.

2.8. DEFINITION. A differentiable stack X is étale if it admits an étale atlas X — X; it
is proper if the diagonal X — X x X (which is always representable) is proper; and it is
proper étale or Deligne-Mumford if it is both étale and proper.

2.9. DEFINITION. A Lie groupoid I is étale if the source and target maps s,t: I'y — I'g
are étale; 1t 1s proper if s x t: I'y — I'g x Iy is proper; and it is proper étale if it is both
proper and étale.

A differentiable stack is étale if and only if it is represented by an étale groupoid, and
it is proper if and only if it is represented by a proper groupoid. These facts are easy con-
sequences of the definitions. Theorem 2.3 therefore restricts to give equivalences between
the 2-category of étale (respectively proper, proper étale) stacks and the 2-category of
étale (respectively proper, proper étale) Lie groupoids with Morita equivalences weakly
inverted.

Proper étale groupoids and proper étale stacks are of particular interest because of
their relationship with orbifolds. Indeed, Moerdijk and Pronk [MP97] showed that for
every orbifold there is a proper étale Lie groupoid whose orbit space is the topological
space underlying the orbifold, and whose topos of sheaves is equivalent to the topos of
sheaves on the orbifold [MP97, 4.1]. This modern perspective on orbifolds in differential
geometry has been essential in the understanding of orbifold or Chen-Ruan cohomology
(see [CRO4], or see [ALRO7] for an introduction to the topic).

2.10. PROPER DIFFERENTIABLE STACKS. Recall that a differentiable stack X is proper
if the diagonal X — X x X is a proper morphism. As explained in the last subsection, the
proper étale differentiable stacks, also called differentiable Deligne-Mumford stacks, cor-
respond to orbifolds and present a significantly richer collection of objects than manifolds
alone. However other stacks of interest, such as gerbes and global quotients by compact
Lie groups, are proper but usually not étale. Proper differentiable stacks are therefore the
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main object of study in the rest of the paper. The following theorem of Zung shows that
they have a particularly simple local structure.

2.11. THEOREM. [Zung, [Zun06, Theorem 2.3]] A proper Lie groupoid I" with fized point
m € [y is locally isomorphic to the action groupoid T,,I'g/Aut,,.

2.12. COROLLARY. A proper differentiable stack locally has the form of a global quotient
[M/G) with G compact.

PROOF. Let X be a proper differentiable stack and fix a point in X. Let X — X be
an atlas and choose a point x € X that represents the chosen point of X. Consider the
proper groupoid X xx X = X. By [Zun06, 2.2] we can find an embedded submanifold
U — X that contains x and is such that x is a fixed point of U xx U = U. Moreover,
by reducing U if necessary we may assume that U — X is everywhere transverse to the
orbits of X xx X == X. It follows that U — X is a submersion. Consider the open
substack U of X whose atlas is U; this contains the chosen point of X, and so we can
prove the corollary by showing that 4 is a global quotient. 4 is represented by the proper
Lie groupoid U xx U = U, and by the theorem above we may reduce U one last time
and assume that it in fact has the form 7, U x Aut, = T, U, so that 4 ~ [T,U/Aut,] as
required. [

To a differentiable stack X we can associate the underlying space or orbit space X. This
is the collection of morphisms pt — X modulo 2-morphisms, equipped with an appropriate
topology. It is naturally homeomorphic to the orbit space of any Lie groupoid representing
X. Open subsets of X correspond to the full open substacks of X.

2.13. DEFINITION. A differentiable stack X admits smooth partitions of unity if for
each open cover {U,} of X there is a countable family {¢;} of morphisms X — R such
that the maps ¢;: X — R form a partition of unity subordinate to {U,}.

2.14. PROPOSITION. [c.f. [Pro95]] A proper differentiable stack admits smooth partitions
of unity.

PROOF. For proper étale differentiable stacks this result was proved in the thesis of Pronk
[Pr095, pp.109-110]. The proof there can be adapted to the case of proper stacks. The
only difference is that, whereas for proper étale stacks one uses the fact that there are local
quotient charts [M /G| with G finite, in the proper case one must use Zung’s Theorem 2.11
to give a local description of the stack as a quotient by a compact group. See also [Hep09,
§3] and [EGO7, §3]. =

3. Tangent Stacks

Taking tangent bundles and derivatives determines a functor

T: Diff — Diff
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that we call the tangent functor. Functoriality of T is nothing but the chain rule. The
projections mx: T'X — X together constitute a natural projection map m: T = Id. The
object of this section is to define the ‘tangent stack’ of any stack on Diff in a functorial
way that extends the usual notion of tangent bundle for manifolds.

In §3.1 we define the lax tangent stack functor

Ts': StDiff — StDiff,

and a lax natural morphism 7%*: T%' = Id called the projection map. In §3.5 we will show
that the functor T satisfies 75" oy = y o T', so that when restricted to manifolds 7% is
just the usual tangent functor 7': Diff — Diff.

Among all stacks on Diff it is common to concentrate on the differentiable stacks,
as we recalled in §2.1. Differentiable stacks include all manifolds, and in some sense
are the stacks on which we can hope to do some geometry. Further, certain morphisms
between differentiable stacks, called representable morphisms, are singled out as the ones
to which we can ascribe familiar properties such as being surjective, a submersion, et
cetera. It is natural to ask how the tangent stack functor affects differentiable stacks
and representable morphisms. §3.12 will recall the definition of differentiable stacks and
representable morphisms in detail and will show that the tangent stack functor sends
differentiable stacks to differentiable stacks and representable morphisms to representable
morphisms.

Differentiable stacks can be represented by Lie groupoids, and every Lie groupoid
represents a differentiable stack. See §2.2. This allows one to give the following definition
of the tangent stack of a differentiable stack [Hei05, 4.6]. Represent X by a Lie groupoid
I' with structure-maps

. s,t e
Fl XTo F1L>F1 *Z>F1 :FOHFL (5)

Take tangent bundles and derivatives everywhere to obtain a new Lie groupoid T™¢T" with
spaces 1Ty, TT and structure maps

Ts, Tt

T pp, T rr, == TT, L~ TT, (6)

TFl XTT, TFl

and then take the tangent stack of X to be the stack represented by T5¢T". In §3.9 we
show that 75X is indeed the stack obtained from this construction.

Finally, in §3.14 we will describe T'X in terms of a colimit. This may help the
category-minded reader to visualize the tangent stack, and it is also an important com-
ponent in proving some of the later results on the structure of tangent stacks.

In subsequent sections we will refer to 75 and 7* as simply T': StDiff — StDiff and
m: T = Idsipig respectively.

3.1. CONSTRUCTION OF THE TANGENT STACK FUNCTOR. In this section we construct
the tangent stack functor. This construction is just a stacky version of the construction
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of a geometric morphism between categories of sheaves from a morphism of sites. See
[MLM94, VII.10].

In what follows we will use arrows of the form —, =, = to denote lax functors, lax
natural transformations and modifications respectively. The 2-category of pseudofunctors
B — C together with pseudonatural transformations and modifications will be denoted
[B,C]. (The 2-morphisms in all the categories we consider will be invertible, so that ‘lax’
and ‘pseudo-’ have the same meaning for us.) Gpd denotes the 2-category of groupoids.
See [Bor94, Chapter 7| for the language of 2-categories.

Let i: StDiff — [Diff°?, Gpd] denote the inclusion of the 2-category of stacks on Diff
into the 2-category of presheaves of groupoids on Diff. Precomposition with 7T": Diff —
Diff determines a lax functor 7%: [Diff ", Gpd] — [Dift°?, Gpd].

3.2. LEMMA. T* restricts to a lax functor T : StDiff — StDiff.

PROOF. We must check that 7*: [Diff°?, Gpd] — [Diff°?, Gpd] sends stacks to stacks. But
T: Diff — Diff preserves open covers and pullbacks by open maps. The stack condition
for T*Y) now follows as an instance of the stack condition for 9). ]

Lax functors F': C — D and G: D — C are adjoint (F is left-adjoint to G, and G is
right-adjoint to F') if there is an equivalence of categories Morp(F'c,d) ~ More(c, Gd) lax
natural in ¢ and d. By this we mean that Morp(F—, —) and Mor¢(—, G—) are equivalent
objects of [C°P x D, Cat].

3.3. PROPOSITION. T*: StDiff — StDiff admits a left adjoint T : StDiff — StDiff
called the tangent stack functor.

Left adjoints are determined up to natural equivalence, so the proposition defines the
tangent stack functor. Why should this left-adjoint be the functor we seek? The functor
T* is effectively determined by the equations

Mor(X,779) = Mor(T X, ).
The fact that 7% is left-adjoint to T, however, states that there is an equivalence
Mor (X, T*9) ~ Mor(T**X, )

for any stack X. Thus 7' is determined by a property that, when restricted to manifolds,
determines the tangent functor 7': Diff — Diff. Everything else in this subsection will be
a formal consequence of the adjunction of T5* with 7*.

PrROOF. We may assume that Diff is small. Indeed, every object of Diff is isomorphic
to a manifold embedded in some R", so that Diff is equivalent to the full subcategory
of Diff whose objects are these smooth manifolds embedded in some R™. Moreover the
2-category Gpd is cocomplete. We may therefore form a left adjoint 7P : [Diff°?, Gpd] —
[Diff°?, Gpd] to T*: [Diff°®, Gpd] — [Diff°?, Gpd] by taking a left Kan extension. There is
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also a left adjoint a: [Diff°?, Gpd] — StDiff to i: StDiff — [Diff°?, Gpd] given by sending
a prestack to its associated stack. Now a o TP™ o ¢ is the required left adjoint:
Mor(a o TP 0i%,9)) =~ Mor(Tp”e 01X,i%))
~ Mor(iX,T*(i9))
= Mor(iX,i(7T"9))
= Mor(X,779).

This completes the proof. [

Now we wish to extend the the natural transformation 7: T" = Idp;g, which consists
of the projections mx: TX — X, to a lax natural transformation 75': T = Idgipig.
We will use the fact that for 2-categories B and C the functor [B,C] — [B°? x C, Cat],
F — Morp(F—, —) is locally full and faithful.

3.4. DEFINITION. Precomposition with w: T = Idpig determines a natural transforma-
tion 7 : Idgipig = T*. The projection map 7%*: T = Idgpig is the natural transforma-
tion corresponding to the composite

Mor(%,2) == Mor(X, T*9) ~ Mor(T*X,9).

This means that there is a 2-cell

MOI‘(—7 _> a \
—opst /
Mor(T5 —, —)
in [StDiff°? x StDiff, Cat].
3.5. TANGENT STACKS AND THE YONEDA EMBEDDING. In this subsection we show
that, when restricted to manifolds using the Yoneda embedding, the tangent stack functor

simply becomes the tangent functor and the natural projection 7%': T = Id becomes
the projection 7: T" = Id.

3.6. PROPOSITION. There is a natural equivalence e: T®* oy = yoT.
PROOF. There is an equivalence
Mor(y(TX),9) = Mor(yX, ") ~ Mor(T™(yX), )

natural in both variables. Here the equality is the definition of T*9) and the equivalence
is from the adjunction of T®' with T*. But given 2-categories B and C, the functor
[B,C] — [B°? x C, Cat|, F + Mor(F—, —) is locally full and faithful. We therefore obtain
the natural equivalence of the statement and a 2-cell

—o¢e

T~

MOI"(yT—, _) I MOI‘(y—, T*_) — Mor(TSty_7 _)
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in [StDiff? x StDiff, Cat]. "

3.7. COROLLARY. Without loss of generality, we may assume that T* oy = yoT, which
is to say that when restricted to Diff, the tangent stack functor T5: StDiff — StDiff is
Just given by the tangent functor T: Diff — Diff.

3.8.  PROPOSITION. The two natural transformations 7= x Id,: T oy = y and Id, *
m: yoT = y coincide under the identification T oy = yoT'. This means that the triangles

T (yX) =——=y(T'X)
%& ;%0
yX

commute, or even more simply, that when restricted to Diff, ©° is given by 7.

PROOF. There are no nontrivial 2-morphisms between morphisms between objects in the
image of y. Consequently, to show that the two natural transformations coincide it will
suffice to show that there is a modification

y———yoT
e
*Idy Idy*ﬁ
Y.

The lax natural transformations in this triangle determine a triangle

Tst o
ﬂ.st

MOY(TSt °cYy—, _> MOI‘(y o T_a _)
MOI‘(y—, _)

in [StDiff? x StDiff, Cat], and to construct the required modification it will suffice to fill
this triangle with a 2-cell. But the triangle can be decomposed as three triangles

T~

Mor (7% o y—, —) =<— Mor(y—, T*—) == Mor(y o T—, —)

mT*o—
—o(mStxIdy Idy*m)o—

Mor(y—, —)

each of which can be filled with a 2-cell. The top triangle is filled with the 2-cell obtained
in the construction of € (which is assumed equal to the identity), the left-hand triangle by
the 2-cell that defines 7%, and the right-hand triangle commutes on the nose by definition.

u
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3.9. TANGENT STACKS AND TANGENT GROUPOIDS. In this section we will prove that
if a stack X is represented by a Lie groupoid I' then T5'X is represented by the tangent
Lie groupoid T™¢T". In fact, we shall prove a much more precise functorial statement. As
in §2.2, we let LieGpd denote the strict 2-category of Lie groupoids and we write

B: LieGpd — StDiff

for the lax functor that sends a Lie groupoid to its stack of torsors.

3.10. DEFINITION. [Tangent groupoid functor.] Let T%¢: LieGpd — LieGpd denote the
strict functor that:

1. Sends a Lie groupoid T with structure maps (5) to the Lie groupoid TY°T" with
structure maps (6).

2. Sends a morphism f: T — A determined by maps f;: I'; — A; to the morphism
TYe f determined by the Tf;: TT; — TA,.

3. Sends a 2-morphism ¢: f = g determined by ¢: I'y — Ay to the 2-morphism
TUeg: THe f = TUeq determined by T¢: TTy — TA,.

There is an evident natural morphism w%€: THe = Idiiegpa obtained from the projection
maps TT; — I';.

3.11. THEOREM. There is a natural equivalence TS o B ~ B o T ¢, which is to say that

there are equivalences _
T5(BT) ~ B(TY°T)

natural in T. This equivalence identifies why with Bwk® in the sense that there is a
modification
t o B <:> Bo TL1e

T4

PROOF. For a Lie groupoid I' and a stack ) let Desc(I',2)) denote the groupoid whose
objects are pairs (f, ¢) consisting of a morphism f: I'y — 2) and a 2-morphism ¢: s*f =
t*f for which 7356 o miy¢ = 730 and whose arrows A: (f,¢) — (g,v) are 2-morphisms
A: f = g for which ¢ =t*Ao¢os* AL
Then the stack condition and the fact that I'y — BI' is an atlas state that the 2-
commutative square
I ——=T

l /l

L'y —=Br
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determines an equivalence Mor(BI",Q)) — Desc(I',Q)) [BX06, 2.20]; this equivalence is nat-
ural in both variables. Note that, by the definition of 7%, Desc(T', T*9)) = Desc(T"°T", Q).
We therefore have an equivalence

12

Mor(T*BT,9)) =~ Mor(BL, T*Y)
Desc(T, T*9)
Desc(T%°T, Q)

Mor (BT °T",9))

1R

12

natural in both variables. The first result follows. The second result can now be proved
by carefully examining the sequence of equivalences above, just as the modification was
constructed in the proof of Proposition 3.8. n

3.12. TANGENT STACKS AND DIFFERENTIABLE STACKS. In §2.2 we recalled the notion
of differentiable stack and representable morphism. In this subsection we will study how
the tangent stack functor T® affects differentiable stacks and representable morphisms.

3.13. THEOREM. T*' sends differentiable stacks, representable morphisms, and repre-
sentable (surjective) submersions to differentiable stacks, representable morphisms, and
(surjective) submersions respectively. If

W ——X (7)
l

i

s a cartesian diagram of differentiable stacks in which the morphisms are representable
and one of P — 3, X — 3 is a submersion, then the diagram

T5'95 —> T*'X

L

TSt@ S Tst 3

obtained by applying the lax functor T to (7) is again cartesian.

PrOOF. Let X be a differentiable stack. Then X ~ BX for some groupoid X, and
consequently 75X ~ TS'BX ~ BT™¢X the second equivalence by Theorem 3.11. Thus
T5X is itself differentiable.

To show that T®' sends representable morphisms to representable morphisms we will
use the fact that a morphism of Lie groupoids f: I' — A induces a representable morphism
Bf if and only if the map

Ay Xpa, 't — (A1 xa, Do) X (A1 xa, o)
(6,7) = (6,5(7)) x (- fi(7), (7))
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is an embedding.
So let f: X — ) be representable. By choosing an atlas for ) and taking the induced
atlas for X we may find a diagram

x—1-9

BXWIB%Y

where f’ is a groupoid morphism satisfying the representability criterion above. From
Theorem 3.11 we obtain a diagram

Tf

Tst m

-

TBX ——— = TBY

L
BTLie X /BT'LieY

]BTLief/

Ts'%

whose vertical maps are all equivalences, so that it will suffice to show that BT f’ is
representable. Since the map

Y1 Xy, Xi — (Y1 Xy, Xo) % (Y1 Xy, Xo)
(y, ) = (y,s(x)) x (y - fi(x), t(x))

is an embedding and T preserves pullbacks and embeddings, the map

TYi XTY, TXl — (TYi XTYy TX0> X (Tle XTYy TX(])
(y, ) = (y,5(z)) x (y - Tfi(x),t(x))

is also an embedding. It follows that T™¢f’ is representable, as required.

If f is in addition a (surjective) submersion, then the component fj: X — Y could
also be chosen a surjective submersion, so that T'f}: TX — TY is itself a (surjective)
submersion, and then B7T¢f’ is a (surjective) submersion also.

Finally consider the cartesian diagram (7). Choose a groupoid Z representing 3, and
then construct groupoids X, Y representing X and ) by taking pullbacks. We can form
the pullback groupoid X x ;W and BX xp;BY ~ B(X x W), so that X x W represents
20. That is, the diagram (7) above is equivalent to one obtained by applying B to the
cartesian diagram

XXzY—X (8)

L

Y A
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in LieGpd. Thus, by applying 7% to (7) we obtain a diagram that by Theorem 3.11
is equivalent to applying B o T%° to the diagram (8). But it is simple to check that
TU(X x7Y) = TYX Xpue, THY, so that the diagram obtained by applying B o T¢
to (8) is itself cartesian, as required. =

3.14. TANGENT STACKS AS LAX COLIMITS. In this last subsection we will show how
to describe the tangent stack of a stack on Diff as a lax colimit. This gives us a direct
definition of T5'X for any stack X on Diff, regardless of whether X is differentiable, and
gives us a description that is independent of a representing groupoid in that case. See
[Bor94, Chapter 7] for the definition of lax colimits.
Let X be a stack on Diff. The category of manifolds over X is defined to be the comma
category (Diff | X). An object in (Diff | X) is simply a morphism
W —X (9)
whose domain is a manifold, and an arrow in (Diff | X) from W — X to V' — X is just a
triangle
W \
v/
Composition is given by pasting of diagrams. There is an obvious strict functor
Fx: (Diff | X) — StDiff

which remembers the manifolds in (9) and (10) but forgets the morphisms to X. There is
also a tautological cone

(10)
X.

cx: Fx = Ax
determined by the morphisms in (9) and the 2-morphisms in (10).

3.15. LEMMA. The cone cx determines an identification
X = colim Fx
that we write informally as
X = colimyy_x W.
PROOF. Since StDiff is a full subcategory of the functor category [Diff°”, Gpd], the fact

that composition with cx determines an equivalence Mor(%,9)) — Cone(F%, Q) is an
immediate consequence of the definitions. [

3.16. COROLLARY. Let X be a stack on Diff. Then
T5'% = colimT o Fx
or, informally
T5X = colimyy_x TW.

PROOF. Since T*' is left adjoint to the functor T*, it preserves colimits, and so 75X =
T5 colim F = colim T%" o Fx = colim T o Fx. (We have suppressed the Yoneda embedding
y: Diff — StDiff from our notation.) n
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We will see in the sequel that this way of expressing the tangent stack can be very
useful, since it gives us a way to describe the tangent stack 75X in terms of tangent
bundles of manifolds without first having to choose a Lie groupoid representing X.

4. Vector Fields

This section extends the notion of vector field from manifolds to stacks on Diff. The
definition is given in §4.1. We then show in §4.8 that vector fields on stacks can be
lifted through submersions; this is a technical result whose importance cannot be over-
emphasised since it relates vector fields on a stack to vector fields on an atlas for that
stack. Then in §4.13 we define vector fields on a Lie groupoid and show that they are
equivalent to vector fields on the stack of torsors. Finally §4.16 defines the support of a
vector field.

Recall from §2.7 and §2.10 that a differentiable stack X is proper if the diagonal
A: X — X x X is proper. (The diagonal is always representable.) Some of the results
in this section, and most of the results in the next section, are only proved for proper
differentiable stacks. Any manifold is a proper stack, as is any quotient by a compact Lie
group. Properness is best thought of as some sort of general Hausdorff or separability
condition.

In this section we will refer to the tangent stack functor and the projection map as
T: StDiff — StDiff and 7: T" = Idgpig respectively, rather than using the more elaborate
notation of §3.

4.1. VECTOR FIELDS ON STACKS. A vector field on a manifold M is a section of the
tangent bundle T'M. This means that a vector field is a map X: M — T'M with the
property that

Tpr © X = IdM

We wish to generalize this and define vector fields on any stack on Diff. The ingredients
are in place: any stack X has a tangent stack T'X and a projection map nx: TX — X.
However, we must bear in mind that within the 2-category StDiff two morphisms can
fail to be equal and yet still be isomorphic. Indeed, the collection of morphisms X — 9)
is often vast when compared to its set of isomorphism classes, so to require that two
morphisms be equal is quite unreasonable. In particular, defining a vector field on X to
be a morphism X — T'X for which ¢ o X = Idyx holds on the nose would not result in a
useful notion. Instead we weaken the equation to a 2-morphism and define vector fields
on stacks as follows.

4.2. DEFINITION. Let X be a stack on Diff. A vector field on X is a pair (X, ax)
consisting of a morphism

X:X—-TX
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and a 2-morphism ax: mx o X = Idx that we depict in the diagram

X —>Tx -3

ﬂ/ax

Idy

It is clear that if X is a manifold M (or more correctly, the image of M under the
Yoneda embedding) then the vector fields on X form a set that is isomorphic to the set
of vector fields on M. However, the same comment that motivated the last definition
— that morphisms between stacks are very rarely equal but can still be isomorphic —
indicates that we should introduce a notion of isomorphism between vector fields on stacks,
otherwise we may find ourselves dealing with an unmanageably large collection of vector
fields. Indeed, if X is equivalent to a manifold M but not isomorphic to it, then the
vector fields on X could form a collection far larger than the set of vector fields on M.
Our solution is the following.

4.3. DEFINITION. Vector fields X and Y are equivalent if there is A\: X =Y for which
ax = ay o (Id;, * \). We depict this relation as

R AT
x—Tx—% = X% %,T%%%

[ o

Such a X is called an equivalence. Vector fields and equivalences between them form the
groupoid of vector fields on X, denoted Vect(X). We will often omit the 2-morphisms ax
from the notation, referring simply to vector fields X on X.

With this definition one does find that the groupoid of vector fields on a representable
stack X ~ M is equivalent to the set of vector fields on M. Indeed, we will see in
Theorem 4.15 that the groupoid of vector fields on a differentiable stack can be described
easily in terms of a Lie groupoid representing that stack.

4.4. EXAMPLE. [Manifolds] If X = M is a manifold then a vector field on X is just a
pair (X, Id) where X is a vector field on M. There are no nontrivial equivalences among
these vector fields. Thus Vect(X) is just the set of vector fields on M.

4.5. EXAMPLE. [The zero vector field] Recall from §3.14 that we can regard X as the
colimit colimy,_x W, and T'X as the colimit colimy,_x TW. The zero sections W — TW
assemble into a natural transformation that induces a morphism

Z:X—->TX
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on the colimits. The fact that each composition W — TW — W is the identity Idy
means that there is a uniquely-determined 2-morphism

x—2-1x s

ﬂ/az

Idy
The pair (Z,az) is called the zero vector field on X.

4.6. EXAMPLE. [Products] One consequence of Theorem 3.13 is that, just as with man-
ifolds, the derivatives of the projections X x ) — X, X x Q) — ) induce an equivalence

T(X x Q) = TX x TY. (11)

By its construction this equivalence is compatible with the projections mx.g and mx X 7y).
Consequently, if (X, ax), (Y, ay) are vector fields on X and ) respectively, then we obtain
a vector field (X X Y ax X ay) on X x ). (We are required to pick a quasi-inverse to the
equivalence (11).)

4.7. ExAMPLE. [Differentiation with respect to time.] The last example gives us an
equivalence

T(X xR) = TX x TR

and in particular a vector field % on X x R given by taking the product of the zero vector
field on X and the unit vector field on R. This works just as well if R is replaced with an
open interval I C R.

4.8. VECTOR FIELDS AND SUBMERSIONS. The following lemma can be proved by a
simple argument that uses partitions of unity and the fact that submersions of manifolds
are locally projections.

4.9. LEMMA. Let f: M — N be a submersion of manifolds and let Xy be a vector field
on N. Then there is a vector field Xy, on M with the property that Tf o Xy = Xyo f:

M- g

| |

NT;TN.

This subsection will extend the lemma above from submersions of manifolds to repre-
sentable submersions of differentiable stacks. This is a necessary step if we are to get a
handle on vector fields on stacks. The concrete way to understand a differentiable stack
is to choose an atlas, thus representing the stack by a Lie groupoid. But an atlas is just a
representable surjective submersion, and so an appropriate generalization of Lemma 4.9
would allow us to take a vector field on a differentiable stack X and ‘lift’ it to a vector
field on an atlas U for X. We make this generalization below and exploit it in §4.13,
where the groupoid of vector fields on X is described explicitly in terms of a Lie groupoid
representing X.
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4.10. LEMMA. Let ) be a proper differentiable stack, let s: ) — X be a representable
submersion and let (Xx,ax) be a vector field on X. Then we may find a vector field
(Xg,ay) onY and a commutative diagram

Dy ) (12)

s

X—-Tx

for which the 2-morphisms in

Y TP 9 (13)

compose to give the trivial 2-morphism from s: ) — X to itself. In the square on the
right the horizontal maps are the projections mx: TX — X, mg: T — ), and the square
itself is obtained from the lax naturality of the projection m: T = Idsipis-

This lemma is a direct generalization of Lemma 4.9, for it reduces to that lemma in
the case that X and ) are manifolds. However, it contains a significant new feature in
the condition on diagram (13), which is vacuous in the manifold case. This is a typical
feature of categorification, but why does it arise? One answer is to consider what the
condition means: the traditional diagram (12) relates the morphisms Xy and Xy, but
the new diagram (13) relates the vector fields (Xx,ax) and (Xg,ay). A better answer,
of course, is that this condition is useful. It means that Xy and Xy induce a new vector
field on the pullback Q) xx %), in the following sense.

4.11. LEMMA. Suppose that we are in the situation of Lemma 4.10. The diagram (12)
mduces a morphism

X0 DXz Y — TY xpxTY =T(Y xxD).

that is a vector field on Y xxQ. In other words, there is a 2-morphism Ty .90 Xyx .9 =
Id@xx@.

For the purposes of later reference we record Lemma 4.10 in the special case that )
is a manifold. This corollary is essential for our applications.
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4.12. COROLLARY. Let U — X be a representable submersion and let X be a vector
field on X. Then we may find a vector field Xy on U and a commutative diagram

U—%T1U (14)

for which the 2-morphisms in
(15)

2]

S

PrOOF OF LEMMA 4.10. It is possible to construct a 2-commutative diagram

2 D)) (16)

LA

@H XxT%*)@

P

X TX X

compose to give the identity.

as follows. The bottom-right square is obtained by taking pullbacks. The morphism
T — ) xx TX is determined by the square

79 -2-9

s

T%?%,

which is to say, from naturality of 7. The morphism ) — ) Xx T'X is determined by the
square

Y)=—=9
Xx@l ax|@/l

X —X.
Strict commutativity of the triangle is now immediate, as is strict commutativity of the
bottom-left square. The composition in the middle row is just Idg, and if the 2-morphisms
in the bottom two squares are pasted with ay we recover the trivial 2-morphism. The
top-left square is simply a pullback, with 20 shorthand for T'9) X g, 7x 2.
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We claim that we can find a morphism s and a 2-morphism ¢ in a diagram of the form

Y ——=w——=9. (17)

N

Idg

Assuming this for the time being, the vector field (Xy), agp) can now be constructed using
s, o, and the top half of diagram (16). The required diagram (12) can be constructed using
the weak section s and the left-hand part of (16). The composition of the 2-morphisms
in the resulting diagram (13) can now be computed directly and seen to be trivial. This
proves the lemma.

We now show how to construct diagram (17). To do this we will first study the
morphism 7% — ) xx T'X, from which 20 — ) is obtained by pulling back. There are
equivalences

TY ~ TY xyxTX

T Xpx colim TW
~ colim(TY xpx TW)
~ colimT'(Q xx W)

D xxTX = P xXxcolimTW
~ colim(Q xx TW)

Here the lax colimits are all taken over the category (Diff | X) of morphisms W — X with
W a manifold. We have used the fact that lax colimits in StDiff commute with pullbacks
and that T preserves pullbacks under submersions (Theorem 3.13). One can check from
the chains of equivalences given above that there is a 2-morphism in the square

Y colimT'(Y xx W)

o

P XxTX ——>colim xx TW,

~

or in other words that 79 — ) x5 TX is the colimit of the projections T'() xx W) —
@ Xx TW.

Since ) — X is a representable submersion, each ) x x W is a manifold and Y x W —
W is a submersion. Thus each of the projections T'() xx W) — 9 xxTW is a fibrewise-
linear surjection of vector bundles over the manifold Q) xx W. In particular, each of
these projections is in a natural way an affine vector bundle, i.e. a fibre bundle with fibres
isomorphic to R" and with structure group R" x GL(n,R), where R™ acts on itself by
translation. In this case

n = dim(Y xx W) — dim(W)
= dim(Q) — dim(X).
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Thus each T'(Y xx W) — Y xx TW is an affine vector bundle. What is more, in the
diagram
T(QD Xx W1> I T(Q,j Xx WQ)

| |

@ XxTW1*>W Xj{TWQ

induced by a morphism in (Diff | X) the horizontal maps constitute a morphism of affine
vector bundles. The morphism 7)) — ) x5 T'X is then the colimit of a diagram of affine
vector-bundles, and so is itself an affine vector-bundle whose base is a stack. This is a
simple consequence of the fact that colimits in stacks commute with pullbacks. Finally,
since 20 — %) is obtained from this morphism by pulling back, it is itself an affine vector-
bundle, this time with base the proper stack ).

We have shown that 20 — Q) is an affine vector-bundle and we wish to show that it
admits a weak section, i.e. to construct diagram (17). By Zung’s theorem (Theorem 2.11)
and its corollary for proper stacks (Corollary 2.12), 9 locally has the form [M /G| with G
compact. An affine vector-bundle on [M/G] is a G-equivariant affine vector bundle on M.
This bundle on M admits a section, and by averaging with respect to G we can assume
that the section is G-invariant, so that the bundle on [M/G] admits a section. So locally
we can find sections of an affine vector-bundle on ). These can be glued using a partition
of unity (Proposition 2.14) to obtain the required global section. ]

PrROOF OF LEMMA 4.11. The composition mgy,9 © Xgx, 9 is the morphism ) xx Q) —
) X x 2 determined by the following square:

D xx9Q 2 P 2
A )
et

<

X

9

)

)
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We can paste copies of ag onto the upper and left edges to obtain a new square

T

Y xx9 T p) 2 (18)
z
2 X
Ve 7
%Tﬁj %T% Y

The effect of this modification is to replace the morphism ) XY — P xxQ by a new
morphism that is related to the original by a 2-morphism determined by ag. To prove the
result it therefore remains to show that the morphism ) xx%2) — 2) xx%2) determined by
the new square (18) is the identity. We can perform a simple manipulation on the square
— inserting a copy of ax directly adjacent to a copy of its inverse — without altering the
composite 2-morphism, to obtain a new square:

Y xxY 2 Py 2

This new square contains two copies of the diagram (13). The condition of Lemma 4.10
now means that we may replace each copy of (13) with the much simpler

]

Our modified version of (18) now simplifies to give the standard pullback square so that
the morphism ) xx ) — Q) xx 9 is just the identity, as required. [
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4.13. VECTOR FIELDS ON LIE GROUPOIDS. In §2.2 we recalled that there is a functor
B: LieGpd — StDiff from Lie groupoids to stacks on Diff that establishes a strong rela-
tionship between Lie groupoids and differentiable stacks. Then in §4.1 we defined vector

fields on a stack. This section will give an explicit description of vector fields on the stacks
BI'.

4.14. DEFINITION. [Vector fields on a Lie groupoid.] Let I' be a Lie groupoid. A vector
field on I' is a groupoid morphism X : ' — TT for which the composition mr o X is the
identity onT'. An equivalence between vector fields X, Y onT is a 2-morphism: X =Y
for which Id,. * ¢ = Idia,.. The vector fields on I' and equivalences between them together
define the groupoid of vector fields on I, denoted Vect(T').

Note the relative simplicity of the definition of vector fields on a groupoid in comparison
with that of vector fields on stacks, Definition 4.2. We have asked that the composite
mr o X be equal to the identity on I', not that it is merely 2-isomorphic to the identity.
This would have been the wrong choice for stacks since morphisms are so rarely equal,
but for groupoids it is the correct notion, as we see in the following theorem.

4.15. THEOREM. The groupoid of vector fields on a Lie groupoid I' is equivalent to the
groupoid of vector fields on the stack BI.

From the point of view of Lie groupoids, this theorem states that the groupoid Vect(I")
depends, up to equivalence, only on the Morita equivalence class of I'. In particular it
can be interpreted without mentioning stacks at all. It may appear that the theorem is
a simple consequence of the Dictionary Lemma 2.5, which tells us how to relate stack
morphisms BI' — TBI' ~ BTT to Lie groupoid morphisms I' — TT'. However, the
Dictionary Lemma only tells us about those morphisms BI' — B7T that we already know
can be lifted to a morphism I'g — TTy. The essential ingredient, then, is Corollary 4.12,
which guarantees that any vector field on BI' does admit such a lift.

PrOOF OF THEOREM 4.15. This result is proved by combining functoriality of B and
T to construct a functor Vect(I') — Vect(BI') and then using Corollary 4.12 and the
Dictionary Lemma 2.5 in order to prove that the functor is an equivalence.

Lax functoriality of B together with the lax natural equivalence and modification of
Theorem 3.11 determine, for each vector field X on I', 2-cells

BX

BT BTT
\
Bldr Brr
BT
Bldr
T T
Br_ | _BI BTT = TBT
\M
Idpr —_—
Brr TR
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These three diagrams may be pasted together to obtain a new diagram

Bl 2% TBI —“> BT,

N

Idgr

We therefore have an assignment X +— (BX, by) from vector fields on I' to vector fields on
BI'. Standard properties of lax functors, lax natural transformations and modifications
allow us to promote this assignment to a functor Vect(I') — Vect(BI'). We will prove the
theorem by showing that this functor is an equivalence.

It is possible to verify from the construction above that we have commutative diagrams

Ty —2TT, (19)

L

BI' W TBI

satisfying the conclusion of Corollary 4.12 and with the further property that the induced
map 'y — 7Ty — which by Lemma 4.11 is itself a vector field — is just Xj.

Part 3 of the Dictionary Lemma 2.5, combined with diagram (19), immediately shows
that equivalences BX = BY are in correspondence with equivalences X = Y. Thus the
functor Vect(I') — Vect(BI") is fully faithful. We now wish to show that it is essentially
surjective. Let X be a vector field on BI'. Since I'y — BI is an atlas we may apply
Corollary 4.12 to obtain a vector field X, on I'y and a diagram

Ty —2% 7T, (20)

L

BI' —= T'BI"
X

satisfying the conclusion of Corollary 4.12. Then, by Lemma 4.11, the induced map
Xy: Ty — TT is itself a vector field and the pair Xy, X; together define a vector field
on I'. But now we may compare diagrams (19) and (20) and, using part 2 of Dictionary
Lemma 2.5, conclude that there is a 2-morphism X = BX. Since the diagrams (19)
and (20) satisfied the conclusion of Corollary 4.12 it follows that X = BX is in fact an
equivalence of vector fields. Thus the functor Vect(I') — Vect(BI') is essentially surjective.

4.16. THE SUPPORT OF A VECTOR FIELD. The support of a vector field on a manifold
is the closure of the set of points on which the vector field is nonzero. Equivalently, the
support of a vector field on a manifold is the complement of the largest open set on which
the vector field vanishes. Extending this notion to stacks presents a problem: vector fields
are very rarely equal to zero (by which we mean, equal to the zero vector field) but might
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more often be equivalent to zero. We therefore wish to consider the ‘largest open substack
on which the vector field is equivalent to the zero vector field’. In order to do so we will
prove in this subsection that such a largest open substack exists, provided that the stack
admits smooth partitions of unity, as is the case with all proper stacks (see Definition 2.13
and Proposition 2.14).

4.17. PROPOSITION. Let X andY be vector fields on a differentiable stack X that admits
smooth partitions of unity. If X and Y are equivalent on full open substacks A, of X,
then they are equivalent on the full open substack | JUo. In particular, there is a unique
mazimal open substack of X on which X andY are equivalent.

4.18. DEFINITION. Let X be a vector field on a differentiable stack X that admits smooth
partitions of unity. Then the support of X is defined to be the subset supp(X) of X whose
complement corresponds to the largest open substack of X on which X is equivalent to the
zero vector field.

Here X refers to the underlying space of X, which is canonically homeomorphic to the
orbit space of any Lie groupoid representing X. Open subsets of X correspond to full open
substacks of X [Hep09, §2].

PROOF OF PROPOSITION 4.17. Let U — X be an atlas and take vector fields Xy, Yy on
U and commutative diagrams

U—%ry U—%TU

oy

x—5Tx  X—5Tx

satisfying the conclusion of Corollary 4.12. Given a full open substack 2 of X, we write
Uy for the subset of U whose points lie in 2. Now by part 3 of the Dictionary Lemma 2.5
we find that equivalences of vector fields A\: X|2 = Y|2 are in 1-1 correspondence with
maps

l: Uy — T(Uy xx Uy)
which have the properties
1. [ is a lift of the unit map Uy — Ug X x Uy
2. Tm ol = Xy|Uy and Ty 0l = Yy |Ug.
3. The two composites

XvuxpuXxrul T1X 2 T3

UQ[ X%UQ{ T(UQ[ X}:UQ[ XxUQ[)HT(UQ[ XxUQ()
IXruYuxu XT3
Ugl XxUQ[ T(Um X%UQ[ XxUQ[)HT(UQ[ XxUQ()

coincide.
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The key to the proof is that a collection of maps [ satisfying the above conditions can
be ‘patched’ to obtain a new map that still satisfies the conditions; in other words, these
conditions are preserved under averaging.

Define 8 C X to be the union |J%A,. This B is open, and we define B to be the
corresponding open substack of X. We will prove the proposition by constructing a 2-
morphism of vector fields A\: X|B = Y|*B.

Since B admits smooth partitions of unity we may take a countable family of mor-
phisms ¢;: X — R, with values in [0, 1], such that ¢;: X — R is a partition of unity,
and such that each ¢; is supported in one of the substacks 2,,. Take an equivalence
it X|Ua, = YU, and write [;: Us,, — T(Us,, Xx Us,,) for the corresponding map.
Write ¢;l;: Un,, — T(U%i X x Uglai) for the product of /; with the composition Us, —

2 25 R. Since the supports of the ¢; form a locally-finite family on X, the supports of
the ¢;l; also form a locally-finite family, and so we may form the sum [ = > ¢;l;: Uy —
T(UgxxUss). It is now immediate to verify from its construction that [ satisfies conditions
1, 2 and 3 above, and so corresponds to an equivalence A\: X |8 = Y|B as required. =

5. Integrals and Flows

Let X be a vector field on a manifold M. Recall that an integral curve of X through
m € M is a curve 7y in M such that v(0) = m and (t) = X (y(¢)), which we can write as

0
Tvoa—Xoy. (21)

The flow of X is a smooth map ¢: M x R — M such that each ¢(m,—) is the integral
curve of X through m.

5.1. PROPOSITION. [Existence and uniqueness of integral curves, [KN96, I, 1.5].]

1. The integral curve of X through m is unique where it is defined.

2. Integral curves exist for small time and depend smoothly on their initial value. That
18, for each my € M there is an open neighbourhood U of mgy, an € > 0, and a
smooth map ¢: U X (—€,€) — M such that each ¢(m,—) is an integral curve of X
through m.

5.2.  PROPOSITION. [Existence and uniqueness of flows, [KN96, I, 1.6].] If the flow of X
exists then it is unique. If X is compactly supported, then the flow of X does exist.

This section extends the notion of integral curve and flow from manifolds to stacks on
Diff, and proves analogues for proper differentiable stacks of the existence and uniqueness
results above (they can fail if the manifold is not proper). In all cases what one sees
are weakened, or categorified, forms of the usual definitions and results, with equations
replaced by 2-morphisms, and with new conditions on, and relations among, these 2-
morphisms. We begin in §5.3 with the definitions of integral morphisms and flows, then
the existence and uniqueness results are stated in §5.7, and finally the proofs are given in
§5.13.
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5.3. DEFINITIONS. Throughout this section I will denote an open interval in R. We
allow I to be infinite, e.g. I = (0,00) or [ = R.

5.4. DEFINITION. [Integral morphisms.] Let X be a vector field on a stack X on Diff.
Then ®: Y x I — X is an integral morphism of X if there is a 2-morphism

0
t¢:Xo<I>:T<I>o§, (22)

which we represent as the diagram

T x I)—=2-T% (23)
S
Px I ——X

The 2-morphism te must satisfy the property that the 2-morphisms in

PDxl—2 >x (24)
Idg)x1 <:T(2)T>< I) L"\»TL; ldx
ap /ot ax
N
Y x I — X

compose to the trivial 2-morphism from ®: ) x R — X to itself. The choice of te is
regarded as part of the data for ®. Note that if ® integrates X and there is an equivalence
A Y = X, then ® also integrates Y when equipped with the 2-morphism tep o (A * Idg).

Consider the definition above when ) = pt and X is a manifold. The existence of ¢4
simply becomes the original equation (21) while the condition on diagram (24) becomes
vacuous. We therefore recover the definition of integral curves. In general though, there
may be many different choices of tg, only some of which satisfy the condition on diagram
(24). This new condition, however, is a necessary one. For we know from Corollary 4.12
that a vector field X on a stack X may be lifted to a vector field Xy on an atlas U for
X, and the new condition is what will allow us to relate the integral morphism ¢ to the
integral curves of Xy on U.

In extending the uniqueness of integral curves to stacks we cannot expect that an
integral morphism ®: ) x I — X is determined by its initial value ®|) x {0}, as is the
case for integral curves on manifolds. What we can ask is that the initial value determines
® up to a 2-morphism. Indeed, this will be the case and the 2-morphism in question will
be uniquely determined, so long as we ensure that it satisfies the conditions in the next
definition.
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5.5.  DEFINITION. [Integral 2-morphisms.] Let ® W: Q) x I — X integrate X. An in-
tegral 2-morphism is a 2-morphism A: & = U that respects te and ty in the sense that
(TA xIdgjae) o te =ty o (Idx * A), which we express in diagrams as

7( /T[TA (9 x 1)
YD x I)—= = TOxI)——=TX
S
P x x Y x [——%
o/

5.6. DEFINITION. [Flows.| Let X be a vector field on a stack X on Diff. A flow of X is
a morphism

P: X xXR—X
integrating X and equipped with a 2-morphism eg: ®|X x {0} = Idx.

The isomorphism eg in the last definition is simply our weakening of the initial condi-
tion on the integral curve through a point on a manifold. We will see that although flows
are not unique, they are determined up to an integral 2-morphism that is itself determined
by eg.

5.7. EXISTENCE AND UNIQUENESS THEOREMS.

5.8. THEOREM. [Uniqueness of integrals| Let X and ) be differentiable stacks and let
X be a vector field on X. Let ®,V: ) x I — X be morphisms that integrate X. Then:

1. If A, M: ® = W are integral 2-morphisms that coincide when restricted to some
Y x {to}, then A = M.

2. If X is proper, then any 2-morphism \: ®|Q) x {to} = V| x {to} extends to a
unique integral 2-morphism A: & = V.

This theorem is our generalization of the uniqueness of integral curves. The next
theorem is our generalization of the existence of integral curves. We would like to say
that the integral curve of X through any point of X exists for small time, or more generally
that any morphism ¢: 2 — X extends to an integral morphism ®: ) x (—e¢, €) — X that
restricts to ¢ at time zero. Of course, we must weaken this requirement slightly:

5.9. THEOREM. [Existence of integral morphisms| Let X be a vector field on a proper
differentiable stack X. Let %) be differentiable and let ¢: %)) — X be a morphism whose
image has compact closure. Then for some € > 0 there is a morphism ®: ) x (—¢,€) — X
integrating X and a 2-morphism ®|Q) x {0} = ¢.
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5.10. NOTE. Both of Theorems 5.8 and 5.9 can fail if one does not assume that X is
proper. Examples demonstrating this are given in [Hep09, §5.3].

One is often interested in representable morphisms of differentiable stacks since these
are, roughly speaking, the morphisms to which we can ascribe geometric properties. The
next result tells us when an integral morphism is representable. The theorem is trivial
when restricted to manifolds, since all maps of manifolds are representable.

5.11. THEOREM. [Representability of integrals| Let X be a vector field on a proper
differentiable stack X, let ®: ) x I — X integrate X, and fix any toc € I. Then ® is
representable if and only if ®|Y x {to} is representable.

Finally we extend the existence and uniqueness of flows to proper differentiable stacks.

5.12. THEOREM. [Existence and uniqueness of flows| Let X be a vector field on a proper
differentiable stack X.

1. A flow of X, if it exists, is unique up to a uniquely-determined integral 2-morphism.
More precisely, if ® and ¥ are two flows of X, then there is a unique integral
2-morphism A: ® = U such that A|X x {0} = ey eq.

2. A flow of X, if it exists, is representable.
3. If X has compact support, then a flow of X does exist.

5.13. PROOFS.

5.14. DEFINITION. Let us establish some notation. Let f: U — V be a smooth map
between manifolds and let U,V carry vector fields Xy, Xy respectively. Then we say that
f intertwines Xy and Xy, or that Xy and Xy, are compatible, if Tf o Xy = Xy o f.

PROOF OF THEOREM 5.8, PART 1. First note that, if Y — 9) is an atlas, then ®|Y x I,
WY x I still integrate X, and that A|Y x I, M|Y x I are 2-morphisms of these integrals that
coincide on Y x {tg}. Thus, if the conclusion of Theorem 5.8 part 1 holds for manifolds,
then A|Y x I = M|Y x I, and so A = M. We may therefore assume that ) =Y is a
manifold. We may also without loss assume that ¥ = .

Let U — X be an atlas and choose a vector field Xy on U, with a diagram

[fiTiU
367/@6

satisfying the conclusion of Corollary 4.12. Let V' — Y X I be the atlas obtained in the
pullback-diagram

‘I * .U (25)
Yx]—’/>3€.

P
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By taking pullbacks in the rows of

T(Y x I) 2= T%X <—TU (26)
ot X U
Y x[—=X% U

we obtain a smooth map V' — T'V that by the condition on diagram (24) and the condition
of Corollary 4.12 is itself a vector field Xy on V; the proof is a mild generalization of the
proof of Lemma 4.11. This vector field is compatible with 0/0t via V' — Y x I and with
Xy viad: V> U.

After these preparations we can apply Dictionary Lemma 2.5 part 3 to conclude that
A and M determine and are determined by maps

Im:V —=UxxU.
These maps have the following properties:

1. Write V, for the part of V' that lies over Y x {to}. Then [ and m coincide when
restricted to Vy. This is a consequence of the fact that A and M coincide when
restricted to Y x {¢o}.

2. l and m intertwine Xy and Xy.,y. This follows from the construction of [ and m
and the fact that A and M are integral 2-morphisms; the proof involves diagram
manipulations of the sort made in Lemma 4.11 and is left to the reader.

3. If vy, vy € V have equal images in Y x I, then I(v;) = m(vy) if and only if I(vy) =
m(vg). This is because the assumption yields o € U x5 U such that

l(vy) - =+ 1(vy),

m(vy) - a = a-m(vy).
Here - denotes composition in the groupoid U xx U = U.

We now show that [ = m. Since [ and m determine A and M respectively it will follow
that A = M as required. Let v € V| lying over (vy,t;) € Y x I, and assume without loss
that ¢; > to. Consider the map I — Y x I, t — (vy,t), and the corresponding pullback

diagram
‘J//
X

There is a vector field on I compatible with % on I and with Xy on V. Since I — I is
a surjective submersion we may therefore write [to, t1] = [so, s1] U+ -+ U [$,_1, $p] and find

~N<—mM

1

HY
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v: [si—1, 8] — V integrating Xy and such that v1(sg) € Vp, such that ~;(s;) and ~;41(s;)
have equal images in Y x I, and such that 7,(s,) and v have equal images in Y x I.
Now 1(71(s0)) = m(v1(s0)) by the first property above. Then I(y1(s1)) = m(71(s1)) by
the second property above, so that [(72(s1)) = m(72(s1)) by the third property above.
Continuing in this way we can conclude that {(v) = m(v). Since v was chosen arbitrarily,
[ = m as required. [

We now move onto the proof of Theorem 5.8 part 2. This part requires us to construct
the 2-morphism and requires the additional condition of properness. It is consequently
significantly more difficult than the proof of part 1. We begin by proving a series of
lemmas and then assembling the proof from these. The only aspect of properness that we
use is the result of the first of these lemmas below.

5.15. LEMMA. Let M, N be smooth manifolds equipped with vector fields Xy, Xy re-
spectively. Let m: M — N be a smooth proper map that intertwines Xy, and Xy. Fiz
m € M. If the integral curve of Xy through w(m) exists to time t, then so does the
integral curve of Xy through m.

PROOF. Suppose not. Let v: [0,¢] — N denote the integral curve of X with y(0) = 7(m).
Without loss assume that the integral curve of X, through m can be defined on [0, )
but not on [0,¢]. Since 7 is proper we may find some neighbourhood U of ~(t) and
some ¢ > 0 such that the integral curve of X,; through any point of 7=%(U) can be
defined on the interval (—e, €). So now choose s € (t — ¢,t) large enough that ~y(s) € U.
Then §(s) € 7= 1(U), so that § can be defined on [0, s + ¢€), which includes ¢. This is a
contradiction. This concludes the proof. [

Before we state the next lemma consider the following. Suppose we are in the situation
of Theorem 5.8, part 2. Let p: 9’ — 2 be a surjective submersion, and write also
p:Y x I — 9 x I for the product of p with the identity. Then ®op, Wop: Y’ x I — X
are both integrals of X, and the 2-morphism A, if it existed, would induce an integral
2-morphism A’ = A x1d,: ® op = W o p extending A * Id,. The converse is also true:

5.16. LEMMA. The conclusion of Theorem 5.8 part 2 holds if there exists an integral
2-morphism A': ® op = W op.

PROOF. Let P denote the 2-morphism in the cartesian diagram

VD x9 Y x [P x 1

|

Y x [ —~E~

Then A’ descends to the required A if the two composite 2-morphisms

* ’

@opowl%lﬂopomq]:*i\llopoﬁz
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* /

@opomglﬂopom%@opom
coincide. But these are integral 2-morphisms and, since A'|Q)’ x {to} descends to A o Id,,

they coincide when restricted to )’ x {to}. Then by Theorem 5.8 part 1 the composites
coincide, as required. [

5.17. LEMMA. Let X be a vector field on a proper differentiable stack X. Let'Y be a
manifold and let ®,W: Y x I — X integrate X. Then for any Y1 CY open with compact
closure, and for any t, € I, we can find an open interval J containing t; and contained
in I, with the property that any A: ®|Y x {ta} = V|Y; x {to} with ty € J extends to an
integral 2-morphism A: @|Y) x J = V|Y; x J.

PROOF. Let U — X be an atlas and let Xy be a vector field on U satisfying the conclusions
of Corollary 4.12. Then, as in the proof of Theorem 5.8 part 1, we can find an atlas
V — Y x I and a commutative diagram (25) where V' carries a vector field Xy compatible
with Xy on U and 9/0t on Y x I. Write V;, for the part of V that lies over Y x {¢;}.
Around each point of Y we can find an open neighbourhood small enough to lift to V;, and
small enough that the integral of Xy, through this lift exists on some small time interval
J containing t;. Since Y7 has compact closure we may therefore find a cover Wge — Y
and a commutative diagram

Wo x J 2 s

b

- X

in which ® integrates X;;. Repeating this process for ¥, reducing J and refining the two
covers of Y] if necessary, we obtain a single cover W — Y; and commutative diagrams

WxJ2 oy WxJY

2t A

in which &, ¥; both integrate Xy. We no longer require the assumption on clY; C Y
and so by Lemma 5.16 we may replace Y; with W and so assume that ®| and ¥| factorize
as follows:

U U (27)

> 2

Y1XJ?>.% EXJ?%

The vector field Xy on V was constructed by pulling back in the rows of diagram
(26). It possible to use this fact to check from the construction of the diagrams (27) that
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composing the 2-morphisms in the diagrams

/m_\ /T%\

T(Y; x J) TU \Tae T(Y; x TU H\T% (28)
AR
Yy x J—2 VixJ—2 ey x

v %

yields
TV x J) =Ly T(vox J) L
aT XTX aT T
ot ot
VixJ—p—>X Yy x X
respectively.

With these preparations we will now prove that the conclusion of the lemma holds with
the current choice of open interval J. Let A\: @Y x {to} = V|Y x {t»}. Using diagrams
(27) and Dictionary Lemma 2.5 part 3, this A determines and is determined by a map
[: Yy x{ta} — U xxU. By construction, this [ is a lift of ®&;|x Uy|: Y] x{ta} — U xU. By
Lemma 5.15, since ®; x ¥, integrates Xy x Xy, and the proper map m X mo: U Xz U —
U x U intertwines Xy, and Xy X Xy, we may form L: Y; x J — U xx U integrating
Xvux v and restricting to [ on Yy x {t3}. By construction m o L = @, my 0 L = Uy, and
so we obtain A: ®| — V| extending A| by composing the 2-morphisms in the diagram

|

“/7(]
Yy x J—E-U xx U

I

v

\V/

It remains to check that A is an integral 2-morphism, i.e. that (TA * Idg/a) o to =
o(Idx*A). To do so we may use the description of t¢, ty given in diagram (28) and the
construction of A to see — after some tedious manipulation of diagrams as in the proof of
Lemma 4.11 — that the required result follows from the fact that L integrates Xyx,u.
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PROOF OF THEOREM 5.8, PART 2. First, by Lemma 5.16 we may assume that ) =Y
is a manifold.

Let Y7 C Y be an open subset with compact closure. We will construct an integral
2-morphism ®|Y; x I = V|Y; x [ extending A|Y;. Given an open interval J containing
to and contained in I we will write Aj: ®|Y; x J = ¥|Y; x J for the unique integral
2-morphism extending A|Y7, if it exists. Applying Lemma 5.17 with t, = t; = to we see
that A; exists for some J. Further, if for some collection .Jy, Js,... the A exist, then
Aj|Y1 x (Jin J;) = Ay Y1 x (J; N J;) by Theorem 5.8 part 1, and so the Ay, can be
patched to obtain A; where J = J;.

The last remark means that there is a largest open interval Jy,., for which A, exists.
We claim that J,.. = I. If not then without loss there is a minimal ¢ € I with ¢ > j
for all j € Jnax. We may now take an open interval .J, contained in I and containing
7, on which the conclusion of Lemma 5.17 holds with ¢; = i. Take t3 € J N Jyax, SO
that Ay, |Y1 X {t2} extends to an integral 2-morphism L: ®|Y; x J = W|Y] x J that,
by Theorem 5.8 part 1, coincides with A|Y; X Jyax o0 Jpax N J. Thus A and L can
be patched to obtain Ajyy,,,., contradicting the maximality of Jpax. Thus Jpax = I as
claimed.

We have shown that for any Y; C Y, open with compact closure, there is an integral
2-morphism Ay, : ®|Y; x I = U|Y; x I extending A|Y;. We may find a nested sequence
of subsets Y1 C Yy C ---Y with compact closure and with Y = (JY;, and we write
Ay, : @|Y; x I = V|Y; x [ for the 2-morphisms extending A|Y; just obtained. Then for any
i > j, Ay,|Y; x I = Ay, by Theorem 5.8 part 1, and so the Ay, can be patched to obtain
the required integral 2-morphism A: ® = ¥ extending . ]

We now move onto the proof of Theorem 5.9. In this result an assumption of properness
has again been made. In the proof of Theorem 5.8 the properness assumption was used
to guarantee the lifting of integral curves over all times. In the next proof, however, this
assumption will be used to guarantee the existence of integral curves over some small
time interval. In what follows we will use the phrase at time t to refer to what happens
when one restricts a morphism or map X x I — Y, with I an open interval, to the subset

X x {t}.

ProoF oF THEOREM 5.9. Without loss we may assume that ¢ is the inclusion ¢: X; — X
of a full open substack with cl(%;) C X compact.

Let U — X be an atlas equipped with a vector field X as in Corollary 4.12. Now for
each z € cl(X;) we may find an open subset U, C U that contains a representative of x
and has compact closure. Since X is proper the map U xx U — U x U is proper, and so
U, xx U, C U x5 U also has compact closure. We may therefore find ¢, > 0 and maps

Uy X (—€p,6,) — U
Gt Up Xx Uy X (—€4,6,) = U xx U

which restrict at time 0 to the inclusions and which integrate Xy, Xy, v respectively.
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Since cl(X1) is compact we may find 1, ..., 2, € cl(X1) such that each point of cl(X;)
is represented by a point of | |U,,. Setting U = (| |U,,)z, and € = mine,,, we obtain the
following;:

1. Maps ig: U—>U 11 U><35U—>U><35U

2. A factorization

%Q}z

/l

X%
in which U — % is an atlas. This diagram induces 7 : U X x U—U xxU.

3. Maps ¢o: U x (—e,€) = U, ¢1: UxxUx (—€,e) = U xx U integrating Xy, Xpx v
respectively and restricting to 7g, 71 at time 0.

Write Y for the Lie groupoid U xx U = U representing X and write T for the groupoid
U xx U = U representing X;. Then iy and 4; form a groupoid morphism i: T — T and
Xy and Xy, v form a groupoid morphism Xy: T — T'T.

Since ¢ and ¢; integrate Xy and Xy, and restrict to iy and ¢; at time 0, it is simple
to verify that they define a groupoid map ¢: T x (—e,e) — Y. Dictionary Lemma 2.5
part 1 then provides us with a morphism ®: X X (—¢,€) — X and a diagram

U x (—e,6) 2> U

%1x% )/

o X

that induces ¢;.

We must prove that ® is an integral of X and that there is a 2-morphism ®|X; x {0} =
t. These are immediate consequences of Dictionary Lemma 2.5 part 2 . First, since
Xyop=T¢o E’ we obtain the required 2-morphism tp; since Xy and 2 5 are vector
fields on the groupoids T x (—e, €), YT, the condition on the resulting square (24) follows
immediately. Second, ¢|T x {0} is just i, and so there is a 2-morphism ®|%; x {0} = ¢
as required. [

PROOF OF THEOREM 5.11. We shall prove that if ®|9) x {to} is representable, then so
is ®@; the other direction is clear. We claim that for any full open substack 2); C Q) with
(Y1) € Y compact, and for any t; € I, there is an open interval J C I containing ¢,
with the property that for any s € J, ®|2); x J is representable if and only if ®|9); x {s}
is representable.

This claim allows us to prove the theorem. For we can find € > 0 such that ®|); x
(to—e€,to+€) is representable, so that if ®|2); x I is not representable then we can without
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loss find a maximal ¢; € I such that ®|); x (fp — €,11) is representable. Applying the
claim again gives a contradiction, so that ®|9); x I is representable. Since ¥) is a nested
union of such )q, the theorem follows.

We now prove our claim. Again, the ‘only if’ part is trivial. Let U — X be an atlas
and take U; C U open with compact closure such that ®(Q) x {t1}) is covered by Uj.
Choose J so that U; — X extends to a submersion Uy x J — X x I integrating X x 0/0t.
By reducing J if necessary we can assume that Uy X J — X x I covers & x m5()1 x J). Now
®|Y); x J is representable if and only if 9, x J — X x [ is representable, which is if and
only if () x J) X xx1 (U x J) is representable. But (2 x {s}) xx (U x {s}) is representable
by assumption, so that (2 x J) Xxx; (U; X J) is representable by Lemma 5.18 below.
This completes the proof. [

5.18. LEMMA. [Pullbacks of integrals.] Let X be a vector field on a proper differentiable
stack X, and let P: A x [ — X, V: B x I — X be morphisms integrating X, with A and
B differentiable, and further such that A x I — X x I is a submersion. Then the following
diagram, whose 2-morphism is furnished by part 2 of Theorem 5.8, is cartesian.

(A X {0}) xx(Bx{0}) x I —=Ax1T (29)
%lx[ e 3e£1

PRrROOF. We may assume that 2 = A and B = B are manifolds. Then from the vector
fields 0/0t on A x I, 9/0t on B x I, and X x 0/0t on X x I, we obtain a vector field
Y on P=(AXxI)xx(BxI)xI and a proper map P — (A x I) x (B x I) that
intertwines Y and 0/0t x 0/0t. Now Lemma 5.15 shows that every integral curve of Y
through (A x {to}) X2 (B X {to}) can be defined over the entire time interval I, and that
every point of P lies on one of these flow lines. This defines the required diffeomorphism
P = (Ax{t}) xx (B x{te}) x I. =

PrROOF OF THEOREM 5.12. The first two parts are immediate from Theorem 5.8 and
Proposition 5.11. We prove the third part.

Write X = 20U B as a union of full open substacks with 2 corresponding to the
complement of supp(X) and with 9B containing supp(X) and such that cl(B) C X is
compact. Write g, ts for the inclusions. Then by Theorem 5.9 we may find an open
interval J D {0} and a morphism ¢g: B x J — X integrating X and admitting ¢|B x
{0} = 1x. Since X | is equivalent to the zero-section we can find ¢g: A x J — X
integrating X and admitting ¢g|2A x {0} = g

Theorem 5.8 allows us to patch ¢g and ¢g and obtain ¢: X x J — X integrating X
and admitting ¢|X x {0} = Idx. We will call such morphisms partial flows.

Let I C R be the union of all those J for which there exists a partial flow X x J — X.
Write I = |J;2, J; as a countable union of intervals for which there exist partial flows
¢;: X x J; — X. Theorem 5.8 allows us to obtain a partial flow X x I — X. [ is therefore
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the unique largest interval for which there is a partial flow ¢;: X x I — X. We claim that
in fact I = R.
If I # R, then without loss I is bounded above, so choose any positive tqg € I. Then

both ¢; and

% % (I+t0) (¢I|(x><{t0}))><_t0 % > ]— & %

integrate X and are 2-isomorphic when restricted to X x {¢y}, so by Theorem 5.8 can be
glued to obtain a partial flow X x I U (I +ty) — X of X. This contradicts the maximality
of I. Consequently I = R and the theorem is proved. [

6. Global quotients

Let G be a compact Lie group acting smoothly on a manifold M and write [M/G] for
the quotient stack. One expects that the geometry of [M/G] is simply the G-equivariant
geometry of M. For example functions, bundles and sheaves on [M/G] correspond to G-
invariant functions, G-equivariant bundles and G-equivariant sheaves on M respectively.
The results of this section are a clear instance of the same principle, for we will show that
Vect[M/G] can be described in terms of the G-invariant vector fields on M, and that the
flow of a vector field on [M/G] can be described in terms of the flow of the corresponding
G-invariant vector field on M.

6.1. PROPOSITION. The groupoid Vect[M /G| of vector fields on [M /G| is equivalent to
the groupoid whose:

e objects are the G-invariant vector fields on M ;

o arrows X — X' are the functions ¢: M — g such that X'(m) = X (m)+wp(m) and
P(mg) = Adg-19(m).
Here 1(v) € T,,M denotes the tangent vector obtained by differentiating the G-action
in the direction v € g. The above equivalence restricts to an equivalence between the
full subgroupoid on the compactly-supported invariant vector fields on M and the full
subgroupoid of compactly-supported vector fields on [M/G].

6.2. PROPOSITION. Let X be a compactly-supported vector field on [M /G| corresponding
to a G-invariant vector field Xp; on M and let ¢: M x R — M be the flow of Xy;. The
morphism of stacks

O: [M/G] xR — [M/G]
determined by ¢ is a flow of X.

PROOF OF PROPOSITION 6.1. Write Vect(M/G) for the groupoid described in the state-
ment of the proposition. We wish to find an equivalence Vect[M /G| ~ Vect(M/G). Since
the stack [M/G] is represented by the action groupoid M x G = M x G = M, The-
orem 4.15 provides us with an equivalence Vect[M/G] ~ Vect(M x G). Writing out
Vect(M x G) explicitly (Definition 4.14) and using TG = G X g, we have an equivalence
between Vect[M/G] and the groupoid whose:
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e objects are pairs (X, Y') consisting of a vector field X on M andamapY: M xG — g
such that X (mg) = X(m)g+ Y (m,g) and Y (m, gh) = Ady-1Y (m, g) + Y (mg, h);

e morphisms (X,Y) — (X',Y’) are maps ¢: M — g for which X'(m) = X(m) +
w(m) and ¥ (m, ) + $(mg) = Adgth(m) +Y"(m, g).

It is clear from this description that Vect(M/G) is the full subgroupoid of Vect(M x G) on
those objects (X,Y") for which Y = 0. We will prove the claim Vect[M /G| ~ Vect(M/G)
by showing that every object of Vect(M x G) is isomorphic to an object of Vect(M/G).

Fix a smooth invariant measure on G. Let (X,Y") be an object of Vect(M x G). Define
a vector field X on M by

X(m) = [ Xmg)g™
ge
and define ¢»: M — g by
Y(m) = / GAde(m,g).
ge

It is now routine to check that (X,0) is an object of Vect(M/G) and that ¢: (X,Y) —
(X,0) in Vect(M x G).

It remains to prove the second claim regarding the compactly-supported vector fields
on M. Tt is clear that a compactly-supported object of Vect(M/G) leads to a compactly
supported vector field on [M/G]. Conversely, take a compactly-supported vector field
on [M/G]. This can, by the proof of Proposition 4.17, be represented by a vector field
on M x G that is not equal to the zero section only on a subgroupoid of M x G whose
image in M /G has compact closure. That is to say, the vector field on M x G is given by
compactly-supported vector fields on M and M x G. The averaging process above clearly
preserves this property, and the result follows. [

PROOF OF PROPOSITION 6.2. There is an obvious 2-morphism ®|[M/G] x {0} = Idj/q,
and so it only remains to check that & integrates X. But each arrow in the diagram

T[M/G] x R~ T[M/C]

|

[M/G] x R —— [M/G]

is represented by a specific morphism of groupoids, constructed from ¢ or from X,,,
and the corresponding diagram of groupoid morphisms commutes on the nose. Thus, by
Dictionary Lemma 2.5 part 2, we may fill the square above with the required 2-morphism
te. The condition on (24) follows, again using the Dictionary Lemma. ]
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7. FEtale stacks

Let us recall from §2.7 that a differentiable stack is étale if it admits an étale atlas. A stack
is étale if and only if it is represented by an étale groupoid, or in other words, a groupoid
whose source and target maps are étale. Etale groupoids are of particular interest since
Moerdijk and Pronk [MP97] gave a correspondence between proper étale Lie groupoids
and orbifolds.

Vector fields on manifolds have a particular functoriality under étale maps that they
do not enjoy under general maps: they can be pulled back. If f: U — V is étale and
X is a vector field on V' then the pullback f*X denotes the vector field on U given by
F7X(u) = (Tuf)" X (f(u)). Note that g"f*X = (fg)"X.

This functoriality of vector fields allowed the author in [Hep09] to define vector fields
and integral morphisms for étale stacks by considering the collection of all étale morphisms
into the stack being studied. To be precise:

7.1. DEFINITION. [Hep09, 5.2] A vector field on an étale stack X is an assignment

that sends each étale morphism from U into X to a vector field on U. This assignment is
required to satisfy f*Xy = Xy whenever one has a triangle of étale morphisms

fly

U

7.2. DEFINITION. [Hep09, 5.7] Let X be a wvector field on an étale stack X. Given
a representable morphism ®: ) x I — X and an étale morphism U — X, the pullback
(Y xI)xxU is a manifold and its projection to Y x I is étale. Write y: (PxI1)xxU — U
for the second projection. We say that ® is an integral morphism if for each U — X étale

we hCL’Ue
T@U - = XU 0] @[r.

These definitions are arguably more concrete and accessible than the definitions given
in §4 and §5. They are certainly simpler in the sense that they do not require us to
construct the tangent stack functor 7. In this section we are going to show how the two
concepts above are equivalent to the ones established earlier.

7.3. LEMMA. Let U — X be étale. Then the diagram
TU —U (30)

s

X ——X

18 cartesian.
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PROOF. Choose equivalences X ~ B(X; = Xy), U ~ B(U; = U,) where X, — X,
Uy — U are étale atlases and U — X is obtained from a Lie groupoid morphism (U; =
Up) — (X1 = Xp) that is étale in each component. Then U x x T'X is represented by the
Lie groupoid

TX1 X Xo X1 X X, U1 :iTXO X Xo X1 X Xo U(]

which, since all the maps forming the pullbacks are étale, is isomorphic to
TLie(Xl X X, X1 X Xo U1 = XO X Xo X1 X Xo Uo)

which is equivalent to T™¢(U; = Uy) and, finally, TU. [

7.4. COROLLARY. If X is an étale stack then the projection mx: TX — X is a vector-
bundle.

7.5. REMARK. Corollary 7.4 is in strong contrast to the general situation, in which the
fibres of 7y can have the form [V/W], where V and W are vector spaces and W acts
linearly on V.

7.6. COROLLARY. Let X be a vector field on an étale stack X and let U — X be étale.
Then there is a unique diagram

U-—% U

w7

X X TX
satisfying the conclusion of Corollary 4.12, and this diagram is cartesian.

PRrROOF. Form the pullback of TU — TX along X. The fact that (30) is cartesian,
together with the morphism ayx: mx o X = Idx, identifies this pullback as U and the
resulting cartesian square has the form required by Corollary 4.12. Any other diagram
satisfying the conditions of Corollary 4.12 is then related to this one by a map U — U
which is necessarily the identity, and the diagrams therefore coincide. [

7.7. PROPOSITION. Let X be an étale stack and let Vect® (X) denote the set of vector
fields on X as defined in Definition 7.1. Regard Vect®(X) as a groupoid with only identity
arrows. Then there is an equivalence

Vect(X) — Vect®(X)
X o (U = %) = Xp)

where each Xy is determined by Corollary 7.6.
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PROOF. Let X be a vector field on X. Corollary 7.6 provides us with vector fields Xy on
U for each étale U — X; it further shows that the resulting assignment (U — X) — Xy
satisfies the conditions of Definition 7.1. We therefore have a map from the objects of
Vect(X) to Vect®(X). But Corollary 7.6 shows that if X, Y are equivalent vector fields on
X then their images in Vect®(X) coincide. Thus Vect(X) — Vect®(X) is a functor.

We now show that Vect(X) — Vect®(X) is fully faithful. If X = Y is an equivalence
of vector fields on X then Corollary 7.6 shows that the restrictions X|U = Y|U are
uniquely determined, and therefore such an equivalence, if it exists, is unique. Moreover,
if vector fields X and Y on X determine the same element of Vect®(X) then Corollary 7.6
determines a 2-morphism X|U = Y|U for each U — X étale, and these satisfy the
conditions required to ensure that they descend to an equivalence X — Y. This shows
that Vect(X) — Vect®(X) is fully faithful.

We complete the proof by showing that Vect(X) — Vect®(X) is essentially surjective.
Any element { X} of Vect®(X) determines a morphism X : X — T'X by choosing U — X
to be an étale atlas and considering the corresponding Lie groupoid. That X is a vector
field determining the original { X/} is an immediate consequence of its construction. m

7.8. PROPOSITION. Let X be a vector field on an étale stack X and let &: Y x [ — X
be a representable morphism. Then ® integrates X if and only if it satisfies the condition
of Definition 7.2.

PROOF. Suppose that @ integrates X, let U — X be étale, write V. — ) X I for the
induced étale atlas of ) x I, and let ®: V — U for the induced map; we are in the
situation of diagram (25). We must show that the diagram

v—2sp (31)

-

TV —=TU
T

commutes.
By its construction the composite V' — U — TU fits into the 2-commutative rectangle

Xu

V U TU U
ok Lk e L)

whose middle square is obtained using Corollary 7.6. Since TU ~ U x x T'X, this rectangle
determines the composition V' — U — T'U. Similarly, V' — TV — TU is determined by
a rectangle

V TV TU U
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where now the first square is determined by Corollary 7.6.

Now we could paste the first rectangle with ¢4, and compose the 2-morphisms. Using
the conditions on t¢ and Corollary 7.6, we find that the composed 2-morphism is identical
with the composition of 2-morphisms in the second of the rectangles. Thus the two
compositions V' — TU are related by a 2-morphism, so that in fact they coincide. This
shows that the square (31) above does indeed commute.

Conversely, if for each U — X étale the diagram (31) commutes, then in particular it
commutes when U — X is taken to be an atlas Xqg — X or either of the induced maps
X; — X, where X7 = Xy Xx Xo. Thus we have a commuting square of Lie groupoids that
represents the required commuting square (23). By its construction this square satisfies
the condition on (24). This completes the proof. n
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