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ON DEFORMATIONS OF PASTING DIAGRAMS

D. N. YETTER

ABSTRACT. We adapt the work of Power [14] to describe general, not-necessarily com-
posable, not-necessarily commutative 2-categorical pasting diagrams and their compos-
able and commutative parts. We provide a deformation theory for pasting diagrams
valued in the 2-category of k-linear categories, paralleling that provided for diagrams
of algebras by Gerstenhaber and Schack [9], proving the standard results. Along the
way, the construction gives rise to a bicategorical analog of the homotopy G-algebras of
Gerstenhaber and Voronov [10].

1. Introduction

It is the purpose of this work to describe the deformation theory of pasting diagrams of
k-linear categories, functors and natural transformations. As such, it generalizes work of
Gerstenhaber and Schack [9], both by giving an exposition of the well-known extension
of their work on diagrams of algebras to k-linear categories and functors, and by the
inclusion of natural transformations.

The present work has a number of motivations. It initially grew out of a program
to extend the author’s deformation theory for monoidal categories, functors and natural
transformations [5, 17, 18, 19], which deforms only the structure maps, to a theory in
which the composition of the category, the arrow part of the monoidal product, and the
structure maps are all deformed simultaneously. That program is still in progress, and
this paper is a first step in it.

It is also the first step in a program to provide a Gerstenhaber-style deformation
theory for linear stacks, as pre-stacks may be considered as special instances of pasting
diagrams. Consideration of not-necessarily abelian linear stacks is motivated by physical
considerations in a prospective deformation quantization approach to quantum gravity
(cf. [2, 3, 4)).

It is also hoped that the present work may shed light, if only by analogy, on the
difficulties arising in Elgueta’s deformation theory for monoidal bicategories [6].

Throughout we will consider all categories to be small, if necessary by invoking the
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axiom of universe. Composition will be written in diagrammatic order unless parentheses
indicate functional application. Thus fg and ¢(f) both denote the arrow obtained by
following f with g, in the second case thought of as applying g to f. Throughout by abuse
of notation, whenever operations defined as applying to sets, are applied to elements, the
singleton set will be understood. k will denote a fixed field, and all categories and functors
will be k-linear.

2. Pasting schemes and pasting diagrams: definitions

A pasting diagram is to n-categories what an ordinary diagram is to categories. A num-
ber of ways to formalize them have been developed. We will for the most part follow
Power [14], whose approach mixing Street’s notion of computads [15] with a geometric
adaptation of Johnson’s pasting schemes [11] avoids much of the combinatorial complex-
ity of Johnson’s approach. Power’s description seems to be of the right generality for the
present work, and we will deviate from it only to allow the description of not-necessarily
composable, not-necessarily commutative diagrams. We follow Power’s gentle method
of exposition by initially restating the familiar in less-familiar but readily generalizable
terms:

2.1. DEFINITION. A 1-computad is a (finite) directed graph . A 1-computad morphism
1s a map of directed graphs.

Observe, in particular, that there is a forgetful functor from the category of small (or
finite) categories and functors to 1-computads.

2.2. DEFINITION. A 1-pasting scheme is a finite non-empty set G equipped with an
embedding to the oriented line R. The elements (identified with their images in the line)
are called O-cells of the pasting scheme, and the open bounded intervals in R\ G are called
the 1-cells of the pasting scheme.

Denoting the sets of 0- and 1-cells by Gy and Gy respectively, there is a function
dom : G1 — Gy, (resp. cod : Gy — Gy) the domain (resp. codomain function, which
assign the lesser (resp. greater) endpoint to each 1 — cell.

The quadruple (Gg,Gy,dom,cod) defines a finite directed graph, the underlying 1-
computad of the 1-pasting scheme, which we denoted C'(G).

The domain of G, domG (resp. codomain of G codG) is the smallest (resp. largest)
element of Go. (These should not be confused with the domain and codomain functions.)

2.3. DEFINITION. A composable 1-pasting diagram in a 1-computad H consists of a
1-pasting scheme and a 1-computad morphism h : C(G) — H. The domain (resp.
codomain) of the 1-pasting diagram is h(domG) (resp. h(codG)). In the case where
H is the underlying 1-computad of a category A, we call the 1-pasting diagram a labelling
of G in A. We denoted the set of composable 1-pasting diagrams in a 1-computad H by
diags(H).
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2.4. DEFINITION. The 1-pasting composition of a labelling of a pasting scheme G in A
is the arrow of A obtained by composing the sequence of arrows in A given by the h(Gy).

2.5. DEFINITION. A general 1-pasting diagram in a 1-computad H consists of a 1-
computad G and a 1-computad morphism h : G — H. The composable parts of a general
1-pasting diagram (G, h) are all composable 1-pasting diagrams p : C(S) — H in H that
factor as C(S) & G MoH.

Thus far we have not really added anything to the notions of iterated composition and
diagrams in a category, save to emphasize a sense that it is somehow ‘more geometric’
than multiplication. This heretofore needless abstraction now becomes necessary:

2.6. DEFINITION. A 2-computad consists of a 1-computad G and a set Gy together with
functions dom : Gy — diags(G) (resp. cod : Go — diags(G)) such that dom(dom) =
dom(cod) and cod(dom) = cod(cod) as functions from Gs to Gy.

A 2-computad morphism from (G, Gy, dom, cod) to (H, Hy, dom, cod) consists of a 1-
computad morphism f : G — H and a function fo : Gy — Hy such that dom(f2) = f(dom)
and cod(fy) = f(cod).

Plainly 2-computads and 2-computad morphisms form a category, and every 2-category
has an underlying 2-computad obtained by forgetting the compositions.

2.7. DEFINITION. A 2-pasting scheme consists of a finite 1-computad G together with
an embedding of the underlying geometric directed graph (also denoted G by abuse of
notation) into the oriented plane R* satisfying the following conditions:

1. The complement of the image of G consists of an unbounded region and finitely
many open cells, which are called faces;

2. The boundary of each bounded face F is of the form o(F)U—7(F'), where the negation
indicates orientation reversal, each of o(F) and T(F) are images of composable 1-
pasting diagrams in G, and domo(F) = domt(F) (resp. codo(F) = codr(F));
and

3. There exist vertices s(G) and t(G) in the boundary of the unbounded face such that
for every vertex v, there is a composable 1-pasting diagram h : C(H) — G such that

v is in the image of h, domh = s(G) and codh = t(G).

It follows from these conditions that the boundary of the unbounded face E is also a
union of images of composable 1-pasting diagrams —o(E) U 7(FE) (note the orientation
reversal) with domo(E) = domt(E) = s(G) and codo(E) = codr(E) = t(G). We define
the domain (resp. codomain) of G by domG = o(E) (resp. codG = 7(E)).

Every 2-pasting scheme G admits an underlying 2-computad C'(G) in which G is the
underlying 1-computad, and G5 is the set of bounded faces, which are called 2-cells. The
domain (resp. codomain) of a 2-cell is given by domF = o(F) (resp. codF = 7(F)),
thereby defining the maps dom, cod : Gy — diags(G). Again these maps should not be
confused with the domain and codomain of the entire pasting scheme.
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2.8. DEFINITION. A composable 2-pasting diagram in a 2-computad H consists of a
2-pasting scheme and a 2-computad morphism h : C(G) — H. In the case where H is
the underlying 2-computad of a 2-category A, we call the 2-pasting diagram a labelling
of G in A. We denoted the set of composable 2-pasting diagrams in a 2-computad H by
diags(H).

In [14] Power proved

2.9. THEOREM. Every labelling of a composable 2-pasting scheme has a unique compos-
ite.

Meaning that every iterated application of the 1- and 2-dimensional compositions to
the natural transformations in a composable 2-pasting scheme which results in a single
natural transformation gives the same result.

We will also need

2.10. DEFINITION. A general 2-pasting diagram in a 2-computad H consists of a 2-
computad G and a 2-computad morphism h : G — H. The composable parts of a general
2-pasting diagram (G, h) are all composable 2-pasting diagrams in H p : C(S) — H that
factor as C(S) & G oH.

We will not need Power’s further explication of corresponding structures to describe
composable pasting diagrams in higher dimensions. For our purposes, it suffices to make

2.11. DEFINITION. A 3-computad consists of a 2-computad G and as set G5 together
with functions dom : Gs — diags(G) (resp. cod : G5 — diags(G)) such that dom(dom) =
dom(cod) and cod(dom) = cod(cod) as functions from G3 to diags(G1, Gy, cod, dom).

A 3-computad morphism from (G, G3,dom, cod) to (H, Hs,dom, cod) consists of a 2-
computad morphism f : G — H and a function f3 : Gy — Hy such that dom(f3) = f(dom)
and cod(f3) = f(cod).

and to observe that any 3-category admits an underlying 3-computad.

Of course, a 2-category can be regarded as a 3-category in which all 3-arrows are
identities. By adopting this view, we can use general 3-pasting diagrams, targetted in
the underlying 3-computad of a 2-category to specify commutativity conditions in general
2-pasting diagrams, since the presence of a 3-cell asserts the equality of its source and
target.

Thus we make

2.12. DEFINITION. A k-linear pasting diagram is a 3-computad G together with a 3-
computad morphism to the underlying 3-computad of k — Cat, the 2-category of all small
k-linear categories, k-linear functors, and natural transformations.

These are our primary objects of study. Note that we do not specify the dimension
here: as part of an abstract hierarchy, these are 3-dimensional objects, but since we are
working in 2-categories, they are degenerate, and in some sense still 2-dimensional.
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3. Deformations of categories, functors
and natural transformations: definitions and elementary results

The generalization of Gerstenhaber’s deformation theory from associative algebras [7, 8]
to linear categories, or 'algebroids’ in the sense of Mitchell [13], is quite straight-forward,
and both the one readily available source in which the construction has appeared [1] and
unpublished lectures of Tsygan [16] treat it as a folk-theorem.

The deformation theory for linear functors, or for that matter commutative diagrams
of linear functors, is similarly a straight-forward generalization of work of Gerstenhaber
and Schack [9].

Finally, the deformation of natural transformations between undeformed functors is
completely trivial, as will be seen. It is only when all three elements are combined that
there is really anything new.

To fix notation, we review the basic elements of the theory:

3.1. DEFINITION. A deformation C of a k-linear category C is an R-linear category
(i.e. a category enriched in R-modules), for R a unital commutative local k-algebra, with
maximal ideal m, whose objects are those of C, with é(X, Y) = C(X,Y) ®; R, whose
composition and identity arrows reduce modulo m to those of C.

For R as above, an m-adic deformation C of a k-linear category C s a category enriched
in the category of m-adically complete R-modules with obvious the monoidal structure
given @p, the m-adic completion of g, whose objects are those of C, with @(X, Y) =
C(X,Y)®iR, whose composition and identity arrows reduce modulo m to those of C.

Two deformations in either sense are equivalent if there is an isomorphism of cate-
gories between them that reduces to the identity functor modulo m. We refer to such an
1somorphism as an equivalence of deformations.

The trivial deformation is the deformation in which the composition on the original
category is simply extended by bilinearity, or by bilinearity and continuity in the m-adic
case, while a trivial deformation is one equivalent to the trivial deformation.

Throughout we will be concerned only with n'*-order deformations in which R =
kle]/{e"™1) and formal deformations, (¢)-adically complete deformations with respect to
R = E[[¢]]. Collectively, we will refer to these as I-parameter deformations.

In these cases the composition in C has the form

Frg=>Y u(f g€
while identity maps in C are of the form
14 = Z 19 (A)é

where u(f,g) = fg, and 1(O(A) = 1,, the sums being bounded for n**-order deforma-
tions, and extending to infinity for formal deformations. In this case, the trivial deforma-
tion has p¥) = 0 and 1) = 0 for j > 0.

The definition then translates into equational conditions on the u(?’s and ¢(7)’s:
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3.2.  PROPOSITION. The coefficients uV(f, g) and (\9)(A) in a I-parameter deformation
of a category C satisfy

1Of.9) = fg (1)

LO4) = 14 (2)

>_ O s(f), f) = 0forn>0 (3)
DO TI(H(f) = Oforn>0 (4)

S ur (O (a,b),0) = Y p e, 1 (b, 0)), (%)
i—0 =0

and a family of coefficients {uD]i = 1,...} defines a 1-parameter deformation if and only
if it satisfies these equations.

PrOOF. 1 and 2 are the requirement that the the deformation reduce to the identity
modulo m = (e). By trivial calculations 3 and 4 are seen to be the preservation of
identities and 5 the preservation of associativity. B

Here, of course, there is an upper bound in the indices of the 1(?’s in the case of an
n'-order deformation, and no bound in the case of a formal deformation. We will not
bother to note this again in the discussion below of deformations of functors and natural
transformations.

Equivalences between 1-parameter deformations, similarly can be characterized in
terms of coefficients.

In particular, we have

3.3. PROPOSITION. Given two I-parameter deformatzons ofC C, and Cg, with compo-

sitions given by f*lg = Z /le (f g)et and fxyg = Z /ﬁ (f g)e’ respectively, and identity
maps given by 114 = Zbl (A)e and 194 = ZLg (A)el an equivalence ® is given by a
functor given on objects by the identity, and on arrows by

= _0Y(f)e

where

| 20(f) = f (6)
DAY = LP(A) fori>0and all A€ Ob(C) (7)
oD (f.g) = D w2 (@D(f), 2 (g)) (8)

=0 krltm=i
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Moreover, a family of assignments of parallel arrows to arrows in C defines an equivalence
of 1-parameter deformations if and only if it satisfies equations 6-8.

PrOOF. Equation 6 is the requirement that ® reduce to the identity functor modulo m,
equations 7 and 8 are the preservation of identity arrows and composition respectively.
Preservation of sources and targets is trivial, and invertibility follows immediately from
the reduction to the identity modulo m. B

Classical discussions of deformations of unital associative algebras sometimes omit or
gloss over the question of deforming the identity element. There is good reason for this,
which holds with equal force in the many objects setting:

3.4. THEOREM. Ifé is a I-parameter deformation of a k-linear category C, with de-
formed composition fxg =3 ) (f,g)€" and deformed identities W= L(j)(A)Gj, there
exists an equivalent deformation C with deformed composition f % g = S a9 (f, 9)et and
identity arrows equal to the undeformed identities 1 4.

ProoOF. We begin by constructing the functor from C to C: map each object to itself,
and each map g to 144) x g. Plainly 1,4 is mapped to 1.

Now observe that in C, 1, is an automorphism of A: the Coefﬁments x® of its inverse
13" can be found inductively from the conditions £(© = 1, and o™ = 3"  u® (k777 1,).

We can now define the composition on C. For f : A — B and ¢ : B — C, let
fxg=7f *1;1*9. It is immediate by construction that 1, is an identity for x. Associativity
of x follows from the associativity of x, as does the fact that the assignment of maps at
the beginning of the proof is a functor, since 14 x (f xg) = (1a* f) x 153" % (1 x g).

It is easy to see that reducing modulo (e) gives the identity functor of C, and that the
inverse functor is given on arrows by f +— 12 * f.

Likewise it is easy to see that (™ = D itk P (f kD, g).

For functors the natural notion of deformation is given by

3.5. DEFINITION. A deformation F' of a k-linear functor F : C — D is a triple (C, D F)
where C (resp. D) is a deformation of C (resp. D) over the same local ring R, and F
s a functor enriched in the category of R-modules or m-adically complete R-modules, as
appropriate, from C to D that reduces modulo m to F.

As for categories, in the case of 1-parameter deformations, the definition of a deforma-
tion a k-linear functor is equivalent to a family of equational conditions on the coefficients
of powers of e:

3.6. PROPOSITION. If (C D, F) is a 1-parameter deformation of a functor F: C — D
with the composition in C (resp D) _gwen by f *g = 3l )( g)€" (resp fxg =
S vO(f,g)€') and identities gwen by 1A = S DA (resp. 14 = S AND(A)él) and F
given on arrows by F( ) = Y FO(f)e, then the u’s and v\ ’s satisfy equations 1-5,
and moreover
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FO = F (9)
Z FOWDA)) = XW(F(A)) for n > 0 and all z € Ob(C) (10)
i+j=n
S OPOWO(Le) = S WOEO(f), F(g), (11)
i+j=n,%,7>0 k+l+m=nk,l;m>0

and the families of coefficients define a 1-parameter deformation if and only if they satisfy
these equations.

PROOF. 9 is the requirement that F' reduce modulo m = (¢) to F. In the presence of 9
10 is equivalent to the preservation of identity arrows by F', while 11 is equivalent to the
preservation of (the deformed) composition. B

Observe that an equivalence of deformations of a k-linear category C is simply a
deformation of the identity functor that has the two deformations of C as source and
target.

There are evident notions of equivalence between deformations of k-linear functors:

3.7. DEFINITION. Two deformations (C,D, F) and (C,D F) are strongly equivalent if
C = C, D= D, and there exists a natural isomorphism ¢ : F = F which reduces to Idp
modulo m.

Two deformations (C,D, F) and (C,D, F) are weakly equivalent if there exist equiva-
lences of deformations of categories, I' : C—Cand A:D — D, and a natural isomor-
phism ¢ : FA = TF, which reduces modulo m to Idp.

For 1-parameter deformations, each type of equivalence can be characterized by equa-
tions on coefficients of powers of e. We give the more general case of weak equivalence,
as strong equivalence is simply specialization to the case where I' and A are identity
functors:

3.8.  PRroPOSITION. If (I A, 9) is a (weak) equivalence between 1-parameter deforma-
tions (Cy, Dy, Fy) and (Cy, Dy, Fy) of F : C — D, with F( ) = S TO(He, A(f) =
SSAO(fe, and ¢y = Y ¢V€l, then the TW’s (resp. A©’s) and the coefficients p%
(resp. Vy(f)) defining the composition on C, (resp. 75”) n = 1,2 satisfy equations 6-8
mutatis mutandis, and

¢§C0) = 1, for all z € Ob(C) (12)
>, AYEIMeY = 3 PRIV 13)
i+j+k=n pratren

foralln >0and all f:2 —y e Arr(C).

Moreover a family of coefficients defines a weak equivalence of 1-parameter deformations
if and only if it satisfies the given conditions.
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PRrROOF. The conditions not involving ¢ must hold by Proposition 3.3. Equation 12 is the
requirement that ¢ reduce to the identity natural transformation modulo m. Equation 13
is naturality.

Theorem 3.4 can be extended to functors:

3.9. THEOREM. If F : A — B is a functor, and (fl, B, ﬁ’) s a deformation, then there is
a weakly equivalent deformation in which the identity arrows of A and B are undeformed.

PROOF. Construct equivalent deformations A and B of the categories as in Theorem 3.4.
Let &4 : X — ./f' Uy . X — .)2 ox : PxVWy = Ids, and 7y : Wx Py = Id; define the
equivalence of categories for X = A, B.

Then F := U EF®y gives the deformed functor from A to B, and ®g(F(04)) gives
the necessary natural isomorphism. (Recall our convention that compositions are in dia-
grammatic order unless parentheses indicate ‘evaluation at’.) B

Finally for natural transformations, we make

3.10. DEFINITION. A deformation ¢ of a natural transformation o : F' = G (for func-
tors F,G : C — D is a five-tuple (C,D, I, G, &), where C (resp. D, F,G) is a deformation
of C (resp. D, F,G), and ¢ is a natural transformation from F to G, which reduces modulo
m to o.

For deformations of natural transformations, there are three obvious notions of equiv-
alence:

3.11. DEFINITION. Two deformations (é,
transformation o are strongly equivalent if (

Two deformations (C.D,F,G,6) and (C, f) G,6) are equlvalent ifC=C D=
D, and F (resp. G) is strongly equivalent to F (resp G) by a strong equivalence of
deformations of functors ¢ (resp ’y) and, moreover, 6y = gba)

Finally, two deformations (C D, F,G, &) and (C,D, F,G, ) are weakly equivalent if
there exist equivalences of deformations of categories, I : C—CandA:D— D, and a
natural isomorphisms ¢ : FA = TF (resp. 1 : GA = Fé}, which reduces modulo m to
Idp (resp. 1dg), and, moreover 61 = ¢7).

Here again, in the case of 1-parameter deformations, the definition is equivalent to a
family of equational conditions on the coefficients of e:

3.12. PROPOSITION. If (C D F G ,0) s a 1- -parameter deformation of a natural trans-
formation o : F = G with the composition on C (resp. D) given by fxg = Z/N)(f, g)€
(resp fxg= Zy( (f,9)€'), F (resp. G) given on arrows by F(f) =S, FO(f)e (resp.

G(f) = S GO(f)e), and 6, = SS o€ then the u®’s and v ’s satisfy equations 1-5,
they and the F®’s and G s satisfy 9-11, and moreover

Y AEVNLE) = 3 6060 o

t+j+k=n1,5,7>0 p+g+r=np,q,r>0
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forall f :x—y inC.
Moreover families of coefficients define a 1-parameter deformation if and only if they
satisfy these conditions.

PRrROOF. The conditions not involving the ¢(?’s must hold by earlier propositions. Equa-
tion 14 is simply the naturality of 6. B

And finally, equivalences between 1-parameter deformations of natural transformations
can be reduced to equations on the coefficients:

3.13.  PRrROPOSITION. If (I, A, ¢, 1) is a weak equivalence between two deformations of a
natural transformation o : F' = G between functors F,G : C — D, ((fl,f)l, Fl, Gl, a1) and
(Co, Dy, Fy, G2, 63), with T(f) = S TO(f)el, A(f) = S AO(f)e, ¢, = 3¢, =
Zd)gf)ei, then the coefficients defining the compositions on the Cy’s and Dy, ’s (m=1,2)
together with the TW’s and the A(i)’s, the Fs (n=1,2) (resp. GY) s (m=1,2)) and
the ¢ s (resp. the @ ’s) satisfy the conditions of Proposition 3.8 mutatis mutandis, and
moreover

> ol = 3 oyl (15)

i+j=n p+g=n

for allm and x € Ob(C).
Moreover, families of coefficients define a weak equivalence of deformations of natural
transformations if and only if they satisfy these conditions.

Proor. All but the last condition must hold by Proposition 3.8 and the definition of
weak equivalence. The last is simply the condition that 019 = ¢o,. B

Again, up to weak equivalence, we may assume that identity maps have been left
undeformed, as the following follows by the construction of Theorem 3.9, and a little
2-categorical diagram chase around a ‘square pillow’ with two squares and two bigons as
faces, the equivalences from Theorem 3.9 as the seams between the square faces, the square
faces being the natural transformation in the weak equivalences between the deformations
of F" and GG, and one bigon being the original deformation of o

3.14. 'THEOREM. If (é,ﬁ,ﬁ,é,&) 1s a deformation of a natural transformation o :
F = G for F,G :C — D, then there exists a weakly equivalent deformation of o in which
the identity maps of both C and D are undeformed.

Having arrived at this point, it is clear what a deformation of a 3-cell is: it is simply
a deformation of the equal bounding 2-cells.

In the case where the diagram is simply a ‘bigonal pillow’, that is a 3-computad with a
single 3-cell with single 2-cells as source and target, there is nothing more to be said. We
will see, however, once we consider pasting of deformations, and deformations of pasting
diagrams, that in general the matter is not trivial.
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4. The Hochshild cohomology of k-linear categories,
functors and natural transformations: definitions and elementary re-
sults

As was the case in [9], the cohomology appropriate to objects turns out to be a special case
of that appropriate to arrows, though with groups in different cohomological dimensions
playing corresponding role. Here, however, we can apply this observation twice.

It turns out that the obvious Hochschild complex for a natural transformation depends
only on its source and target, we thus begin with

4.1. DEFINITION. The Hochschild complex of a parallel pair of functors,
FG:-A—B

has cochain groups given by

C"(F.G)== ] Hom(A(ze,21)®...® A(zn_1,2,), B(F(x0),G(z))),

20,..2n EOb(A)

and for n =0, noting that k is the empty tensor product,

C(F,G):= ]] Homy(k, B(F(x0),G(x0)))
20€Ob(A)

with coboundary given by

p(fo®...® fr) =
F(fo)o(fi®...® fu) +

n

Y D(fo®...® firfi®...® fa) +

i=1

(1) o(fo® ... ® fau1)G(fn)

5% = 0 by the usual calculation.

The impression that natural transformations themselves are forgotten in this definition
is deceptive. In fact, in this context naturality itself turns out to be a cohomological
condition:

4.2. PROPOSITION. A natural transformation from F to G is a 0-cocycle in C*(F,G),
or equivalently a 0-dimensional cohomology class.

Proor. Observe that

COF,G)= [] Homy(k,B(F(z),G(x))).
z€0b(A)
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(In the sources, one has an empty tensor products of hom-spaces in A, since there is no
“next” element object, while in the target one has the hom-space from the image of the
first object under F' to the last, here the same object, under G.)

Thus a 0-cochain is an assignment of an arrow ¢, : F'(r) — G(x) for each object = of

A.

The cocycle condition then is

0=238(0)(f : o — 71) = F(f)ba; — 0, G(f),

that is, the naturality of ¢. Since C~1(F, G) = 0, the 0-cohomology classes and 0-cocycles
can be identified. B

We will also be interested in the subcomplex of normalized Hochschild cochains—those
which vanish whenever one of the arguments is an identity arrow. We denote this sub-
complex by C*(F, G).

Theorem 3.4 has a cohomological analog:

4.3. THEOREM. The normalized Hochschild complex C*(F,G) is a chain deformation
retract of the Hochschild complex C*(F,G).

PROOF. The result follows from the same trick used in [12].

Call a cochain ¢ i-normalized if ¢(fo, ..., fu—1) is zero whenever f; is an identity arrow
for any j <1.

The i-normalized cochains from a subcomplex C?(F,G) of C*(F,G), and satisfy

Cin(F,G) C C(F,G),
and
N2,CH(F,G) =C*(F,G).
For k > 0, define maps s* : C*(F,G) — C"1(F,G) by

i (o0 ifk>n
SOV (f1y- - 1) = { A fry o oo Licpys frosts oo oo fam1) ik <m

Let h*(¢) := ¢ — 3(s*(¢) — s*(d(¢)).

Then h° and the inclusion iy : C}(F, G) — C*(F, G) form a chain deformation retraction
of the whole complex onto the subcomplex, with s as the homotopy from iyh° to the
identity of C*(F,G). And, h* and the inclusion of iy, : C;_,(F, G) — Cp(F,G) form a chain
deformation retraction, with s* as the homotopy from i,h* to the identity of C;_,(F, G).

Note that h* is the identity map on C*(F,G) for n < k. Thus, the formal infinite
composition A = h°R'A?... is finite in each dimension, and gives a chain deformation
retraction of C*(F,G) onto C*(F,G), with s® + h%s! + h°hls? 4 ... as the homotopy from
ih to the identity of C*(F, @), where i is the inclusion of the subcomplex of normalized
cochains. W

We also make
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4.4. DEFINITION. The Hochschild complex of a functor F' is
(C*(F),0) == (C*(F,F),0).
The Hochschild complex of a k-linear category C is
(C*(C),0) == (C*(Ide, Idc),0).

The subcomplexes of normalized cochains C*(F) and C*(C) are defined in the obvious
way.

Observe that this definition agrees with that given in [1] and in the special case of
algebras with that given in [7, 8.

Not surprisingly, the Hochschild complexes admit a rich algebraic structure general-
izing that discovered by Gerstenhaber [7, 8] on the Hochschild complex of an associative
algebra (cf. also [10]).

First, given three parallel functors F,G, H : A — B, there is a cup-product, or more
properly a cup-product-like 2-dimensional (in the sense of bicategory theory) composition,

U:C"F,G)®C™(G,H) — C™™(F, H) given by

Second, given functors G,H : B — C and Fy,..., F, : A — B, there is a brace-like
1-dimensional composition (cf. [10])
—{—,...,—}:
CK<G, H) X Ckl (FQ, Fl) ®X...Q0 Ck"<Fn_1, Fn) —
Otk (G(R), H(F,))

given by

OLbn, U (frs s f) =
Z(—1)6¢(F0<f1), ot (fraats - friak )s Fy(fry k1)
o Vo (flaits oo flotkn)s oo Wn(froits o o5 Joakn)s En(froarns1)s - -5 Fn(fn))

where N = K +k; + ...k, —n and in each term e = Y ", (k; — 1)I;, where [; is the total
number of inputs occurring before v;, and the outer sum ranges over all insertions of the
1;’s, in the given order, with any number, including zero, of the arguments preceding
(resp. between 1; and 1,1, following 1) with Fy (resp. F;, F,,) applied, and a total of
N arguments, including both those inside and outside of the ;’s.

In what follows, we will have call to consider a special instance of the brace-like 1-
composition: given a pair of parallel functors F,G : A — B, there is a map (of graded

vector spaces, though not of cochain complexes)

—{-}:C*"(B) @ C°(F,G) — C*(F,G)
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The brace-like 1-composition and cup-product-like 2-composition satisfy the identities
given in Gerstenhaber and Voronov [10] whenever sources and targets are in agreement
so that both sides of the equation are defined. Also note that if n > K ¢{t¢,...¢,} =0,
since the outer sum in the definition is empty.

Of course, in the many objects setting, it is not in general possible to reverse the order
of z{y}, except in special cases, nor to add the two orderings, without yet more conditions.
The most general case in which the usual construction gives rise to a differential graded Lie
algebra structure on C*(F,G) is that where both F' and G are idempotent endofunctors
on some category. This includes, of course, the special case C*(Idc, Ide) = C*(C).

The circumstance for typical pairs of parallel functors, however, suggests that the
view that deformation theory is governed by a differential graded Lie algebra ought to
be generalized to regard the brace algebra structure as more fundamental. In view of
this observation, we will consider analogs of the Maurer-Cartan equation for functors
and natural transformations expressed in terms of the brace-like composition rather than
seeking a formulation in terms of a dg-Lie algebra or L*-algebra structure.

There are also a number of rather obvious cochain maps between these complexes
induced by the usual 2-categorical operations:

4.5. PROPOSITION. If F;G : C — D, and H : D — & are functors, then there is a
cochain map H.(—) : C*(F,G) — C*(H(F), H(G)) given by

Ho(@)(frs- oy fn) = H(O(fr, - fn)).

Similarly if ' : C — D and G,H : D — & are functors, there is a cochain map
F*(=)=—(F*): C*(G,H) — C*(G(F),H(F)) given by

F*(¢)(f1>afn) = ¢(F.)(f1>---afn> = ¢(F<f1>7’F(fn)>

ProOOF. When it is remembered that all functors are linear, and that the analog of the
left and right actions on the bimodule of coefficients involve the source and target functors
of the pair, both statements follow by trivial calculations. ®

Both of these cochain maps can be expressed in terms of the brace-like 1-composition:
for any functor K : X — ) the action of K on the hom vectorspaces gives a family of
linear maps X (z,y) — V(K (x), K(y)), defining a 1-cochain K € C'(K, K).

We then have

H.(¢) = H{¢}

and
F*(¢) = ¢{F,... F}.

Notice in the special case where C = D and F = G = Id¢, H, defines a cochain map
H,:C*(C) — C*(H), while in the case where D = £ and G = H = Idp, F* defines a
cochain map F* : C*(D) — C*(F).



38 D. N. YETTER

Of particular interest is the cochain map
F*(p2) — Fu(p1) : C*(C) ® C*(D) — C*(F)

the cone over which will occur in the classification of deformations of functors.
Equally trivial is the proof of

4.6. PROPOSITION. If 7 : Fy = Fy is a natural transformation, then post- (resp.
pre-) composition by T induces a cochain map 7 : C*(Fy,G) — C*(Fy,G) (resp. T, :
C*(G, F1) — C*(G, Fy) for any functor G.

These cochain maps can be expressed in terms of the cup-product-like 2-composition:

(@) =TUS

and

Te(®) = U T.

These cochain maps, however, are less important than one induced by a natural trans-
formation o : F' = G from the cone over the map

F, —F~
G, —G*

} :C*(A) e C*(B) — C*(F) & C*(G).
to C*(F, G).
Let C*(A g} B) denote this cone, so the cochain groups are

F
C*(AGB)=C"" A aC™(B)aoC*(F)oC*(G)
with coboundary operators given by

—dy 0 0 0
B 0 —dg 0 0
A6~ | =F. F* dp 0
~G, G 0 dg

d

We then have:

4.7. PROPOSITION. Let 0 : F' = G be a natural transformation, then

ot =[0 (2){o} 0. 0*]:C(AG B) — C*(F,G)

18 a cochain map.

PROOF. Recall that a natural transformation is a 0-cocycle in C*(F, G), and thus we can
use the brace-like 1-composition to define the second entry.
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Using subscripts to distinguish between the various coboundaries, we then have

¢
dra [ ot | | V]| | = dretwfod) +dralo.w) — dra(o* ()
and
¢
otldm || V1] = —ds)o) - o(Fa(o) + o @)

+0.(dp(v) +07(G.(9)) — o7 (G*(¥)) — 07 (da(w),

which we must show are equal.

The terms involving ¢ in the second expression cancel by the naturality of o, while
the terms involving v (resp. w) in the two expressions are equal since o, (resp. o) is a
cochain map. It thus remains only to show that the terms involving 1 agree.

Expanding dg(¥){c}(f, g) for X Ly %z gives

oxp(G(f),G(g) — ¥(oxG(f), G(9)) + Ylox, G(fg)) — Y(ox, G(f))G(9)

—F(f)dloy, G(9)) + ¥ (F(floy, G(g)) — v(F(f),ov(G(9)) + v (F(f), ov)G(g)
+E(N)(F(9),02) = (F(f9),02) + Y(F(f), F9)oz) — ¥ (F(f), F(g))oz

The terms in which one of the arguments of ¥ consists of an instance of o composed with
another map (in either order) cancel in pairs by the naturality of o. The first and last
term are o*(G*(¢))(f,g) and —o.(F*(v))(f, g) respectively. The remaining terms are
easily seen to be —dr(¢¥{c})(f,g), yielding the desired result. ®

Because of its importance to the deformation theory of natural transformations, we
will denote the cone on i by €*(0), likewise we will denote the cone on F*(ps) — Fi(p1)
by ¢*(F), and for completeness, we will let ¢*(C) be another notation for the Hocschild
complex of C.

More explicitly,

(o) =C"A) e C**B)a CTHF) e C*TH(G) ® C*(F,G)

with coboundary operators given by

da 0 0 0
0 dg 0 0
0, = | Fi - —drp 0

0 oo o O

G. —-G* 0 —dg
0
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While
¢e*(F) = C'+1(A) & C’“(B) @ C*(F)

with coboundary operators given by

—dyq 0 0
o = 0 —dB 0
F, —F* dp

We will refer to ¢*(o) (resp. €*(F'), ¢*(C)) as the deformation complex of the natural
transformation (resp. functor, category), and denote its cohomology groups by §°(o)
(resp. £°(F), 5°(C)).

It is the purpose of the next section to justify these names by showing that first
order deformations are classified up to equivalence by the expected cohomology group,
and that the obstructions to extending a deformation to higher order all lie in the next
cohomological dimension.

Finally, we introduce a deformation complex for a 3-cell 1, : ¢ =o. It might seem
reasonable to have this simply be ¢*(0) again. However, for reasons which will become
clear once begin considering pasting diagrams in general, it will be better to use a weakly
equivalent complex:

First let ¢*(o) denote the cone on

i(o1) +is(0t) : C*(A G B) — C*(F,G) & C*(F.Q),

Then ¢*(1,) is the cone on

Ps — Pe - 53'(‘7) =
O'+2(.A) @ C’+2(B) &5 C'“(G) & C'“(F) @ C'(F,G)dC*(F,G)
— C*(F, Q).

Observe that this is plainly weakly equivalent to ¢*(o).

5. First order deformations without pasting and cohomology

Let us begin by considering the first order case of the equational conditions defining 1-
parameter deformations. For categories and functors, we obtain the obvious generalization
of the results of Gerstenhaber and Schack [9] to the many-objects case:

For categories, equations 1-5 become

u Vf9) = fg (16)
pO(Lypy, f) = (17)
(L) = (18)

(a,b)c + P (ab,e) = ap®(b,c) + Y (a,be) (19)
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Equation 19, as expected, says that u") is a Hochschild 2-cocycle, while equations 17
and 18 require it to be normalized in the obvious sense.
The equations defining an equivalence of such deformations, 6-8 become

oO(f) = f (20)
dW(1,) = 0 forall z € Ob(C) (21)
W (fg) + oW (fg) = u$(f.g9) + @D (f)g + fol(g) (22)

That is, two first order deformations defined by ugl) and ugl) are equivalent exactly
when the ,ugl)’s are cohomologous.
So we establish the folk theorem generalizing the classical result of Gerstenhaber:

5.1. THEOREM. The first order deformations of a k-linear category C are classified up
to equivalence by $%(C), the second Hochschild cohomology of the category.

Similarly, equations 9-11 become

FO = F (23)
FU(1,) = 0 forall z € Ob(C) (24)

F(uV(f,9)) + FO(fg) =
vI(F(f), F(g)) + FO(f)F(g) + F())FW(g) (25)

Again, as expected, in the case where the deformations of the source and target cat-
egories are both trivial (ie. u) = 0 and vV = 0), equation 25 says that F) is a
Hochschild 1-cocycle, while in the general case it cobounds F,(uM) — F*(v™M). Or, put
another way, (™, v FM) are a 1-cocycle in the cone on F*(p2) — Fu(p1)-

Weak equivalence between two first order deformations (CA“ D;, Fl), 1=1,2,of F:C —
D, then consists of equivalences of first order deformations of categories I' = Ide + I'(Ve
from C; to Cs, and A = Idp+AWe from Dy to Ds, together with ¢ given by ¢, = 1, —i—gb;(pl)
satisfying

ADE)) +FOf) + F(Hgl = ¢DF(f) + EBV(f) + FOOf)  (26)

forall f:2x—ye Arr(C).

It is easy to see in the case of a strong equivalence, where A® and T'™ are both
zero, that this says ¢ cobounds the difference of Fl(l) and FQ(I). Recalling a result from
Gerstenhaber and Schack [9] makes it obvious what is happening in the general case:
(T, A® | M) cobounds the difference (5, 8", FSY) — (1Y, v, FYY in the cone on
F*(p2) — Fi(p1). So we have
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5.2. THEOREM. The first order deformations of a k-linear functor F : C — D are
classified up to weak equivalence by the first cohomology $*(F) of the deformation complex
of F.

Again this is the obvious generalization of the classical result for algebras (or rather
algebra homomorphisms).

For deformations ((f,f),ﬁ’ ,G’,&) of a natural transformation o : ' = G , for F,G :
C — D, equation 14 becomes

vW(F(f),0,) + FO(flo, + F(f)oy) =
v (o0, G(f) + oG (f) + 0GPV (f) (27)

Here the cohomological interpretation of this equation is not so clear. However, once
the somewhat baroque definition of the cochain map oi is recalled, it is easy to see
that this equation is the additional requirement on the fifth coordinate to ensure that
(p®, 0, FO GO 1)) be a 0-cocycle in the cone on o7f.

Similarly, equation 15 reduces to

ngcl)ax + Uéi) = Ufcw:(cl) + Uﬁ) (28)

This is the condition on the C°(F, G) coordinate for (I'V), AM ™) 41 0) to cobound

the difference of the (ugl), l/Z-(l), Ggl), Fi(l), 01(1)) (1 = 1,2). The other conditions requiring

the other coordinates to give equivalences of the deformations source and target functors
and categories give the remaining conditions, so we have

5.3. THEOREM. The first order deformations of o : F — G are classified up to weak
equivalence by the zeroth cohomology $°(c) of the deformation complex of o.

6. Higher order deformations and obstructions without pasting

Equations 5, 11, and 14 are the crucial defining conditions on deformations of categories,
functors and natural transformations, respectively. The other equations are either nor-
malization conditions to ensure correct behavior on identity arrows, conditions on the
zeroth order term to ensure reduction to what is being deformed, or conditions inherited
from the deformation of a source or target.

In each case, we can solve the equation of index n to separate the terms involving
coefficients of index n from the other terms.

Equation 5 gives

S 1O u9(b,¢) — 1 (P (a,0), 0

i+j=n 0<i,j<n
= ap™(b,c) — pt(ab, c) + p" (a, be) — p (a, b)c (29)
= 5™ (a,b,c) (30)
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As expected, the left-hand side is the same formula as Gerstenhaber’s obstructions
for the deformation theory of associative algebras, and the condition that the next term
satisfies is that it cobounds the obstruction. Letting (¢) be the maximal ideal of k[e]/(e™)
or k[[¢]] and ® denote ®j, or its (e)-adic completion, as appropriate, these conditions for
all n can be neatly packaged into the single condition that

=Y u0éecro)@

satisfies the Maurer-Cartan equation

5(1) = 574,

where the (graded) Lie bracket is the obvious generalization of that given for algebras
by Gerstenhaber, and ¢ is the extension of the coboundary operator by linearity (and
continuity), or equivalently the equation

5(71) = {7}

The presence of sources and targets is no impediment to the same proof as in [7] that
each obstruction is always a 3-cocycle.
Similarly solving equation 11 to separate index n terms gives

ST FOWI(f,g)) - > v (FO(f), FI™(g))

i+j=n,0<i,5<n k+l+m=n0<k,l,m<n
= F(f)F™(g) — F™(fg)+ F"(f)F(g)
— F(u™(f,9) + v"™(F(f), F(g)) (31)

The right-hand side, is, of course, the C?(F) summand of §(u™, ™ FM™)(f g) in
¢%(F).

Letting fi be defined as above, and 7 analogously, with ' := Y F¢' € CY(F) ® (e),
allows us collect all of the equations into the condition

O(F, i, v) = (F{p} — o{F} = FF — v{F, F}, p{z}, v{7}),

where

O(F, i, v) = (0(F) + F(p) — v(F, F),0(1), (7))

since we are in the cone on F*(py) — Fi(p1). Notice that since, p{n} = i[a, 7], and
similarly for 7, the last two coordinates are simple restating the Maurer-Cartan equation
for the deformation of the source and target categories.

Finally, solving equation 14 to separate index n terms gives
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Z vO(FU (), gl(/k)) — V(i)(gg(cj)’ G® ()

i+j+k=n0<ij,7<n
= v"(0,G(f)) — v"(F(f),0)
+o MG (f) = F(f)e™ + oG (f) = F™(f)o (32)

Here it is easy to verify that the right-hand side is the C'(F, G) summand of
S,y FO) G ()

in ¢!(0).

Again all instances of this equation can be collected into a single equation relating the
differential and the cup-like and brace-like compositions: letting fi, 7, and F' be as above,
and G be defined similarly, and letting & = ¢(¢’, this equation becomes

ps(6(a, F,G, ji,v)) = 6(6) — v{F,o} — v{o,G} — v{o} + F6 — G — v{F,c} — v{5,G}

The conditions on the other coordinates are those given previously.

Equations 29, 31 and 32, then identify the obstructions to extending an n — 1% order
deformation to an n'* order deformation of a category, functor or natural transformation,
respectively.

As expected, we have

6.1. THEOREM. The obstruction
= > a1 (b,0) = () (a,b), )

i+j=n 0<i,j<n

(resp.

wi = (Wi, Wp, Up)

where the first and second coordinates are obstructions to deforming the categories A and
B respectively, and

vh= Y FOO(f,g9)) - > v (FO(f), FI™(g)),

i+j=n,0<i,j<n k+l+m=n0<k,l,;m<n

n._ n n n n n
Wi = (W, Wi, Uk, UG, UL

o e}

where the first four coordinates are as described above and

=Y OEO()0) ~ 6.6 () )

i+j+k=n0<i,j5,7<n
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is closed in €*(A) (resp. ¢*(F), ¢*(0)).

PRrROOF. The statements concerning the obstructions in the case of categories (resp.
functors) follows by the same proof given by Gerstenhaber [7, 8] in the case of algebras
(resp. Gerstenhaber and Schack [9] in the case of algebra homomorphisms), as does the
vanishing of all but the last coordinate in §(w?).
It thus remains only to show that the last coordinate of §(w'y, w, Wi, Wi, wl) vanishes.
The coboundary is

Spa(vy) — > Vo) -

i+j=n
S GO (L)~ Y vIGI(),GP(g)) | +
i+j=n i+j+k=n
Y FOWUO(fg) - > V(“(F(j)(f%F('“)(g))] o,
i+j=n i+j+k=n

The key to the straightforward but tedious calculation which shows this vanishes is to
immediately rewrite ), i=n GO (uY)(f, g)) using equation 14 (or equivalently 32), cancel
the terms involving F’s with those already in the original expression, then rewrite the
terms still involving ©¥)’s using equation 11 (or 31).

Using equations 29, 31, and 32 the number of terms can be steadily reduced (though
at four points in the calculation as carried out by the author, 32 must be used to replace
three sums by three others). At two points the naturality of o must be used. B

The reader intent on recovering the complete calculation for him- or herself is advised
to first carry out the case of n = 2, where equations 29, 31, and 32 are simply cocycle
conditions. W

7. Deformations induced by single compositions

Since deformations of categories, functors and natural transformations are themselves
categories, functors and natural transformations, it is clear that the usual operations in
the 2-category k[[e]] — cat or k[e]/{€*) — cat induce operations on the deformations, and
in particular, that deformations of the parts of a composable pasting diagram induce a
deformation of its pasting composition.

Relatively trivial calculations establish formulas for the induced deformation in the
case of individual compositions:

7.1.  PROPOSITION. If A LEBECisa composition of k-linear functors with composite
A4 — C and A, B,C,F, and G are deformations of its parts, with F = S FO¢ and
G =Y. GW¢ | then
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— Z G(j)(F(k)

k=i
are the terms of a deformation of ®, called the induced deformation of .

7.2. PROPOSITION. If F' : A — B is a k-linear functor, and o : G = H is a natural
transformation between k-linear functors G H B — C, and ASB C.F,G,H, and & are
deformations of its parts, with 6x = ZO’X €, then 7 = ZO'F j€'is a deformatzon of

T = o as a natural transformation from the mduced deformatzon of G(F) to the induced
deformation of H(F).

7.3. PRrRoprosITION. If F,G : A — B are k-linear functors, and o : F = G is a natural
transformation between them, and H : B — C is a k- lznear Junctor and A, B C.F,G, H,
and ¢ are deformations of its parts, with ox = Za )i ,and F = S FO¢ | then 7 =

S @€ given by

— Z H(j)(a(k’)

Jk=i

is a deformation of H(o) as a natural transformation from the induced deformation of
H(F) to the induced deformation of H(G).

Finally, we have

7.4. PROPOSITION. If F,G,H : A — B are k-linear functors, and o : F' = G and
7 : G = H are natural transformations with composite ¢ : F = G, and A, B, F,G,H, &,
and T are deformations of the parts, then

60 = 3 W (W) 0

ktj+1=i
defines a deformation of the composite ¢.

Observe that in each proposition, the terms of the induced deformation can be ex-
pressed in terms of the brace-like 1-composition, being GU{F®} ¢O{F} FO{s®}
and v® {5 701 respectively.

It follows from Power’s Pasting Theorem that deformations of all parts of a composable
pasting diagram induce a deformation of the composite.

8. The cohomology of k-linear pasting diagrams

What remains now is to fit the parts introduced thus far together. To do this we must
return to the description of a pasting diagram.

First, we should note that not just the image of the diagram, the categories, functors
and natural transformations involved, but the ‘shape’ of the diagram will matter a great
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deal: even if the labeling of the pasting scheme includes coincidences, the different copies
of the same category, functor, or natural transformation may be deformed independently.
Thus, for instance, in the diagram

a deformation will involve two, not necessarily equal, deformations of the category A, and
two, not necessarily equal, deformations of the functor F'.

If we were interested, instead, in a deformation of the endofunctor F', as an endofunc-
tor, that is a single deformation of A, and a deformation of F' in which both source and
target are deformed by this deformation, we would, instead be studying the deformations
of the diagram

F

A

In light of this discussion, it should be clear that the relevant cochain complex for the
deformation of an entire pasting diagram will arise by iterated mapping cone constructions
from cochain complexes associated to the labels of the various cells of the diagram.

In particular, the groups of cochains for a diagram

D : G — 3 — computad(k — Cat),

are given by

(D) = P C (D)o @ C (D) @

UEG() ecG1

P C**' (dom(D(f)), cod(D(f)) ®

feG2

@ C*(dom(cod(D(s))), cod(cod(D(s))))

s€G3

Here, of course each D(v) is a linear category, each D(e) is a functor, as are cod(D(f)),
dom(D(f)), cod(cod(D(s))) = cod(dom(D(s))), and dom(cod(D(s))) = dom(dom(D(s))),
these last four being the composition of the D(e)’s along the codomain of a 2-arrow (resp.
the domain of a 2-arrow, the common codomain of the domain and codomain of a 3-cell,



48 D. N. YETTER

and the common domain of the domain and codomain of a 3-cell). (Recall 3-cells have
composable pasting diagrams as domain and codomain, and merely assert the equality of
the composites.)

Notice here we are abusing notation somewhat by not explicitly applying comp(—) to
the domains and codomains of 2- and twice iterated domains and codomains of 3-cells,
which properly are composable 1-pasting schemes. This should cause no confusion, as the
Hochschild complexes are only defined for pairs of parallel 1-arrows, not for composable
1-pasting schemes. We retain this convention throughout what follows.

The tricky thing is to succinctly describe the coboundary maps. The dimension shifts
hint at the construction: the coboundary maps will arise from an iterated mapping cone
construction.

First we need

8.1. PROPOSITION. If D is a composable 1-pasting diagram, and F' is a 1-arrow therein,
then the pre- and post-composition cochain maps of Proposition 4.5 induce a unique
cochain map

pp : C*(F) — C*(comp(D)),

where comp(D) denotes the composition of the arrows in D.

Stmilarly if D is a 1-pasting diagram which is the union of two composable 1-pasting
diagrams Dp and D¢, which are identical except for the label on one element of the
underlying G, which is F' and G respectively, then the pre- and post-composition cochain
maps of Proposition 4.5 induce a unique cochain map

ohC : C*(F.G) — C*(comp(Dy), comp(D)).

ProoF. The map is constructed simply by iterated application of the cochain maps of
Proposition 4.5. It is unique by associativity of 1-composition. B

Similarly, with the quite non-trivial proof of uniqueness in Power’s Pasting Theorem
[14] replacing the rather trivial proof that associativity implies uniqueness of iterated
compositions, we have

8.2. PROPOSITION. If D is a composable 2-pasting diagram, and o is a 2-arrow therein,
the pre- and post-composition cochain maps of Propositions 4.5 and 4.6 induce a unique
cochain map

0%« C*(comp(dom(o)), comp(cod(oa))) — C*(comp(dom(D)), comp(cod(D)))

Armed with these results, we can now proceed to construct the coboundaries:
First, observe that there is a cochain map

K1 = Z Le(D(e)*(pcod(e))> - Z Le(D(e)*<pdom(e)>> :

eeGy e€G1

P (D) — P C*(D(e)).

veGH ecGy
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The components of this map, are, of course, the cochain maps arising in the con-
struction of ¢*(D(e)) as in Section 5, and the fact that it is a cochain map follows from
this.

The cone on this map, which we denote ¢}(D) has cochain groups

P (D) @ E C*(D(e))

veGyH ecGy

This construction is simply a replication for each 1-cell of the pasting diagram of that
given in Section 5. 1-cocycles in €}(D) classify simultaneous deformation of all objects
and functors in the diagram (recalling our earlier warning that occurrences of a functor
or category at a different place in the diagram may be deformed differently.

For 2-cells, we cannot simply replicate the earlier construction, because in general the
source and target are composable 1-pasting diagrams, rather than 1-cells. We therefore
proceed in two steps, the second of which corresponds to replicating the construction in
Section 5, while the first involves the maps ph.

We then have

8.3. PROPOSITION. For any pasting diagram G,

o= dlp)+ Y. ialppape) : €h(D) —

vEGo ecA€diagi (G)
Petpwye @ Clcomp(D(A))),
vEGy A€ediagi (G)

is a cochain map, where diag,(G) denotes the set of composable 1-pasting diagrams in
G. It assigns to a 1-cocycle in ¢}(D) which names a deformation of all categories and
functors in the diagram, a I1-cocycle in the target complexr whose A summand gives the
deformations of the domain and codomain categories of D(A) and the deformation of the
comp(D(A)) induce by the deformations of the composed functors.

ProoFr. That the first two coordinates of each summand behave correctly is immediate.
That the third coordinate in each summand behaves correctly follows from the fact that
the maps of Proposition 8.1 are cochain maps, and easily verified the cancellation of terms
involving images of cochains associated to an intermediate category in the composable
pasting diagram A. &

And by replicating the construction of Section 5, there is a cochain map

R = Y io(D(0) % () :

Dorowye P Clomp(DR))) —
vEGo Acdiag: (G)

@ C'(dOm(D(0>>>7 COd(D(O’)))),

oce€Ga
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where 7, is the projection from the source onto its summands constituting

dom(D(a))
C*(dom(cod(D(0))) cod(D(c)) cod(cod(D()))).

The cone on the composite r2(gp), which we denote €3(D) then has cochain groups
P D) e P (Dle) & P C*(dom(D(f)), cod(D(f)):
vEGH ecG1 feGa

We now need one last cone construction to allow the presence of 3-cells in a pasting
diagram to enforce equality between its source and target:
Define a cochain map

e D R (13 ) D N A (kN (1) E

ceG3, fecod(c) ceG3, fedom(c)
¢3(D) — @ C*(dom(cod(D(s))), cod(cod(D(s)))).
ceG3

The cone on this map is then the desired cochain complex, which we denote ¢*(D),
and call the deformation complex of the pasting scheme D.

Observe that it is this last step that obliged us to define ¢*(1,) to be a cone on
the difference of two projections, rather than simply €*(o): in the context of a pasting
scheme, the source and target of a 3-cell are, in general, pasting compositions of natu-
ral transformations, which must each be deformed. The only convenient artifice within
the cohomological framework for enforcing equality of the induced deformations on the
two sides of a 3-cell is to combine the maps ©f, of Proposition 8.2 with the last cone
construction of Section 4.

We then have

8.4. THEOREM. First order deformations of the pasting diagram D are classified up to
equivalence by (D), the negative-first cohomology of the deformation complex ¢*(D).

and

8.5. THEOREM. Given an n — 1% -order deformation of a pasting diagram D, there is a
cocycle in ¢°(D), each direct summand of which is given by the formula for the obstruction
to deforming the label on the cell of the computad indexing the direct summand given in
Theorem 6.1. This cocycle is the obstruction to extending the deformation to an n'* order
deformation, and if it vanishes in cohomology, any 0-cochain cobounding it gives the degree
n term of an n'* order deformation extending the given deformation.

Notice that the somewhat strange cohomological dimensions are correct: the cohomo-
logical dimension in the cone corresponds to the cohomological dimension in the groups
associated to the 3-cells of the 3-computad, so the —1-cocycles in the cone have coordi-
nates which are a —1-cochain for each 3-cell (necessarily 0, indicating equality between
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its source and target), and, as expected, a 0-cochain for each 2-cell, a 1-cochain on each
1-cell, and a 2-cochain on each 0-cell, collectively satisfying the cocycle condition for the
iterated mapping cone.

Proors: Both results would follow immediately from Theorems 5.1, 5.2, 5.3 and 6.1
and Propositions 7.1 through 7.4, (albeit with the cohomological dimension shifted up
1) were it not for the presence of 3-cells indicating commutative parts of the pasting
diagram. However, the presence of 3-cells, their own labels being undeformable, enforces
the equality of the induced deformations on their source and target, since a 0-cocycle (in
this case the difference between either the induced first-order deformations of the source
and target, or the difference of the cocycles induced by the obstruction on each face of
the source and target is trivial in cohomology if and only if it is zero, there being only
the zero -1-cochain to cobound it. m

9. Prospects

As regards the first motivation for this paper: in work in progress, a doctoral student
under the author is attempting the construction of a cohomology theory governing the
simultaneous deformation of the composition, arrow-part of the monoidal product, and
structure maps of a monoidal category. It appears that the deformations are governed
by the total complex of a 'multicomplex’—a bigraded object which ’looks like a spectral
sequence with all the pages smashed together’. The theory of the present paper gives the
(0,1)-differentials in one direction, while the (1,0)-differentials are given by the differentials
of [18, 19].

As regards the second motivation: it is easy to see that k-linear stacks are a special
case of pasting diagrams, indeed, k-linear pre-stacks are more or less the same thing as k-
linear pasting diagrams. It is clear that deformation of a pre-stack (as a pasting diagram)
cannot create new descent data, since any descent data in an order n deformation must be
descent data at all lower orders, as quotienting by powers of € will preserve commutativity.
On the other hand, in general deformation can destroy commutativity, and thus descent
data. It appears natural conjecture that any effective descent data which is not destroyed
by a given deformation remains effective in the deformation.

The author plans to prove this conjecture in subsequent work.
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