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A BRIEF REVIEW OF ABELIAN CATEGORIFICATIONS

MIKHAIL KHOVANOV, VOLODYMYR MAZORCHUK
CATHARINA STROPPEL

Abstract. This article contains a review of categorifications of semisimple represen-
tations of various rings via abelian categories and exact endofunctors on them. A simple
definition of an abelian categorification is presented and illustrated with several exam-
ples, including categorifications of various representations of the symmetric group and
its Hecke algebra via highest weight categories of modules over the Lie algebra sln. The
review is intended to give non-experts in representation theory who are familiar with
the topological aspects of categorification (lifting quantum link invariants to homology
theories) an idea for the sort of categories that appear when link homology is extended
to tangles.

1. Introduction

The idea of categorification goes back to Crane and Frenkel [28] and became more and
more popular in recent years. In the present review we want to give an idea what abelian
categorifications should be and present some examples naturally arising in representation
theory. We give references to related categorifications arising in knot theory as well as in
symplectic geometry.

In the following we will give a definition of abelian categorifications. To get a feeling for
this concept it might be useful to view it as an ”inverse process” of decategorification. Here
by decategorification we mean passing from an abelian category C to its (complexified)
Grothendieck group, i.e., the complex vector space generated by the isomorphism classes of
objects of C, modulo short exact sequences. Decategorification forgets enormous amount
of structure, in particular, it does not directly remember about morphisms in the category.

Categorification starts with a vector space M and tries to find an (interesting) abelian
category C with decategorification M . Assuming that M is in addition a module or an
algebra, one would also like to lift this extra structure. The idea of categorification is
not completely new in the context of representation theory, but the focus changed in
recent years from trying to understand the combinatorics, decomposition numbers and
multiplicities of representations, to the opposite—given certain combinatorics one would
like to enrich the structure by categorification. This idea was, for instance, successfully
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applied to constructing functorial link and knot invariants which on the one hand side
categorify well-known invariants (such as the Jones-polynomial) ([5], [45], [47], [81], [82])
and on the other side extend to invariants of cobordisms. At this point it becomes clear
that one should pass from abelian categories to 2-categories. An axiomatic definition of
such a categorification is not yet available, but this review can be viewed as a modest
naive step in this direction.

We start by giving the definition of a weak abelian categorification, then proceed
with several well-known examples of weak abelian categorifications of modules over the
symmetric group and Lie algebras. In Section 2 we give detailed explicit constructions of
irreducible representations of the symmetric group. The last section indicates relations
to knot theory and combinatorial representation theory.

Chuang and Rouquier, in the recent work [27], introduced the notion of a strong sl2
categorification which is the data of an abelian category together with endofunctors E
and F (corresponding to the usual Chevalley generators of sl2), and elements X and T in
the ring of natural transformations of E respectively E2 with certain compatibility condi-
tions. Using this machinery of strong sl2-categorification they proved the so-called Broué
conjecture for the representation theory of the symmetric group in positive characteristic:
two blocks with the same defect are derived equivalent.

Our list of examples of abelian categorifications is very far from complete. Many
great results in the geometric representation theory can be interpreted as categorifica-
tions via abelian or triangulated categories. This includes the early foundational work of
Beilinson-Bernstein and Brylinsky-Kashiwara on localization [6], [19], [67], the work of
Kazhdan and Lusztig on geometric realization of representations of affine Hecke algebras
[43], [26], Lusztig’s geometric construction of the Borel subalgebras of quantum groups
[60], Nakajima’s realization of irreducible Kac-Moody algebra representations as middle
cohomology groups of quiver varieties [68], and various constructions related to Hilbert
schemes of surfaces [32], [69], quantum groups at roots of unity [4], geometric Langlands
correspondence [30], etc.

Since the first version of the paper appeared, a significant further progress has been
made in developing the notion of categorification, especially for categorifications of Lie
algebra and quantum groups representations in [17], [20]-[22], [54]-[56], [58], [73] and other
papers.

2. A simple framework for categorification

Categorification. The Grothendieck group K(B) of an abelian category B has as gen-
erators the symbols [M ], where M runs over all the objects of B, and defining relations
[M2] = [M1] + [M3], whenever there is a short exact sequence

0 −→ M1 −→ M2 −→ M3 −→ 0.

An exact functor F between abelian categories induces a homomorphism [F ] between
their Grothendieck groups.
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Let A be a ring which is free as an abelian group, and a = {ai}i∈I a basis of A such
that the multiplication has nonnegative integer coefficients in this basis:

aiaj =
∑

k

ck
ijak, ck

ij ∈ Z≥0. (1)

Let B be a (left) A-module.

2.1. Definition. A (weak) abelian categorification of (A, a, B) consists of an abelian
category B, an isomorphism ϕ : K(B)

∼−→ B and exact endofunctors Fi : B −→ B such
that the following holds:

(C-I) The functor Fi lifts the action of ai on the module B, i.e. the action of [Fi] on
the Grothendieck group of B corresponds to the action of ai on the module B so
that the diagram below is commutative.

K(B)
[Fi]−−−→ K(B)

ϕ

y
yϕ

B
ai−−−→ B

(C-II) There are isomorphisms

FiFj
∼= ⊕

k
F

ck
ij

k ,

i.e., the composition FiFj decomposes as the direct sum of functors Fk with mul-
tiplicities ck

ij as in (1).

The word weak refers here to the absence of any compatibility constraints on the
isomorphisms appearing in (C-II). A stronger version of categorification keeping track of
this extra information has to use the notion of 2-categories and is only available so far for
special cases (se e.g. [71] for such an example).

If there is a categorification as above we say the action of the functors Fi on the cate-
gory B categorifies the A-module B.

In all our examples, the objects of B will have finite length (finite Jordan-Hölder series).
Consequently, if {Lj}j∈J is a collection of simple objects of B, one for each isomorphism
class, the Grothendieck group K(B) is free abelian with basis elements [Lj]. The image
of any object M ∈ B in the Grothendieck group is

[M ] =
∑

j

mj(M)[Lj]

where mj(M) is the multiplicity of Lj in some (and hence in any) composition series of
M.
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The free group K(B) has therefore a distinguished basis [Lj]j∈J , and the action of [Fi]
in this basis has integer non-negative coefficients:

[Fi(Lj)] =
∑

dk
ij[Lk],

with dk
ij being the multiplicity mk(Fi(Lj)). Via the isomorphism ϕ we obtain a distin-

guished basis b = {bj}j∈J of B, and

aibj =
∑

dk
ijbk. (2)

Conversely, we could fix a basis b of B with a positivity constraint for the action of
A. as in (2). Then our definition of a categorification of (A, a, B) can be amended to
a similar definition of a categorification of (A, a, B,b), with the additional data being
the fixed basis b. Ideally the basis b corresponds then via the isomorphism ϕ to a basis
[Mj]j∈J for certain objects Mj ∈ B. Varying the choice of basis might give rise to an
interesting combinatorial interplay between several, maybe less prominent than [Lj]j∈J

but more interesting, families {Mj}j∈J of objects in B. Typical examples of such an
interplay can be found in [13], [31, Section 5].

Of course, any such data (A, a, B,b) admits a rather trivial categorification, via a
semisimple category B. Namely, choose a field k and denote by k−vect the category of
finite-dimensional k-vector spaces. Let

B =
⊕
j∈J

k−vect

be the direct sum of categories k−vect, one for each basis vector of B. The category B is
semisimple, with simple objects Lj enumerated by elements of J, and

HomB(Lj, Lk) =

{
k if j = k,
0 otherwise.

We identify K(B) with B by mapping [Lj] to bj The functors Fi are determined by their
action on simple objects, hence, given (2), we can define

Fi(Lj) = ⊕
k∈J

L
dk

ij

k

and obtain a categorification of (A, a, B,b). With few exceptions, semisimple categorifica-
tions bring little or no new structure into play, and we will ignore them. More interesting
instances of categorifications occur for non-semisimple categories B. Here is a sample list.

The Weyl algebra. 1 Let A1 be the first Weyl algebra (the algebra of polynomial
differential operators in one variable) with integer coefficients,

A1 = Z〈x, ∂〉/(∂x− x∂ − 1).
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One takes {xi∂j}i,j≥0 as the basis a of A1. The Z-lattice B ⊂ Q[x] with the basis b =
{xn

n!
}n≥0 is an A1-module.
To categorify this data we consider the category B = ⊕

n≥0
Rn−mod, i.e. the direct

sum of the categories of finite-dimensional modules over the nilCoxeter k-algebra Rn. The
latter has generators Y1, . . . , Yn−1 subject to relations

Y 2
i = 0,

YiYj = YjYi if |i− j| > 1,

YiYi+1Yi = Yi+1YiYi+1.

The algebra Rn has a unique, up to isomorphism, finite dimensional simple module Ln,
and K(Rn−mod) ∼= Z. The Grothendieck group K(B) is naturally isomorphic to the A1-
module B, via the isomorphism ϕ which maps [Ln] to xn

n!
. The endofunctors X,D in B that

lift the action of x and ∂ on B are the induction and restriction functors for the inclusion
of algebras Rn ⊂ Rn+1. Basis elements lift to functors X iDj, and the isomorphisms (C-II)
of definition 2.1 are induced by an isomorphism of functors DX ∼= XD ⊕ Id which lifts
the defining relation ∂x = x∂ + 1 in A1. A detailed analysis of this categorification can
be found in [46].

The symmetric group. 2. The regular representation of the group ring Z[Sn] of the
symmetric group Sn has a categorification via projective functors acting on a regular
block of the highest weight BGG category O from [12] for sln. (For an introduction to
the representation theory of semisimple Lie algebras we refer to [36]).

To define category O, start with the standard triangular decomposition sln = n+ ⊕
h⊕ n−, where the first and the last terms are the Lie algebras of strictly upper-triangular
(resp. lower-triangular) matrices, while h is the algebra of traceless diagonal matrices.
The highest weight category O of sln is the full subcategory of the category of finitely-
generated sln-modules consisting of h-diagonalize (possibly infinite dimensional) modules
on which U(n+) acts locally-nilpotently. Thus, any M ∈ O decomposes as

M = ⊕
λ∈h∗

Mλ,

where hx = λ(h)x for any h ∈ h and x ∈ Mλ. Here h∗ is the dual vector space of h, its
elements are called weights.

The one-dimensional modules Cλ = Cvλ over the positive Borel subalgebra b+ =
n+ ⊕ h are classified by elements λ of h∗. The subalgebra n+ acts trivially on vλ, while
hvλ = λ(h)vλ for h ∈ h.

The Verma module M(λ) is the sln-module induced from the b+-module Cλ,

M(λ) = U(sln)⊗U(b+) Cλ.

The Verma module M(λ) has a unique simple quotient, denoted L(λ), and any simple
object of O is isomorphic to L(λ) for some λ ∈ h∗.



484 MIKHAIL KHOVANOV, VOLODYMYR MAZORCHUK and CATHARINA STROPPEL

We call a weight λ positive integral if 〈λ, α〉 ∈ Z≥0 for any positive simple root α ∈ h∗.
The representation L(λ) is finite-dimensional if and only if λ is a positive integral weight.

Although most of the objects in O are infinite dimensional vector spaces, every object
M of O has finite length, i.e. there is an increasing filtration by subobjects 0 = M0 ⊂
M1 ⊂ · · · ⊂ Mm = M such that the subsequent quotients M i+1/M i are isomorphic to
simple objects, hence have the form L(λ) (where λ may vary). The Grothendieck group
of O is thus a free abelian group with generators [L(λ)] for λ ∈ h∗.

It turns out that O has enough projective objects: given M there exists a surjection
P ³ M with a projective P ∈ O. Moreover, isomorphism classes of indecomposable
projective objects are enumerated by elements of h∗. The indecomposable projective object
P (λ) is determined by the property of being projective and

HomO(P (λ), L(µ)) =

{
C if λ = µ,

0 otherwise.

We should warn the reader that the P (λ)’s are not projective when viewed as objects of
the category of all sln-modules, while the L(λ)’s remain simple in the latter category.

The symmetric group Sn, the Weyl group of sln, acts naturally on h by permuting the
diagonal entries and then also on h∗. Let ρ ∈ h∗ be the half-sum of positive roots. In the
study of the category O an important role is played by the shifted (dot) action of Sn,

w · λ = w(λ + ρ)− ρ.

Two simple modules L(λ), L(λ′) have the same central character (i.e. are annihilated by
the same maximal ideal of the center of the universal enveloping algebra) if and only if λ
and λ′ belong to the same Sn-orbit under the shifted action. Consequently, O decomposes
into a direct sum of categories

O = ⊕
ν∈h∗/Sn

Oν (3)

indexed by orbits ν of the shifted action of Sn on h∗. Here, Oν consists of all modules
with composition series having only simple subquotients isomorphic to L(λ) for λ ∈ ν.
There is no interaction between Oν and Oν′ for different orbits ν, ν ′. More accurately, if
ν 6= ν ′ then Exti

O(M, M ′) = 0 for any i ≥ 0, M ∈ Oν and M ′ ∈ Oν′ .
Furthermore, each Oν is equivalent to the category of finite-dimensional modules over

some finite-dimensional C-algebra Aν . Here’s the catch, though: explicitly describing Aν

for n > 3 and interesting ν is very hard, see [79]. For an implicit description we just
form P = ⊕

λ∈ν
P (λ), the direct sum of all indecomposable projectives over λ ∈ ν. Then

Aν
∼= HomO(P, P )op.
An orbit ν (for the shifted action) is called generic if w · λ − λ is never integral, for

λ ∈ ν and w ∈ Sn, w 6= 1. For a generic orbit ν, the category Oν is boring and equivalent
to the direct sum of n! copies of the category of finite-dimensional C-vector spaces, one
for each λ ∈ ν. For such λ we have P (λ) = M(λ) = L(λ), i.e. the Verma module with the
highest weight λ is simple as well as projective in O.
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We call an orbit integral if it is a subset of the integral weight lattice in h∗. In [76] it is
shown that Oν for non-integral ν reduces to those for integral weights. From now on we
therefore assume that ν is integral. Then the category Oν is indecomposable (unlike in
the generic case). Moreover, the complexity of Oν only depends on the type of the orbit.
If two orbits ν and ν ′ contain points λ ∈ ν, λ′ ∈ ν ′ with identical stabilizers, then the
categories Oν and Oν′ are equivalent, see [11], [76]. If the stabilizer of ν under the shifted
action is trivial, the category Oν is called a regular block. Regular blocks are the most
complicated indecomposable direct summands of O, for instance in the sense of having
the maximal number of isomorphism classes of simple modules.

There is a natural bijection between the following three sets: positive integral weights,
isomorphism classes of irreducible finite-dimensional representations of sln, and regular
blocks ofO for sln. A positive integral weight λ is the highest weight of an irreducible finite-
dimensional representation L(λ), determined by the weight uniquely up to isomorphism.
In turn, L(λ) belongs to the regular block Oν , where ν = Sn · λ is the orbit of λ.

Any two regular blocks of O are equivalent as categories, as shown in [40]. For this
reason, we can restrict our discussion to the uniquely defined regular block which contains
the one-dimensional trivial representation L(0) of sln. We denote this block byO0. It has n!
simple modules L(w) = L(w·0), enumerated by all permutations w ∈ Sn (with the identity
element e of Sn corresponding to L(0) which is the only finite dimensional simple module
in O0). Thus, K(O0) is free abelian of rank n! with basis {[L(w)]}w∈Sn . Other notable
objects in O0 are the Verma modules M(w) = M(w ·0) and the indecomposable projective
modules P (w) = P (w · 0), over all w ∈ Sn. The sets {[M(w)]}w∈Sn and {[P (w)]}w∈Sn

form two other prominent bases in K(O0). For the set {[M(w)]}w∈Sn this is easy to see,
because the transformation matrix between Verma modules and simple modules is upper
triangular with ones on the diagonal. For the set {[P (w)]}w∈Sn this claim is not obvious
and relates to the fact that O0 has finite homological dimension, see [12].

Equivalences between regular blocks are established by means of translation functors.
First note that we can tensor two U(sln)-modules over the ground field. If V is a finite-
dimensional sln-module it follows from the definitions that V ⊗M lies in O whenever M
is in O. Hence, tensoring with V defines an endofunctor V ⊗− of the category O. Taking
direct summands of the functors V ⊗ − provides a bewildering collection of different
functors and allows one to analyze O quite deeply. By definition, a projective functor is
any endofunctor of O isomorphic to a direct summand of V ⊗− for some finite-dimensional
sln-module V. Projective functors were classified by J. Bernstein and S. Gelfand [11].
Translation functors are special cases of projective functors—they are direct summands
of projective functors obtained by first restricting to a certain block and afterwards also
projecting onto a fixed block.

Let us restrict our discussion to projective endofunctors in the regular block O0. Each
projective endofunctor O0 −→ O0 decomposes into a finite direct sum of indecomposable
functors θw, enumerated by permutations w and determined by the property θw(M(e)) ∼=
P (w). We have P (e) = M(e) and the functor θe is the identity functor. The composition
or the direct sum of two projective functors are again projective functors. With respect to
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these two operations, projective endofunctors on O0 are (up to isomorphism) generated
by the projective functors θi := θsi

corresponding to the simple transpositions/reflections
si = (i, i + 1). The functor θi is called the translation through the i-th wall. The functor
θw is a direct summand of θik . . . θi1 , for any reduced decomposition w = si1 . . . sik . The
induced endomorphism [θi] of the Grothendieck group acts (in the basis given by Verma
modules) by

[θi][(M(w))] = [θi(M(w))] = [M(w)] + [M(wsi)].

Now we are prepared to explain the categorification. We first fix the unique isomor-
phism ϕ of groups

ϕ : K(O0) −→ Z[Sn]

[M(w)] 7−→ w

and define Cw := ϕ([P (w)]). Then the Cw, w ∈ W , form a basis a of Z[Sn].

The action of [θi] corresponds under ϕ to the endomorphism of Z[Sn] given by right
multiplication with Csi

:= 1 + si.
The defining relations of the generators 1+ si in Z[Sn] lift to isomorphisms of functors

as follows

θ2
i
∼= θi ⊕ θi,

θiθj
∼= θjθi if |i− j| > 1,

θiθi+1θi ⊕ θi+1
∼= θi+1θiθi+1 ⊕ θi.

Here, the last isomorphism follows from the existence of decompositions of functors

θiθi+1θi
∼= θw1 ⊕ θi,

θi+1θiθi+1
∼= θw1 ⊕ θi+1,

where w1 = sisi+1si = si+1sisi+1. In particular, [θw1 ] corresponds under ϕ to the right
multiplication with 1 + si + si+1 + sisi+1 + si+1si + sisi+1si.

By the classification theorem of projective functors, the endomorphism [θw], w ∈ W ,
corresponds then to right multiplication with the element Cw. From this one can then
actually deduce that the multiplication in the basis a has non-negative integral coefficients

CwCw′ =
∑

w′′
cw′′
w,w′Cw′′ , cw′′

w,w′ ∈ Z≥0. (4)

Hence we are in the situation of (1) and are looking for an abelian categorification of
(Z[Sn], a,Z[Sn]). We already have the isomorphism ϕ and the exact endofunctor θw

corresponding to the generator Cw satisfying condition (C-I).
The composition of two projective functors decomposed as a direct sum of indecom-

posable functors [θw], w ∈ W , has nonnegative integral coefficients, and the equations (4)
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turn into isomorphisms of functors

θwθw′
∼=

⊕

w′′
(θw′′)

cw′′
ww′ , cw′′

ww′ ∈ Z≥0, (5)

It turns out that each [θw] acts by a multiplication with a linear combination of y’s for
y ≤ w. Moreover, all coefficients are nonnegative integers. For instance, if w ∈ S4 then
[θw]

.
=

∑
y≤w y, with two exceptions:

[θw]
.
=

∑
y≤w y + 1 + s2, w = s2s1s3s2,

[θw]
.
=

∑
y≤w y + 1 + s1 + s3 + s1s3, w = s1s3s2s1s3.

We can summarize the above results into a theorem.

2.2. Theorem. The action of the indecomposable projective functors θw, w ∈ Sn, on
the block O0 for sln categorifies the right regular representation of the integral group ring
of the symmetric group Sn (in the basis a of the elements Cw, w ∈ Sn).

This theorem is due to Bernstein and Gelfand, see [11], where it was stated in different
terms, since the word “categorification” was not in the mathematician’s vocabulary back
then. In fact, Bernstein and Gelfand obtained a more general result by considering any
simple Lie algebra g instead of sln and its Weyl group W in place of Sn.

In the explanation to the theorem we did not give a very explicit description of the
basis a due to the fact that there is no explicit (closed) formula for the elements Cw

available. However, the elements Cw can be obtained by induction (on the length of
w) using the Kazhdan-Lusztig theory [41], [42]. The Kazhdan-Lusztig theory explains
precisely the complicated interplay between the basis a and the standard basis of Z[Sn].

3. Parabolic blocks of O categorify representations of the symmetric group Sn induced
from the sign representation of parabolic subgroups.

Let µ = (µ1, . . . , µk), µ1 + · · · + µk = n, be a composition of n and λ = (λ1, . . . , λk)
the corresponding partition. In other words, λ is a permutation of the sequence µ with
λ1 ≥ λ2 ≥ · · · ≥ λk. Denote by pµ the subalgebra of sln consisting of µ-block upper-
triangular matrices. Consider the full subcategory Oµ of O which consists of all modules
M on which the action of U(pµ) is locally finite. The category Oµ is an example of a
parabolic subcategory of O, introduced in [70]. A simple object L(λ) of O belongs to Oµ if
and only if the weight λ is positive integral with respect to all roots of the Lie algebra pµ.
The two extreme cases are µ = (1, 1, . . . , 1), in which case Oµ is all of O, and µ = (n), for
O(n) is the semisimple category consisting exactly of all finite-dimensional sln-modules.

The direct sum decomposition (3) induces a similar decomposition of the parabolic
category:

Oµ ∼= ⊕
ν∈h∗/Sn

Oµ
ν .

Each category Oµ
ν is either trivial (i.e. contains only the zero module) or equivalent to

the category of finite-dimensional modules over some finite-dimensional C-algebra (but
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describing this algebra explicitly for interesting µ and ν is a hard problem, see [18]).
Unless µ = (1n), for generic ν the summand Oµ

ν is trivial. Again, the most complicated
summands are the Oµ

ν where the orbit ν contains a dominant regular integral weight.
Translation functors establish equivalences between such summands for various such ν,
and allow us to restrict our consideration to the block Oµ

0 corresponding to the (shifted)
orbit through 0. The inclusion

Oµ
0 ⊂ O0

is an exact functor and induces an inclusion of Grothendieck groups

K(Oµ
0 ) ⊂ K(O0). (6)

Indeed, the Grothendieck group of O0 is free abelian with generators [L(w)], w ∈ Sn. A
simple module L(w) lies in Oµ

0 if and only if w is a minimal left coset representative for
the subgroup Sµ of Sn (we informally write w ∈ (Sµ\Sn)short). The Grothendieck group
of Oµ

0 is then the subgroup of K(O0) generated by such L(w).
The analogues of the Verma modules in the parabolic case are the so-called parabolic

Verma modules
M(pµ, V ) = U(sln)⊗U(pµ) V,

where V is a finite-dimensional simple pµ-module. The module M(pµ, V ) is a homomor-
phic image of some ordinary Verma module from O, in particular, it has a unique simple
quotient isomorphic to some L(w) for some unique w ∈ Sn. In this way we get a canoni-
cal bijection between parabolic Verma modules in Oµ

0 and the set (Sµ\Sn)short of shortest
coset representatives. Hence it is convenient to denote the parabolic Verma module with
simple quotient L(w), w ∈ (Sµ\Sn)short, simply by Mµ(w).

Generalized Verma modules provide a basis for the Grothendieck group of Oµ
0 . Under

the inclusion (6) of Grothendieck groups the image of the generalized Verma module
Mµ(w) is the alternating sum of Verma modules, see [70] and [59]:

[Mµ(w)] =
∑
u∈Sµ

(−1)l(u)[M(uw)]. (7)

Since the projective endofunctors θw preserve Oµ
0 , the inclusion (6) is actually an

inclusion of Sn-modules, and, in view of the formula (7), we can identify K(Oµ
0 ) with

the submodule I−µ of the regular representation of Sn isomorphic to the representation
induced from the sign representation of Sµ,

I−µ ∼= IndSn
Sµ
Zv,

where we denoted by Zv the sign representation, so that wv = (−1)l(w)v for w ∈ Sµ.
To summaries, we have:
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2.3. Theorem. The action of the projective functors θw, w ∈ W , on the parabolic
subcategory Oµ

0 of O categorifies the induced representation I−µ of the integral group ring
of the symmetric group Sn (with basis a = {Cw}w∈Sn).

As in the previous example the Grothendieck group K(Oµ
0 ) has three distinguished

basis, given by simple objects, projective objects, and parabolic Verma modules respec-
tively.

Remark: If we choose a pair µ, µ′ of decompositions giving rise to the same partition
λ of n, then the modules I−µ and I−µ′ are isomorphic, and will be denoted I−λ . However, the

categories Oµ and Oµ′ are not equivalent in general, which means the two categorifications
of the induced representation I−λ are also not equivalent. This problem disappears if
we leave the world of abelian categorifications, since the derived categories Db(Oµ) and
Db(Oµ′) are equivalent [48]. The equivalence is based on the geometric description of Oµ

and Oµ′ in terms of complexes of sheaves on partial flag varieties.

4. Self-dual projectives in a parabolic block categorify irreducible representations of
the symmetric group.

Let Iµ be the representation of Z[Sn] induced from the trivial representation of the
subgroup Sµ. Up to isomorphism, it only depends on the partition λ associated with µ.
Partitions of n naturally index the isomorphism classes of irreducible representations of
Sn over any field of characteristic zero (we use Q here). Denote by SQ(λ) the irreducible
(Specht) module associated with λ. It is an irreducible representation defined as the unique
common irreducible summand of Iλ ⊗ Q and I−λ∗ ⊗ Q, where λ∗ is the dual partition of
λ. Passing to duals, we see that SQ(λ∗) is the unique common irreducible summand of
Iλ∗ ⊗Q and I−λ ⊗Q.

We have already categorified the representation I−λ (in several ways) via the parabolic
categories Oµ

0 , where µ is any decomposition for λ. It’s natural to try to realize a categori-
fication of some integral lift S(λ∗) of the irreducible representation SQ(λ∗) via a suitable
subcategory of some Oµ

0 stable under the action of projective endofunctors.
The correct answer, presented in [50], is to pass to a subcategory generated by those

projective objects in Oµ
0 which are also injective. Note that these modules are neither

projective nor injective in O0 (unless if Oµ
o = O0).

Any projective object in Oµ
0 is isomorphic to a direct sum of indecomposable projec-

tive modules P µ(w), for w ∈ (Sµ\Sn)short. Let J ⊂ (Sµ\Sn)short be the subset indexing
indecomposable projectives modules that are also injective: w ∈ J if and only if P µ(w)
is injective. Projective endofunctors θw, w ∈ Sn, take projectives to projectives and in-
jectives to injectives. Therefore, they take projective-injective modules (modules that are
both projective and injective, also called self-dual projective, for instance, in Irving [37])
to projective-injective modules.

The category of projective-injective modules is additive, not abelian. To remedy this,
consider the full subcategory Cµ of Oµ

0 consisting of modules M admitting a resolution

P1 −→ P0 −→ M −→ 0 (8)
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with projective-injective P1 and P0. The category Cµ is abelian and stable under all end-
ofunctors θw for w ∈ Sn, see [50].

Irving [37] classified projective-injective modules in Oµ
0 . His results were interpreted

in [50] in the language of categorification:

2.4. Theorem. The action of the projective endofunctors θw, w ∈ Sn, on the abelian
category Cµ categorifies (after tensoring the Grothendieck group with Q over Z) the irre-
ducible representation SQ(λ∗) of the symmetric group Sn.

The Grothendieck group K(Cµ) is a module over the integral group ring of Sn, with si

acting by [θi]− Id, and the theorem says that K(Cµ)⊗ZQ is an irreducible representation
of the symmetric group corresponding to the partition λ∗. Several explicit examples of
categorifications via Cµ will be given in Section 3.

Remark: Suppose µ and ν are two decompositions of the same partition λ. It’s shown
in [65] (Theorem 5.4.(2)) that the categories Cµ and Cν are equivalent, through an equiv-
alence which commutes with the action of the projective functors θu on these categories
(the equivalence is given by a non-trivial composition of derived Zuckerman functors).
Therefore, the categorification of S(λ∗) does not depend on the choice of the decompo-
sition µ that represents λ, and we can denote the category Cµ by Cλ. (This should be
compared with the remark after Theorem 2.3.)

Remark: Theorem 2.3 and Theorem 2.4 can be generalized to arbitrary semi-simple
complex finite-dimensional Lie algebras, see [66]. However, in the general case Theo-
rem 2.4 does not categorify simple modules for the corresponding Weyl group but rather
the Kazhdan-Lusztig cell modules from [41]. This can be used to describe the so-called
“rough” structure of generalized Verma modules, which shows that “categorification the-
oretic” ideas can lead to new results in representation theory.

Remark: The inclusion of categories Cµ ⊂ Oµ
0 is not an exact functor; however, it

is a part of a very natural filtration of the category Oµ
0 which can be defined using the

Gelfand-Kirillov dimension of modules, see [66, 6.9]. To get the inclusion of Grothendieck
groups analogous to the inclusion of representations from the irreducible Specht module
into the induced sign representation, we pass to the subgroup K ′(Cµ) of K(Cµ) generated
by the images of projective modules in Cµ. This additional technicality is necessary as the
category Cµ does not have finite homological dimension in general. The subgroup K ′(Cµ)
is always a finite index subgroup, stable under the action of the [θw]’s. We denote this
subgroup by S ′(λ∗) :

S ′(λ∗) def
= K ′(Cµ) ⊂ K(Cµ) ∼= S(λ∗).

The inclusion of categories Cµ ⊂ Oµ
0 induces the inclusion

S ′(λ∗) ⊂ K(Oµ
0 ) ∼= I−µ

of Z[Sn]-modules, hence realising the integral lift S ′(λ∗) of the Specht module as a sub-
representation of I−µ .
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5. Categorification of the induced representations Iµ via projectively presentable mod-
ules.

Let Pµ denote the category of all modules M admitting a resolution (8) in which
each indecomposable direct summand of both P0 and P1 has the form P (w), where w
is a longest left coset representative for Sµ in Sn (we will write w ∈ (Sµ\Sn)long). Such
modules are called pµ-presentable modules, see [62]. As in the previous example, the
category Pµ is stable under all endofunctors θw, w ∈ Sn.

By definition, Pµ is a subcategory of O0, but just as in the example above, the natural
inclusion functor is not exact. The category Pµ does not have finite homological dimension
in general, so we again pass to the subgroup K ′(Pµ) of K(Pµ), generated by the images of
indecomposable projective modules in Pµ. The latter are (up to isomorphism) the P (u),
u ∈ (Sµ\Sn)long. This is a finite index subgroup, stable under the action of the [θw]’s and
we have the following statement proved in [62]:

2.5. Theorem. The action of projective endofunctors on the abelian category Pµ cat-
egorifies (after tensoring with Q over Z) the induced representation (Iµ)Q of the group
algebra of the symmetric group Sn (with the basis a = {Cw}w∈Sn).

Consider the diagram of Q[Sn]-modules

(Iλ)Q
ι1−→ Q[Sn]

p1−→ (I−λ∗)Q.

The map ι1 is the symmetrization inclusion map, while p1 is the antisymmetrization
quotient map. We have

SQ(λ)
def
= p1ι1((Iλ)Q).

The map ι1 is categorified as the inclusion of Pµ to O0. The map p1 is categorified as
the projection of O0 onto Oµ∗

0 , where µ∗ is some decomposition corresponding to λ∗.
Unfortunately, the composition of the two functors categorifying these two maps will be
trivial in general. To repair the situation we first project Pµ onto the full subcategory of
Pµ given by simple objects of minimal possible Gelfand-Kirillov dimension. It is easy to
see that the image category contains enough projective modules, and using the equivalence
constructed in [66, Theorem I], these projective modules can be functorially mapped to
projective modules in Cµ∗ , where µ∗ is a (good choice of) composition with associated
partition λ∗. The latter category embeds into Oµ∗

0 as was explained in the previous
example.

6. Categorification of the group algebra The representation theory of groups like
GL(n,C), considered as a real Lie group, naturally leads to the notion of Harish-Chandra
bimodules. A Harish-Chandra bimodule over sln is a finitely-generated module over the
universal enveloping algebra U(sln × sln) which decomposes into a direct sum of finite-
dimensional U(sln)-modules with respect to the diagonal copy {(X,−X)|X ∈ sln} of sln.
Let HC0,0 be the category of Harish-Chandra bimodules which are annihilated, on both
sides, by some power of the maximal ideal I0 of the center Z of U(sln). Here I0 is the
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annihilator of the trivial U(sln)-module considered as a Z-module. Thus, M ∈ HC0,0 if
and only if xM = 0 = Mx for all x ∈ IN

0 for N large enough.
By [11, Section 5] there exists an exact and fully faithful functor

O0 −→ HC0,0.

Moreover, this functor induces an isomorphism of Grothendieck groups

K(O0) ∼= K(HC0,0).

Since the former group is isomorphic to Z[Sn], we can identify the Grothendieck group of
HC0,0 with Z[Sn] as well.

The advantage of bimodules is that we now have two sides and can tensor with a finite-
dimensional sln-module both on the left and on the right. In either case, we preserve the
category of Harish-Chandra bimodules. Taking all possible direct summands of these
functors and restricting to endofunctors on the subcategory HC0,0 leads to two sets of
commuting projective functors, {θr,w}w∈Sn and {θl,w}w∈Sn which induce endomorphisms
on the Grothendieck group K(HC0,0) ∼= Z[Sn] given by left and right multiplication with
{Cw}w∈Sn respectively. Summarizing, we have

2.6. Theorem. The action of the functors {θr,w}w∈Sn and {θl,w}w∈Sn on the category
HC0,0 of Harish-Chandra bimodules for sln with generalized trivial character on both sides
categorifies Z[Sn], viewed as a bimodule over itself. The functors {θr,w}w∈Sn induces the
left multiplication with Cw on the Grothendieck group, whereas the functors {θl,w}w∈Sn

induces the right multiplication with Cw on the Grothendieck group,

The first half of the theorem follows at once from [11], the second half from [77].
The category of Harish-Chandra bimodules is more complicated than the category O.
For example, HC0,0 does not have enough projectives, and is not Koszul with respect to
the natural grading, in contrast to O0 (for the Koszulity of O0 see [9]). The study of
translation functors on Harish-Chandra modules goes back to Zuckerman [85].

Lie algebras. 7. In the following we will mention several instances of categorifications
of modules over Lie algebras. Our definition of categorification required an associative
algebra rather than a Lie algebra, so one should think of this construction as a categori-
fication of representations of the associated universal enveloping algebra.

Let V be the fundamental two-dimensional representation of the complex Lie algebra
sl2. Denote by {e, f, h} the standard basis of sl2. The n-th tensor power of V decomposes
into a direct sum of weight spaces:

V ⊗n =
n⊕

k=0
V ⊗n(k),

where hx = (2k − n)x for x ∈ V ⊗n(k).
A categorification of V ⊗n was constructed in [10]. The authors considered certain

singular blocks Ok,n−k of the category O for sln. More precisely Ok,n−k is the choice of an
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integral block Oν , where the stabilizer of ν is isomorphic to Sk×Sn−k. Note that different
choices give equivalent blocks. The Grothendieck group of this block has rank

(
n
k

)
equal

to the dimension of the weight space V ⊗n(k), and there are natural isomorphisms

K(Ok,n−k)⊗Z C ∼= V ⊗n(k).

The Grothendieck group of the direct sum

On =
n⊕

k=0
Ok,n−k

is isomorphic to V ⊗n (after tensoring with C over Z). Suitable translation functors E ,F
in On lift the action of the generators e, f of sl2 on V ⊗n.

To make this construction compatible with Definition 2.1 one should switch to Lusztig’s

version
·
U of the universal enveloping algebra U(sl2) (see [60], [10]) and set q = 1. Instead

of the unit element, the ring
·
U contains idempotents 1n, n ∈ Z, which can be viewed as

projectors onto integral weights. The Lusztig basis
·
B in

·
U has the positivity property

required by Definition 2.1, and comes along with an integral version V ⊗n
Z of the tensor

power representation. The triple (
·
U,

·
B, V ⊗n

Z ) is categorified using the above-mentioned

category On and projective endofunctors of it. In fact, each element of
·
B either corre-

sponds to an indecomposable projective endofunctor on On or acts by 0 on V ⊗n
Z . We refer

the reader to [10] for details, to [27] for an axiomatic development of sl2 categorifications,
and to [10] and [81] for a categorification of the Temperley-Lieb algebra action on V ⊗n

Z
via projective endofunctors on the category Koszul dual to On (see [9] and [61] for details
on Koszul duality).

The Lie algebra sl2 has one irreducible (n+1)-dimensional representation Vn, for each
n ≥ 0 (V1

∼= V, of course). A categorification of arbitrary tensor products Vn1 ⊗ · · · ⊗ Vnm

is described in [31]. This tensor product is a submodule of V ⊗n, where n = n1 + · · ·+nm.
Knowing that On categorifies V ⊗n, we find a ”subcategorification,” a subcategory of On

stable under the action of projective functors, with the Grothendieck group naturally
isomorphic to Vn1 ⊗ · · · ⊗ Vnm . The subcategory has an intrinsic description via Harish-
Chandra modules similar to the one from Example 5.

8. A categorification of arbitrary tensor products of fundamental representations ΛiV,
where V is the k-dimensional slk-representation and 1 ≤ i ≤ k−1 was found by J. Sussan
[84], see also [64] for a more combinatorial approach. A tensor product Λi1V ⊗ · · ·⊗ΛirV
decomposes into weight spaces Λi1V ⊗ · · · ⊗ ΛirV (ν), over various integral weights ν of
slk. Each weight space becomes the Grothendieck group of a parabolic-singular block of
the highest weight category for slN , where N = i1 + · · ·+ ir. For the parabolic subalgebra
one takes the Lie algebra of traceless N ×N matrices which are (i1, . . . , ir) block upper-
triangular. The choice of the singular block is determined by ν. For the precise dictionary
how to determine ν we refer to [64].

Translation functors between singular blocks, restricted to the parabolic category, pro-
vide an action of the generators Ej and Fj of the Lie algebra slk. Relations in the universal
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enveloping algebra lift to functor isomorphisms. Conjecturally, Sussan’s categorification

satisfies the framework of Definition 2.1 above, with respect to Lusztig’s completion
·
U of

the universal enveloping algebra of slk and Lusztig’s canonical basis there.

9. Ariki, in a remarkable paper [2], categorified all finite-dimensional irreducible rep-
resentations of slm, for all m, as well as integrable irreducible representations of affine
Lie algebras ŝlr. Ariki considered certain finite-dimensional quotient algebras of the affine
Hecke algebra Ĥn,q, known as Ariki-Koike cyclotomic Hecke algebras, which depend on a
number of discrete parameters. He identified the Grothendieck groups of blocks of these
algebras, for generic values of q ∈ C, with the weight spaces Vλ(µ) of finite-dimensional
irreducible representations

Vλ = ⊕
µ
Vλ(µ)

of slm. Direct summands of the induction and restriction functors between cyclotomic
Hecke algebras for n and n + 1 act on the Grothendieck group as generators ei and fi of
slm.

Specializing q to a primitive r-th root of unity, Ariki obtained a categorification of
integrable irreducible representations of the affine Lie algebra ŝlr.

We conjecture that direct summands of arbitrary compositions of Ariki’s induction and

restriction functors correspond to elements of the Lusztig canonical basis
·
B of Lusztig’s

completions
·
U of these universal enveloping algebras. This conjecture would imply that

Ariki’s categorifications satisfy the conditions of Definition 1.
Lascoux, Leclerc and Thibon, in an earlier paper [57], categorified level-one irreducible

ŝlr-representations, by identifying them with the direct sum of Grothendieck groups of
finite-dimensional Hecke algebras Hn,q, over all n ≥ 0, with q a primitive r-th root of unity.
Their construction is a special case of Ariki’s. We also refer the reader to related works [3],
[33]. Categorifications of the adjoint representation and of irreducible slm-representations
with highest weight ωj + ωk are described explicitly in [34], [35] and [24].

Another way to categorify all irreducible finite-dimensional representations of slm, for
all m, was found by Brundan and Kleshchev [15], via the representation theory of W-
algebras. There is a good chance that their categorification is equivalent to that of Ariki,
and that an equivalence of two categorifications can be constructed along the lines of
Arakawa-Suzuki [1] and Brundan-Kleshchev [16].

Biadjointness. Definition 1 of (weak) categorifications was minimalistic. Categori-
fications in the above examples share extra properties, the most prominent of which is
biadjointness: there exists an involution ai → ai′ on the basis a of A such that the functor
Fi′ is both left and right adjoint to Fi. This is the case in the examples 2 through 9, while
in example 1 the functors are almost biadjoint. Namely, the induction functor Fx lifting
the action of x is left adjoint to the restriction functor F∂ (which lifts the action of ∂) and
right adjoint to F∂ conjugated by an involution.

A conceptual explanation for the pervasiveness of biadjointness in categorifications is
given by the presence of the Hom bifunctor in any abelian category. The Hom bifunctor
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in B descends to a bilinear form on the Grothendieck group B of B, via

([M ], [N ])
def
= dim HomB(M, N),

where M is projective or N is injective, and some standard technical conditions are
satisfied. When a representation naturally comes with a bilinear form, the form is usually
compatible with the action of A: there exists an involution a → a′ on A such that
(ax, y) = (x, a′y) for x, y ∈ B. A categorification of this equality should be an isomorphism

Hom(FaM, N) ∼= Hom(M,Fa′N)

saying that the functor lifting the action of a′ is right adjoint to the functor lifting the
action of a. If the bilinear form is symmetric, we should have the adjointness property in
the other direction as well, leading to biadjointness of Fa and Fa′ .

A beautiful approach to sl2 categorifications via biadjointness was developed by Chuang
and Rouquier [27]. The role of biadjointness in TQFTs and their categorifications is clari-
fied in [47, Section 6.3]. An example how the existence of a categorification with a bilinear
form can be used to determine dimensions of hom-spaces can be found in [82].

Grading and q-deformation. In all of the above examples, the data (A, a, B) that
is being categorified admits a natural q-deformation (Aq, aq, Bq). Here Aq is a Z[q, q−1]-
algebra, Bq an Aq-module, and aq a basis of Aq. We assume that both Aq and Bq are
free Z[q, q−1]-modules, that the multiplication in Aq in the basis aq has all coefficients in
N[q, q−1], and that taking the quotient by the ideal (q − 1) brings us back to the original
data:

A = Aq/(q − 1)Aq, B = Bq/(q − 1)Bq, aq
q=1−→ a.

An automorphism τ of an abelian category B (more accurately, an invertible endofunctor
on B) induces a Z[q, q−1]-module structure on the Grothendieck group K(B). Multiplica-
tion by q corresponds to the action of τ :

[τ(M)] = q[M ], [τ−1(M)] = q−1[M ].

In many of the examples, B will be the category of graded modules over a graded algebra,
and τ is just the functor which shifts the grading. To emphasize this, we denote τ by {1}
and its n-th power by {n}.
2.7. Definition. A (weak) abelian categorification of (Aq, aq, Bq) consists of an abelian
category B equipped with an invertible endofunctor {1}, an isomorphism of Z[q, q−1]-
modules ϕ : K(B)

∼−→ Bq and exact endofunctors Fi : B −→ B that commute with
{1} and such that the following hold

(qC-I) Fi lifts the action of ai on the module Bq, i.e. the action of [Fi] on the
Grothendieck group corresponds to the action of ai on Bq, under the isomor-
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phism φ, in the sense that the diagram below is commutative.

K(B)
[Fi]−−−→ K(B)

ϕ

y
yϕ

Bq
ai−−−→ Bq

(qC-II) There are isomorphisms of functors

FiFj
∼=

⊕

k

Fk
ck
ij ,

i.e., the composition FiFj decomposes as the direct sum of functors Fk with
multiplicities ck

ij ∈ N[q, q−1]

The graded versions are well-known in all of the examples above up to Example 8. In
Example 1 the nilCoxeter algebra Rn is naturally graded with deg(Yi) = 1. The inclusion
Rn ⊂ Rn+1 induces induction and restriction functors between categories of graded Rn

and Rn+1-modules. In the graded case, induction and restriction functors satisfy the
isomorphism

DX ∼= XD{1} ⊕ Id

which lifts the defining relation ∂x = qx∂ + 1 of the q-Weyl algebra (see [46] for more
detail).

An accurate framework for graded versions of examples 2–8 is a rather complicated
affair. To construct a canonical grading on a regular block of the highest weight category
[9] requires étale cohomology, perverse sheaves [7], and the Beilinson-Bernstein-Brylinski-
Kashiwara localization theorem [6], [19]. Soergel’s approach to this grading is more el-
ementary [76], [78], [77], but still relies on these hard results. Extra work is needed to
show that translation or projective functors can be lifted to endofunctors in the graded
category [80].

Ariki’s categorification of irreducible integrable representations (Example 9 above)
should admit a graded version as well.

3. Four examples of categorifications of irreducible representations

In the example 4 above we categorified an integral lift of the irreducible representation
SQ(λ∗) of the symmetric group via the abelian category Cλ built out of projective-injective
modules in a parabolic block of O. The category Cλ is equivalent to the category of
finite-dimensional representations over a finite-dimensional algebra Aλ, the algebra of
endomorphisms of the direct sum of indecomposable projective-injective modules P µ(w).
Under this equivalence, projective functors θi turn into the functors of tensoring with
certain Aλ-bimodules. It’s not known how to describe Aλ and these bimodules explicitly,
except in a few cases, four of which are discussed below.
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a. The sign representation. The sign representation of the symmetric group (over
Z) is a free abelian group Zv on one generator v, with siv = −v for all i. It corresponds
to the partition (1n) of n, which in our notation is λ∗ for λ = (n). The parabolic category

O(n)
0 has as objects exactly the finite-dimensional modules from O0 since the parabolic

subalgebra in this case is all of sln.
Actually, O0 has only one simple module with this property, the one-dimensional

trivial representation C. In our notation, this is the module L(e), the simple quotient of
the Verma module M(e) assigned to the unit element of the symmetric group.

Consequently, any object of O(n)
0 is isomorphic to a direct sum of copies of L(e), and

the category is semisimple. Furthermore, the category C(n) is all of O(n)
0 . Thus, C(n) is

equivalent to the category of finite-dimensional C-vector spaces. Projective functors θw

act by zero on C(n) for all w ∈ Sn, w 6= e, while θe is the identity functor.
The graded version C(n)

gr is equivalent to the category of graded finite-dimensional C-
vector spaces. Again, projective functors θw, w 6= e, act by zero, and θe is the identity
functor.

Thus, our categorification of the sign representation is rather trivial.

b. The trivial representation. The trivial representation Zz of Z[Sn] is a free
abelian group on one generator z, with the action wz = z, w ∈ Sn. The corresponding
partition is (n), with the dual partition λ = (1n). Only one decomposition µ = (1n)
corresponds to the dual partition; the parabolic subalgebra associated with (1n) is the

positive Borel subalgebra, and the parabolic category O(1n)
0 is all of O0.

The unique self-dual indecomposable projective P in O0 is usually called the big
projective module. Its endomorphism algebra EndO(P ) is isomorphic to the cohomology
ring Hn of the full flag variety Fl of Cn, see [76].

The category C(1n) is equivalent to the category of finite-dimensional Hn-modules.
The unique (up to isomorphism) simple Hn-module generates the Grothendieck group
K0(H−mod) ∼= Z.

To describe how the functors θi act on Cλ consider generalized flag varieties

Fli = {0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln−1 ⊂ Cn, L′i|
dim(Lj) = j, dim(L′i) = i, Li−1 ⊂ L′i ⊂ Li+1}.

This variety is a P1-bundle over the full flag variety Fl in two possible ways, correspond-
ing to forgetting Li, respectively L′i. These two maps from Fli onto F induce two ring
homomorphisms

Hn = H(Fl,C) −→ H(Fli,C)

which turn H(Fi,C) into an Hn-bimodule. The functor θi : C(1n) −→ C(1n) is given by
tensoring with this Hn-bimodule (under the equivalence C(1n) ∼= Hn−mod).

To describe functors θw for an arbitrary w ∈ Sn, we recall that Fl = G/B where
G = SL(n,C) and B the Borel subgroup of G. The orbits of the natural left action of G
on Fl×Fl are in natural bijection with elements of the symmetric group. Denote by Ow
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the orbit associated with w and by IC(Ow) the simple perverse sheaf on the closure of
this orbit. The cohomology of IC(Ow) is an Hn-bimodule, and the functor

θw : Hn−mod −→ Hn−mod

takes a module M to the tensor product

H(IC(Ow),C)⊗Hn M.

Notice that all cohomology rings above have a canonical grading (by cohomological de-
gree). The graded version of C(1n) is the category of finite-dimensional graded Hn-modules
and the graded version of θw tensors a graded module with the graded Hn-bimodule
H(IC(Ow),C).

It is surprising how sophisticated the categorification of the trivial representation is,
especially when compared with the categorification of the sign representation. Both
the trivial and the sign representation are one-dimensional, but their categorifications
have amazingly different complexities. All of the complexity is lost when we pass to the
Grothendieck group, which has rank one.

c. Categorification of the Burau representation. Consider the partition λ∗ =
(2, 1n−2) and the dual partition λ = (n − 1, 1). The category C(n−1,1) admits an explicit
description, as follows. For n > 3 let An−1 be the quotient of the path algebra of the
graph from Figure 1 by the relations

(i|i + 1|i + 2) = 0,

(i|i− 1|i− 2) = 0,

(i|i− 1|i) = (i|i + 1|i)

1 2 n−1

Figure 1: Quiver diagram of An−1

Also, let A1 be the exterior algebra on one generator, and A2 be the quotient of the path
algebra of the graph from Figure 1 (for n = 2) by the relations (1|2|1|2) = 0 = (2|1|2|1).
The C-algebra An−1 is finite-dimensional.

3.1. Proposition. The category C(n−1,1) is equivalent to the category of finite-dimensional
left An−1-modules.

This is a well-known result, see e.g. [79] for n = 2 and [83] for the general case.
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Denote by Pi the indecomposable left projective An−1-module An−1(i). This module
is spanned by all paths that end in vertex i. Likewise, let iP stand for the indecompos-
able right projective An−1-module (i)An−1. Under the equivalence between C(n−1,1) and
the category An−1−mod of finite-dimensional An−1-modules, the functor θi becomes the
functor of tensoring with the bimodule

Pi ⊗ iP.

The functors θw are zero for most w ∈ Sn. They are nonzero only when the corresponding
composition of θi’s is nonzero (which rarely happens, note that already θiθj = 0 for
|i− j| > 1).

The algebras An−1, as well as the modules Pi, iP are naturally graded by the length
of paths. The categories of finite dimensional graded modules over these algebras provide
a categorification of the reduced Burau representation of each of the corresponding braid
groups. For more information about the algebras An−1 and their uses we refer the reader
to the papers [52], [72], [75], [82], [34].

d. Categorification of the 2-column irreducible representation (partition
(2n)).

Let λ∗ = (2n) and λ = (n, n). The irreducible representation SQ(λ∗) has the following
explicit description. The basis of the representation consists of crossingless matchings of
2n points positioned on the x-axis by n arcs lying in the lower half-plane, as depicted
below.

1 2 3 2n

The element 1 + si acts on a basis element by concatenating it with the diagram

 1  2  i  2n

If the concatenation contains a circle, we remove it and multiply the result by 2, see
Figure 2.

A categorification of this representation and of its quantum deformation was described
in [47], in the context of extending a categorification of the Jones polynomial to tangles.
The basis elements b corresponding to crossingless matchings become indecomposable
projective modules Pb over a certain finite-dimensional algebra Hn. The space of homs
HomHn(Pa, Pb) between projective modules is given by gluing crossingless matchings a
and b along their endpoints and applying a 2-dimensional TQFT to the resulting 1-
manifold. The TQFT is determined by a commutative Frobenius algebra, which is just
the cohomology of the 2-sphere. Spaces of these homs together with compositions

HomHn(Pa, Pb)× HomHn(Pb, Pc) −→ HomHn(Pa, Pc)
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=

= 2

Figure 2: The product (1+ si)b, for a basis element b, is either another basis element (top
diagram) or the same basis element times 2.

determine Hn uniquely. The above geometric action of 1 + si lifts to the action on the
category of Hn−mod of finite-dimensional Hn-modules given by tensoring with a certain
Hn-module. This results in a very explicit categorification of the 2-column irreducible
representation of Sn (and of the corresponding representation of the Hecke algebra) via
the category of Hn-modules.

It was shown in [83] that Hn−mod is equivalent to the category C(n,n) generated by

projective-injective modules in the parabolic block O(n,n)
0 . Subquotient algebras of Hn

considered in [83], [25], [24] can be used to categorify other 2-column representations of
the Hecke algebra and the symmetric group. These subquotient algebras provide also a
graphical description of the whole category Oµ

0 for any composition µ1 + µ2 = n of n
([83]).

4. Miscellaneous

Braid group actions. Graded versions of projective functors θw categorify the action of
the Hecke algebra Hn,q on its various representations. There is a homomorphism from the
braid group on n strands to the group of invertible elements in Hn,q. This homomorphism,
too, admits a categorification. The categorification should be at least an action of the
braid group on a category, and this action is indeed well-known. To define it we need
to pass to one of the triangulated extensions of the highest weight category: there does
not seem to exist any interesting braid group actions on abelian categories, due to the
positivity imposed by the abelian structure (see discussion in Section 6 of [47]).

The translation through the wall functors θi, i ≤ 1 ≤ n − 1, for the regular block
O0 are compositions of two projective endofunctors (on and off the wall) of O, which are
biadjoint to each other. This results in natural transformations θi −→ Id and Id −→ θi.
Let D(O0) be the bounded derived category of O0. The complexes Ri and R′

i of functors
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0 −→ θi −→ Id −→ 0 and 0 −→ Id −→ θi −→ 0 can be viewed as endofunctors of D(O0)
(we normalize the above functors so that Id sits in cohomological degree 0).

4.1. Proposition. The functors Ri define a braid group action on D(O0). The functor
R′

i is the inverse of Ri.

We distinguish between weak and genuine group actions; the terminology can be found
in [52], [71], [53]. That R′

i and Ri are inverses of each other follows from a more general
result of J. Rickard. That Ri define a weak braid group action follows from [62], [63,
Proposition 10.1].

The Koszul duals of the functor Ri and its inverse are described in [61] in terms of
the so-called twisting and completion functors on O0. A geometric description of these
functors can be found in [8] and [71].

The functors θi restrict to exact endofunctors of the parabolic categories Oµ
0 and of

the categories Cµ. Hence, the functors Ri and R′
i first induce endofunctors on Db(Oµ

0 ),
and define braid group actions there and then restrict to endofunctors of the subcategory
given by complexes of projective-injective modules in Oµ

0 .
The braid group acts by functors respecting the triangulated structure of the involved

categories, resulting in a categorification of parabolic braid group modules as well as those
irreducible representations of the braid group that factor through the Hecke algebra.
The two commuting actions of projective functors on the category of Harish-Chandra
bimodules as described in example 6 of Section 2 give rise to two commuting actions on
the braid group on the derived category of the category of Harish-Chandra bimodules. For
more examples of braid group actions on triangulated categories and a possible framework
for these actions see [53].

Invariants of tangle cobordisms. In several cases, braid group actions on trian-
gulated categories can be extended to representations of the 2-category of tangle cobor-
disms. The objects of this 2-category (when 2-tangles are not decorated) are non-negative
integers, morphisms from n to m are tangles with n bottom and m top boundary compo-
nents, and 2-morphisms are isotopy classes of tangle cobordisms. A representation of the
2-category of tangle cobordisms associated a triangulated category Kn to the object n, an
exact functor Kn −→ Km to a tangle, and a natural transformation of functors to a tangle
cobordism. Such representations can be derived from examples 7 and 8 of Section 2 (see
[82], [84], [64]) and from example d of Section 3 (see [47]). Example 6 is related to at
least braid cobordisms (if not tangle cobordisms) via the construction of [49]. We expect
that a categorification of tensor products of representations of quantum sl2, mentioned
at the end of example 7 extends (after passing to derived categories, suitable functors,
and natural transformations) to a representation of the 2-category of tangle cobordisms
colored by irreducible representations of quantum sl2. Such an extension would give a
categorification of the colored Jones polynomial.

The Cautis-Kamnitzer invariant of tangle cobordisms [23] is based on a similar frame-
work, but their version of the category Kn is the derived category of coherent sheaves
on a certain iterated P1-bundle. The Grothendieck group of their category is isomorphic
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to V ⊗n, where V is the fundamental representation of quantum sl2, just like in the ex-
ample 7, but these two categorifications of V ⊗n are noticeably different. For instance,
in the example 7 the category decomposes into the direct sum matching the weight de-
composition of the tensor product, while the category in [23] is indecomposable. When
the parameter is even, the two categorifications of V ⊗2n appear to have a common “core”
subcategory, a categorification of the invariants in V ⊗2n (the latter isomorphic to S((2n)))
briefly reviewed in the example d above.

In the matrix factorization invariant of tangle cobordisms [51], the abelian category
remains hidden inside the triangulated category of matrix factorizations.

Determinant of the Cartan matrix. With λ and µ as in example 4, let {Pa}a∈I

be a collection of indecomposable projectives in Cµ, one for each isomorphism class. The
Cartan matrix of Cµ is an I × I matrix C with the (a, b)-entry being the dimension
of Hom(Pa, Pb), the space of homomorphisms between projective modules Pa and Pb.
Since End(P, P ) is a symmetric algebra by [65], where P = ⊕

a∈I
Pa, the Cartan matrix is

symmetric, ca,b = cb,a. These algebras are not commutative, but the center has a nice
geometrical description as the cohomology of some Springer fibre ([48], and more general
[14], [83]).

What is the determinant of this Cartan matrix? Since Cµ depends (up to equivalence)
on the partition λ only ([65]), so does the determinant. The answer to the question is
obvious in each of the first three cases considered in the previous section: the determinant
is equal to 1 for λ = (n), to n! for λ = (1n) and to n for λ = (n− 1, 1). The fourth case,
when λ = (2n), requires more work, and follows from the results of [29] and [44]. The
determinant equals

n∏
i=1

(i + 1)rn,i , rn,i =

(
2n

n− i

)
− 2

(
2n

n− i− 1

)
+

(
2n

n− i− 2

)
, (9)

with the convention
(

j
s

)
= 0 if s < 0. The answer for an arbitrary λ is more compli-

cated. However, we want to point out that this determinant of the Cartan matrix is the
determinant of the Shapovalov form ([74]) on a certain weight space of some irreducible
sln-module, as can be obtained from instance from [16]. It can be computed using the
so-called Jantzen-Schaper formula [39, Satz 2].

The absolute value of the determinant has an interesting categorical interpretation. Cµ

is equivalent to the category of finite-dimensional modules over some symmetric C-algebra
Aµ. Given any symmetric C-algebra A (an algebra with a nondegenerate symmetric trace
A −→ C), the stable category A−mod is triangulated. Objects of A−mod are finite-
dimensional A-modules and the set of morphisms from M to N is the quotient vector space
of all module maps modulo those that factor through a projective module. If det(C) 6= 0
then the Grothendieck group of the stable category is finite abelian of cardinality equal
to the absolute value of the determinant.

The graded version of this problem makes sense as well. Modules Pa are naturally
graded, and to a pair (a, b) we can assign the Laurent polynomial in q which is the graded
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dimension of the graded vector space Hom(Pa, Pb). Arrange these polynomials into an
I × I matrix (the graded Cartan matrix of Cµ

gr).

Problem: Find the determinant of the graded Cartan matrix of Cµ.
The determinant depends only on λ. Again, the answer is known in the above four

cases. In the last case, the determinant of the graded Cartan matrix is given by formula
(9), with the quantum integer [i + 1] = 1 + q2 + · · ·+ q2i in place of (i + 1) in the product
(the proof follows by combining results of [29] and [44]).

The determinant is algorithmically computable, since the entries of the graded Cartan
matrix can be computed from the Kazhdan-Lusztig polynomials of the symmetric group.
We are almost tempted to conjecture that, for any λ, the determinant (up to a power of
q) is a product of quantum integers [j] = qj−1 + qj−3 + · · ·+ q1−j, for small j, with some
multiplicities.

In [38], a q-analogue of the Jantzen-Schaper formula is obtained. Generalizing [14]
by working out a graded or q-version, should imply that the determinant is equal to the
determinant of the q-analogue of the Shapovalov form on a suitable weight space of an
irreducible slm-module.
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Anal. i Priložen. 10 (1976), no. 2, 1–8.

[13] J. Brundan, Dual canonical bases and Kazhdan-Lusztig polynomials, J. Algebra
306 (2006), 17-46.

[14] J. Brundan, Symmetric functions, parabolic category O and the Springer fiber,
Duke Math. J. 143 (2008), no. 1, 41–79.

[15] J. Brundan and A. Kleshchev, Representations of shifted Yangians and finite W-
algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918.

[16] J. Brundan and A. Kleshchev, Schur-Weyl duality for higher levels, Selecta Math.
(N.S.) 14 (2008), no. 1, 1–57.

[17] J. Brundan and A. Kleshchev, The degenerate analogue of Ariki’s categorification
theorem, arXiv:0901.0057.

[18] B. Boe, D. Nakano, Representation type of the blocks of category OS, Adv. Math.
196 (2005), no. 1, 193–256.

[19] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic sys-
tems, Invent. Math. 64, (1981) no. 3, 387–410.

[20] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s
diagram algebra II: Koszulity, arXiv:0806.3472

[21] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s
diagram algebra III: category O, arXiv:0812.1090

[22] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov’s
diagram algebra IV: the general linear supergroup, arXiv:0907.2543

[23] S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent
sheaves I, sl(2) case, Duke Math. J. 142 (2008), no. 3, 511–588.

[24] Y. Chen, Categorification of level two representations of quantum sl(N) via gener-
alized arc rings, math.QA/0611012.

[25] Y. Chen and M. Khovanov, An invariant of tangle cobordisms via subquotients of
arc rings, math.QA/0610054.

[26] N. Chriss and V. Ginzburg, Representation theory and complex geometry,
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[40] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math. 750
(1979).

[41] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras,
Invent. Math. 53 (1979), no. 2, 165–184.

[42] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp.
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