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EPIMORPHIC COVERS MAKE R+
G A SITE, FOR PROFINITE G

DANIEL G. DAVIS

Abstract. Let G be a non-finite profinite group and let G−Setsdf be the canonical
site of finite discrete G-sets. Then the category R+

G, defined by Devinatz and Hopkins,
is the category obtained by considering G−Setsdf together with the profinite G-space
G itself, with morphisms being continuous G-equivariant maps. We show that R+

G is
a site when equipped with the pretopology of epimorphic covers. We point out that
presheaves of spectra on R+

G are an efficient way of organizing the data that is obtained
by taking the homotopy fixed points of a continuous G-spectrum with respect to the
open subgroups of G. Additionally, utilizing the result that R+

G is a site, we describe
various model category structures on the category of presheaves of spectra on R+

G and
make some observations about them.

1. Introduction

Let G be a profinite group that is not a finite group. Let R+
G be the category with objects

all finite discrete left G-sets together with the left G-space G. The morphisms of R+
G are

the continuous G-equivariant maps. Since G is not finite, the object G in R+
G is very

different in character from all the other objects of R+
G. In this paper, we show that R+

G is
a site when equipped with the pretopology of epimorphic covers.

As far as the author knows, the category R+
G is first defined and used in the paper

[DH04]. Let Gn be the profinite group Sn o Gal(Fpn/Fp), where Sn is the nth Morava
stabilizer group. In [DH04, Theorem 1], the authors construct a contravariant functor -
that is, a presheaf -

F : (R+
Gn

)op → (E∞)K(n),

to the category (E∞)K(n) of K(n)-local commutative S-algebras (see [EKMM97]), where
K(n) is the nth Morava K-theory (see [Rud98, Chapter 9] for an exposition of K(n)). The
functor F has the properties that, if U is an open subgroup of Gn, then F(Gn/U) = EdhU

n ,
and F(Gn) = En, where En is the nth Lubin-Tate spectrum (for salient facts about
En and its importance in homotopy theory, see [DH95, Introduction]), and EdhU

n is a
spectrum that behaves like the U -homotopy fixed point spectrum of En with respect to
the continuous U -action. Since HomR+

Gn
(Gn, Gn) ∼= Gn, functoriality implies that Gn acts

on En by maps of commutative S-algebras. In Section 5, we will give several related
examples of presheaves of spectra that illustrate the utility of the category R+

G.
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The pretopology of epimorphic covers on a small category C is the pretopology K given
by all covering families {fi : Ci → C| i ∈ I} such that φ :

∐
i∈I Ci → C is onto, where

Ci, C ∈ C, fi ∈ MorC(Ci, C), and I is some indexing set. (Of course, one must prove that
these covering families actually give a pretopology on C.) We note that we do not require
that φ be a morphism in C; for our purposes, C = R+

G and we only require that φ be an
epimorphism in the category of all G-sets (so that φ does not have to be continuous).
This assumption is important for our work, since, for example, G

∐
G is not in R+

G. Also,
recall that the pretopology K is a familiar one. For example, for a profinite group G, K is
the standard basis used for the site G−Setsdf of finite discrete G-sets ([Jar97, pg. 206]).

Note that R+
G is built out of the two subcategories G−Setsdf and the groupoid G.

Since each of these categories is a site via K (for G, this is verified in Lemma 2.2 below),
it is natural to wonder if R+

G is also a site via K. Our main result (Theorem 3.1) verifies
that this is indeed the case.

As discussed earlier, F is a presheaf of spectra on the site R+
Gn

. More generally, there is
the category PreSpt(R+

G) of presheaves of spectra on R+
G. In [Dav06b], the author showed

that, given a continuous G-spectrum Z, then, for any open subgroup U of G, there is a
homotopy fixed point spectrum ZhU , defined with respect to the continuous action of U
on Z. In Examples 5.5 and 5.6, we see that there is a presheaf of spectra on R+

G that
organizes in a functorial way the following data: Z, ZhU for all U open in G, and the
maps between these spectra that are induced by continuous G-equivariant maps between
the G-spaces G and G/U . Thus, PreSpt(R+

G) is a natural category within which to work
with continuous G-spectra.

The homotopy fixed points referred to above use a certain model category structure on
the category PreSpt(G−Setsdf ) of presheaves of spectra on G−Setsdf (see Section 5 and
[Dav06b, Section 3] for details). Thus, in Section 5, we describe various model category
structures on PreSpt(R+

G), and we make some observations about these model structures
and the restriction functor i∗ : PreSpt(R+

G) → PreSpt(G−Setsdf ) (see Definition 5.8),
where the target category has the aforementioned model structure. It is our hope that one
or some of these model structures on PreSpt(R+

G) can be useful for the theory of homotopy
fixed points for profinite groups, though we have not yet found any such applications.

The main result of this paper naturally motivates further work in exploring the site
R+

G. We give a brief discussion of some of the things that one might consider. The
Grothendieck topos of sheaves on G−Setsdf is equivalent to the category of discrete
G-sets, a category of continuous G-spaces. For some time, the author worked to show
that the Grothendieck topos on the site R+

G was similarly equivalent to a category of
topological G-spaces. (To be more precise, the author hoped to obtain some category
related to pro-discrete G-spaces.) However, the author concluded that there was no such
equivalence.

As noted above in several ways, the site R+
G is closely related to the site G−Setsdf .

In particular, each site has a topology given by the pretopology K of epimorphic covers.
However, there is an important difference between R+

G and G−Setsdf : the latter category
is closed under pullbacks, but it is easy to see that R+

G does not have all pullbacks (see
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the discussion just after Theorem 3.1).
In a category with pullbacks, the canonical topology, the finest topology in which every

representable presheaf is a sheaf, is given by all covering families of universal effective
epimorphisms (see Expose IV, 4.3 of [Dem70]). This implies that G−Setsdf is a site with
the canonical topology, when equipped with pretopology K. However, due to the lack of
sufficient pullbacks, we cannot conclude that K gives R+

G the canonical topology. Thus,
it is natural to ask if the topology on R+

G is canonical. This is not an easy question to
answer: a preliminary step is to determine whether or not the topology is subcanonical,
and the author is currently working to solve this problem.

In Section 4, we exhibit a second pretopology on R+
G that generates a topology that

is strictly coarser than that given by K. We do not know if this second pretopology has
any advantages over K.

Acknowledgements. When I first tried to make R+
G a site, and was focusing on an

abstract way of doing this, Todd Trimble helped me get started by suggesting that I extend
K to all of R+

G and by pointing out Lemma 2.1. I thank Paul Goerss for discussions about
this material. Also, I appreciate various conversations with Christian Haesemeyer about
this work (and some of the work mentioned above that is motivated by the main result). I
thank the referee for a variety of helpful comments. Part of this paper was written during
a very pleasant year spent visiting the math department of Wesleyan University; I thank
the department for its hospitality.

2. Preliminaries

Before we prove our main result, we first collect some basic facts which will be helpful
later. As stated in the Introduction, G always refers to an infinite profinite group. (If the
profinite group G is finite, then R+

G = G−Setsdf and there is nothing to prove.)

2.1. Lemma. Let f : C → G be any morphism in R+
G with C 6= ∅. Then C = G.

Proof. Choose any c ∈ C and let f(c) = γ. Choose any δ ∈ G. Then the G-equivariance
of f implies that δ = (δγ−1)γ = (δγ−1) · f(c) = f((δγ−1) · c). Thus, f is onto and
|im(f)| =∞, so that C cannot be a finite set.

2.2. Lemma. For a topological group G, let G be the groupoid with the single object G
and morphisms the G-equivariant maps G → G given by right multiplication by some
element of G. Then G is a site with the pretopology K of epimorphic covers.

Proof. Any diagram G
f→ G

g← G, where f and g are given by multiplication by γ and
δ, respectively, can be completed to a commutative square

G
f ′

//

g′

��

G

g

��

G
f

// G,
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where f ′ and g′ are given by multiplication by δ−1 and γ−1, respectively. This property
suffices to show that G is a site with the atomic topology, in which every sieve is a covering
sieve if and only if it is nonempty. It is easy to see that the only nonempty sieve of G is
MorG(G,G) itself. Thus, the only covering sieve of G is the maximal sieve. Since every
morphism of G is a homeomorphism, in the pretopology K, the collection of covers is
exactly the collection of all nonempty subsets of MorG(G,G). Then it is easy to check
that K is the maximal basis that generates the atomic topology.

Observe that if f : G→ G is a morphism in R+
G, then by G-equivariance, f is the map

given by multiplication by f(1) on the right. As mentioned earlier, we have

2.3. Lemma. The category G−Setsdf , a full subcategory of R+
G, is closed under pullbacks.

Proof. The pullback of a diagram in G−Setsdf is formed simply by regarding the diagram
as being in the category TG of discrete G-sets. The category TG is closed under pullbacks,
as explained in [MM94, pg. 31].

We recall the following useful result and its proof.

2.4. Lemma. Let X be any finite set in R+
G. We write X =

∐n
i=1 xi, the disjoint union

of all the distinct orbits xi, with each xi a representative. Then X is homeomorphic to∐n
i=1G/Ui, where Ui = Gxi

is the stabilizer in G of xi.

Proof. Let f : G/Ui → xi be given by f(γUi) = γ · xi. Since X is a discrete G-set, the
stabilizer Ui is an open subgroup of G with finite index, so that G/Ui is a finite set. Then
f is open and continuous since it is a map between discrete spaces. Also, it is clear that f
is onto. Now suppose γUi = δUi. Then γ−1δ ∈ Ui, so that (γ−1δ) ·xi = (γ−1) · (δ ·xi) = xi.
Thus, γ · xi = δ · xi and f is well-defined. Assume that γ · xi = δ · xi. Then γ−1δ ∈ Gxi

so that f is a monomorphism.

2.5. Lemma. Let X be a finite discrete G-set in R+
G and let ψ : G → X be any G-

equivariant function. Then ψ is a morphism in R+
G.

Proof. As in Lemma 2.4, we identify X with
∐n

i=1G/Ui. Since ψ is G-equivariant and
ψ(γ) = γ · ψ(1), ψ is determined by ψ(1). Let ψ(1) = δUj for some δ ∈ G and some j.
Then for any γ in G, γUj = (γδ−1δ)Uj = (γδ−1) ·ψ(1) = ψ(γδ−1), so that im(ψ) = G/Uj.
Since X is discrete, ψ is continuous, if, for any x ∈ X, ψ−1(x) is open in G. It suffices,
by the identification, to let x = γUj, for any γ ∈ G. Then

ψ−1(γUj) = {ζ ∈ G|ψ(ζ) = γUj} = {ζ ∈ G| ζ · (δUj) = γUj}
= {ζ ∈ G| δ−1ζ−1γ ∈ Uj} = γUjδ

−1.

Since Uj is open and multiplication on the left or the right is always a homeomorphism
in a topological group, we see that ψ−1(x) is an open set in G.
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3. The proof of the main result

With the lemmas of the previous section in hand, we are ready for

3.1. Theorem. For any profinite group G, the category R+
G, equipped with the pretopol-

ogy K of epimorphic covers, is a small site.

Before proving the theorem, we make some remarks about pullbacks in R+
G and how

this affects our proof. In a category C with sufficient pullbacks, to prove that a pretopology
is given by a function K, which assigns to each object C a collection K(C) of families of
morphisms with codomain C, one must prove the stability axiom, which says the following:
if {fi : Ci → C| i ∈ I} ∈ K(C), then for any morphism g : D → C, the family of pullbacks

{πL : D ×C Ci → D| i ∈ I} ∈ K(D).

Let us examine what this axiom would require of R+
G.

3.2. Example. The map G → ∗ forms a covering family and so the stability axiom
requires that G×{∗}G = G×G be in R+

G.

3.3. Example. Let C be any finite discrete G-set with more than one element and with
trivial G-action, g : G→ C any morphism, and consider the cover

{fi : Ci → C| i ∈ I} ∈ K(C),

where Cj = C and fj : C → C is the morphism mapping C to g(1), for some j ∈ I.
Because the action is trivial, fj is G-equivariant. There certainly exist covers of C of this
form, since one could let fk = idC , for some k 6= j in I, and then let the other fi be any
morphisms with codomain C. Hence, the stability axiom requires that

G×C C = {(γ, c)| g(γ) = fj(c)} = {(γ, c)| γ · g(1) = g(1)} = Gg(1) × C = G× C

exists in R+
G, which is impossible.

Thus, the stability axiom for a pretopology must be altered so that one still obtains a
topology. We list the correct axioms for our situation below. They are taken from [MM94,
pg. 156].

1. If f : C ′ → C is an isomorphism, then {f : C ′ → C} ∈ K(C).

2. (stability axiom) If {fi : Ci → C| i ∈ I} ∈ K(C), then for any morphism g : D → C,
there exists a cover {hj : Dj → D| j ∈ J} ∈ K(D) such that for each j, g ◦hj factors
through some fi.

3. (transitivity axiom) If {fi : Ci → C| i ∈ I} ∈ K(C), and if for each i ∈ I there is a
family {gij : Dij → Ci| j ∈ Ii} ∈ K(Ci), then the family of composites

{fi ◦ gij : Dij → C| i ∈ I, j ∈ Ii}

is in K(C).
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Proof of Theorem 3.1. It is clear that the pretopology K satisfies axiom (1) above.
Also, it is easy to see that axiom (3) holds. Indeed, using the above notation, choose any
c ∈ C. Then there is some ci ∈ Ci for some i, such that fi(ci) = c. Similarly, there must
be some dij ∈ Dij for some j, such that gij(dij) = ci. Hence, (fi ◦ gij)(dij) = fi(ci) = c, so
that

∐
i,j Dij → C is onto. This verifies (3). We verify (2) by considering five cases.

Case (1 ): Suppose that D and each of the Ci are finite sets in R+
G. By Lemma 2.1,

C must be a finite set. Consider the cover {πL(i) : D ×C Ci → D| i ∈ I}, where each
πL(i) equals πL and each g ◦ πL(i) factors through fi via the canonical map πR. Now,
for any d ∈ D, there exists some l ∈ I such that g(d) = fl(cl), for some cl ∈ Cl. Thus,
(d, cl) ∈ D ×C Cl, so that

∐
i∈I D ×C Ci → D maps (d, cl) to d and is therefore an

epimorphism. This shows that {πL(i)| i ∈ I} is in K(D).
Case (2 ): Suppose that D = G and that each Ci is a finite set in R+

G. By Lemma 2.1,
C is a finite set and we identify it with

∐n
i=1G/Ui, where Ui = Gxi

, the stabilizer in G
of xi. The map g is determined by g(1) = δUk, for some δ ∈ G and some stabilizer Uk.
Since

∐
i∈I Ci → C is onto and im(g) = G/Uk, there exists some cl ∈ Cl, for some l, such

that fl(cl) = Uk. Since Cl is a finite set, we can identify cl with some µGz, where µ ∈ G
and Gz is the stabilizer of some element z ∈ Cl.

Define the cover to be {λ : G→ G}, where λ(γ) = γδ−1. Define αl : G→ Cl to be the
G-equivariant map given by 1 7→ µGz. By Lemma 2.5, αl is continuous and is a morphism
in R+

G. Since λ is a homeomorphism, the cover {λ} is in K(D). Now,

(g ◦ λ)(1) = g(δ−1) = δ−1 · g(1) = Uk = µ · fl(Gz) = µ · fl(µ
−1 · αl(1)) = (fl ◦ αl)(1).

This shows that g ◦ λ factors through fl via αl.
Case (3 ): Suppose that not all the Ci are finite sets and that D = G. Also, assume

that C = G, so that Ci = G, for all i ∈ I. Choose any k ∈ I, let αk = idG, and define
λ : G→ G to be multiplication on the right by fk(1)g(1)−1. Then g ◦ λ = fk ◦ idG, since

(g ◦ λ)(1) = g(fk(1)g(1)−1) = fk(1)g(1)−1 · g(1) = fk(1) = (fk ◦ αk)(1),

so that the stability axiom is satisfied by letting the covering family be {λ}.
Case (4 ): Suppose that not all the Ci are finite sets, D = G, and C is a finite set.

With C as in Lemma 2.4, let g(1) = δUk ∈ C, as in Case (2). Then there exists some l
such that fl(cl) = Uk, for some cl ∈ Cl. Now we consider two subcases.

Case (4a ): Suppose that Cl is a finite set in R+
G. Just as in Case (2), we construct

maps λ and αl, so that g ◦ λ factors through fl via αl and {λ} ∈ K(D).
Case (4b ): Suppose that Cl = G. By G-equivariance, fl(1) = c−1

l Uk. Then define
λ : G → G by 1 7→ δ−1 and αl : G → G by 1 7→ cl. Then g ◦ λ factors through fl via αl,
since

(g ◦ λ)(1) = g(δ−1) = δ−1 · g(1) = Uk = fl(cl) = (fl ◦ αl)(1).

Thus, {λ} ∈ K(D), since λ is a homeomorphism. This completes Case (4).
Now we consider the final possibility, Case (5 ): suppose that not all of the Ci are

finite sets and suppose that D is a finite set. This implies that C is a finite set. This case
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is more difficult than the others because it combines several of the previous constructions
and the desired cover consists of more than one morphism. For each d ∈ D, we make a
choice of some i(d) ∈ I and some cd ∈ Ci(d), such that cd is in the preimage of g(d) under∐

i∈I Ci → C. Then write D = Ddf

∐
DG, where Ddf is the set of all d such that Ci(d)

is a finite set, and DG is the set of all d such that Ci(d) = G. Now consider the cover
{hd : Dd → D| d ∈ D}, where

Dd =

{
D ×C Ci(d) if d ∈ Ddf ,

G if d ∈ DG

and hd is defined in the following paragraph.
If d ∈ Ddf , then set hd = πL and let αd : D ×C Ci(d) → Ci(d) be the canonical map πR;

it is clear that the required square commutes. Now suppose d ∈ DG. Then there exists
cd ∈ Ci(d) = G, such that g(d) = fi(d)(cd). We write fi(d)(1) = θUk ∈ C, for some θ ∈ G
and for some stabilizer Uk. Then we define αd : G → Ci(d) = G by 1 7→ θ−1. Also, we
define hd : G → D by 1 7→ (θ−1c−1

d ) · d. Lemma 2.5 shows that hd is a morphism in R+
G.

Then g ◦ hd = fi(d) ◦ αd, as desired, since

(g ◦ hd)(1) = g((θ−1c−1
d ) · d) = (θ−1c−1

d ) · g(d)

= (θ−1c−1
d ) · fi(d)(cd) = fi(d)(θ

−1) = (fi(d) ◦ αd)(1).

The only remaining detail is to show that {hd| d ∈ D} ∈ K(D); that is, we must
show that φ :

∐
d∈D Dd → D is an epimorphism. Let d be any element in D. Suppose

d ∈ Ddf , with cd ∈ Ci(d), such that fi(d)(cd) = g(d). Then (d, cd) ∈ D ×C Ci(d) and
φ(d, cd) = πL(d, cd) = d. Now suppose d ∈ DG. With cd ∈ G and θ as above, cdθ ∈ Dd = G
and φ(cdθ) = hd(cdθ) = (cdθ) · hd(1) = d. Therefore, φ is an epimorphism.

4. A second pretopology on R+
G

In this section, we obtain a second pretopology on R+
G that generates a strictly coarser

topology than that given by K. We use L to denote the pretopology of epimorphic covers
for the site G−Setsdf .

Let M be the function on R+
G defined by

M(C) =

{
L(C) if C ∈ G−Setsdf ,

{R |R ⊂ HomR+
G

(G,G);R 6= ∅} if C = G.

Thus, M consists exactly of the covers from the sites G (the groupoid) and G−Setsdf .
Now we show that M makes R+

G a site.

4.1. Theorem. For any profinite group G, the category R+
G is a site with pretopology

M.
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Proof. As in the proof of Theorem 3.1, since R+
G does not have enough pullbacks, we use

the alternative set of axioms for a pretopology stated just before the proof of Theorem 3.1.
Now suppose that f : C ′ → C is an isomorphism in R+

G. If C is in G−Setsdf , then C ′

is too. Since f is a morphism in the category G−Setsdf , {f} ∈ L(C) =M(C). If C = G,
then C ′ = G and it is clear that {f} ∈ M(G). This verifies the first axiom.

Axiom three is also true, since, using the notation of its statement above (just before
the proof of Theorem 3.1), all the Ci and Dij are in only G−Setsdf or in only groupoid
G, according to whether C is in G−Setsdf or G, respectively.

In the notation of Axiom 2 (as stated in Section 3), suppose that C = G, so that each
Ci is equal to G. If D = ∅, then it is easy to see that the stability axiom is satisfied by
using the cover {∅→ ∅} ∈ M(∅). Now suppose that D = G. Then case (3) in the proof
of Theorem 3.1 shows that Axiom 2 holds.

Now suppose C ∈ G−Setsdf and consider any {fi : Ci → C| i ∈ I} ∈ L(C). All the
Ci must be finite sets, and, if g : D → C is any morphism in R+

G, then D is either a finite
set or G. If D is a finite set, then case (1) of the proof of Theorem 3.1 gives the required
cover, since G−Setsdf is closed under pullbacks. Finally, if D = G, then case (2) of the
proof of Theorem 3.1 gives a satisfactory cover of G.

As stated at the beginning of this section, it is not hard to see that M generates a
strictly coarser topology than K. For example, for K, the trivial one-element G-set {∗}
has a covering sieve of the form

({G→ {∗}}) = {G→ {∗},∅→ {∗}},

which is clearly not a covering sieve for M.

5. Model category structures on presheaves of spectra on the site R+
G

By Theorems 3.1 and 4.1, we know how to make the category R+
G into a site via pretopolo-

gies K andM, respectively. Thus, in this section, we consider model category structures
on the category of presheaves of spectra on the site (R+

G, K), where K is any pretopology
on R+

G.
Let Ab be the category of abelian groups, and let Spt denote the model category of

Bousfield-Friedlander spectra of pointed simplicial sets. We refer to the objects of Spt as
simply “spectra.” Also, we let PreSpt(R+

G, K) be the category of presheaves of spectra on
the site (R+

G, K).
Now we give some interesting examples of objects in PreSpt(R+

G, K).

5.1. Example. In the Introduction, we saw that the Devinatz-Hopkins functor F is an
object in PreSpt(R+

Gn
, K).

For the next example, if X is a spectrum, then, for each k ≥ 0, we let Xk be the
kth pointed simplicial set constituting X, and, for each l ≥ 0, Xk,l is the pointed set of
l-simplices of Xk.
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5.2. Example. Let X be a discrete G-spectrum (see [Dav06b] for a definition of this
term), so that each Xk,l is a pointed discrete G-set. If C ∈ R+

G, then let HomG(C,X) be
the spectrum, such that

HomG(C,X)k = HomG(C,Xk),

where
HomG(C,X)k,l = HomG(C,Xk)l = HomG(C,Xk,l).

Above, the set Xk,l is given the discrete topology, since it is naturally a discrete G-set.
Then HomG(−, X) is an object in PreSpt(R+

G, K). It is easy to see that if U is an open
subgroup of G, then HomG(G/U,X) ∼= XU , the U -fixed point spectrum of X. Also,
HomG(G,X) ∼= X.

Now we recall [Dav06a, Lemma 3.1], since this result (and its corollary below (see
[Dav06a, (3.3)])) will be helpful in our next example. We note that this result is only a
slight extension of [Jar97, Remark 6.26]: if U is normal in G, then the lemma below is an
immediate consequence of Jardine’s remark.

5.3. Lemma. Let X be a discrete G-spectrum. Also, let f : X → Xf,G be a trivial
cofibration, such that Xf,G is fibrant, where all this takes place in the model category of
discrete G-spectra (see [Dav06b]). If U is an open subgroup of G, then Xf,G is fibrant in
the model category of discrete U-spectra.

5.4. Corollary. Let X and U be as in the preceding lemma. Then XhU = (Xf,G)U .

Proof. Let f be as in the above lemma. Since f is G-equivariant, it is U -equivariant.
Also, since f is a trivial cofibration in the model category of discrete G-spectra, it is a
trivial cofibration in the model category of spectra. The preceding two facts imply that
f is a trivial cofibration in the model category of discrete U -spectra. By the lemma, Xf,G

is fibrant in this model category. Thus, XhU = (Xf,G)U .

5.5. Example. Let X be a discrete G-spectrum. Then HomG(−, Xf,G) is a presheaf in
PreSpt(R+

G, K). In particular, notice that

HomG(G/U,Xf,G) ∼= (Xf,G)U = XhU

and
HomG(G,Xf,G) ∼= Xf,G ' X.

5.6. Example. For any unfamiliar concepts in this example, we refer the reader to
[Dav06b]. Let Z = holimi Zi be a continuous G-spectrum, so that {Zi}i≥0 is a tower of
discrete G-spectra, such that each Zi is a fibrant spectrum. Then

P (−) = holim
i

HomG(−, (Zi)f,G) ∈ PreSpt(R+
G, K),

where
P (G/U) ∼= holim

i
((Zi)f,G)U = holim

i
(Zi)

hU = ZhU



EPIMORPHIC COVERS MAKE R+
G A SITE, FOR PROFINITE G 397

and
P (G) ∼= holim

i
(Zi)f,G ' Z.

The above examples show that the category PreSpt(R+
G, K) gives an efficient way

of organizing homotopy fixed point data for discrete and continuous G-spectra. Also,
notice that when X is a discrete G-spectrum, Example 5.5 shows that the presheaf
HomG(−, Xf,G) has X as its G-sections (up to weak equivalence), whereas a theorem is
required to show if and when the presheaf of spectra HomG(−, Xf,G) on the site G−Setsdf

has X as sections (up to weak equivalence). This observation is a minor organizational
advantage of the category PreSpt(R+

G, K) over the category of presheaves of spectra on
G−Setsdf .

Now we equip PreSpt(R+
G, K) with a model category structure Mc; let PreSptc(R+

G, K)
be the resulting model category. Notice that since Examples 5.1, 5.2, 5.5, and 5.6 are
independent of the model category structure, PreSptc(R+

G, K) is always useful for organiz-
ing homotopy fixed points “in the G-world.” However, it is natural to wonder if there is a
particular model category PreSptc(R+

G, K) that can provide some additional utility with
regard to homotopy fixed points. Though we have not succeeded in finding a good answer
to this question, we are able to make a few observations in the following discussion.

First, we briefly review the more important model structures Mc that are available. In
making the recollections that follow, we were aided by the helpful exposition in [CHSW08,
pp. 560–561], and any facts or results in the remainder of this section that are stated
without citation or justification can be found in these pages.

Our review begins with some definitions. Let f : P → Q be a morphism of presheaves
of spectra on R+

G. Then f is an objectwise weak equivalence (objectwise cofibration, ob-
jectwise fibration) if f(C) is a weak equivalence (cofibration, fibration) of spectra, for
all C ∈ R+

G. Then Min, the injective model structure, is the model category structure
where the weak equivalences and cofibrations are the objectwise weak equivalences and
the objectwise cofibrations, respectively (see [Jar87], [Jar97, Remark 2.36]).

5.7. Definition. Let P : (R+
G)op → Spt be a presheaf of spectra. Then, for each n ∈ Z,

πn(P ) : (R+
G)op → Ab, C 7→ πn(P (C)),

is a presheaf of abelian groups. Then the associated sheaf π̃n(P ) of abelian groups is the
sheafification of πn(P ).

We say that the morphism f of presheaves is a local stable equivalence if the induced
map π̃n(P ) → π̃n(Q) of sheaves is an isomorphism, for all n ∈ Z. Then ML(in), the local
injective model structure, is defined by taking the weak equivalences and cofibrations
to be the local stable equivalences and objectwise cofibrations, respectively (see [Jar87],
[Jar97, Theorem 2.34]). In ML(in), a fibration is referred to as a global fibration.

Additionally, Mpr, the projective model structure, is given by taking the weak equiv-
alences and fibrations to be the objectwise weak equivalences and objectwise fibrations,
respectively. In Mpr, each cofibration (that is, each projective cofibration) is an object-
wise cofibration. Also, there is ML(pr), the local projective model structure, in which the
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weak equivalences are the local stable equivalences and the cofibrations are exactly the
projective cofibrations (see [Bla01, Section 1] for an explanation of the terminology).

As alluded to in Lemma 5.3, homotopy fixed point spectra for profinite group actions
are defined by using the model category structure on the category of discrete G-spectra
that is specified by defining a morphism f to be a weak equivalence (cofibration) if it is a
weak equivalence (cofibration) of spectra. As explained in [Dav06b, Section 3], this model
category structure is obtained from the local injective model structure on the category
PreSpt(G−Setsdf ) (the category of presheaves of spectra on the canonical site G−Setsdf ),
in which the weak equivalences are the local stable equivalences and the cofibrations are
defined objectwise.

Now, since G−Setsdf is a full subcategory of R+
G, we can make the following definition.

5.8. Definition. If P is a presheaf of spectra in PreSpt(R+
G, K), let Pdf be the presheaf

in PreSpt(G−Setsdf ) that is obtained by the composition

(G−Setsdf )op i
↪→ (R+

G)op P→ Spt,

where i is the inclusion. Similarly, if f is a morphism in PreSpt(R+
G, K), let fdf be the

induced morphism in PreSpt(G−Setsdf ). Thus, there is the restriction functor

i∗ : PreSpt(R+
G, K)→ PreSpt(G−Setsdf ), P 7→ i∗(P ) = Pdf .

Now we make a few observations about the above model category structures and i∗. As
before, let f be a morphism in PreSpt(R+

G, K). It is easy to see that if f is a cofibration
in Min or ML(in), then i∗(f) is a cofibration in PreSpt(G−Setsdf ) (equipped with the
local injective model category structure described above). Similarly, since any projective
cofibration is an objectwise cofibration, if f is a cofibration in Mpr or ML(pr), then i∗(f)
is a cofibration in PreSpt(G−Setsdf ).

If f is an objectwise weak equivalence, then i∗(f) is also an objectwise weak equiv-
alence. Thus, for each integer n and for any object C in G−Setsdf , πn(f(C)) is an
isomorphism, so that the map πn(i∗(f)) of presheaves is an isomorphism. Hence, the
associated map π̃n(i∗(f)) of sheaves on G−Setsdf is an isomorphism, implying that i∗(f)
is a local stable equivalence. Thus, if f is a weak equivalence in Min or Mpr, then i∗(f) is
a weak equivalence in PreSpt(G−Setsdf ).

Now suppose that f is a weak equivalence between fibrant presheaves in the model
category PreSptL(in)(R+

G, K). Since a global fibration is a fibration in ML(pr), f is also

a weak equivalence between fibrant presheaves in PreSptL(pr)(R+
G, K). It follows (see

[CHSW08, pg. 561]) that f is an objectwise weak equivalence. Thus, we can conclude
that if f is a weak equivalence between globally fibrant presheaves in PreSptL(in)(R+

G, K),
then i∗(f) is a weak equivalence in PreSpt(G−Setsdf ).

Given the last statement, it is natural to wonder if i∗ preserves globally fibrant ob-
jects: if P is a fibrant presheaf in PreSptL(in)(R+

G, K), one can ask if i∗(P ) is fibrant.
Similarly, one can ask if i∗ preserves all global fibrations. Since global fibrations in
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PreSptL(in)(R+
G, K) are defined to be the maps with the right lifting property with re-

spect to all trivial cofibrations, the definition of local stable equivalence implies that to
answer these questions, one needs a good understanding of sheaves on the site (R+

G, K).
In particular, these matters could be considered when K is K or M. However, we have
not succeeded in carrying out such an analysis.
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