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EVENTUALLY CYCLIC SPECTRA OF PARAMETERIZED FLOWS

JOHN F. KENNISON

Abstract.

This paper continues the work of our previous papers, The cyclic spectrum of a Boolean
flow TAC 10 392-419 and Spectra of finitely generated Boolean flows TAC 16 434-
459. We define eventually cyclic Boolean flows and the eventually cyclic spectrum of a
Boolean flow. We show that this spectrum, as well as the spectra defined in our earlier
papers, extend to parametrized flows on Stone spaces and on compact Hausdorff space
when symbolic dynamics is used. An example shows that the cyclic spectrum for a
parameterized flow is sometimes over a non-spatial locale.

1. Introduction

This paper is a continuation of our earlier papers, [Kennison, 2002] and [Kennison, 2006].
We consider flows in a category, where:

1.1. Definition. The pair (X, t) is a flow in a category C if X is an object of C and
t : X → X is a morphism, called the iterator. If (X, t) and (Y, s) are flows in C, then a
flow homomorphism is a map h : X → Y for which sh = ht. We let Flow(C) denote
the resulting category of flows in C.

We are particularly interested in flows in the category of Stone spaces and in the cat-
egory of Boolean algebras. While these two categories are, by the Stone duality theorem,
dual to one another, our theoretical work is best carried out in the category of Boolean
flows where we have constructed the cyclic and simple spectra. On the other hand, we
are interested in applications to the category of Stone spaces and, more generally, in the
category of compact Hausdorff space. As pointed out in [Kennison, 2006], flows in com-
pact Hausdorff spaces can often be approximated by flows in Stone spaces by using the
method of symbolic dynamics.

This paper extends the previous work by constructing an eventually cyclic spectrum
and by constructing spectra for parameterized flows. We assume the reader is familiar
with our previous papers, and note the following facts and conventions:
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1.2. Stone duality. If X is a Stone space (compact, Hausdorff and totally discon-
nected) then Clop(X) denotes the Boolean algebra of all clopen subsets of X. This sets
up an equivalence between the category of Stone spaces and the dual of the category of
Boolean algebras. Under this duality, a continuous function f : X → Y corresponds to
the Boolean homomorphism f−1 : Clop(Y ) → Clop(X). We note that f is onto (in this
case, epi) if and only if f−1 is one-to-one (in this case mono) and f is one-to-one (mono)
if and only if f−1 is onto (epi). So if the mono-epi factorization of f : X → Y in Stone
spaces, is f = me where e : X → Z and m : Z → Y , then the mono-epi factorization
of f−1 is given by f−1 = e−1m−1. Therefore, if Z is the image of f , then Clop(Z) is the
image of f−1.

1.3. Some notation. A flow in Stone spaces is usually denoted by (X, t) or (Y, s),
almost always using “t” (and occasionally “s”) to denote the iterator. A flow in Boolean
algebras is usually denoted by (B, τ) or (C, τ) almost always using “τ” as the iterator.

If, by abuse of language, we say that B is a Boolean flow, then B is assumed to be a
Boolean algebra, with the iterator τ left implicit.

If (X, t) is a flow in Stone spaces, then Clop(X, t) denotes the Boolean flow
(Clop(X), t−1).

As in our previous papers, we use N to denote the semi-group of positive integers. We
also find it convenient to use N0 to denote the monoid of non-negative integers.

1.4. Locales and sheaves. Our treatment of these topics is based on [Johnstone,
1982] as summarized in [Kennison, 2006]. While some notational conventions are briefly
noted in section 5, we assume the reader is familiar with [Johnstone, 1982], [Kennison,
2002] and [Kennison, 2006]. In section 5, we briefly discuss the basic results of sites and
coverages, see [Johnstone, 1982, II.2.11], as this topic was not mentioned in [Kennison,
2006]. We also briefly examine the construction of the product locale, for products with
Stone spaces, as needed at the end of section 4.

2. Eventually Cyclic Flows

Conceptually, a flow (X, t) is eventually cyclic if the trajectory, (x, t(x), t2(x), . . . , tn(x), . . .)
of an element x ∈ X is allowed to wander around for a while before becoming part of a
cycle. The cycle starts with ts(x) and has period ` when ts(x) = ts+`(x). Before making
a formal definition, we consider an example.

2.1. Example. Let X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and define t : X → X by t(i) = i + 1
for i < 9 and t(9) = 6. Then {6, 7, 8, 9} is a cycle (called the loop) which the trajectory
of 0 eventually reaches. The other points, {0, 1, 2, 3, 4, 5} form what is called the stem of
X. (The terms “loop” and “stem” will be defined in greater generality, in 3.6.) Note that
t6(x) = t10(x) for all x ∈ X and so t6 = t10 is an identity. If (B, τ) = Clop(X, t) then,
by Stone duality, we also have τ 6 = τ 10. We sometimes write this as τ 6 = τ 6+4 which
indicates that X has a stem of length 6 and a loop of length 4.
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2.2. Definition. A Boolean flow (B, τ) is eventually cyclic if for each b ∈ B there
exists (s, `) ∈ N0×N such that τ s(b) = τ s+`(b).

For example, if (X, t) is a flow in Stone spaces and satisfies an identity of the form
ts = ts+` for (s, `) ∈ N0×N and if (B, τ) = Clop(X, t), then, by duality, τ s = τ s+`

so (B, τ) is eventually cyclic. But (B, τ) = Clop(X, t) may be eventually cyclic even if
each trajectory in X is infinite but approaches a limiting cycle. In this case, for each
x ∈ X, the closure of the trajectory of x has a “stem” and a “loop” but they may each be
infinitely long and involve tζ(x) for “transfinite” ζ. (See section 3 of this paper for details
and precise definitions. We also show that X itself is a disjoint union of a stem and a
loop.) A simple example of such an (X, t) with an infinite stem is given in the verification
of remark 4 in 2.3, below. Other examples are in section 6. See also the examples in
[Kennison, 2002] and [Kennison, 2006].

2.3. Remarks.

1. If (B, τ) is cyclic, then τ is one-to-one and onto.

2. If (B, τ) is eventually cyclic, then τ need not be either one-to-one or onto.

3. An eventually cyclic Boolean flow, (B, τ), is cyclic if and only if τ is one-to-one.

4. There exist eventually cyclic Boolean flows (B, τ) with τ onto but not one-to-one.

We sketch the proof of the above assertions. Statement (1) is noted in [Kennison,
2002] and is easily verified. Statement (2) follows from Example 2.1, where τ is not one-
to-one (because t is not onto) and τ is not onto (because t is not one-to-one). As for
(3), if τ is one-to-one, then so is τ s so if τ s(b) = τ s+`(b) then b = τ `(b). An example
for statement (4) is given by X = N ∪ {∞}, the one-point compactification of N, with
t(n) = n + 1 and t(∞) = ∞. Let (B, τ) = Clop(X, t). Then τ is onto as t is one-to-one
but τ is not one-to-one as t is not onto. It is readily verified that (B, τ) is eventually
cyclic and it can be shown that N ⊆ X is its stem.

2.4. The free profinite monoid, Ẑmon, on one generator. The free profinite
group on one generator, Ẑ, played an important role in [Kennison, 2002] in describing

cyclic flows. For eventually cyclic flows, the monoid, Ẑmon, plays a similar role.

2.5. Definition. Note that N0 = {0, 1, 2, . . . , n, . . .} is a monoid under addition. It is
also a flow (in Sets) where t(n) = n+1. We say that an equivalence relation E on N0 is a
flow congruence if (n,m) ∈ E implies (t(n), t(m)) ∈ E. We say that E is a monoidal
congruence if (n,m) ∈ E and (a, b) ∈ E imply (n+ a,m+ b) ∈ E.

2.6. Notation. If E is an equivalence relation, we write x ' y (mod E) to indicate
that (x, y) ∈ E. (If E is understood, we may simply write x ' y for (x, y) ∈ E.)

2.7. Lemma. Let (N0, t) be as in 2.5. An equivalence relation E on N0 is a flow con-
gruence if and only if it is a monoidal congruence.
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Proof. Clearly every monoidal congruence on N0 is a flow congruence, for if (n,m) ∈ E
then (t(n), t(m)) ∈ E as t(n) = n+1, t(m) = m+1 and E preserves addition. Conversely,
assume E is a flow congruence with (n,m) ∈ E and (a, b) ∈ E. We have to prove
(n+ a,m+ b) ∈ E. But then:

n+ a = tn(a) ' tn(b) = n+ b

A strictly similar argument shows n+ b ' m+ b and the result follows.

2.8. Notation. Let (s, `) ∈ N0×N be given. Then:

1. E(s, `) denotes the smallest flow congruence on N0 for which s ' s+ `.

2. N0(s, `) = N0/E(s, `) denotes both a flow in Sets and a monoid. Note that the flow
of Example 2.1 is isomorphic to N0(6, 4).

3. We let 4 denote the diagonal equivalence relation for which (n,m) ∈ 4 only if
n = m.

4. We write n ' m (mod s, `) as short for n ' m (mod E(s, `)) and n ' m (mod `)
has its usual meaning (that ` divides n−m).

2.9. Lemma. Assume (s, `) ∈ N0×N. Then (n,m) ∈ E(s, `) if and only if either
n = m or n ≥ s, m ≥ s and n ' m (mod `).

2.10. Lemma. Assume (s, `) ∈ N0×N. Then (B, τ) = Clop(N0(s, `), t) is eventually
cyclic.

Proof. It is easy to verify that ts = ts+` so, by Stone duality, τ s = τ s+`.

2.11. Proposition. Let E be a flow congruence on N0. Then either E = 4 or E =
E(s, `) for a unique pair (s, `) ∈ N0×N.

Proof. Assume that E 6= 4. We say that n ∈ N0 is paired by E if there exists
m ∈ N0 with (n,m) ∈ E but n 6= m. Let s be the smallest element of N0 which is paired
by E. Let ` be the smallest positive element of N0 for which (s, s + `) ∈ E. Clearly
E(s, `) ⊆ E. To prove that E = E(s, `), let (n,m) ∈ E be given. We need to show that
(n,m) ∈ E(s, `). We may as well assume that n < m. By the choice of s, we have s ≤ n.
Write m = n+ k`+ r where 0 ≤ r < `.

We claim that r = 0, which will complete the proof as then (n,m) ∈ E(s, `)), by
Lemma 2.9, and E(s, `) ⊆ E. Assume that r 6= 0 so 0 < r < `. By the same lemma, we
have (n, n + k`) ∈ E(s, `) ⊆ E so (n,m) ∈ E if and only if (n + k`,m) ∈ E, so we may
as well assume that n = n+ k` and m = n+ r.

So (n, n+ r) ∈ E and therefore (n+ i, n+ i+ r) ∈ E for all i. We may as well assume
that s ' n (mod `) as we can otherwise replace n by a suitably chosen n + i. With
s ' n (mod `) we have (s, n) ∈ E(s, `) ⊆ E and (s + r, n + r) ∈ E(s, `) ⊆ E (by 2.9)
and, since (n, n + r) ∈ E we get, by transitivity, (s, s + r) ∈ E with 0 < r < ` which
contradicts the choice of `.
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2.12. Notation. We use the following notation and conventions when dealing with the
flow congruences E(s, `) on N0.

• Notation such as (s, `) or (s1, `1) or (s2, `2) will be assumed to refer to members of
N0×N unless the contrary is explicitly stated.

• We let q(s, `) : N0 → N0(s, `) denote the obvious quotient map.

• We call q(s, `)({0, 1, . . . , s − 1}) the stem of N0(s, `) and the rest of N0(s, `) its
loop. (This is consistent with Definition 3.6).

2.13. Definition. We define v as the partial ordering of N0×N for which (s0, `0) v
(s1, `1) if and only if E(s0, `0) ⊆ E(s1, `1).

We chose the v notation because it allows for good infs and sups (denoted by u and
t respectively), because it suggests ⊆ and because ≤ seems wrong since (s0, `0) v (s1, `1)
implies that s0 and `0 are at least as big as s1 and `1.

2.14. Proposition.

1. (s0, `0) v (s1, `1) if and only if there exists a flow homomorphism h : N0(s0, `0) →
N0(s1, `1) for which hq(s0, `0) = q(s1, `1) (in which case h is also a monoidal homo-
morphism).

2. (s0, `0) v (s1, `1) if and only if s0 ≥ s1 and `0 is a multiple of `1.

3. The partial ordering v on N0×N admits infs and sups (denoted by u and t) where:

(s0, `0) u (s1, `1) = (max(s0, s1), lcm(`0, `1))

(s0, `0) t (s1, `1) = (min(s0, s1), gcd(`0, `1))

2.15. Construction of Ẑmon. We define Ẑmon as the limit of the diagram of all
N0(s, `) as (s, `) varies in N0×N and of all maps h : N0(s0, `0) → N0(s1, `1) for which
hq(s0, `0) = q(s1, `1).

We let p(s, `) : Ẑmon → N0(s, `) be the projection map associated with the limit.

Ẑmon has a flow structure, a monoidal structure and a topological structure given by the
limit topology. It is readily verified that Ẑmon is then a flow in Stone spaces.

There is a natural embedding N0 → Ẑmon as q(s, `) : N0 → N0(s, `) is a cone over

the diagram used to define Ẑmon. We will identify N0 with its image in Ẑmon. This
has the effect of making q(s, `) : N0 → N0(s, `) the restriction of p(s, `) to N0. Note also

that the flow iterator, t of Ẑmon, is defined by t(ζ) = ζ + 1.

2.16. Remark. A concrete representation of Clop(Ẑmon) and an alternate construction

of Ẑmon appear in Example 6.3.
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2.17. Lemma. Recall that N0 ⊆ Ẑmon. Then ζ ∈ Ẑmon is in N0 if and only if there
exists (s, `) with p(s, `)(ζ) in the stem of N0(s, `).

Proof. Suppose ζ ∈ N0 ⊆ Ẑmon. Choose any (s, `) with ζ < s. Then ζ clearly maps to
the stem of N0(s, `).

Conversely, suppose p(s0, `0)(ζ) is in the stem of N0(s0, `0) for some (s0, `0). Then
there exists a unique n ∈ N0 such that p(s0, `0)(n) = p(s0, `0)(ζ) We have to show
that p(s1, `1)(n) = p(s1, `1)(ζ) for all (s1, `1) ∈ N0×N. This is immediate if (s0, `0) v
(s1, `1) and straightforward if (s1, `1) v (s0, `0). The general case follows by examining
(s0, `0) u (s1, `1).

2.18. Notation. We call N0 the stem of Ẑmon and the rest of Ẑmon its loop.

2.19. Lemma. The loop of N0(s, `) is, as a monoid, isomorphic to the group Z`.

Proof. This is straightforward as, for n,m ≥ s, we have q(s, `)(n) = q(s, `)(m) if and
only if n ' m (mod `).

2.20. Notation. Further notation for Ẑmon.

• Extending a similar notation for N0, given ζ, γ ∈ Ẑmon, we write ζ ' γ (mod s, `)
when p(s, `)(ζ) = p(s, `)(γ).

• Given ζ ∈ Ẑmon and (s, `) ∈ N0×N, we let U(s, `, ζ) = p(s, `)−1[p(s, `)(ζ)]. It

consists of all γ ∈ Ẑmon for which ζ ' γ (mod s, `) .

2.21. Lemma. If ζ ' γ (mod si, `i) for i = 0, 1 then ζ ' γ (mod s, `) where (s, `) =
(s0, `0) u (s1, `1).

Proof. Let h0 : N0(s, `) → N0(s0, `0) and h1 : N0(s, `) → N0(s1, `1) be the obvious

monoidal homomorphisms in the diagram of which Ẑmon is the limit.
Case 1: Assume that p(s0, `0)(ζ) = p(s0, `0)(γ) = w is in the stem of N0(s0, `0).

Then, as can be readily verified, there is exactly one v ∈ N0(s, `) for which h0(v) = w so
p(s, `)(ζ) = p(s, `)(γ) = v.

Case 2: p(s1, `1)(ζ) = p(s1, `1)(γ) is in the stem of N0(s1, `1). (Same as Case 1).
Case 3: p(s0, `0)(ζ) = p(s0, `0)(γ) is in the loop of N0(s0, `0) and p(s1, `1)(ζ) =

p(s1, `1)(γ) is in the loop of N0(s1, `1). Choose i ∈ {0, 1} so that s = si (as s =
max(s0, s1)). From this, it follows that hi : N0(s, `)→ N0(si, `i) maps the stem of N0(s, `)
to the stem of N0(si, `i), so p(s, `)(ζ) and p(s, `)(γ) must both lie in the loop of N0(s, `).
But the loops of N0(s0, `0), N0(s1, `1) and N0(s, `) are isomorphic as monoids to Z`0 , Z`1

and Z`. Choose n,m ∈ N0 such that n,m ≥ s and ζ ' n (mod `), γ ' m (mod `). Then,
n ' m (mod `0) and n ' m (mod `1), so n ' m (mod `) as ` = lcm(`0, `1).

2.22. Corollary. If ζ ∈ Ẑmon then U(s0, `0, ζ)∩U(s1, `1, ζ) = U(s, `, ζ) where (s, `) =
(s0, `0)u (s1, `1). It follows that the open sets U(s, `, ζ) (as s, `, ζ vary) form a clopen base

for the topology on Ẑmon.
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2.23. Corollary. The subset N0 ⊆ Ẑmon is dense.

Proof. Obviously there are members of N0 in every basic open set of the form U(s, `, ζ)

2.24. Proposition. Ẑmon is the disjoint union N0 ∪ Ẑ where Ẑ is isomorphic, both
topologically and as a monoid, to the profinite integers. The subset Ẑ ⊆ Ẑmon is closed
and the subset N0 is open and discrete.

Proof. Assume ζ ∈ Ẑmon and ζ /∈ N0. Then, by Lemma 2.17, p(s, `)(ζ) is always in the
loop of N0(s, `) which is equivalent to Z`. It is readily verified that elements of this type
form a limit of the discrete groups of the form Z` and such a limit is isomorphic to the
profinite integers. It is clear that Ẑ is closed, as it is compact. As for N0, we can, for
each n ∈ N0, choose s > n (and any `) then U(s, `, n) = {n}.

2.25. The subset N0 ⊆ Ẑmon and its “Shadow”, Ñ0 ⊆ Ẑmon. Since Ẑmon is the
disjoint union N0 ∪ Ẑ and since Ẑ, the profinite integers, contains, in a natural way, a
copy of N0, we see that Ẑmon contains two disjoint copies of N0. We let Ñ0 denote the
copy of N0 contained in Ẑ. That is, for n ∈ N0, we define ñ ∈ Ẑmon so that p(s, `)(ñ)
is in the unique member of the loop of N0(s, `) which is congruent to n (mod `). Then

let Ñ0 = {ñ|n ∈ N0}. Note that every member of N0 is in the stem of Ẑmon and every

member of Ñ0 is in the loop.

2.26. Remark. The following observations illustrate the difference between N0 and Ñ0,
as subsets of Ẑmon and will be useful later on.

1. If ζ ∈ Ẑ ⊆ Ẑmon then ζ + 0̃ = ζ but if n ∈ N0 ⊆ Ẑmon then n+ 0̃ = ñ.

2. The inclusion map I : Ẑ → Ẑmon is a continuous flow homomorphism and a semi-
group homomorphism but not a monoidal homomorphism.

3. The map R : Ẑmon → Ẑ for which R(ζ) = ζ+0̃ is a continuous flow homomorphism
and a retract (a left inverse of I) and a monoidal homomorphism.

Proof. Most of the assertions in this remark are established by examining the projections
onto the monoids N0(s, `). Note that once we are in the loop portion of N0(s, `), adding
0̃ has no effect, but in the stem portion of N0(s, `), adding 0̃ moves an element into the
loop.

2.27. Definition. Let S be a set and T : Ẑmon×S → S be a function. For each
ζ ∈ Ẑmon, let T (ζ, ) denote the function from S to S which maps x ∈ S to T (ζ, x).
Then:

1. We say that T is an action if the map ζ 7→ T (ζ, ) is a monoidal homomorphism

from the monoid Ẑmon to the set of functions from S to S (which is a monoid under
composition). This is equivalent to the conditions that T (0, s) = s for all s ∈ S and
T (ζ, T (γ, s)) = T (ζ + γ, s) for all s, ζ, γ.
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2. If t : S → S is a function, then T is compatible with t (or compatible if t
is understood) if T (n, ) = tn for all n ∈ N0. (If T is an action, it suffices that
T (1, ) = t.) If T is compatible with t, then tζ(x) will sometimes be used to denote
T (ζ, x)

3. If S is a Boolean algebra, then T is admissible if T (ζ, ) is a Boolean flow homo-

morphism for all ζ ∈ Ẑmon. If S is a Stone space, then T is admissible if T (ζ, ) is

a continuous flow homomorphism for all ζ ∈ Ẑmon. It will always be clear from the
context which definition of admissible applies in any specific case.

4. If S is a Boolean algebra, then T is continuous if T : Ẑmon×S → S is continuous
(where Ẑmon has its limit topology, S has the discrete topology, and Ẑmon×S
has the product topology). If S is a Stone space, then T is continuous if T :

Ẑmon×S → S is continuous (where Ẑmon has its limit topology, S has its Stone

topology, and Ẑmon×S has the product topology). It will always be clear from the
context which definition of continuous applies in any specific case.

2.28. Lemma. Let B be any set and τ : B → B any function and assume b ∈ B. If
τ s1(b) = τ s1+`1(b) and (s0, `0) v (s1, `1) then τ s0(b) = τ s0+`0(b).

Proof. Let E = {(n,m) ∈ N0×N0|τn(b) = τm(b)}. Then E is clearly a flow congruence
on N0 and E 6= 4 so E = E(s, `) for some (s, `) ∈ N0×N. Now (s′, `′) ∈ E if and only
if E(s′, `′) ⊆ E if and only if (s′, `′) v (s, `) and the result follows easily.

2.29. Theorem. Let (B, τ) be a Boolean flow. Then

1. (B, τ) is eventually cyclic if and only if there is a continuous, compatible action by

Ẑmon on B. Moreover, such an action is necessarily admissible.

2. There is at most one continuous, compatible action by Ẑmon on B.

3. If (B, τ) and (C, τ) are eventually cyclic Boolean flows and if h : B → C is a flow

homomorphism, then h preserves the Ẑmon action. So h(τ ζ(b)) = (τ ζ(h(b)) for all

ζ ∈ Ẑmon.

Proof. To prove (1), we first assume that (B, τ) is eventually cyclic. Let ζ ∈ Ẑmon

and b ∈ B be given. Choose (s, `) such that τ s(b) = τ s+`(b). Choose k ∈ N0 such that
ζ ' k (mod s, `). Then define T (ζ, b) = τ k(b). We claim that T is well-defined. It
is clear that it does not depend on the choice of k for which ζ ' k (mod s, `). Also,
if we assume that τ si(b) = τ si+`i(b) for i = 1, 2, we have to show that the resulting
definitions of T (ζ, b) are the same. This is readily verified if the (si, `i) are comparable,
for example, if (s1, `1) v (s2, `2), and the general case follows by the above lemma, using
(s3, `3) = (s1, `1) u (s2, `2).
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It is straightforward to show that T is compatible with τ and that T (ζ, ) is a monoidal
action. Also, it is obvious that T is continuous as T is constant on neighborhoods of the
form U(s, `, ζ)×{b}

We claim that any continuous, compatible action T is admissible which means we
must prove that T (ζ, ) : B → B is a Boolean flow homomorphism for all ζ ∈ Ẑmon. But
this is readily verified if ζ = n ∈ N0 (as T is compatible) and the general case follows as

N0 is dense in Ẑmon (using the fact that T is continuous).

To prove the converse, assume that T : Ẑmon×B → B is a continuous, compatible
action. Let b ∈ B be given. Define ρ(b) = T (0̃, b). Then, as T is continuous, there exists a
basic neighborhood U = U(s, `, 0̃) such that T (u, b) = ρ(b) for all u ∈ U . Choose k ∈ N0

so that k ≥ s and ` divides k. Then k ∈ U so T (k, b) = ρ(b). Similarly T (k+ `, b) = ρ(b).
since T is compatible, we have tk(b) = ρ(b) and tk+`(b) = ρ(b) so tk(b) = tk+`(b).

Statement (2), that T is uniquely determined by these conditions, follows as N0 is a

dense subset of Ẑmon.
To prove (3), note that if h is a flow homomorphism, then h preserves the restriction

of the action T to N0×B and the result follows as N0 is dense in Ẑmon.

2.30. Remark. The cyclic analogue of the above theorem would say that a Boolean flow
(B, τ) is cyclic if and only if B admits a continuous, compatible action by Ẑ (a subgroup

of Ẑmon). The result is partially given in [Kennison, 2002, Theorem 2.1], which says that

if B is cyclic, then there is such an action by Ẑ. The converse is omitted in [Kennison,
2002], but it follows by essentially the same argument as given in the above proof. Note

that if T is an action on a cyclic flow B by Ẑmon, then T (0̃, b) = b as 0̃ is the additive

identity of Ẑ. The cyclic analogues of (2) and (3) of the above theorem are also not
explicitly stated in [Kennison, 2002] but are easily proven.

We summarize the above remark, and Remark 2.26, with the following corollary.

2.31. Corollary. Let (B, τ) be an eventually cyclic Boolean flow so that τ ζ(b) is de-
fined for all b ∈ B. Then the following statements are equivalent:

1. (B, τ) is cyclic.

2. τ ñ = τn for all n ∈ N0.

3. The action of Ẑmon on B restricts to a group action by Ẑ on B (so that τ 0̃ is the

identity map as 0̃ is the identity of Ẑ ⊆ Ẑmon.)

3. From the Perspective of Stone Spaces

In this section, we explore the properties of a flow (X, t) in Stone spaces when we know
that Clop(X, t) is a cyclic or eventually cyclic Boolean flow. We start by extending a
definition from [Kennison, 2002] and proving the analogue of Theorem 2.29.



354 JOHN F. KENNISON

3.1. Definition. A flow (X, t) in Stone spaces is said to be dually cyclic (resp.
dually eventually cyclic) if (B, τ) = Clop(X, t) is a cyclic (resp. eventually cyclic)
Boolean flow.

The term “Boolean cyclic”, as used in [Kennison, 2002], has been changed to dually
cyclic because of the possible confusion between a “Boolean cyclic flow” (which is a flow
in Stone spaces) and a “cyclic Boolean flow” (which is a flow in Boolean algebras).

3.2. Theorem. Let (X, t) be a flow in Stone spaces. Then:

1. (X, t) is dually eventually cyclic if and only if there is a continuous, compatible,

admissible action of Ẑmon on X.

2. There is at most one such action by Ẑmon on X.

3. If (X, t) and (Y, t) are both dually eventually cyclic flows in Stone spaces, and if

h : X → Y is a continuous flow homomorphism, then h preserves the Ẑmon action.
So h(τ ζ(x)) = (τ ζ(h(x)) for all ζ ∈ Ẑmon and all x ∈ X.

Proof. We let (B, τ) = Clop(X, t). To prove (1), first assume that (B, τ) is eventually

cyclic. The action of Ẑmon on B allows us to define τ ζ : B → B for each ζ ∈ Ẑmon. We
let tζ : X → X be the continuous function determined by duality. We can then define
T : Ẑmon×X → X by T (ζ, x) = tζ(x). It follows that T is an action as the Stone duality

preserves composition and Ẑmon is commutative. We must show that T is continuous.
Suppose that x ∈ X and ζ ∈ Ẑmon are given, with T (ζ, x) = y. Let b be a clopen
neighborhood of y. We must find a neighborhood U of ζ and a clopen neighborhood c of
x such that T (U × c) ⊆ b. Assume that τ s(b) = τ s+`(b) and that ζ ' k (mod s, `). Let
U = U(s, `, ζ) and c = τ k(b). Then U × c has the desired property.

Conversely, assume that T : Ẑmon×X → X is a continuous, compatible, admissible
action of Ẑmon on X. Let b ∈ Clop(X) be given. Then T−1(b) and T−1(¬b) are compli-

mentary clopen subsets of Ẑmon×X. For each (ζ, x) ∈ Ẑmon×X, we can find a basic
neighborhood of the form U(s, `, ζ)× c which T either maps entirely into b or entirely into

¬b. By compactness, we can cover Ẑmon×X with finitely many such basic neighborhoods.
By taking the inf of the (s, `)′s that are involved, we can assume that the same (s, `) is
involved in the choice of each neighborhood U(s, `, ζ)× c. There are also finitely many
clopen sets c that are involved and they clearly generate an atomic Boolean subalgebra
of Clop(X), with atoms which will denote by c1, c2, . . . , cn. Then the neighborhoods are
those of the form U(s, `, k)× ci for 1 ≤ i ≤ n and 0 ≤ k ≤ (s+`−1). Defining τ ζ as (tζ)−1,
it then readily follows that τ ζ(b) is the union of all ci for which T (U(s, `, ζ)× ci) ⊆ b. So
τλ(b) = τ γ(b) whenever λ ' γ (mod s, `). But s ' s + ` (mod s, `) which implies that
τ s(b) = τ s+`(b).

The proofs are (2) and (3) follow, as in the proof of (2) and (3) of 2.29, because N0 is

dense in Ẑmon.
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3.3. Definition. Let (B, τ) be a Boolean flow. Following [Kennison, 2002], we define
b ∈ B to be periodic if there exists n ∈ N with τn(b) = b. We let Loop(B, τ) denote the
subset of all periodic elements of B.

We further define b ∈ B to be eventually periodic if there exist (s, `) ∈ N0×N such
that τ s(b) = τ s+`(b). We let ECLoop(B, τ) denote the subset of all eventually periodic
elements of B.

3.4. Proposition. Let (B, τ) be a Boolean flow Then:

1. Loop(B, τ) is a cyclic subflow of B.

2. The inclusion of Loop(B, τ) in (B, τ) is a coreflection of (B, τ) into the full subcat-
egory of cyclic flows.

3. The inclusion of ECLoop(B, τ) in (B, τ) is a coreflection of (B, τ) into the full
subcategory of eventually cyclic flows.

4. Assume that (B, τ) is an eventually cyclic Boolean flow so that τ ζ is defined for

every ζ ∈ Ẑmon. Let ρ = τ 0̃. Then ρ is a flow homomorphism which retracts (B, τ)
onto Loop(B, τ) (that is, ρ is a left inverse of the inclusion i : Loop(B, τ) ⊆ (B, τ)).
Moreover, ρ is the unique flow homomorphism retraction onto Loop(B).

Proof. The proofs of (1), (2), (3) are straightforward. As for (4), note that ρ2 = ρ so,
letting C be the image of ρ, we see that ρ retracts B onto C. By Theorem 2.29, ρ is a
Boolean homomorphism and a flow homomorphism because ρτ = τ 0̃+1 = τρ . It follows
that C is a subflow and, by using Corollary 2.31(2), we readily see that C is the largest
cyclic subflow of B, so C = Loop(B).

To prove uniqueness, suppose ρ′ : B → Loop(B) is another flow homomorphism and

retraction. Then by Theorem 2.29, ρ′ preserves the action of Ẑmon so ρ′ preserves ρ = τ 0̃(b)
so ρ′ρ = ρρ′. But ρ(ρ′(b)) = ρ′(b) as ρ is a retraction onto the range of ρ′ and, similarly
ρ′(ρ(b)) = ρ(b) so ρ′(b) = ρ(ρ′(b)) = ρ′(ρ(b)) = ρ(b).

3.5. Corollary.

1. In the category of Boolean flows, the cyclic flows are closed under subflows, quotient
flows and colimits.

2. In the category of Boolean flows, the eventually cyclic flows are closed under sub-
flows, quotient flows and colimits.

3. In the category of flows in Stone spaces, the dually cyclic flows are closed under
subflows, quotient flows and limits.

4. In the category of flows in Stone spaces, the dually eventually cyclic flows are closed
under subflows, quotient flows and limits.

5. The flow (Ẑmon, t) in Stone spaces, where t(ζ) = ζ + 1, is dually eventually cyclic.
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Proof. (1), (2): The closures under quotient flows and subflows are easily proven. The
closure under colimits follows as the cyclic flows (resp. the eventually cyclic flows) are
coreflective.

(3), (4): These follow by Stone duality.

(5) This follows from (4) as Ẑmon is a limit of dually eventually cyclic flows.

We note that an alternate proof that Ẑmon is dually eventually cyclic follows from
Theorem 3.2 as Ẑmon clearly acts on itself in a continuous, compatible manner.

3.6. Definition. Let (X, t) be a dually eventually cyclic flow in Stone spaces and let
R : X → X be t0̃. Define Loop(X) to be the image of R.

We define Stem(X) as the complement of Loop(X)

3.7. Lemma. Suppose that (X, t) is a dually eventually cyclic flow in Stone spaces and
let A ⊆ X be a closed subflow. Then A is a dually cyclic subflow if and only if (t)0̃, when
restricted to A, is the identity.

Proof. Assume that A ⊆ X is dually cyclic. The restriction t|A is the iterator of A
and, since A is dually cyclic, (t|A)0̃ is, by 2.31, the identity on A. But the inclusion

(A, t|A)→ (X, t) preserves the action of Ẑmon so (t|A)0̃ is the restriction of t0̃. The proof
of the converse is similar.

3.8. Theorem. Let (X, t) be a dually eventually cyclic flow in Stone spaces. Then
Loop(X) is the largest dually cyclic closed subflow of X and R (defined above) retracts
X onto Loop(X). Moreover, R is the unique continuous flow homomorphism which is a
retraction onto Loop(X)

Also, if ζ ∈ Ẑ, the loop of Ẑmon, then tζ(x) ∈ Loop(X) for all x ∈ X. It follows that
if x ∈ Stem(X) then the boundary of the trajectory of x lies in Loop(X). In general, if
h : X → Y is a continuous flow homomorphism, where X and Y are both dually eventually
cyclic, then h maps Loop(X) to Loop(Y ).

Proof. Factor R : X → X as R = (I)R0 where I : Loop(X) ⊆ X is the inclusion and R0 :
X → Loop(X) is defined so that R0(x) = R(x). Similarly, the map ρ = τ 0̃ : B → B has a
mono-epi factorization as B → Loop(B) ⊆ B. Under the Stone duality ρ corresponds to
R and, as explained in 1.2, the mono-epi factorization is preserved, so Clop(Loop(X)) =
Loop(B). This proves that Loop(X) is dually cyclic and that x ∈ Loop(X) if and only
if x = R(x). By the lemma, it easily follows that Loop(X) is the largest dually cyclic
subflow of X.

If r : X → Loop(X) is another left inverse continuous flow to the inclusion Loop(X) ⊆
X, then the analogue of the argument given in 3.4, applies here to show that r = R.

The final statements easily follow from the fact that (t0̃)(tζ) = tζ when ζ is in Ẑ, the

loop of Ẑmon and the fact that h preserves t0̃.
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3.9. Remark. The argument in the above proof that R is the unique retraction onto
Loop(X) is essentially the same as the argument for the analogous statement about
Loop(B), but the statements, both of which show that certain types of left inverses are
unique, are not duals. (The dual of a statement which says that a left inverse is unique
would be a statement that a right inverse is unique.) We leave it to the reader to formulate
the duals of these statements.

3.10. Example. The subsets Stem(N0(s, `)) and Stem(Ẑmon) and the subflows

Loop(N0(s, `)) and Loop(Ẑmon) are what were previously defined as the stems and
loops of these flows.

3.11. Remark. In general, when (B, τ) is not necessarily eventually cyclic, then
Loop(B) is a cyclic subflow of B, so, when B = Clop(X), we could define Loop(X) as
a cyclic quotient of X (and the largest such quotient). It is only when B is eventually
cyclic that we can assert that Loop(X) would also be a closed cyclic subflow of X (and
the largest such subflow). Example 6.1 shows that X may have a largest closed cyclic
subflow which fails to be a retract, so X cannot be dually eventually cyclic. Example 6.2
shows that X may fail to have a largest closed cyclic subflow, which again shows that X
cannot be dually eventually cyclic.

We end this section with the following potentially useful proposition.

3.12. Proposition. Let (X, t) be a flow in Stone spaces and let (B, τ) = Clop(X, t).
Suppose that S is a family of clopen subsets which forms a subbase for the topology on X
such that for each b ∈ S, there exists (s, `) with τ s(b) = τ s+`(b). Then (B, τ) is eventually
cyclic.

Proof. Let F be the set of all b ∈ B for which there exists (s, `) with τ s(b) = τ s+`(b).
Suppose b, c ∈ F are given. Choose (s0, `0) and (s1, `1) such that τ s0 (b) = τ s0+`0(b) and
τ s1 (c) = τ s1+`1(c). Let (s, `) = (s0, `0) u (s1, `1). Then it follows from lemma 2.28 that
τ s(b) = τ s+`(b) and τ s(c) = τ s+`(c). Since τ is as Boolean homomorphism, it follows that
τ s(b ∧ c) = τ s+`(b ∧ c) and τ s(b ∨ c) = τ s+`(b ∨ c). From this it follows that F is closed
under the formation of finite intersections and unions. Since S ⊆ F , we see that F is a
base for the topology on X. Since each b ∈ B is open in X it is a union of basic opens.
Since b is compact, it is a finite union of basic opens and so is in F .

4. Parameterized Flows

There are many examples of flows in compact Hausdorff spaces that depend on parameters.
The main idea of this section is that such a parameterized flow corresponds to a sheaf of
Boolean flows. The precise statement of this idea is given in Propositions 4.2, 4.3 and 4.5
and in Remark 4.7 which discusses extensions of these propositions.
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4.1. Definition. Let X be a compact Hausdorff space and P be a topological space
of “parameters”. By a parameterized flow on X with parameters in P , we mean
a continuous function t : P ×X → X. For each p ∈ P we define tp : X → X by
tp(x) = t(p, x) and the parameterized flow t can be written as {(X, tp)|p ∈ P}. We also
let πP : P ×X → P and πX : P ×X → X denote the projection maps.

4.2. Proposition. Suppose t : P ×X → X is a parameterized flow on X, as above.
Assume that X is a Stone space. Let B = Clop(X) and, for each p ∈ P , let τp : B → B
be defined as (tp)

−1. Consider the sheaf of Boolean algebras over P which is constantly
equal to B (so it is represented by the local homeomorphism B×P → P ). Then this sheaf
of Boolean algebras can be extended to a sheaf of Boolean flows whose stalk over p ∈ P is
the flow (B, τp).

Proof. Let b and c be clopen subsets of X such that τp(b) = c for some p ∈ P . To prove
the proposition, we must show there exists a neighborhood U of p such that τu(b) = c for
all u ∈ U . Note that τu(b) = c if and only if tu(c) ⊆ b and tu(¬c) ⊆ ¬b (where ¬ denotes
the complement).

We first show that there exists a neighborhood U1 of p such that tu(c) ⊆ b for all
u ∈ U1. Let:

A = {(u, x) ∈ P ×X|t(u, x) /∈ b and x ∈ c}

Then A is a closed subset of P ×X as A = t−1(¬b)) ∩ πX−1(c). Since X is compact, the
map πp : P ×X → P is a closed mapping, so πP (A) is a closed subset of P . Clearly
p /∈ πP (A), as c = tp

−1(b). Let U1 be any neighborhood of p which misses πp(A).
A strictly similar proof shows that there exists a neighborhood U2 of p such that

tu(¬c) ⊆ ¬b for all u ∈ U2. Now let U = U1 ∩ U2.

4.3. Proposition. Conversely, if P is a topological space and if (B, τ) is a sheaf of
Boolean flows over P where B (ignoring τ) is a constant sheaf, constantly equal to Clop(X)
for some Stone space X, then there exists a parameterized flow t : P ×X → X such that
the stalk of (B, τ) is (B, τp) where τp = tp

−1 for each p ∈ P .

Proof. Let τp be the action of τ on the stalk Bp = B over p ∈ P . Then, by duality,
τp = tp

−1 for a continuous tp : X → X. Define t : P ×X → X by t(p, x) = tp(x). It
remains to show that t is continuous. Suppose (p, x) ∈ P ×X and t(p, x) = y. Let b be
any clopen neighborhood of y. It suffices to find a neighborhood of (p, x) which t maps
into b. Let c = tp

−1(b) = τp(b). By the sheaf condition, there exists a neighborhood U of
p such that c = τu(b) for all u ∈ U . Then U × c is the desired neighborhood of (p, x).

4.4. Review of symbolic dynamics. Recall, as discussed in [Kennison, 2006], that if
t : X → X is a flow in compact Hausdorff spaces and if A0, A1, . . . An is a finite collection
of closed subsets of X, with X =

⋃
Ai, we can then use symbolic dynamics to approximate

the flow (X, t) by a flow on a Stone space X̂. To do this, we let Σ = {0, 1, . . . , n} be the
set of all “symbols” and say that x ∈ X is associated with σ in ΣN0 if tn(x) ∈ Aσ(n) for
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all n ∈ N0. Then X̂ is the subspace of all σ ∈ ΣN0 which are associated with at least one
x ∈ X. We still use t to denote the iterator on X̂ where it is defined by:

t(σ(0), σ(1), . . . , σ(n), . . .) = (σ(1), . . . , σ(n), . . .)

4.5. Proposition. Let t : P ×X → X be a parameterized flow on X (where X is
compact, Hausdorff but not necessarily totally disconnected). Let A0, A1, . . . An be a finite
collection of closed subsets of X, with X =

⋃
Ai and let Σ = {0, 1, . . . , n} be as above.

For each p ∈ P , let X̂p denote the subspace of ΣN0 constructed from the flow (X, tp) as

above. Let Bp = Clop(X̂p) and let τp = tp
−1. Then there exists a sheaf of Boolean flows

over P , whose stalk over p is (Bp, τp) (as constructed in the proof below).

Proof. Since X̂p is a subflow of ΣN0 , it follows by duality that Bp is a quotient flow of

B = Clop(ΣN0). For each p ∈ P , define Ip as the ideal of all b ∈ B for which b ∩ X̂p = ∅.
(This is the ideal for which Bp = B/Ip.) We claim that if b ∈ Ip then there exists U , a
neighborhood of p such that b ∈ Iu for all u ∈ U (and the proof readily follows from this
claim). We need the following lemma to continue our proof:

4.6. Lemma. Let t : P ×X → X be a parameterized flow on the compact Hausdorff
space X and let n ∈ N0 be given. Then the map fn : P ×X → X defined by fn(p, x) =
(tp)

n(x) is continuous.

Proof of the Lemma. Define θ : P ×X → P ×X by θ(p, x) = (p, t(p, x)). Then θ is
clearly continuous and observe that fn = πXθ

n.

Proof of the Proposition, concluded. We assume that b ∈ Ip and first consider
the case where b is a basic clopen subset of ΣN0 , meaning that there exist distinct integers,
n1, . . . , nk ∈ N0 and “symbols” s1, . . . , sk ∈ Σ such that:

b = πn1

−1(s1) ∩ πn2

−1(s2) ∩ . . . ∩ πnk

−1(sk)

Define g : P ×X → Xk by:

g(p, x) = (tp
n1(x), tp

n2(x), . . . , tp
nk(x))

Then g is continuous, by the above lemma. Let A = g−1(As1 × . . .×Ask
). It is

clear that p /∈ πP (A) for if (p, x) ∈ A then x is associated, via tp, with a member of b
contradicting the assumption that b ∈ Ip. But since X is compact, it follows that πP is a
closed mapping, so πP (A) is a closed subset of P so there exists a neighborhood U of p
with U ∩ πP (A) = ∅. Then U is the desired neighborhood.

In the general case, the clopen set b is a union of basic clopen subsets. Since b is
compact, it is a finite union of such clopens, say b = b1 ∪ b2 ∪ . . . ∪ bn. Since we are still
assuming that b ∈ Ip it follows that each bi ∈ Ip so there exists Ui, a neighborhood of p
with the above property. Then U = U1 ∩ U2 ∩ . . . ∩ Un has the desired property.
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4.7. Remark. The constructions in Propositions 4.2, 4.3 and 4.5 still apply even when
P is a locale, even though the resulting sheaves of Boolean flows need not be determined
by the behavior on the stalks.

We sketch the proof of this remark. We note that a flow on X parameterized by a
locale P is given by a locale map t : P ×X → X where P ×X is the product of the
locale P with O(X), see [Johnstone, 1982]. An element of the product locale P ×X
(or coproduct frame) can be defined as a family J of pairs (U, c) where U ∈ P and
c ∈ Clop(X) in the same way that, if P is spatial, an open subset W of P ×X can be
determined by the family of all such (U, c) with U × c ⊆ W . The conditions on the family
J are that:

1. J is downward closed ((U, c) ∈ J , V ⊆ U and d ⊆ c imply (V, d) ∈ J ).

2. If (Uα, c) ∈ J for all α, then (
∨
Uα, c) ∈ J

3. If c =
∨
cα is a finite sup for which (U, cα) ∈ J for all α, then (U, c) ∈ J .

A family J satisfying the above conditions will be called a coverage ideal as this is
an example of a C-ideal, as defined in [Johnstone, 1982, II.2.11] and reviewed briefly in
the next section of this paper. We note that condition (3) can be restated as requiring that
for all U ∈ P , we have (U, ∅) ∈ J and if (U, c) ∈ J and (U, d) ∈ J then (U, c ∨ d) ∈ J .
The family of all coverage ideals, ordered by inclusion, forms a frame, which is P ×X.

We observe that if J and K are coverage ideals, then J ∨ K, the smallest coverage
ideal containing J ∪ K, has the useful property that (U, a) ∈ J ∨ K if and only if there
exists an admitting family {Uα, cα, dα} with (Uα, cα) ∈ J , (Uα, dα) ∈ K and U =

∨
Uα

and, a ≤ cα∨dα for all α. (Note that if {Uα, cα, dα} admits (U, a) and {U ′α, c′α, d′α} admits
(U, a′), then {Uα ∧ Uβ, cα ∨ c′β, dα ∨ d′β} admits (U, a ∨ a′).)

To generalize Proposition 4.2, suppose that t : P ×X → X is a locale map, where X is
a Stone space (so t is a frame homomorphism from O(X) to P ×X). For each clopen b of
X, we have elements, t(b) and t(¬b), of P ×X. Since these elements are complimentary,
we see that (>P , X) is in the coverage ideal t(b)∨ t(¬b), and, by the above observation on
J ∨K, we can write >P =

∨
Uα where there are clopens cα, dα of X such that cα∨dα = X

and each (Uα, cα) ∈ t(b) while each (Uα, dα) ∈ t(¬b). It follows that cα = ¬dα. Let B be
the constant sheaf over P obtained from the Boolean algebra Clop(X) in Sets and define
τ so that τ(b) = cα on Uα.

(This result reduces to Proposition 4.2 when P is a spatial locale because the Stone
space X is locally compact, so the product locale coincides with the locale of the product
topology, see [Johnstone, 1982, page 61].)

The proof of the converse result, Proposition 4.3, goes through to the localic case in
similar fashion. To define t : P ×X → X we need to define the frame homomorphism
from the opens of X to P ×X and we can reverse the steps in the above argument.

As for extending Proposition 4.5 to the localic case, suppose X is compact Hausdorff
and that A0, A1, . . . An is a finite collection of closed subsets of X, with X =

⋃
Ai. Let
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B be the sheaf of Boolean flows over P generated by the presheaf which is constantly
Clop(ΣN0). We need to define the flow ideal I so that the sheaf we want to construct is
B/I. To do this, we must indicate when b is in I for each clopen subset b of ΣN0 . Suppose
that b is a basic clopen, then, as in the proof of 4.5, we can find a closed subset A ⊆ Xk

such that b ∈ IU for U an open subset of P , if and only if πP
−1(U) ⊆ g−1(Xk − A). A

straightforward argument shows that this gives us the definition of I.

5. Sheaves of Boolean Flows and their Spectra

We assume the reader is familiar with locales and sheaves as in [Johnstone, 1982] and
[Kennison, 2006]. So, for us, a frame is the same thing as a locale except that a locale
map from L to M is a frame homomorphism from M to L. If X is a topological space,
then O(X) denotes its frame of open sets. (We may denote this locale by O(X) or by X
depending on which notation seems to fit the context best.) A locale is spatial if it is
equivalent to O(X) for some topological space X.

If B is a sheaf over L, then an element of B(u) is sometimes called a section (over
u). If b and c are sections over u, then ‖b = c‖ is defined as the largest element v ∈ L
with v ≤ u such that b|v = c|v, see [Kennison, 2006]. (Note that we use b|v to denote
the restriction of b to v.)

If L is a locale, then Sh(L) denotes the category of sheaves over L. If f : L → M
is a frame homomorphism, then the functor f∗ : Sh(M) → Sh(L) is defined so that
f∗(C)(u) = C(f(u)). The functor f ∗ : Sh(L)→ Sh(M) is the left adjoint of f∗.

As in [Kennison, 2006], an object of the category of Boolean flows over locales
is a pair (B,L) where B is a Boolean flow over L. We say (θ, f) : (B,L) → (C,M)
is a morphism if f : L → M is a frame homomorphism and θ : f ∗(B) → C is a
Boolean flow homomorphism over M . The composition of (θ, f) : (B,L) → (C,M) with
(ψ, g) : (C,M)→ (D,N) is (ψg∗(θ), fg).

5.1. Definition. Let (B,L) be a Boolean flow over L. Let Loop0(B) be the sub-presheaf
of B for which Loop0(B)(u) = Loop(B(u)) and let Loop(B) be the subsheaf of B generated
by Loop0(B). Then (B,L) is a cyclic sheaf of Boolean flows if Loop(B) = B.

Similarly, let ECLoop0(B) be the sub-presheaf of B for which ECLoop0(B)(u) =
ECLoop(B(u)) and let ECLoop(B) be the subsheaf of B generated by ECLoop0(B). Then
(B,L) is an eventually cyclic sheaf of Boolean flows if ECLoop(B) = B.

5.2. Lemma. Let (B,L) be a Boolean flow over L. Then (B,L) is cyclic if and only if,
for all b ∈ B(u):

u =
∨
{‖b = τn(b)‖ |n ∈ N}.

Also (B,L) is eventually cyclic if and only if, for all b ∈ B(u):

u =
∨
{
∥∥τ s(b) = τ s+`(b)

∥∥ |(s, `) ∈ N0×N}.
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There is a similar condition for B being a simple sheaf of Boolean flows, as defined in
[Kennison, 2006] and this will be recalled later in this section.

5.3. Proposition. Let (B,L) be an eventually cyclic Boolean flow over L. Then there

is a unique action by Ẑmon (by sheaf morphisms which are also flow homomorphisms)

which is consistent with the action of Ẑmon on ECLoop0(B).

Proof. By Theorem 2.29, the monoid Ẑmon acts on each ECLoop0(u) and, using part
(3) of that theorem, it readily follows that these actions patch together to get the desired
action on ECLoop(B) = B.

5.4. Some Open Questions. Even if B is eventually cyclic as a sheaf of Boolean flows,
it does not follow that each B(u) is eventually cyclic, since ECLoop0(B) need not equal

ECLoop(B). So the action by Ẑmon need not be continuous, as then B(u) would have to
be eventually cyclic by Theorem 2.29. We have the following questions, which are similar
to ones pursued in [Kennison, 2006] with only partial success:

• When B is an eventually cyclic sheaf of Boolean flows over L and u ∈ L how do
we classify the resulting action by Ẑmon on B(u) which seems natural but is not
necessarily continuous?

• Furthermore, suppose B(u) = Clop(X) (where X may depend on u). We can use

the possibly non-continuous action T by Ẑmon to extend Definition 3.6 by letting
the “pseudo-loop” of X be the image of t0̃ = T (0̃, ) . What are the properties of
this pseudo-loop?

We proceed to construct various spectra for a Boolean flow over a locale. In view
of the previous section, this allows us to define spectra for a parameterized flow. As in
[Kennison, 2006], our construction starts with the construction of the universal quotient
flow but our approach uses locales defined by generators and relations. Constructions of
this type are discussed in [Johnstone, 1982] but not in [Kennison, 2006] so we review
them briefly.

5.5. Defining Locales by Generators and Relations. Suppose we want to con-
struct the frame generated by a set of elements on which some equations, involving infs
and sups, are imposed. We can readily find the meet-semilattice generated by the ele-
ments (where a meet-semilattice is a partially ordered set, with finite infs). We need to
impose some equations of the form

∨
{ai} = a. When this happens, we say that {ai}

forms a “covering” of a. To be more precise, we establish some notation and make a
formal definition.

5.6. Notation. Let A be a meet-semilattice. Then:

1. For a ∈ A, we let ↓(a) denote {b ∈ A|b ≤ a}.

2. For S ⊆↓(a) and b ∈ A, we let S ∧ b denote{s ∧ b|s ∈ S}.
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5.7. Definition. Let A be a meet-semilattice. We say that C is a coverage on A if
C is a function such that C(a) is, for all a ∈ A, a family of subsets of ↓(a) with the
meet-stability property that S ∈ C(a) and b ≤ a imply S ∧ b ∈ C(b). The members of
C(a) are called “coverings” of a.

We say that (A,C) is a site if C is a coverage on A.

5.8. Definition. Let (A,C) be a site. A subset J ⊆ A is a C-ideal if and only if:

1. a ∈ J and b ≤ a imply b ∈ J

2. S ∈ C(a) and S ⊆ J imply a ∈ J .

The set of all C-ideals is denoted by C Idl(A) which, when partially ordered by inclusion,
forms a frame, see [Johnstone, 1982, II.2.11].

We define g : A→ C Idl(A) so that g(a) is the smallest C-ideal containing ↓(a).

5.9. Definition. Let (A,C) be a site. Then an (A,C)-presheaf is a functor F : Aop →
Sets. Given such a presheaf F and a covering S ∈ C(a), we say that {xs ∈ F (s)|s ∈ S}
is an S-compatible family if for all s1, s2 ∈ S the elements xs1 , xs2 have the same
restriction to s1 ∧ s2.

We say that F satisfies the sheaf condition (resp. the separation condition) with
respect to S ∈ C(a) if for every S-compatible family, {xs}, there exists a unique (resp. at
most one) x ∈ F (a) for which x|s = xs for all s ∈ S.

The presheaf F is an (A,C)-sheaf (resp. an (A,C)-separated presheaf) if F is a
presheaf which satisfies the sheaf condition (resp. the separation condition) for all a ∈ A
and all S ∈ C(a).

5.10. Remark. We will use the following properties of sites:

1. The site (A,C) generates the frame C Idl(A) where the meet-preserving map g :
A → C Idl(A) converts coverings to sups and satisfies the universal property for
such maps.

2. Every (A,C)-sheaf extends to a sheaf over C Idl(A). An (A,C)-sheaf of Boolean
flows (meaning that F (a) is a Boolean flow for all a ∈ A and the restrictions are
flow homomorphisms) extends to a Boolean flow over C Idl(A).

3. If F is an (A,C)-sheaf of Boolean flows, then a subsheaf I is a flow ideal of F if
I(a) ⊆ F (a) is a flow ideal for all a ∈ A. In this case, we let F/I be the (A,C)-
sheaf generated by the presheaf which maps a ∈ A to F (a)/I(a), The universal
map from this presheaf to the sheaf it generates is then a one-to-one map from
F (a)/I(a)→ (F/I)(a)

The proofs of the assertions in this remark can be obtained from [Johnstone, 1982]
and the references listed there. One approach, to (3), is to extend the site (A,C) to a
Grothendieck site, as discussed in [Johnstone, 2002, Proposition 2.1.9] or to use [Borceux,
1994, Proposition 3.2.12].
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5.11. Definition. In what follows, if (B, τ) is a Boolean flow, then it is convenient to
define

σ : B → B by σ(b) = b ∨ τ(b).

5.12. Heuristics for constructing the universal quotient flow. As shown
in [Kennison, 2006], the universal quotient flow for a Boolean flow (in Sets) is a sheaf
over W , the space of all flow ideals of B. A base for the topology on W is given by the
collection {N(b)|b ∈ B}, where N(b) = {I ∈ W|b ∈ I}. Since these basic opens generate
the frame O(W), we can think of the elements of B as generating the locale O(W) where
each element b corresponds to the basic open N(b). But the given ordering on B is wrong
because if b ≤ c then N(b) ⊇ N(c).

So, for b, c ∈ B, we define b v c if and only if b ≥ c then the meet is given by
bu c = b∨ c. To account for the fact that N(b) ⊆ N(τ(b)) we make {bu τ(b)} a one-point
covering of b. More generally, we require {c} to be a one-point covering of b whenever
σ(b) v c v b. Note that b u τ(b) = σ(b)

We leave it as an exercise for the interested reader to verify that this defines a site and
the frame it generates is isomorphic to O(W). (This result also follows by comparing the
universal quotient as constructed in [Kennison, 2006] to the construction given below.)

5.13. Construction of the universal flow quotient. Let B be a Boolean flow
over a locale L. We want to construct a quotient flow (B0, L0) through which all other
quotient flows factor uniquely, as in [Kennison, 2006].

We start by describing L0 in terms of “generators and relations”.

5.14. Definition. Let (B,L) be a Boolean flow over a locale. Define

A = {(u, b)|u ∈ L, b ∈ B(u)}

Define a partial ordering on A so that (u, b) v (v, c) if and only if u ≤ v and b ≥ c|u.
Then A is a meet semi-lattice with top element (>, 0) and infs given by (u, b) u (v, c) =
(u ∧ v, b′ ∨ c′) where b′ and c′ are the restrictions of b and c to u ∧ v.

We also define a coverage C on A so that {(u, c)} is a one-point coverage of (u, b)
whenever b ≤ c ≤ b ∨ τ(b) and (u, b) is covered by {(ui, bi)} whenever u =

∨
ui and

bi = b|ui. We let L0 = C-Idl and let g : A → L0 map the generators into L0. We define
a frame homomorphism h : L→ L0 for which h(u) = [u, 0] where [u, 0] = g(u, 0). We let
v denote the order relation on L0.

Note that the elements [u, b] generate L0 in the sense that every other element is a sup
of elements of the form [u, b].

5.15. Definition. Let (B,L) and (A,C) and L0 be as above. For each u ∈ L and each
b ∈ B(u), let I(b) be the smallest flow ideal of B(u) which contains b.

Let B′ : Aop → Sets be the presheaf for which B′(u, b) = B(u)/I(b), with the obvious
restrictions. We define B0 as the (A,C)-sheaf generated by the (A,C)-presheaf B′. We
let ν : B′ → B0 be the universal map.
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We further define B to be the (A,C)-presheaf for which B(u, b) = B(u) with the
obvious restrictions. We let q : B → B′ be the map for which q(u,b) : B(u) → B(u)/I(b)
is the quotient map (note that B(u) = B(u, b) and B(u)/I(b) = B′(u, b)).

5.16. Lemma. The (A,C)-presheaf B is a sheaf.

5.17. Lemma. c ∈ I(b) if and only if c ≤ σn(b) for some n ∈ N.

Proof. This is proven in [Kennison, 2006] and we repeat the simple proof here. Clearly
if c ≤ σn(b) for some n ∈ N then c ∈ I(b). Conversely, it is readily shown that the set of
all such elements c forms a flow ideal containing b.

5.18. Lemma. Let η : B → B0 be defined as νq where q is defined above and ν is the
universal map sending B′ to its associated sheaf, B0. Let b, c ∈ B(u) be given. Then
η[u,b](c) = 0 if and only if we can write u =

∨
{ui} so that for each i there exists ni ∈ N

with ci ≤ σni(bi) (where ci = c|ui and bi = b|ui).

Proof. We define a subfunctor I of B so that I(u, b) is the flow ideal I(b) ⊆ B(u). Define
another subfunctor Ĩ so that I ⊆ Ĩ ⊆ B and that c ∈ Ĩ(b) if and only if we can write
u =

∨
{ui} so that ci ∈ I(bi) (where ci = c|ui and bi = b|ui). It is readily shown that

Ĩ is an (A,C)-sheaf and is the subsheaf of B generated by I. It follows that B/Ĩ is an
(A,C)-separated presheaf and, since B′ = B/I, it is readily shown that η(u,b)(c) = 0 if

and only if c ∈ Ĩ(b). The lemma follows from Remark 5.10(3).

5.19. Corollary. The natural map B(u) → B′[u, 0] → B0[u, 0] is one-to-one as
Ĩ(0) = {0}.

5.20. Lemma. Given B ∈ Sh(M), let f 0(B) be the presheaf for which f 0(B)(v) is
the set of pairs (x, u) for which x ∈ B(u) and f(u) ≥ v with the understanding that
(x1, u1) = (x2, u2) whenever there exists w ≤ u1 ∧ u2 with f(w) ≥ v and x1|w = x2|w.
Then f ∗(B) is the sheafification of f 0(B).

Proof. We sketch the proof of this result. Recall that if C ∈ Sh(M), then f∗(C) ∈ Sh(L)
is defined so that f∗(C)(u) = C(f(U)) and f ∗ : Sh(L) → Sh(M) is defined as the left
adjoint of f∗. So we must show there is a natural bijective correspondence between natural
transformations λ : f ∗(B)→ C and λ̂ : B → f∗(C).

Let λ : f ∗(B) → C be given. to define λ̂, we must define λ̂u(b) whenever b ∈ B(u).
But then (b, u) represents an element of f 0(B)(u) hence of f ∗(B)(u) and we define λ̂u(b) =
λf(u)(b, u). In the other direction, given λ̂ : B → f∗(C), we define λ : f ∗(B)→ C so that

λv(b, u) = λ̂u(b)|v. The remaining details are a bit tedious but straightforward.

5.21. Notation. Let f : L → M be a frame homomorphism. Then by the adjointness
between f ∗ and f∗, for every natural transformation λ : f ∗(B)→ C there is a transpose
λ̂ : B → f∗(C). We use this “hat” notation to denote the transpose.



366 JOHN F. KENNISON

5.22. Lemma. The (A,C)-sheaf B0 extends to a sheaf (also denoted by B0) on L0.
The (A,C)-sheaf B extends to a sheaf (also denoted by B) on L0.
The (A,C)-natural transformation η : B → B0 extends to a natural transformation

(also denoted by η) between the extensions of these sheaves to L0.
Recall that h : L→ L0 is a frame homomorphism. Then h∗(B) = B so η : h∗(B)→ B0

is a sheaf morphism.

Proof. The only difficult part is showing that h∗(B) = B. By the above lemma, let
(x, v) represent an element of h∗(B)[u, b] with x ∈ B(v) and h(v) ≥ [u, b]. Recall that
(x1, v1) is identified with (x2, v2) if there exists w ≤ v1 ∧ v2 with h(w) ≥ [u, b] and x1, x2

having equal restrictions to w. So each (x, v) is equivalent to its restriction (x|u, u) and
it readily follows that h∗(B)(u, b) corresponds to B(u) = B[u, b]. The extension to other
elements of L0 is straightforward as they are all sups of elements of the form [u, b].

5.23. Theorem. The morphism (η, h) : (B,L) to (B0, L0) is the universal quotient flow
of (B,L).

Proof. First, it follows from the above lemma that (η, h) is a morphism of flows over
locales. We need to show that it is a localic quotient map and that every other such
quotient map from (B,L) factors in the appropriate way.

By the construction of h∗(B), we see, for all (u, b) ∈ L0, that h∗(B)(u, b) contains
the image of ηu : B(u) → B0(u, 0) which then restricts to an element in B0(u, b) so it
contains B(u)/I(b) which is B′(u, b). But the elements in B′(u, b) generate the sheaf B0,
so η : h∗(B)→ B0 is an epimorphism.

Suppose (λ,m) : (B,L)→ (F,M) is another quotient flow of (B,L). So F is a Boolean
flow over the locale M and m : L→M is a frame homomorphism and λ : m∗(B)→ F is
a sheaf epimorphism. We have to show there is a unique map (λ,m) : (B0, L0)→ (F,M)
with λ : m∗(B0)→ (F,M) an isomorphism such that the following diagram commutes:

(B,L)

(F,M)

(λ,m)

��?
??

??
??

??
??

?
(B,L) (B0, L0)

(η,h) // (B0, L0)

(F,M)

(λ,m)

���
�

�
�

�
�

We need some lemmas.

5.24. Lemma. Given b ∈ B(u) we let b denote the corresponding element of B0[u, 0].
Assume that α v [u, 0] in L0. Then b|α = 0 if and only if α v [u, b].

Proof. Clearly b|[u, b] = 0 so one direction is clear. Conversely, assume that b|α = 0. We
first consider the case where α = [u, c] for some c ∈ B(u). Since b|[u, c] = 0 it follows that
b must be in Ĩ(c) as the map B′(u)/Ĩ(c) → B0[u, c] is one-to-one. But b ∈ Ĩ(c) means
we can write u =

∨
{ui} with bi ≤ σni(ci) for some ni ∈ N where bi = b|ui and ci = c|ui.
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Now since bi ≤ σni(ci) then [ui, σ
ni(ci)] v [ui, bi]. But [ui, ci] = [ui, σ

ni(ci)] v [ui, bi] and,
by taking sups, we get [u, c] v [u, b] or α v [u, b].

Next suppose α = [v, c]. Since α ≤ [u, 0] we have v ≤ u so the above argument applies
by restricting everything to v.

In general, α is a sup of elements of the form [v, c] and we can apply the argument to
each [v, c].

5.25. Lemma. Let (B,L) and (η, h) : (B,L) → (B0, L0) and (λ,m) : (B,L) → (F,M)
be as in the above diagram. Let b ∈ B(u) be given, and, as in the above lemma, let b
denote the corresponding element of B0[u, 0]. If (λ,m) exists as indicated in the above
diagram, then m[u, b] =

∥∥b = 0
∥∥.

Proof. Assume that λ and m exist. Let v = m[u, b] and w =
∥∥b = 0

∥∥. Consider

λv : m∗(B0(v)) → F (v). By Lemma 5.20, the elements of m∗(B0(v)) are represented by
pairs (x, α) with α ∈ L0, m(α) ≥ v, x ∈ B0(α). Also (x1, α1) is identified with (x2, α2)
if there exists β v α1 ∧ α2 with h(β) w [u, b] and x1, x2 having equal restrictions to β.

Now b ∈ B0[u, 0] restricts to 0 in B0[u, b] and m(u, b) ≥ v (in fact m(u, b) = v) so b
restricts to 0 in F (v) so v ≤

∥∥b = 0
∥∥ = w.

On the other hand, by definition of w, we see that the image of b when restricted to
m∗(B0) then mapped by λ must be 0. Since λw is one-to-one, we see that b restricts to 0
in m∗(B0). So there exists α ∈ L0 such that b|α = 0 and m(α) ≥ w. But α v [u, b] (by
Lemma 5.24) so m[u, b] ≥ m(α) ≥ w. But v = m[u, b] so v ≥ w.

Proof of the theorem. Let (η, h) : (B,L) → (B0, L0) and (λ,m) : (B,L) → (F,M)
be as in the above diagram, with λ a sheaf epimorphism over M . We must show there
exists a unique (λ,m) : (B0, L0) → (F,M) with λ : m∗(B0) → (F,M) an isomorphism
such that (λ,m)(η, h) = (λ,m).

We first show the uniqueness. the above lemma shows that m is uniquely determined
by the condition that m[u, b] =

∥∥b = 0
∥∥ as the elements [u, b] generate L0.

We next note that λ is determined by λ̂ : B0 → m∗(F ). It suffices to show that λ̂[u,b]

is determined as the lower arrow of the following commutative diagram:

B(u)/Ĩ(u) F (
∥∥b = 0

∥∥)
λ̂[u,b]

//

B0[u, 0]

B(u)/Ĩ(u)
��

B0[u, 0] F (m(u))
λ̂[u,0] // F (m(u))

F (
∥∥b = 0

∥∥)
��

Note that the upper arrow, λ̂[u,0], is determined by the given map λ. The vertical
arrows are restrictions and the one on the left is onto, so the lower arrow is uniquely

determined. Since λ̂[u,b] is determined, we see that λ̂α is determined for all α ∈ L0 as



368 JOHN F. KENNISON

every such α is a sup of elements of the form [u, b]. Therefore λ̂ is determined and it
determines λ.

As for the existence of (λ,m), we define them in the only possible way and show that

they have the desired properties. So we can define λ̂ using the above diagram, noting

that Ĩ will get mapped to 0 by the restriction to F (
∥∥b = 0

∥∥). From λ̂ we can define λ.

To show that λ is an isomorphism, it suffices to show that it is one-to-one (it has to be
onto as λ is). So suppose v ∈ M and consider λv : m∗B0(v) → F (v). Let λv(x) = 0.
We have to show that x = 0. By Lemma 5.20, assume x is represented by (α, y) with
α ∈ L0 and y ∈ B0(α) where m(α) ≥ v. By writing α =

∨
[ui, vi], we can reduce to the

case where α = [u, b] for u ∈ L and b ∈ B(u). Since y is obtained by patching elements of
B(v)/Ĩ(b) we may reduce to the case where x is represented by ([u, b], c) for c ∈ B/Ĩ(b)
and m[u, b] ≥ v and λ(c) = 0. But if v ≤ m[u, b], then v ≤ m[u, b ∨ c] = [u, b] ∧ [u, c]. So
x is represented by ([u, b ∨ c], c) and c ' 0 modulo Ĩ(b ∨ c) so x = 0 in m∗(B)(v).

The other details are straightforward.

5.26. Construction of the cyclic spectrum of (B,L). Let (B,L) be a Boolean
flow over a locale and let (B0, L0) be its universal quotient flow. Then as shown in [Ken-
nison, 2006, Proposition 3.23], there is a largest sublocale of L0 for which the restriction
of B0 is cyclic and this sublocale, together with the restriction of B0, is the cyclic spec-
trum of (B,L). An examination of this sublocale readily shows it is generated by forcing∨
{‖b = τn(b)‖ |n ∈ N} to be u for all b ∈ B(u). This could be done by adding suitable

coverings to the site (A,C) used above.

5.27. Construction of the eventually cyclic spectrum of (B,L). The anal-
ysis used above extends in a completely straightforward way to give us the eventually
cyclic spectrum. Proposition 3.23 of [Kennison, 2006] readily extends to give us the
largest sublocale for which the restriction of B0 is eventually cyclic. Again, we could
simply add new covers to the site (A,C) used above by requiring, for all b ∈ B(u), that
{
∥∥τ s(b) = τ s+`(b)

∥∥} be a covering of (u, 0) (and enough other coverings to give us meet-
stability, as in 5.7). This gives us the spectrum directly, without first constructing the
universal quotient flow.

5.28. Making the spectrum non-trivial. A Boolean flow over a locale is non-
trivial if ‖0 = 1‖ = ⊥. We can force any flow to be non-trivial by requiring that the
empty family cover ‖0 = 1‖. We generally recommend that this be done to avoid giving
the spectrum superfluous elements. (Doing this gives us the “non-trivial cyclic spectrum”
or the “non-trivial eventually cyclic spectrum”. )

5.29. Construction of the simple spectrum of (B,L). Simple Boolean flows are
defined in [Kennison, 2006]. They must be non-trivial and satisfy the condition that for
all b ∈ B(u) we have:

u = ‖b = 0‖ ∨ [
∨
k

∥∥σk(b) = 1
∥∥]
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(We note that “k Exp(b)” is used in [Kennison, 2006] for σk(b).)
We can construct the simple spectrum of (B,L) by restricting the universal quotient

flow to the largest sublocale for which it is non-trivial and satisfies the above condition.
Again, we could alternatively do this by adding some coverings to the site (A,C).

We generally find the description of these spectra in terms of generators and relations
to be both theoretically and computationally useful. Sometimes it is interesting to know
that the resulting locale is spatial, as in the following proposition.

5.30. Proposition. Let (B,L) be a Boolean flow over a locale and let (B0, L0) be its
universal quotient. Then L0 is spatial if L is.

Proof. Assume L = O(P ) where P is a topological space. Let Bp be the stalk of B over
p ∈ P . LetWp be the set of all flow ideals of Bp. If b ∈ B(u), for u an open neighborhood
of p ∈ P , let bp denote the element of the stalk Bp represented by b. We define a new
space Q where:

Q = {(p, I)|p ∈ P, I ∈ Wp}

If u is open in P and b ∈ B(u) we let:

N(u, b) = {(q, J)|q ∈ u, bq ∈ J}

A straightforward verification shows that the family {N(u, b)} is a base for a topology on
Q. To show that O(Q) is isomorphic to L0, we use the fact, given in [Johnstone, 1982],
that L0, as a frame, is the set of all C-ideals of A. If U ∈ O(Q) then we define:

Φ(U) = {(u, b)|N(u, b) ⊆ U}

and if J is a C-ideal of A, we define:

Θ(J ) =
⋃
{N(u, b)|(u, b) ∈ J }

It is readily shown that Φ and Θ are well-defined frame homomorphisms and inverses of
each other. The only difficulty is in showing that Φ(Θ(J )) = J . To prove this, assume:

N(v, c) ⊆
⋃
{N(u, b)|(u, b) ∈ J }

We must then show that (v, c) ∈ J . Let p ∈ v be arbitrary and let I be the smallest
ideal of Bp which contains cp. Then (p, I) ∈ N(v, c) so there exists (u, b) ∈ J such that
(p, cp) ∈ N(u, b). We may as well assume that u ≤ v (otherwise replace u by u ∧ v). So
p ∈ u and bp ∈ I. But, by Lemma 5.17, this implies that bp ≤ σn(cp) (for some n). We
also may as well assume that u = ‖b ≤ σn(c)‖ = ‖b ∧ σn(c) = b‖ (otherwise replace u by
‖b ∧ σn(c) = b‖). Then from the covering property of J we readily see that (u, c|u) ∈ J
and the set of all such (u, c|u) covers (v, c).
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6. Examples and Observations

6.1. Example. Let X = Z∪{−∞,∞} with t(x) = x+1, t(−∞) = −∞ and t(∞) =∞).
Let B = Clop(X).

1. X has a largest closed cyclic subflow, namely {−∞,∞}, but there is no continuous
flow homomorphism retracting X onto {−∞,∞}. So X cannot be dually eventually
cyclic.

2. The universal quotient of B is a sheaf over the space W of all flow ideals of B,
which is, by Stone duality, equivalent to the set of all closed subflows of X. To
get a non-trivial spectrum, we eliminate the empty subflow (corresponding to B
as an ideal of itself) and, letting [n,∞] = {i|n ≤ i ≤ ∞}, we can list the closed,
non-empty subflows of X as:

{∞}, {−∞}, {−∞,∞}, [n,∞], {−∞} ∪ [n,∞], X

(where n is allowed to vary in Z.) All of these subflows are readily seen to be dually
eventually cyclic except for X itself. The eventually cyclic non-trivial spectrum
is (Bj,O(X)j) where j is a nucleus representing the largest sublocale of O(W) for
which the restriction of B is eventually cyclic. But this sublocale cannot contain the
point corresponding to X itself and the largest sublocale not containing this point
is equivalent to the spaceW−{{0}} as the zero ideal corresponds to the subflow X
itself. A direct verification shows that the restriction to this subspace is eventually
cyclic.

3. The non-trivial, cyclic spectrum of the above flow is a sheaf over a locale on the
space with three points, corresponding to {∞}, {−∞}, {−∞,∞}. We leave it to
the reader to verify this and compute the non-discrete topology on this space.

6.2. Example. Let S be the disjoint union of the flows {Zp} where p varies in the set of
all primes. Let t : S → S be defined as t(x) = x+ 1 on each Zp. Let X be the coproduct,
in Stone spaces, of these flows, then X is the Stone-Čech compactification of S. The
extension of t to X is then βt, but, by abuse of language, we will denote βt by t.

1. As discussed in [Kennison, 2002, p.395,407], X is not dually cyclic.

2. X does not have a largest closed cyclic subflow as such a subflow would have to
contain each copy of Zp but the union of all of these is dense in X, so X is not
dually eventually cyclic.

3. B can be represented as the global sections of a cyclic Boolean flow over a locale,
in fact over a discrete topological space which has a point p for each prime number
and has stalk equal to Clop(Zp) at p. So Ẑ acts on B, and also acts on X. But
these actions are not continuous.
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6.3. Example. (Concrete representations of flows on βN0, Ẑmon and Ẑ.)

1. Let t : N0 → N0 be defined by t(x) = x + 1. Let B be the Boolean algebra of
all subsets of N0 and let τ : B → B be t−1. Then (B, τ) is a Boolean flow. The
corresponding flow in Stone Space is (βN0, βt) where β denotes the Stone-Čech
compactification. This is the free flow in Stone spaces generated by a single point.
(cf. Example 6.7)

2. Let Bec = ECLoop(B), where B is as given above. Then b ∈ Bec means that there
exists (s, `) ∈ N0×N such that for n ≥ s we have n ∈ Bec if and only if n+` ∈ Bec.

Then Clop(Ẑmon) ' (Bec, τ). Moreover Ẑmon is equivalent to the quotient of the
Stone-Čech compactification of N0 where two ultrafilters on N0 are identified when
they contain the same elements of Bec.

In other words, the points of Ẑmon correspond to maximal filters of sets in Bec.
Given n ∈ N0, there are two associated maximal filters. One is the principal filter
generated by {n} (so b is in this filter if and only if n ∈ b). The other is generated
by sets of the form:

b(n, s, `) = {m ∈ N0|m ≥ s, and m ' n(mod `)

This maximal filter corresponds to ñ in Ñ0, the shadow of N0 ⊆ Ẑmon.

3. Let Bcyc = Loop(B). Then b ∈ Bcyc means that there exists ` such that x ∈ b if and

only if x+ ` ∈ b. In this case, Clop(Bcyc) ' Clop(Ẑ).

Proof. We will only sketch the proof of (2). The other proofs are similar. Since N0

is dense in Ẑmon, the clopens of Ẑmon are determined by their intersections with N0.
Every clopen b of Ẑmon satisfies τ s(b) = τ s+`(b) for some (s, `) ∈ N0×N it follows
that the intersection of b with N0 lies in Bec. Conversely, every b ∈ Bec is of the form
p(s, `)−1(c)∩N0 for c a clopen of N0(s, `) and the remaining details are straightforward.

6.4. Observation. Let B be a Boolean flow. Then W, the space of all flow ideals of B
and its subspace, Wcyc of all I ∈ W with B/I cyclic, are both sober spaces.

Proof. Recall that {N(b)|b ∈ B} is a base for the topology on W where N(b) = {I ∈
W|b ∈ I}. Assume that F ⊆ W is a closed irreducible subset, meaning that F is non-
empty and whenever F ⊆ F1 ∪ F2 for F1, F2 closed in W , we have either F ⊆ F1 or
F ⊆ F2. We need to find an I0 ∈ W such that F is the closure of the one-point set {I0},
which is {I ∈ W|I ⊆ I0}.

Let I0 =
⋃
{I|I ∈ F}. It is readily shown that I0 is a flow ideal. For example, assume

b, c ∈ I0 but b∨ c /∈ I0. Then F ⊆ (W−N(b))∪ (W−N(c)) but neither F ⊆ (W−N(b))
nor F ⊆ (W −N(b)), contradicting the irreducibility of F .

It readily follows that I0 ∈ F from the fact that F is closed and, similarly, that the
closure of {I0} is a subset of F . But, by construction, every I ∈ F is a subset of I0, so F
is the closure of {I0}. Finally, I0 is clearly unique as W is a T0-space.

The same argument applies to Wcyc.
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6.5. Observation. If A is an algebra for any finitary algebraic theory and W is the
space of all congruences on A, topologized so that {N(a, b)} is a subbase, where N(a, b) =
{E ∈ W|(a, b) ∈ E}, then W is a sober space and so is any subspace consisting of all
E ∈ W for which A/E satisfies a geometric condition.

The argument given for 6.4 applies.

6.6. Observation. In [Kennison, 2002], we defined a cyclic flow for any “well-
behaved” category in terms of equalizers. In much the same way, we could also define
an eventually cyclic flow for any such category. It would still be the case that the cyclic
flows in Flow(C) as well as the eventually cyclic flows would form full, coreflective
subcategories, as the arguments given for Proposition 3.4 easily extend to the general
case.

6.7. Observation. If Σ = {0, 1} then, as observed in [Kennison, 2006], the Boolean
flow Clop(ΣN0) is generated by the element g = π0

−1(1). In fact, Clop(ΣN0) is the free
Boolean flow on one generator.

This can be proven directly or by noting that if A is any Boolean algebra, then the
coproduct of N0 copies of A is the free Boolean flow generated by A (this is a special case
of an observation in [Lawvere, 1986]) and Σ = {0, 1} is the free Boolean algebra on one
generator. Note that Clop converts the power of N0 copies of Σ in Stone spaces into the
copower of N0 copies of Clop(Σ).

It similarly follows that if Σ = {1, 2, . . . , 2n}, then Clop(ΣN0) is the free Boolean flow
on n generators. Also if Σ has n elements, then Clop(ΣN0) is the Boolean flow generated
by b1, b2, . . . , bn subject to the conditions that bi ∧ bj = 0 for i 6= j and

∨
{bi} = 1.

6.8. Example. [Irrational Rotations of the Circle] Let X = [0, 2] with the points 0
and 2 identified, so that X is a circle. (We use the interval [0, 2] to avoid the fractions
that would arise if we used [0, 1].) We can think of X as R/2Z (the reals modulo the
even integers) so that X has a useful modulo 2 addition. Let P be the irrationals in
[0, 1]. Define t : P ×X → X by t(p, x) = tp(x) = x + p (with the addition modulo 2Z).
Let A0 = [0, 1], A1 = [1, 2] be closed subsets of X and use symbolic dynamics, as in
Proposition 4.5 to get a sheaf of Boolean flows over P . Then:

1. The simple spectrum of (B,O(P )) is (B,O(P )) itself.

2. The non-trivial cyclic spectrum of (B,O(P )) is (Bj,O(P )j) where j is a nucleus
on O(P ) for which u is dense in j(u). (So the sublocale j is at at least as large as
the double-negation sublocale, for which the nucleus is given by the interior of the
closure).

3. The non-trivial eventually cyclic spectrum of (B,O(P )) coincides with its non-trivial
cyclic spectrum.

4. For u ∈ O(P ) the natural map η̂u : B(u) → Bj(u) is one-to-one (where j is as
above).
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Proof. (1) The universal quotient flow for (B,O(P )) is spatial in view of Proposition
5.30. The flow Clop(X, tp) is simple for each p because, as is well-known, the only non-
empty closed subflow of X is X itself. The requirement that a simple flow be non-trivial
eliminates the places where 0 = 1 and, by examining the proof of Proposition 5.30, we
see that we get (B,O(P )).

(2) We will prove this after stating some lemmas.
(3) The iterator, tp, has an inverse for each p, so the Boolean iterator has an inverse

and will be one-to-one so all eventually cyclic quotients are cyclic, and the arguments
used for (2) will apply.

(4) Corollary 6.11 says that if a section b 6= 0 at p, then b is non-zero in a neighborhood
of p and this leads to the result, in view of the nature of the nucleus j.

6.9. Lemma. Let X and P be as above and let X̂p ⊆ 2N0 be the family of all {0, 1}-
sequences which are compatible with some x ∈ X under tp. Let π(n) : 2N0 → 2n+1 be
the projection onto the first n + 1 coordinates. Let s = (s0, s1, . . . , sn) be given and let
b = π−1

(n)(s). Let c(k) be the number of symbol changes in (s0, s1, . . . , sk) (that is, c(k)

is the number of times si 6= si+1 for 0 ≤ i < k.) Then b 6= 0 in Bp if and only if, for all
k,m ∈ {0, 1, . . . , n} we have:

(1) c(k)− 1 ≤ kp ≤ c(k) + 1
(2) c(m)− c(k)− 1 ≤ (m− k)p ≤ c(m)− c(k) + 1

Proof. (In this proof, we work with addition on R, not R/2Z.) Assume that b 6= 0 in
Bp. Then, since 0 < p < 1, we see that c(k) is the number of times the orbit of x crosses
a boundary separating A0 and A1. So if x crosses c(k) boundaries in going from x to
(tp)

k(x) then (tp)
k(x)− x = kp is approximately c(k) (as A0 and A1 both have length 1).

The precise information relating to kp to c(k) is readily seen to be inequality (1). (We
have to a bit careful if x lies on a boundary point, but the inequalities are still valid).

Inequality (2) follows in a similar way, for k ≤ m as c(m) − c(k) is the number of
boundary crossings from (tp)

k(x) to (tp)
m(x). If k > m then use the above argument with

k and m reversed and multiply the resulting inequality by −1. (We note that inequality
(2) is sharper than the inequality we get by combining inequalities of form (1) for k and
m.)

As for the converse, assume that p satisfies all inequalities of the form (1) and (2). We
want to find an x ∈ [0, 2] which is compatible with an element of b.

Case 1: Assume s0 = 0. So now we need to find x ∈ [0, 1] which is compatible with
a member of b. The conditions that (tp)

k(x) ∈ Ask
reduce to:

(3) c(k) ≤ (x+ kp) ≤ c(k) + 1
We let L(k) = c(k)− kp and R(k) = c(k) + 1− kp and rewrite (3) as
(3′) L(k) ≤ x ≤ R(k)

We need to show that this set of inequalities is consistent, or that L(k) ≤ R(m) for all
k,m. But the second half of inequality (2) readily implies that c(k)+(m−k)p ≤ c(m)+1
and this leads to L(k) ≤ R(m). So the inequalities (3′) have a simultaneous solution, but
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we need to find a solution x in [0, 1]. It suffices to show that L(k) ≤ 1 and 0 ≤ R(k). But
both of these inequalities readily follow from inequality (1).

Case 2: Assume s0 = 1. A similar argument works here. Alternatively, replace
s = (s0, s1, . . . , sn) by 1− s = (1− s0, 1− s1, . . . , 1− sn) (which does not affect the values
of c(k)) then if x is compatible with 1− s, we see that x− 1 is compatible with s.

6.10. Corollary. Let b be as above. If b 6= 0 in Bp then b 6= 0 in a neighborhood of p.

Proof. Inequalities (1) and (2) are strict (so that ≤ can be replaced by <) as p is
irrational and the other terms are rational. So the inequality holds in an open set.

6.11. Corollary. The above corollary applies to any clopen of 2N0.

Let b be a basic clopen, meaning a finite intersection of subbasic clopens of the form
(πi)

−1(s). Let n be the largest value of i that appears in the intersection. Then b is a
finite union of clopens of the form π(n)

−1(s) for s ∈ 2n+1. Then every clopen is a finite
union of basic clopens and the result easily follows.

Proof of (2) of Example 6.8. It suffices to show that if j is the double-negation
nucleus, then (Bj,O(P )j) is cyclic. We can extend the parameter space P to all elements
(including the rationals) in (0,1], because the double-negation nucleus on the extended
space will be the same. We must show that

∨
‖τn(b) = b‖ represents the top element of

O(P )j. But
∨
‖τn(b) = b‖ contains all the rationals so it is a dense open set.

Proof of (4) of Example 6.8. This follows from Corollary 6.11.

In the above example, we note that we do not want to allow p = 0 as then t is the
identity (which would be cyclic) but when we apply symbolic dynamics to this case, a
point on the boundary of A0 and A1 is compatible with every element of 2N0 . (This is
one case where symbolic dynamics is very misleading.)

Also, nothing is gained by extending P to the interval (0, 2) as one can show that

X̂p = X̂p−1 (we leave the details to the reader). If we used three sets, A0, A1, A2 for
symbolic dynamics, we could distinguish p from p− 1.

Some Open Questions.

1. Can we characterize those Boolean flows which are equivalent to the global sections
for a cyclic Boolean sheaf over a locale? (This question leads to the questions raised
in 5.4.)

2. Let X be the Stone space of Example 6.2. What are the cyclic and eventually cyclic
spectra of Clop(X)? In particular, are there any closed, dually cyclic subflows of X
that lie in the “outgrowth”, in this case, X − S?

3. Is the cyclic spectrum of an ordinary Boolean flow (that is, a Boolean flow in the
category of Sets) always spatial?

4. Same question, but for the eventually cyclic spectrum or the simple spectrum.
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5. What is the simple spectrum of Clop(2N0 , t)? (This question was pursued in [Ken-
nison, 2006], but only partial results were obtained.)

6. Suppose (B, τ) = Clop(X, t). If the trajectory of each x ∈ X is finite, must (B, τ) be
eventually cyclic? In general, what conditions on (B, τ) are necessary, or sufficient,
for (X, t) to have finite trajectories?
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