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PROTOLOCALISATIONS OF EXACT MAL’CEV CATEGORIES

To Walter Tholen, on his sixtieth birthday

FRANCIS BORCEUX, MARINO GRAN, SANDRA MANTOVANI

Abstract. A protolocalisation of a regular category is a full reflective regular sub-
category, whose reflection preserves pullbacks of regular epimorphisms along arbitrary
morphisms. We devote special attention to the epireflective protolocalisations of an ex-
act Mal’cev category; we characterise them in terms of a corresponding closure operator
on equivalence relations. We give some examples in algebra and in topos theory.

Introduction

Consider a full reflective subcategory

ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C, λ a ι

of a category C. When C has finite limits and λ preserves them, this situation is called a
localisation. That notion is very important since being abelian, a topos, regular, exact,
homological, semi-abelian, and so on, are notions preserved under localisation. In the
abelian case, being a localisation is also equivalent to λ preserving monomorphisms, or
kernels, or short exact sequences.

In [4], a protolocalisation of a homological (see [3]) or a semi-abelian category (see [19])
is defined as a full reflective subcategory which is still regular, with a reflection which
preserves short exact sequences. The aim of this paper is to extend this notion to the
non-pointed case: this is done by requesting that the reflection preserves pullbacks of
regular epimorphisms along arbitrary morphisms; this is equivalent to being Barr-exact
and preserving pullbacks of split epimorphisms along arbitrary morphisms. We observe
in particular that a protolocalisation of a regular category is entirely determined by those
monomorphisms which are inverted by the reflection; this is reminiscent of a well-known
property of localisations.

We devote some attention to the case of fibered protolocalisations: the case where the
reflection is a fibration. The fibration requirement is equivalent to the semi-left exactness
in the sense of [10]. Regularity is inherited by fibered reflections and then the protolocali-
sation property becomes equivalent to the class of inverted morphisms being stable under
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pullbacks along regular epimorphisms. Fibered protolocalisations are also stable under
slicing.

Of course the most straightforward non-pointed version of homological (resp. semi-
abelian) categories is the case of regular (resp. exact) protomodular categories (see [8]).
Such categories are in particular Mal’cev categories (see [11]), that is, every reflexive
relation is at once an equivalence relation. We have observed that the Mal’cev axiom is in
fact sufficient for getting all our results concerning protolocalisations: the stronger axiom
of protomodularity can always be avoided.

The case of epireflective protolocalisations of exact Mal’cev categories is worth a special
interest. Such a protolocalisation is always Birkhoff, that is, the reflection is closed under
regular quotients. But more importantly, the protolocalisation is then entirely determined
by a corresponding closure operator on the lattices of equivalence relations (see [5]). The
essential goal of the present paper is to characterise exactly those closure operators on
equivalence relations which correspond to an epireflective protolocalisation.

We provide examples of protolocalisations of exact Mal’cev categories, both in algebra
and in topos theory.

When this makes proofs easier, we freely use Barr’s metatheorem (see [1]) allowing to
develop some specific arguments “elementwise” in a regular category.

1. A review of regular, exact, Mal’cev and Goursat categories

To avoid any ambiguity, let us make clear that as many authors, we define a regular cate-
gory to be a category with finite limits and pullback stable images (image = factorisation
as a regular epimorphism followed by a monomorphism). A regular category is exact when
moreover, every equivalence relation is effective, that is, is a kernel pair (see [1]).

Let us first recall a well-known Barr–Kock theorem (see [1]).

1.1. Theorem. In a regular category, consider a commutative diagram

S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

dS
1

dS
2

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
p

P

h

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(2) f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
g Diagram (BK)

R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

dR
1

dR
2

B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
q

Q

where both lines are exact forks. Then the square (1) is a pullback if and only if one of
the squares (2) is a pullback. In that case, both squares (2) are pullbacks.

Let us also recall that an exact fork in a regular category is a diagram

R
u

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

v
A

q qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q

where q = Coker (u, v) is the coequaliser of u and v while (u, v) is the kernel pair of q. A
Barr-exact functor is one which preserves exact forks.
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It is easily observed that, in a regular category, the pullback of two regular epimor-
phisms is always a pushout:

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqv
B

q

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
p

C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqu D

Indeed by regularity, the factorisation R[q] qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R[p] between kernel pairs is a regular
epimorphism, from which it follows that given f ◦ v = g ◦ q, f coequalises the kernel pair
of p.

A Mal’cev category is a category with finite limits in which every reflexive relation is
an equivalence relation. It follows that exact Mal’cev categories are characterised among
regular categories as those in which every reflexive relation is an effective equivalence
relation (see [12]). A further characterisation is given by (see [11]):

1.2. Theorem. A regular category C is an exact Mal’cev category if and only if, given
two regular epimorphisms f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B and g : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C, the pushout (Q, f, g) of f and g
exists, and the comparison arrow α : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B×Q C to the pullback of g and f is a regular
epimorphism:

A p p p p p p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
α

HH
HHHH

HHHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

gA
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f B ×Q C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
f

B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

Q

In general, a pushout of regular epimorphisms having the property that the factorisa-
tion to the corresponding pullback is a regular epimorphism is called a regular pushout.
Let us observe, in particular, that in every category, a commutative diagram of split
epimorphisms

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqv
B

t

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
q s

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
p

C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqu D
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is trivially a pushout as soon as v is an epimorphism. In an exact Mal’cev category, when
u and v are regular epimorphisms, we obtain thus a regular pushout.

A regular category is a Mal’cev category exactly when it is 2-permutable: given two
equivalence relations R and S on the same object A, their relational composites satisfy
the equality R ◦ S = S ◦R. This property is equivalent to the fact that the join R ∨ S of
any two equivalence relations R and S is given by R ∨ S = R ◦ S.

The property of 3-permutability of the composition of equivalence relations R◦S◦R =
S ◦R◦S is known to be strictly weaker than the one of 2-permutability, and that it is this
time equivalent to R∨S = R◦S ◦R. A regular 3-permutable category is called a Goursat
category (see [11]). Among regular categories, Goursat categories are nicely characterised
by the fact that the regular image f(R) of any equivalence relation R on A along any
regular epimorphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is an equivalence relation on B (see [11] again). It is
also true that the lattice of equivalence relations on any object is necessarily a modular
lattice, a property which no longer holds for the n-permutable categories, when n ≥ 4.

A variety of universal algebras is a Mal’cev category if and only if its theory has a
ternary (possibly derived) term p(x, y, z) satisfying the axioms

p(x, x, y) = y, p(x, y, y) = x

(see [24]). Any variety whose theory is equipped with a group operation is thus a Mal’cev
variety, since in that case it suffices to set p(x, y, z) = xy−1z. The variety of Heyting
algebras is also a Mal’cev variety (see [21]), so that the dual category of an elementary
topos is an exact Mal’cev category (see [11]). Another class of examples of exact Mal’cev
categories arises from the compact Hausdorff models T(HComp) of a Mal’cev theory T.

On the other hand, for a given variety, the Goursat property is equivalent to the
existence of two ternary operations p(x, y, z) and q(x, y, z) such that

p(x, x, y) = y, q(x, y, y) = x, p(x, y, y) = q(x, x, y),

as shown in [18]. Implication algebras form a 3-permutable variety, which is not 2-
permutable: recall that these algebras are equipped with a binary operation . satisfying
the identities

(x . y) . y = (y . x) . x, (x . y) . x = x, x . (y . z) = y . (x . z).

2. The protolocalisations

Let us now introduce the main notion of this paper.

2.1. Definition. A protolocalisation of a regular category C is a full reflective subcat-
egory

ι : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C; λ : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L; λ a ι,

such that:



PROTOLOCALISATIONS OF EXACT MAL’CEV CATEGORIES 41

1. L is still regular;

2. λ preserves the pullback of a regular epimorphism along an arbitrary morphism.

In the abelian case, given a full reflective subcategory ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C, λ being Barr-exact

is equivalent by additivity to λ being exact, that is, preserving short exact sequences; this
is further equivalent to λ preserving all finite limits. Such a situation is called a localisa-
tion. But already in the semi-abelian case these equivalences no longer hold: preserving
short exact sequences is stronger than being Barr-exact and weaker than preserving finite
limits (see [4]). Our Proposititon 2.2 measures the gap between these two definitions of ex-
actness. This statement is of course highly reminiscent of the definition of a protomodular
category (see [8]).

2.2. Proposition. Let ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C be a full reflective and regular subcategory of a

regular category C. The following conditions are equivalent:

1. λ is a protolocalisation;

2. the following two properties hold:

(a) λ is Barr-exact;

(b) λ preserves the pullback of a split epimorphism along an arbitrary morphism.

Proof. (1 ⇒ 2) is trivial. Conversely, consider Diagram (BK) where the square (1) is
a pullback. All four morphisms dS

i and dR
i are epimorphisms split by the diagonal. By

assumption, exact forks and both pullbacks (2) are preserved by λ. Theorem 1.1 implies
that λ(1) is a pullback as well.

2.3. Corollary. Let C be a homological category. The two notions of protolocalisation
in Definition 2.1 of this paper and in Definition 17 of [4] are equivalent.

Proof. Proposition 19 in [4] shows that the definition in that paper implies our Defini-
tion 2.1. Conversely in the pointed case, our Proposition 2.2 forces the preservation of
the kernel of a regular epimorphism, since this kernel is given by the pullback over the
zero object.

Let us also mention that

2.4. Proposition. A protolocalisation of an exact category is still exact.

Proof. This follows from Theorem 7 in [4].
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Let us next recall that an object L ∈ C is orthogonal to a morphism h ∈ C when for
every morphism f as in the following diagram

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqh
B

f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
g

L

there exists a unique morphism g making the triangle commutative.
The following result is well-known in the case of a localisation (see [10]). Our more

general version applies clearly to the case of a protolocalisation of a regular category.

2.5. Proposition. Let ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C be a full reflective subcategory of a regular category

C. When the reflection λ is Barr-exact, the full subcategory L is that of those objects of
C orthogonal to the monomorphisms inverted by λ.

Proof. It is well-known (see [15]) that being in L is equivalent to being orthogonal to
all morphisms h inverted by λ, or simply orthogonal to each ηA : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ιλ(A), the unit of
the adjunction, for all A ∈ C. This proves already that each L ∈ L is orthogonal to every
monomorphism inverted by λ.

Conversely, assume that L is orthogonal to every monomorphism inverted by λ; we
shall prove that L is orthogonal to each ηA. For that we consider the following diagram

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
δA RA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
uA

vA
A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ηA ιλ(A)

f

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

HH
HHH

HHH
HHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

pA

pppppppppppppppppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

h qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

sA

L pppppppppppppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq g
SA

where ηA = sA ◦ pA is the image factorisation of ηA, (uA, vA) is the kernel pair of pA and
δA is the diagonal of this kernel pair.

Since λ(ηA) is an isomorphism, the regular epimorphism λ(pA) is also a monomor-
phism, thus an isomorphism. Thus λ(sA) is an isomorphism as well. On the other hand
the reflection λ preserves the exact fork (uA, vA; pA). Since λ(pA) is an isomorphism, so
are thus λ(uA) and λ(vA), but then also λ(δA), which is their right inverse.

Now let L ∈ C be orthogonal to every monomorphism inverted by λ. Consider a
morphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L. Since f ◦ uA ◦ δA = f = f ◦ vA ◦ δA, we obtain f ◦ uA = f ◦ vA by
the uniqueness part of the orthogonality condition δA ⊥ L. But pA = Coker (uA, vA), from
which there is a unique factorisation g : SA

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L such that g ◦ pA = f . The orthogonality
condition sA ⊥ L forces finally the existence of a unique morphism h : ιλ(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L such
that h ◦ sA = g.
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3. The fibered case

Given a full reflective subcategory ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a category C with finite limits, let us

write E for the class of those morphisms of C inverted by λ and M for the class of those
morphisms of C orthogonal to all morphisms in E . This means that m ∈M when in every
commutative square with e ∈ E

• qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqe •

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

• qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqm •

there exists a unique diagonal making both triangles commutative. The pair (E ,M) is
a prefactorisation system; it is a factorisation system when moreover each arrow f ∈ C
factors (necessarily uniquely) as f = m ◦ e, with e ∈ E and m ∈M (see [10]).

3.1. Definition. By a fibered reflection of a category C with finite limits is meant a
full reflective subcategory ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C such that λ is a fibration (see [7, 9]).

3.2. Proposition. Consider a full reflective subcategory ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a category C

with finite limits. The following conditions are equivalent:

1. the reflection is fibered;

2. the reflection is semi-left-exact in the sense of [10].

In these conditions, the corresponding prefactorisation system (E ,M) is a factorisation
system and λ preserves the pullbacks along morphisms of M.

Proof. The proof of Proposition 36 in [4] applies without any change to prove the equiv-
alence. The rest follows from [10].

As a consequence (see [22]):

3.3. Corollary. A fibered reflection of a regular category is still regular.

Proof. By Theorem 4 in [4], it suffices to prove that λ preserves “some” pullbacks along
the morphisms of L. Since all morphisms in L are in particular in M (see [10]), the result
follows at once from Proposition 3.2.

3.4. Proposition. Let ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C be a fibered reflection of a regular category C. The

following conditions are equivalent:

1. the reflection is a protolocalisation;

2. the class E of those morphisms inverted by λ is stable under pullbacks along regular
epimorphisms.
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Proof. (1 ⇒ 2) simply because λ preserves pullbacks along regular epimorphisms. Con-
versely, by Corollary 3.3, we know already that L is regular. Next consider the following
diagram

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqe′
C

� �
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f ′

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqm′
B

h′

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
h′′

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
h

X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqe Z� 
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

f

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqm Y

where the outer part is a pullback, with h a regular epimorphism. We split this pullback
in two pieces along the (E ,M)-factorisation f = m ◦ e of f . The reflection λ preserves
the left hand pullback by assumption and the right hand pullback by Proposition 3.2.

Let us also observe that fibered protolocalisations are stable under slicing:

3.5. Proposition. Every fibered protolocalisation ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a regular category C

induces, for every object I ∈ C, a fibered protolocalisation

ιI , λI : L/λ(I) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C/I.

Proof. The existence of the adjunction λI a ιI is well-known (see [6], Lemma 4.3.4). Let
us simply recall that

λI

(
C

f qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I
)

=
(
λ(C)

λ(f) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq λ(I)
)

while ιI
(
L g qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq λ(I)

)
=

(
L′ g′ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I

)
is obtained via the pullback

L′ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

g′

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
g

I qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqηI
λ(I)

where ηI is the unit of the adjunction λ a ι.
By semi-left exactness of λ (see Proposition 3.2), the upper morphism in this square

is itself a unit (see [10]), thus is isomorphic to ηL′ . But this forces

λIιI
(
L

g qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq λ(I)
) ∼= λI

(
L′

g′ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq I
) ∼= (

L
g qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq λ(I)

)
proving that the counit of the adjunction is an isomorphism. Therefore ιI is full and
faithful.

The slice categories of a regular category are still regular and both pullbacks and regu-
lar epimorphisms are computed in the slice category as in the original category. Therefore
λI preserves pullbacks along regular epimorphisms, since so does λ.
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4. The case of epireflections

By an epireflection of a regular category we mean a reflection having regular epimorphic
units. Let us recall at once that an epireflection of a regular category is itself a regular
category (see [4], Example 11). But moreover:

4.1. Proposition. Every epireflective protolocalisation of a regular category is fibered.

Proof. The pullback of a unit of the adjunction is now the pullback of a regular epimor-
phism, thus is preserved by the reflection. Therefore the reflection is semi-left exact (see
[10]) and thus fibered (see Proposition 3.2).

4.2. Proposition. Given an epireflection ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a regular category C, the

inclusion functor ι : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C is Barr-exact.

Proof. As a right adjoint, the functor ι preserves kernel pairs. The image factorisation
in C of a regular epimorphism of L lies entirely in L, since an epireflection is closed under
subobjects. Thus the mono-part of the factorisation is an isomorphism and ι preserves
regular epimorphisms.

4.3. Proposition. Given an epireflective protolocalisation ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a regular

category C,

1. λ fixes the terminal object 1;

2. λ fixes the subobjects of 1;

3. λ preserves finite products.

Proof. First of all, ι preserves the terminal object, proving that the terminal object of
C lies in L. Since we have an epireflection and 1 ∈ L, every subobject of 1 is also in L.

The product of two objects is their pullback over 1. Via the image factorisations of
the morphisms to 1, this pullback can be split in four pullback pieces

A×B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq • qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

• qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq • qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq •
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(∗)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq • qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1

Each partial pullback is preserved by λ: (∗) because it is fixed by λ and the other ones
by definition of a protolocalisation.
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Let us also recall that

4.4. Definition. An epireflection ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a regular category C is Birkhoff when

L is stable in C under regular quotients.

In the case of algebraic theories, the Birkhoff epireflections are those obtained by
adding axioms to a theory.

4.5. Proposition. An epireflective protolocalisation ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of a regular category

C is necessarily Birkhoff.

Proof. Consider a regular epimorphism q : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C in C, with L ∈ L. Its kernel pair
(u, v), yields the diagram

R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

u

v
L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

q
C

ηR

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ηL

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

∼=
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ηC

ιλ(R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(u)

ιλ(v)
ιλ(L) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(q)
ιλ(C)

The pair (u, v) is monomorphic and ηL is an isomorphism, thus ηR is a monomorphism
and therefore an isomorphism.

Since ι preserves kernel pairs, the bottom line remains a kernel pair, by the protolo-
calisation axiom. But ιλ(q) is a regular epimorphism in C, since so are q and ηC . Thus
both lines are exact forks and ηC is an isomorphism, since so are ηR and ηL.

5. The case of exact Mal’cev categories

We want now to study the protolocalisations in terms of closure operators on equivalence
relations. For this we need to switch first to the exact Goursat case and finally to the
exact Mal’cev case. The following theorem is proved in [5].

5.1. Theorem. For an exact Goursat category C, there is a bijection between:

• the Birkhoff epireflections ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C;

• the operators associating, with every equivalence relation S on an object B, an-
other equivalence relation S on B, and satisfying the following properties for S, T
equivalence relations on B, f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B and g : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C morphisms of C:

[CL1] S ⊆ S;

[CL2] S = S;

[CL3] S ⊆ T implies S ⊆ T ;

[CL4] f−1(S) ⊆ f−1(S);

[CL5] f−1(S) = f−1(S) when f is a regular epimorphism;
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[CL6] g(S) = g(S) when g is a regular epimorphism.

Via this correspondence, the reflection of an object B ∈ C is given by

ηB : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B/∆B.

The closure of an equivalence relation S on B is given by

q−1
S

(
R[ηB/S]

)
= R

[
ηB/S ◦ qS

]
where qS : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B/S is the quotient map and R[•] indicates a kernel pair. This closure
is also equal to

S = S ∨∆B

where ∨ indicates the supremum in the lattice of equivalence relations on B and ∆B

indicates the diagonal.

With the terminology of [5], axioms [CL1], [CL3] and [CL4] are those for a closure
operator on equivalence relations. In this statement, we have used freely the classical
notation f−1(R) to indicate (f × f)−1(R) and analogously, g(R) for the direct image of R
along the regular epimorphism g×g. Notice that the inverse image of an equivalence rela-
tion is always an equivalence relation, while the direct image along a regular epimorphism
is an equivalence relation precisely when the Goursat axiom holds (see [16]).

Our purpose is now to investigate the form of the additional axiom which will force
a Birkhoff epireflection to become a protolocalisation. Our first characterisation theorem
is:

5.2. Theorem. Consider a Birkhoff epireflection ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of an exact Goursat cat-

egory C. The following conditions are equivalent:

1. the reflection λ is Barr-exact;

2. for every equivalence relation r : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A× A in C, one has ∆R = r−1
(
∆A ×∆A

)
.

Moreover, in these conditions, the reflection preserves finite powers.

Proof. Consider the diagram

∆R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ηR ιλ(R)ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
r = (d1, d2)

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
s =

(
ιλ(d1), ιλ(d2)

)
∆A ×∆A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A× A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηA × ηA

ιλ(A)× ιλ(A)
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where both lines are exact forks. An easy chase on this diagram shows that s is a monomor-
phism if and only if ∆R = r−1

(
∆A ×∆A

)
.

If the reflection preserves exact forks, s =
(
ιλ(d1), ιλ(d2)

)
is a kernel pair, thus a

monomorphism. We have seen that this forces condition 2. Conversely as already ob-
served, condition 2 forces s =

(
ιλ(d1), ιλ(d2)

)
to be a monomorphism. But since ηR is

a regular epimorphism, the subobject ιλ(R) = ηR(R) is an equivalence relation by the
Goursat axiom; further, by exactness, it is thus a kernel pair. So λ preserves the fact of
being a kernel pair. Since λ, as a left adjoint, preserves also the coequaliser of a kernel
pair, it is Barr-exact.

When these equivalent conditions are satisfied, choose R = A × A in the argument
above. This forces ∆A×A = ∆A ×∆A and thus ιλ(A× A) ∼= ιλ(A)× ιλ(A).

As a consequence, the closure operation can also be described by the well-known
construction valid in the case of a localisation:

5.3. Corollary. Consider a Barr-exact Birkhoff epireflection ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of an exact

Goursat category C. The closure of an equivalence relation R on B is also given by the
following pullback:

R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ιλ(R)

r
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ιλ(r)

B ×B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηB × ηB

ιλ(B)× ιλ(B)

Proof. By Theorem 5.2 the statement makes sense. By Proposition 4.2, the composite
ιλ is still Barr-exact. Applying it to the exact fork

R
d1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

d2

B
qR qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B/R

we get that ιλ(R) is the kernel pair of ιλ(qR). Thus the pullback in the diagram yields
the kernel pair of ιλ(qR) ◦ ηB, which is precisely R.

Our next result emphasises the role of a property which is well-known for universal
closure operators.

5.4. Theorem. Consider a Birkhoff epireflection ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of an exact Mal’cev cat-

egory C. The following conditions are equivalent:

1. λ preserves the pullback of two regular epimorphisms;

2. given two equivalence relations R, S on an object B ∈ C, R ∧ S = R ∧ S.

Of course in these conditions, λ is Barr-exact.



PROTOLOCALISATIONS OF EXACT MAL’CEV CATEGORIES 49

Proof. (1 ⇒ 2). By exactness, the lattice of equivalence relations on B is isomorphic to
the lattice of regular quotients of B. Moreover, writing qT for the quotient of B by an
equivalence relation T , one has always the following diagram of regular epimorphisms

B
@

@
@

@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qR∧S

HHH
HHH

HHHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qS
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qR B/(R ∧ S) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqpS
B/S

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
pR (∗)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
tS

B/R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
tR
B/(R ∨ S)

where the outside part is trivially a pushout. By Theorem 1.2, the factorisation of this
pushout through the pullback of tR and tS is still a regular epimorphism: then trivially,
this pullback must be B/(R∧S). In other words, in the diagram above, the square (∗) is
a pullback.

The pullback (∗) is preserved by the reflection λ, since it is constituted of regular
epimorphisms. We obtain so a new commutative diagram, where η indicates the unit of
the adjunction and the square is still a pullback.

B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηB ιλ(B)

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ιλ(qR∧S)

HH
HHH

HHH
HHH

HHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(qS)
A
A
A
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ιλ(qR) ιλ
(
B/(R ∧ S)

)
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(pS)
ιλ

(
B/S

)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ιλ(pR)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ιλ(tS)

ιλ
(
B/R

)
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(tR)
ιλ

(
B/(R ∨ S)

)
Since the diagram is commutative and the pair

(
ιλ(pR), ιλ(pS)

)
is monomorphic, the

kernel pair of ιλ(qR∧S) ◦ ηB is the intersection of the kernel pairs of ιλ(qR) ◦ ηB and
ιλ(qS) ◦ ηB. This means precisely R ∧ S = R ∧ S.

(2 ⇒ 1). Consider the pullback (?) of two regular epimorphisms f , g in C and its
image by ιλ.
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B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqa
A ιλ(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqιλa ιλ(A)

b

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(?)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
g ιλ(b)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ιλ(?)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ιλ(g)

D qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

C ιλ(D) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ιλ(f)

ιλ(C)

In a regular category, the pullback of two epimorphisms is also a pushout, proving that
(?) and thus λ(?) are pushouts. The pushout in C of ιλ(a) and ιλ(b) is a quotient of
ιλ(A); by the Birkhoff axiom, it lies in L. Thus the pushout in C is also the pushout in
L. In other words, ιλ(?) is a pushout in C.

But in the exact Mal’cev category C, Theorem 1.2 implies that the factorisation

α : ιλ(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ιλ(A)×ιλ(C) ιλ(D)

through the pullback is a regular epimorphism. If we prove that α is an isomorphism,
then ιλ(?) will be a pullback, thus λ(?) as well. Of course, it suffices to prove that α is a
monomorphism.

Writing R[•] to indicate a kernel pair, we must prove that R[α] is the diagonal. Since
ηB is a regular epimorphism, this is equivalent to prove that R[α ◦ ηB] = R[ηB]. By
definition of a pullback, R[a] ∧R[b] = ∆B, thus

R[ηB] = ∆B = R[a] ∧R[b].

On the other hand, considering analogously the monomorphic pair constituted of the two
projections of the pullback ιλ(A)×ιλ(C) ιλ(D), we get

R[α ◦ ηB] = R[ιλ(a) ◦ ηB] ∧R[ιλ(b) ◦ ηB] = R[ηA ◦ a] ∧R[ηD ◦ b] = R[a] ∧R[b].

By assumption, this yields the result.

Let us recall that a category is arithmetical when it is exact, Mal’cev and its lattices
of equivalence relations are distributive (see [23]).

5.5. Corollary. Consider a Birkhoff epireflection ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C of an arithmetical cat-

egory C. The functor λ always preserves the pullback of two regular epimorphisms.

Proof. It is proved in [5], Proposition 3.13, that under our assumptions f
(
R ∧ S

)
=

f(R) ∧ f(S) for every regular epimorphism f . One concludes by choosing f to be the
identity and applying Theorem 5.4.

Let us now introduce a notion which will prove to be an adequate substitute for the
notion of normal subobject, in the absence of a zero object.

5.6. Definition. In a category C with finite limits, a monomorphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is
saturated for an equivalence relation R on B when the following diagram is a pullback
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f−1(R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R

d1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
d1

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

B

Written elementwise, this condition means

a ∈ A, (a, b) ∈ R ⇒ b ∈ A.

Of course the “elementwise” description is exactly the usual notion of a subset satu-
rated for an equivalence relation. Notice also that in the pointed case, the equivalence
class of 0 ∈ A is always saturated: thus kernel subobjects are special instances of saturated
subobjects.

We have then:

5.7. Theorem. Let ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C be a Birkhoff epireflection of an exact Mal’cev category.

The following conditions are equivalent:

1. λ is a protolocalisation;

2. the corresponding closure operator satisfies the additional axiom:

[CL7] f−1(R) ∧ f−1(S) = f−1(R ∧ S)
for two equivalence relations R, S on B and a subobject f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B saturated
for R.

Proof. (1 ⇒ 2). Notice that the inclusion

f−1(R ∧ S) ⊆ f−1(R) ∧ f−1(S)

always holds, simply because

f−1(R ∧ S) ⊆ f−1(R), f−1(R ∧ S) ⊆ f−1(S) ⊆ f−1(S).

For the other inclusion, consider (a, a′) ∈ f−1(R) ∧ f−1(S). We have thus

a′′ ∈ A, (a, a′′) ∈ R, (a′′, a′) ∈ ∆A, b ∈ B, (a, b) ∈ S, (b, a′) ∈ ∆B.

Since f−1(R) ⊆ f−1(R), we have by Theorem 5.4

(a, a′) ∈ R ∧ S = R ∧ S = (R ∧ S) ∨∆B = (R ∧ S) ◦∆B = ∆B ◦ (R ∧ S).

This means the existence of

c ∈ B, (a, c) ∈ R ∧ S, (c, a′) ∈ ∆B.
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By saturation of A for R, we get c ∈ A. But then since both (a′′, a) and (a, c) are in R,
we obtain

(a′′, c) ∈ f−1(R) ∧ f−1(∆B) ⊆ ∆A.

And
(a, c) ∈ R ∧ S, (c, a′′) ∈ ∆A, (a′′, a′) ∈ ∆A ⇒ (a, a′) ∈ f−1(R ∧ S).

(2 ⇒ 1). Notice first that putting f = idB in condition 2, we obtain R ∧ S = R∧S for
every two equivalence relations on B. Thus Theorem 5.4 applies and it remains to consider
the case of pulling back a regular epimorphism along a monomorphism. In Diagram (BK),
assume thus that the square (1) is a pullback, with g a monomorphism; we must prove
that λ(1) is a pullback. Since λ is Barr-exact by Theorem 5.4, this is equivalent to proving
that ιλ(2) is a pullback.

Since g is a monomorphism, a chase on Diagram (BK) proves that S = f−1(R). Since
the squares (2) are pullbacks, f is saturated for R and the assumption 2 of the statement
applies. Let us prove that the square ιλ(2) — let us say, for the index 1 — is a pullback.
The Barr-exactness of λ allows us to apply Theorem 5.2. We write f as a canonical
inclusion.

An element of ιλ(S) has the form
(
ηA(a), ηA(a′)

)
for some (a, a′) ∈ S. It is mapped

by ιλ(d1) on ηA(a) and by ιλ(h) on
(
ηA(a), ηA(a′)

)
. But two elements x, y of an object

X are identified in ιλ(X) when (x, y) ∈ ∆X . And by Theorem 5.2, given an equivalence
relation T on X and two pairs (x, y) ∈ T , (x′, y′) ∈ T ,(

(x, y), (x′, y′)
)
∈ ∆T ⇔ (x, x′) ∈ ∆X , (y, y′) ∈ ∆X .

To prove that ιλ(2) is a pullback, we must first prove that two elements in ιλ(A) and
ιλ(R) which agree in ιλ(B) come from an element of ιλ(S). This means

If a ∈ A, (b, b′) ∈ R,
(
b, a

)
∈ ∆B,

there exists (a′, a′′) ∈ S such that (a′, a) ∈ ∆A,
(
(a′, a′′), (b, b′)

)
∈ ∆R.

Observe at once that, by the Mal’cev axiom

(a, b) ∈ ∆B, (b, b′) ∈ R ⇒ (a, b′) ∈ R ◦∆B = ∆B ◦R.

This proves the existence of b′′ ∈ B such that

(a, b′′) ∈ R, (b′′, b′) ∈ ∆B.

By saturation of A for R, we have then

b′′ ∈ A, (a, b′′) ∈ S.

To conclude, it suffices to put a′ = a and a′′ = b′′.
Second, we must prove that the pair

(
ιλ(d1), ιλ(h)

)
is monomorphic.
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If (a, a′) ∈ S, (a′′, a′′′) ∈ S, (a, a′′) ∈ ∆A,
(
(a, a′), (a′′, a′′′)

)
∈ ∆R,

then
(
(a, a′), (a′′, a′′′)

)
∈ ∆S.

Observe that

(a′, a) ∈ S, (a, a′′) ∈ ∆A, (a′′, a′′′) ∈ S ⇒ (a′, a′′′) ∈ S ∨∆A = S.

Together with (a′, a′′′) ∈ ∆B and assumption 2 in the statement, this proves that

(a′, a′′′) ∈ S ∧ f−1(∆B) = f−1(R ∧∆B) = f−1(∆B) = ∆A.

6. Examples

First of all let us observe that:

6.1. Example. Let ι, λ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C be a fibered protolocalisation of a homological cate-

gory. Then for every object I ∈ C, we get a corresponding fibered protolocalisation

ιI , λI : L/λ(I) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq C/I.

Proof. By Proposition 3.5 and Corollary 2.3. A wide supply of fibered protolocalisa-
tions of homological categories can be found in [4]. The slice categories are still regular
protomodular, thus Mal’cev, but generally no longer pointed.

In fact most examples given in [4] in the pointed case have also a non-pointed counter-
part, but in most cases the proofs are substantially different. Let us focus on the most
striking cases.

6.2. Example. The category BoRng1 of Boolean unital rings — which is equivalent to
the category of Boolean algebras — is an epireflective protolocalisation of the category
VNReg1 of commutative unital von Neumann regular rings. Both categories are exact
Mal’cev.

Proof. It is proved in [4], Example 49, that the category BoRng of boolean rings (not
necessarily with unit) is an epireflective protolocalisation of the category VNReg of von
Neumann regular rings (not necessarily with unit). In all four categories pullbacks are
computed as in Set and the regular epimorphisms are the surjective homomorphisms.
Therefore it suffices, given a unital von Neumann regular ring R, to prove that its boolean
reflection ηR : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ιλ(R) in the non unital case is also its reflection in the unital case.
But since ηR is surjective, ηR(1) is a unit in ιλ(R). Moreover if f : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A is a morphism
of unital rings with A boolean, the unique factorisation λ(R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A in the non-unital case
preserves the units, since so do ηR and f .
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6.3. Example. Let C be an arithmetical category (see [23]); write Eq(C) for the category
of equivalence relations in C. Consider

∆: C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Eq(C), χ : Eq(C) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C

where ∆(A) is the discrete equivalence relation on A, while χ(A,R) is the quotient of
A by the equivalence relation R. This is an epireflective protolocalisation between exact
Mal’cev categories, but not a localisation.

Proof. An exact Mal’cev category C is arithmetical if and only if every groupoid is an
equivalence relation (see [23]). The category of internal groupoids in an exact Mal’cev
category is itself exact Mal’cev (see [16]). Thus in the conditions of the statement, the
category Eq(C) is exact Mal’cev as well.

A regular epimorphism f : (A,R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (B, S) in Eq(C) is such that both f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B
and its factorisation f ′ : R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S are regular epimorphisms in C (see [17]). In particular,
S = f(R).

The functor χ is trivially left adjoint to ∆ and the unit of the adjunction is the quotient
map

η(A,R) : (A,R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (A/R,∆A/R).

which is a regular epimorphism in Eq(C).
To prove that χ is a protolocalisation, let us consider a pullback (∗) in Eq(C) and its

image by χ, with f a regular epimorphism in Eq(C) .

(P,U) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
pC (C, T ) P/U qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

χ(pC)
C/T

pA

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(∗)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
g χ(pA)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
χ(∗)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
χ(g)

(A,R) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

(B, S) A/R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
χ(f)

B/S

Since S = f(R), the square

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

B

η(A,R)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
η(B,S)

A/R qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
χ(f)

B/S

is a pushout of regular epimorphisms in C. Since the category C is exact Mal’cev, the
factorisation

α : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A/R×B/S B

through the pullback is a regular epimorphism by Theorem 1.2. Let us prove that the
surjectivity of α forces the diagram χ(∗) to be a pullback.

First we must show that
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Given a ∈ A, c ∈ C such that
(
f(a), g(c)

)
∈ S,

there exists (a′, c′) ∈ P such that (a, a′) ∈ R and (c, c′) ∈ T .

But
(
f(a), g(c)

)
∈ A/R×B/S B and since α is surjective,

∃a′ ∈ A (a, a′) ∈ R, f(a′) = g(c).

It suffices to put c′ = c.
Next we must prove that the pair

(
χ(pA), χ(pC)

)
is monomorphic. That is

If f(a) = g(c), f(a′) = g(c′), (a, a′) ∈ R, (c, c′) ∈ T ,
then

(
(a, c), (a′, c′)

)
∈ U .

This is immediate because pullbacks in Eq(C) are computed componentwise.
To observe that we do not have a localisation, it suffices to prove that χ does not

preserve monomorphisms. Indeed, (A,∆A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (A,A × A) is a monomorphism mapped
by χ on A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1.

Let us recall that the dual of a topos is an exact, Mal’cev category (see [11]).

6.4. Example. Let A be a small filtered category. This yields a protolocalisation be-
tween exact Mal’cev categories (

∆, lim : Set qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq Â

)op

where Â is the topos of presheaves on A and ∆(X) is the constant presheaf on X. This
protolocalisation is generally not a localisation.

Proof. For facility we work at once with Set and Â, not with their duals. Since A is
connected, ∆ is full and faithful. We must prove that its right adjoint, the functor lim,
preserves the pushout of a monomorphism along an arbitrary morphism. Let us recall
that in a topos, the pushout of a monomorphism is also a pullback (see [20]). Moreover
in the topos of sets — and more generally, in every boolean topos — the pushout of a
monomorphism always has the form

X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

Y
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

X q Z qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f q idZ

Y q Z

Thus in Â, such a formula holds pointwise.
Let us consider the pushout (1) in Â and the corresponding diagram (2) of limits in

Set:
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K qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ϕ

H limK qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
lim(ϕ)

limH

α
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
β limα

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
(2)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
lim β

F qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ψ

G limF qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
lim(ψ)

limG

The right adjoint lim preserves limits, thus the square (2) is a pullback with limα, lim β
monomorphisms. Writing limα and lim β as canonical inclusions, this proves already that

limH, limψ
(
limF \ limK

)
are disjoint subsets of limG. It remains to prove that they cover limG, while limψ is
injective on limF \ limK.

We first prove that second assertion. Consider two distinct elements (yA)A∈A, (zA)A∈A
in limF \ limK. There is thus an index A such that yA 6∈ K(A) and an index A′ such
that zA′ 6∈ K(A′). There is also an index A′′ such that yA′′ 6= zA′′ . By filteredness we can
find in A

AH
HHH

HHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

a

A′ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqa′
B

��
���

��
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

a′′

A′′

Since our presheaves are contravariant and the family (yA)A∈A is compatible, necessarily
yB 6∈ K(B) because yA 6∈ K(A). Analogously zB 6∈ K(B) and yB 6= zB. Since ψB is
injective on F (B) \K(B), ψB(yB) 6= ψB(zB), proving that ψ(yA)A∈A 6= ψ(zA)A∈A.

To prove the first assertion, consider
(
xA ∈ G(A)

)
A∈A ∈ limG. If this family is

not in limH, at least one of the elements xA is not in H(A). Each such xA has then
the form xA = ψA(yA) for a unique yA ∈ F (A) \ K(A). The family of all these yA is
then compatible, simply because the family of the corresponding xA is compatible and
F (A)\K(A) is mapped injectively by ψA in the pushout G(A). We shall now extend that
family yA to all the objects B ∈ A.

Fix thus B ∈ A and choose A ∈ A such that xA 6∈ limH. By filteredness there exist

A a qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A′ bqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq B.

Again, since xA 6∈ limH, the same holds for xA′ . Thus yA′ is already defined and it suffices
to put yB = F (b)(yA′). This definition is independent of the choices of A′ and b. Indeed
if c : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A′′ is another possibility, by filteredness we can complete the span (b, c) in a
commutative square:
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B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqb
A′

c

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
d

A′′ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqe A′′′

We have then

F (b)(yA′) = F (b)F (d)(yA′′′) = F (c)F (e)(yA′′′) = F (c)(yA′′).

This shows that the definition of yB is independent of the choices of A′ and b, but implies
at the same time that the extended family (yA)A∈A is compatible. Observe further that
by naturality of ψ and compatibility of the family (xA)A∈A in G

ψB(yB) = ψBF (b)(yA′) = G(b)ψA′(yA′) = G(b)(xA′) = xB.

Thus the family (yA)A∈A lies in limF \ limK and is mapped on (xA)A∈A.
To prove that we do not have in general a co-localisation, take for A the poset (N,≤).

It suffices to prove that the limit functor does not preserve epimorphisms. The following
data define an epimorphism ϕ : F ⇒ G

ϕn : F (n) = N qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G(n) = {0, 1, . . . , n}, ϕn(m) = min{m,n}

where F is thus the constant functor on N and the restriction

G(n+ 1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq G(n)

maps n + 1 on n and is the identity elsewhere. The function limϕ is not surjective: the
compatible family

(
n ∈ G(n)

)
n∈N does not belong to the image of limϕ.

The observant reader will have noticed that we did not use the full strength of the
filteredness of A: only the slightly weaker requirements that A is connected and every
span can be completed in a commutative square (these requirements imply in particular
that two objects can always be mapped in a third one). An example of a non-filtered
category satisfying these more general requirements is given by the free monoid on one
generator viewed as a category with a single object. But even that weaker notion of
filteredness, called protofilteredness in [4], is not necessary for having a protolocalisation,
as our following example shows.

6.5. Example. Every monoid M induces an epireflective protolocalisation between ex-
act Mal’cev categories (

∆,Fix : Set qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M−Set
)op

where M−Set is the topos of M -sets, ∆(X) is the set X provided with the trivial action
mx = x for all m ∈M and

Fix(X,χ) =
{
x ∈ X

∣∣∀m ∈M mx = x
}

is the set of fixed points of the M -set (X,χ). This protolocalisation is generally not a
localisation.
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Proof. Viewing the monoid M as a category with a single object, we come back to the
situation described in Example 6.4 . . . except that M is generally not a filtered (nor even
protofiltered) category.

Again we work at once in Set and M−Set, not in their duals. Trivially this time we
have a mono-co-reflection. Given a pushout of M -sets (where q indicates the coproduct
in Set, not in M−Set)

(A,α) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f

(B, β)
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

(Aq C, γ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
f q id

(B q C, δ)

it suffices clearly to prove that every fixed point x of (B q C, δ) which is not in B is the
image of a fixed point y of (A q C, γ) which lies in C. But x is the image of a unique
y ∈ C and it suffices to prove that y is fixed. Since the bottom arrow is the identity on C
and x is fixed, it suffices to prove that given m ∈ M , then my is still in C. But my ∈ A
would imply that its image mx = x is in B, which is not the case.

Taking for M the monoid (N,+), which is the free monoid on one generator, M−Set
is equivalent to the topos of sets (X, σ) provided with an endomorphism. The morphism

(1q 1, τ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (1, id)

with τ the twisting isomorphism is an epimorphism, mapped on ∅ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1 by the functor
Fix. This proves that we do not have a co-localisation.
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