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FRAMED BICATEGORIES AND MONOIDAL FIBRATIONS

MICHAEL SHULMAN

ABSTRACT. In some bicategories, the 1-cells are ‘morphisms’ between the 0-cells, such
as functors between categories, but in others they are ‘objects’ over the O-cells, such
as bimodules, spans, distributors, or parametrized spectra. Many bicategorical notions
do not work well in these cases, because the ‘morphisms between 0-cells’, such as ring
homomorphisms, are missing. We can include them by using a pseudo double category,
but usually these morphisms also induce base change functors acting on the 1-cells. We
avoid complicated coherence problems by describing base change ‘nonalgebraically’, us-
ing categorical fibrations. The resulting ‘framed bicategories’ assemble into 2-categories,
with attendant notions of equivalence, adjunction, and so on which are more appropriate
for our examples than are the usual bicategorical ones.

We then describe two ways to construct framed bicategories. One is an analogue of
rings and bimodules which starts from one framed bicategory and builds another. The
other starts from a ‘monoidal fibration’, meaning a parametrized family of monoidal
categories, and produces an analogue of the framed bicategory of spans. Combining the
two, we obtain a construction which includes both enriched and internal categories as
special cases.
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1. Introduction

We begin with the observation that there are really two sorts of bicategories (or 2-
categories). This fact is well appreciated in 2-categorical circles, but not as widely known
as it ought to be. (In fact, there are other sorts of bicategory, but we will only be concerned
with two.)

The first sort is exemplified by the 2-category Cat of categories, functors, and natural
transformations. Here, the O-cells are ‘objects’, the 1-cells are maps between them, and
the 2-cells are ‘maps between maps.” This sort of bicategory is well-described by the
slogan “a bicategory is a category enriched over categories.”

The second sort is exemplified by the bicategory Mod of rings, bimodules, and bi-
module homomorphisms. Here, the 1-cells are themselves ‘objects’, the 2-cells are maps
between them, and the 0-cells are a different sort of ‘object’ which play a ‘bookkeep-
ing’ role in organizing the relationships between the 1-cells. This sort of bicategory is
well-described by the slogan “a bicategory is a monoidal category with many objects.”

Many notions in bicategory theory work as well for one sort as for the other. For
example, the notion of 2-functor (including lax 2-functors as well as pseudo ones) is well-
suited to describe morphisms of either sort of bicategory. Other notions, such as that of
internal adjunction (or ‘dual pair’), are useful in both situations, but their meaning in
the two cases is very different.

However, some bicategorical ideas make more sense for one sort of bicategory than for
the other, and frequently it is the second sort that gets slighted. A prime example is the
notion of equivalence of O-cells in a bicategory. This specializes in Cat to equivalence of
categories, which is unquestionably the fundamental notion of ‘sameness’ for categories.
But in Mod it specializes to Morita equivalence of rings, which, while very interesting, is
not the most fundamental sort of ‘sameness’ for rings; isomorphism is.

This may not seem like such a big deal, since if we want to talk about when two rings
are isomorphic, we can use the category of rings instead of the bicategory Mod. However,
it becomes more acute when we consider the notion of biequivalence of bicategories, which
involves pseudo 2-functors F' and GG, and equivalences X ~ GFX and Y ~ FGY. This is
fine for Cat-like bicategories, but for Mod-like bicategories, the right notion of equivalence
ought to include something corresponding to ring isomorphisms instead. This problem
arose in [MS06, 19.3.5], where two Mod-like bicategories were clearly ‘equivalent’, yet the
language did not exist to describe what sort of equivalence was meant.

Similar problems arise in many other situations, such as the following.
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(i) Cat is a monoidal bicategory in the usual sense, which entails (among other things)
natural equivalences (C' x D) x E ~ C x (D x E). But although Mod is ‘morally
monoidal” under tensor product of rings, the associativity constraint is really a ring
isomorphism (R® S)® T = R® (S ® T, not an invertible bimodule (although it
can be made into one).

(ii) For Cat-like bicategories, the notions of pseudonatural transformation and modifica-
tion, making bicategories into a tricategory, are natural and useful. But for Mod-like
bicategories, it is significantly less clear what the right sort of higher morphisms are.

(iii) The notion of ‘biadjunction’ is well-suited to adjunctions between Cat-like bicate-
gories, but fails badly for Mod-like bicategories. Attempts to solve this problem
have resulted in some work, such as [Ver92, CKW91, CKVW98], which is closely
related to ours.

These problems all stem from essentially the same source: the bicategory structure
does not include the correct ‘maps between 0-cells’, since the 1-cells of the bicategory are
being used for something else. In this paper, we show how to use an abstract structure to
deal with this sort of situation by incorporating the maps of 0-cells separately from the
1-cells. This structure forms a pseudo double category with extra properties, which we
call a framed bicategory.

The first part of this paper is devoted to framed bicategories. In §§2-5 we review
basic notions about double categories and fibrations, define framed bicategories, and prove
some basic facts about them. Then in §§6-10 we apply framed bicategories to resolve the
problems mentioned above. We define lax, oplax, and strong framed functors and framed
transformations, and thereby obtain three 2-categories of framed bicategories. We then
apply general 2-category theory to obtain useful notions of framed equivalence, framed
adjunction, and monoidal framed bicategory.

The second part of the paper, consisting of §§11-17, deals with two important ways
of constructing framed bicategories. The first, which we describe in §11, starts with a
framed bicategory D and constructs a new framed bicategory Mod(D) of monoids and
modules in D. The second starts with a different ‘parametrized monoidal structure’ called
a monoidal fibration, and is essentially the same as the construction of the bicategory of
parametrized spectra in [MS06]. In §§12-13 we introduce monoidal fibrations, and in §14
we explain the connection to framed bicategories. Then in §15, we combine these two
constructions and thereby obtain a natural theory of ‘categories which are both internal
and enriched’. §§16-§17 are devoted to the proofs of the main theorems in §14.

Finally, in the appendices we treat the relationship of framed bicategories to other
work. This includes the theory of connection pairs and foldings in double categories,
various parts of pure bicategory theory, and the bicategorical theory of equipments. Our
conclusion is that they are all, in suitable senses, equivalent, but each has advantages
and disadvantages, and we believe that framed bicategories are a better choice for many
purposes.
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There are two important themes running throughout this paper. One is a preoccupa-
tion with defining 2-categories and making constructions 2-functorial. Assembling objects
into 2-categories allows us to apply the theory of adjunctions, equivalences, monads, and
so on, internal to these 2-categories. Thus, without any extra work, we obtain notions
such as framed adjunctions and framed monads, which behave much like ordinary ad-
junctions and monads. Making various constructions 2-functorial makes it easy to obtain
framed adjunctions and monads from more ordinary ones.

We do not use very much 2-category theory in this paper, so a passing acquaintance
with it should suffice. Since we are not writing primarily for category theorists, we have
attempted to avoid or explain the more esoteric categorical concepts which arise. A classic
reference for 2-category theory is [KS74]; a more modern and comprehensive one (going
far beyond what we will need) is [Lac07].

The second important theme of this paper is the mixture of ‘algebraic’ and ‘nonalge-
braic’ structures. A monoidal category is an algebraic structure: the product is a specified
operation on objects. On the other hand, a category with cartesian products is a non-
algebraic structure: the products are characterized by a universal property, and merely
assumed to exist. We can always make a choice of products to make a category with
products into a monoidal category, but there are many possible choices, all isomorphic.

There are many technical advantages to working with nonalgebraic structures. For ex-
ample, no coherence axioms are required of a category with products, whereas a monoidal
category requires several. This advantage becomes more significant as the coherence ax-
ioms multiply. On the other hand, when doing concrete work, one often wants to make a
specific choice of the structure and work with it algebraically. Moreover, not all algebraic
structure satisfies an obvious universal property, and while it can usually be tortured into
doing so, frequently it is easier in these cases to stick with the algebraic version.

Framed bicategories are a mixture of algebraic and nonalgebraic notions; the compo-
sition of 1-cells is algebraic, while the base change operations are given nonalgebraically,
using a ‘categorical fibration’. Our experience shows that this mixture is very technically
convenient, and we hope to convince the reader of this too. In particular, the proof of
Theorem 14.2 is much simpler than it would be if we used fully algebraic definitions. This
is to be contrasted with the similar structures we will consider in appendices A and C,
which are purely algebraic.

Our intent in this paper is not to present any one particular result, but rather to
argue for the general proposition that framed bicategories, and related structures, provide
a useful framework for many different kinds of mathematics. Despite the length of this
paper, we have only had space in it to lay down the most basic definitions and ideas, and
much remains to be said.

The theory of framed bicategories was largely motivated by the desire to find a good
categorical structure for the theory of parametrized spectra in [MS06]. The reader familiar
with [MS06] should find the idea of a framed bicategory natural; it was realized clearly
in [MS06] that existing categorical structures were inadequate to describe the combination
of a bicategory with base change operations which arose naturally in that context. Another
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motivation for this work came from the bicategorical ‘shadows’ of [Pon07], and a desire
to explain in what way they are actually the same as the horizontal composition in the
bicategory; we will do this in the forthcoming [PSO08].

I would like to thank my advisor, Peter May, as well as Kate Ponto, for many useful
discussions about these structures; Tom Fiore, for the idea of using double categories; and
Joachim Kock and Stephan Stolz for pointing out problems with the original version of
Example 2.6. The term ‘framed bicategory’ was suggested by Peter May.

2. Double categories

As mentioned in the introduction, most of the problems with Mod-like bicategories can
be traced to the fact that the ‘morphisms’ of the O-cells are missing. Thus, a natural
replacement which suggests itself is a double category, a structure which is like a 2-category,
except that it has two types of 1-cells, called ‘vertical’ and ‘horizontal’, and its 2-cells are
shaped like squares. Double categories go back originally to Ehresmann in [Ehr63]; a
brief introduction can be found in [KS74]. Other references include [BE74, GP99, GP04,
Gar07].

In this section, we introduce basic notions of double categories. Our terminology and
notation will sometimes be different from that commonly used. For example, usually the
term ‘double category’ refers to a strict object, and the weak version is called a ‘pseudo
double category’. Since we are primarily interested in the weak version, we will use the
term double category for these, and add the word ‘strict’ if necessary.

2.1. DEFINITION. A double category D consists of a ‘category of objects’ Dy and a
‘category of arrows’ Dy, with structure functors

U:D()—)]D)l
L,RIDljDO
©: Dy xp, Dy — Dy

(where the pullback is over Dy LDy & D;) such that

LUy = A
R(U,) = A

L(M®N)=LM

R(M ® N) = RM

equipped with natural isomorphisms
a:(MON)OP = Mo (NGO P)
U, oM =M
v:MoUs — M
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such that L(a), R(a), L(l), R(I), L(r), and R(r) are all identities, and such that the
standard coherence axioms for a monoidal category or bicategory (such as Mac Lane’s
pentagon; see [MLI8]) are satisfied.

We can think of a double category as an internal category in Cat which is suitably
weakened, although this is not strictly true because Cat contains only small categories
while we allow Dy and D to be large categories (but still locally small, that is, having
only a set of morphisms between any two objects).

We call the objects of Dy objects or 0-cells, and we call the morphisms of Dy vertical
arrows and write them as f: A — B. We call the objects of D; horizontal 1-cells or just
1-cells. If M is a horizontal 1-cell with L(M) = A and R(M) = B, we write M : A+ B,
and say that A is the left frame of M and B is the right frame. We use this terminology
in preference to the more usual ‘source’ and ‘target’ because of our philosophy that the
horizontal 1-cells are not ‘morphisms’, but rather objects in their own right which just
happen to be ‘labeled’” by a pair of objects of another type.

A morphism a: M — N of Dy with L(«) = f and R(«) = g is called a 2-cell, written
a: M :j> N, or just M =+ N, and drawn as follows:

A-Nsp . (1)
fi Ja lg
C—~D

We say that M and N are the source and target of «, while f and ¢ are its left frame
and right frame. We write the composition of vertical arrows A . B2, € and the

vertical composition of 2-cells M —— N A, P with juxtaposition, g f or Sa, but we write
the horizontal composition of horizontal 1-cells as M © N and that of 2-cells as a ® (3.

We write horizontal composition ‘forwards’ rather than backwards: for M : A+ B and
N: B-+C, we have M ©® N: A—+ C. This is also called ‘diagrammatic order’ and has
several advantages. First, in examples such as that of rings and bimodules (Example 2.2),
we can define a horizontal 1-cell M: A— B to be an (A, B)-bimodule, rather than a
(B, A)-bimodule, and still preserve the order in the definition M ©® N = M ®p N of
horizontal composition. It also makes it easier to avoid mistakes in working with 2-cell
diagrams; it is easier to compose

A--pAc
and get

A—"
than to remember to switch the order in which M and N appear every time horizontal
1-cells are composed. Finally, it allows us to say that an adjunction M - N in the

horizontal bicategory is the same as a ‘dual pair’ (M, N) (see §5), with the left adjoint
also being the left dual.
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Every object A of a double category has a vertical identity 14 and a horizontal unit
U, every horizontal 1-cell M has an identity 2-cell 1,;, every vertical arrow f has a hor-
izontal unit Uy, and we have 1y, = U, (by the functoriality of U). We will frequently
abuse notation by writing A or f instead of Us or Uy when the context is clear. The
important point to remember is that vertical composition is strictly associative and uni-
tal, while horizontal composition is associative and unital only up to specified coherent
isomorphisms.

Note that if Iy is the terminal category, then the definition of double category just
says that ; is a monoidal category. We call such double categories vertically trivial.

We call Dy the vertical category of D. We say that two objects are isomorphic
if they are isomorphic in Dy, and that two horizontal 1-cells are isomorphic if they are
isomorphic in D;. We will never refer to a horizontal 1-cell as an isomorphism. A 2-cell
whose left and right frames are identities is called globular. Note that the constraints
a, [, v are globular isomorphisms, but they are natural with respect to all 2-cells, not just
globular ones.

Every double category D has a horizontal bicategory D consisting of the objects,
horizontal 1-cells, and globular 2-cells. If A and B are objects of D, we write D(A, B)
for the set of vertical arrows from A to B and D(A, B) for the category of horizontal
1-cells and globular 2-cells from A to B. It is standard in bicategory theory to say that
something holds locally when it is true of all hom-categories D(A, B), and we will extend
this usage to double categories.

We also write ([D,(M,N) for the set of 2-cells a of the shape (1). If f and g are
identities, we write instead D(M, N) for the set of globular 2-cells from M to N. This
may be regarded as shorthand for D(A, B)(M, N) and is standard in bicategory theory.

We now consider some examples. Note that unlike 1-categories, which we generally
name by their objects, we generally name double categories by their horizontal 1-cells.

2.2. EXAMPLE. Let Mod be the double category defined as follows. Its objects are
(not necessarily commutative) rings and its vertical morphisms are ring homomorphisms.

A l-cell M : A+ B is an (A, B)-bimodule, and a 2-cell a@ : M :j> N is an (f,g)-

bilinear map M — N, i.e. an abelian group homomorphism « : M — N such that
alamb) = f(a)a(m)g(b). This is equivalent to saying « is a map of (A, B)-bimodules
M — ¢N,, where N, is N regarded as an (A, B)-bimodule by means of f and g. The
horizontal composition of bimodules M: A+ B and N: B+ C is given by their tensor
product, M © N = M ®p N. For 2-cells

Ao L
RN
BTDTF

we define o ® 3 to be the composite

a®i

M ®¢ P Ny ®c yQn—= N QpQn= f(N®p Q).
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This example may be generalized by replacing Ab with any monoidal category % that
has coequalizers preserved by its tensor product, giving the double category Mod(%)
of monoids, monoid homomorphisms, and bimodules in . If ¥ = Modpy is the cate-
gory of modules over a commutative ring R, then the resulting double category Mod (%) =
Mod(R) is made of R-algebras, R-algebra homomorphisms, and bimodules over R-algebras.

Similarly, we define the double category CMod whose objects are commutative rings,
and if € is a symmetric monoidal category, we have CMod(%).

2.3. EXAMPLE. Let % be a category with pullbacks, and define a double category
Span(%’) whose vertical category is ¢, whose 1-cells A—+ B are spans A «— C — B
in ¢, and whose 2-cells are commuting diagrams:

A<—C—>B

R

D<~—F——F
in ¥. Horizontal composition is by pullback.

2.4. EXAMPLE. There is a double category of parametrized spectra called Ex, whose
construction is essentially contained in [MS06]. The vertical category is a category of
(nice) topological spaces, and a 1-cell A B is a spectrum parametrized over A x B (or
B x A; see the note above about the order of composition).

In [MS06] this structure is described only as a bicategory with ‘base change operations’,
but it is pointed out there that existing categorical structures do not suffice to describe it.
We will see in §14 how this sort of structure gives rise, quite generally, not only to a double
category, but to a framed bicategory, which supplies the missing categorical structure.

2.5. EXAMPLE. Let ¥ be a complete and cocomplete closed symmetric monoidal cate-
gory, such as Set, Ab, Cat, or a convenient cartesian closed subcategory of topological
spaces, and define a double category Dist(?') as follows. Its objects are (small) cate-
gories enriched over ¥, or ¥ -categories. Its vertical arrows are 7 '-functors, its 1-cells
are ¥ -distributors, and its 2-cells are #-natural transformations. (Good references for
enriched category theory include [Kel82] and [Dub70].) A #-distributor H: Z + < is
simply a #-functor H: &/°? @ 28 — ¥. When &/ and % have one object, they are just
monoids in ¥, and a distributor between them is a bimodule in 7#; thus we have an
inclusion Mod (%) — Dist(?"). Horizontal composition of distributors is given by the
coend construction, also known as ‘tensor product of functors’.

In the bicategorical literature, distributors are often called ‘bimodules’ or just ‘mod-
ules’, but we prefer to reserve that term for the classical one-object version. The term
‘distributor’, due to Benabou, is intended to suggest a generalization of ‘functor’, just
as in analysis a ‘distribution’ is a generalized ‘function’. The term ‘profunctor’ is also
used for these objects, but we prefer to avoid it because a distributor is nothing like a
pro-object in a functor category.
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2.6. ExAMPLE. We define a double category nCob as follows. Its vertical category
consists of oriented (n — 1)-manifolds without boundary and diffeomorphisms. A 1-cell
M - N is a (possibly thin) n-dimensional cobordism from M to N, and a 2-cell is a
compatible diffeomorphism. Horizontal composition is given by gluing of cobordisms.

More formally, if A and B are oriented (n—1)-manifolds, a horizontal 1-cell M': B+ A
is either a diffeomorphism A = B (regarded as a ‘thin’ cobordism from A to B), or an
n-manifold with boundary M equipped with a ‘collar’ map

(AU B) x[0,1) > M
which is a diffeomorphism onto its image and restricts to a diffeomorphism
A’ U B = 0M.

(Here A° means A with the opposite orientation.) The unit is the identity 14, regarded
as a thin cobordism.

2.7. EXAMPLE. The following double category is known as Adj. Its objects are cate-
gories, and its horizontal 1-cells are functors. Its vertical arrows C' — D are adjoint pairs
of functors fi: C = D : f*. We then seem to have two choices for the 2-cells; a 2-cell

with boundary

A"

o

f*;‘ '
{
BT)D

9

e

i
14

could be chosen to be either a natural transformation gi1h — kf; or a natural transforma-
tion hf* — g*k. However, it turns out that there is a natural bijection between natural
transformations gih — kfi and hf* — g*k which respects composition, so it doesn’t mat-
ter which we pick. Pairs of natural transformations corresponding to each other under this
bijection are called mates; the mate of a transformation a: hf* — ¢g*k is given explicitly

as the composite
ek fi

ah 2 g f* i 2 gk i g
where 7 is the unit of the adjunction fy 4 f* and ¢ is the counit of the adjunction g, 4 g*.
The inverse construction is dual.

More generally, if K is any (strict) 2-category, we can define the notion of an adjunction
internal to X: it consists of morphisms f: A — B and g: B — A together with 2-cells
n:1a = ¢gf and €: fg = 1p satisfying the usual triangle identities. We can then define
a double category Adj(X) formed by objects, morphisms, adjunctions, and mate-pairs
internal to X.

These double categories have a different flavor than the others introduced above. We
mention them partly to point out that double categories have uses other than those we
are interested in, and partly because we will need the notion of mates later on. More
about mate-pairs in 2-categories and their relationship to Adj can be found in [KS74];
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one fact we will need is that if h and k are identities, then « is an isomorphism if and
only if its mate is an isomorphism.

3. Review of the theory of fibrations

Double categories incorporate both the 1-cells of a Mod-like bicategory and the ‘mor-
phisms of O-cells’, but there is something missing. An important feature of all our exam-
ples is that the 1-cells can be ‘base changed’ along the vertical arrows. For example, in
Mod, we can extend and restrict scalars along a ring homomorphism.

An appropriate abstract structure to describe these base change functors is the well-
known categorical notion of a ‘fibration’. In this section we will review some of the theory
of fibrations, and then in §4 we will apply it to base change functors in double categories.
All the material in this section is standard. The theory of fibrations is originally due
to Grothendieck and his school; see, for example [sga03, Exposé VI]. Modern references
include [Joh02a, B1.3] and [Bor94, Ch. 8]. More abstract versions can be found in the
2-categorical literature, such as [Str80].

3.1. DEFINITION. Let ® : &/ — % be a functor, let f: A — C be an arrow in %4, and
let M be an object of & with ®(M) = C. An arrow ¢ : f*M — M in </ is cartesian
over f if, firstly, ®(¢) = f:

M L) M

A—~C

and secondly, whenever ¢ : N — M is an arrow in &/ and g : B — A is an arrow in %
such that ®(¢)) = fg, there is a unique x such that ¢ = ¢y and ®(x) = g¢:

N
N "
x\{
M M
B
N
A C

f

We say that ® is a fibration if for every f: A — C and M with ®(M) = C, there exists
a cartesian arrow ¢y @ f*M — M over f. If ® is a fibration, a cleavage for ® is a
choice, for every f and M, of such a ¢y . The cleavage is normal if ¢, p = 1a; it is

split if ¢y p1Py g mr = @grm for all composable f, g.
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For an arrow f: A — B, we think of f* as a ‘base change’ operation that maps the
fiber o/ (consisting of all objects over B and morphisms over 1g) to the fiber 274. We
think of &7 as ‘glued together’ from the fiber categories @/ as B varies, using the base
change operations f*. We think of the whole fibration as ‘a category parametrized by %’

3.2. ExAMPLE. Let Ring be the category of rings, and Mod be the category of pairs
(R, M) where R is a ring and M is an R-module, with morphisms consisting of a
ring homomorphism f and an f-equivariant module map. Then the forgetful functor
Mod: Mod — Ring, which sends (R, M) to R, is a fibration. If M is an R-module and
f:S — R is a ring homomorphism, then if we denote by f*M the abelian group M
regarded as an S-module via f, the identity map of M defines an f-equivariant map
f*M — M, which is a cartesian arrow over f.

Note that the fiber o7 is the ordinary category of R-modules. Thus we may say that
modules form a category parametrized by rings.

3.3. EXAMPLE. Let € be a category with pullbacks, let €' denote the category of
arrows in 4 (whose morphisms are commutative squares), and let Arry: €' — € take
each arrow to its codomain. Then Arry is a fibration; a commutative square is a cartesian
arrow in ¢’ precisely when it is a pullback square. This fibration is sometimes referred
to as the self-indexing of €.

We record some useful facts about fibrations.

3.4. PROPOSITION. Let ®: o/ — A be a fibration.
(i) The composite of cartesian arrows is cartesian.

(i) If o: (fg)*M — M and: g*M — M are cartesian over fg and g respectively, and
X: (f9)*M — g*M is the unique factorization of ¥ through ¢ lying over f, then x
18 cartesian.

(11i) If if ¢: f*M — M and ¢': (f*M) — M are two cartesian lifts of f, then there is
a unique isomorphism f*M = (f*M)" commuting with ¢ and ¢'.

(iv) Any isomorphism in < is cartesian.
(v) If f is an isomorphism in B, then any cartesian lift of f is an isomorphism.

In Example 3.2, there is a ‘canonical’ choice of a cleavage, but this is not true in Ex-
ample 3.3, since pullbacks are only defined up to isomorphism. Proposition 3.4(iii) tells
us that more generally, cleavages in a fibration are unique up to canonical isomorphism.
Thus, a fibration is a ‘nonalgebraic’ approach to defining base change functors: the oper-
ation f* is characterized by a universal property, and the definition merely stipulates that
an object satisfying that property exists, rather than choosing a particular such object as
part of the structure. In the terminology of [Mak01], they are virtual operations.

The ‘algebraic’ notion corresponding to a fibration ®: o — £ is a pseudofunctor
P: #°° — Cat. Given a fibration ®, if we choose a cleavage, then we obtain, for each
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f: A— Bin %, a functor f*: o/p — /4. If we define P(A) = @74 and P(f) = f*, the
uniqueness-up-to-iso of cartesian lifts makes P into a pseudofunctor. Conversely, given
a pseudofunctor P: #°°? — Cat, we can build a fibration over % whose fiber over A is
P(A). (This is sometimes called the ‘Grothendieck construction’.)

In order to state the full 2-categorical sense in which these constructions are inverse
equivalences, we need to introduce the morphisms and transformations between fibrations.
Consider a commuting square of functors

o > o (2)

% lqy

e

where ® and @’ are fibrations, and let ¢: ¢g*M — M be cartesian in &/ over g. Then we
have Fi(¢): Fi(¢*M) — FiM in &/’ over Fy(g). But since @' is a fibration, there is a
cartesian arrow ¢: (Fog)*(F1M) — F1M over Fy(g), so Fi(¢) factors uniquely through
it, giving a canonical map

Fi(g™M) — (Fog)*(F1M) (3)

which is an isomorphism if and only if Fj(¢) is cartesian.

It should thus be unsurprising that any commuting square (2) gives rise to an oplax
natural transformation between the corresponding pseudofunctors. Recall that an oplax
natural transformation between pseudofunctors P, (Q): #°? — Cat consists of functors
¢y Pr — Qu and natural transformations

P
Pa:4g>PZ/

o 4 |
QxﬁQZ/

satisfying appropriate coherence conditions. In a lax natural transformation, the 2-cells
go the other direction, and in a pseudo natural transformation the 2-cells are invertible.

3.5.  DEFINITION. Any commuting square of functors (2) is called an oplax morphism
of fibrations. It is a strong morphism of fibrations if whenever ¢ is a cartesian arrow
in .o/ over g, then Fi(¢) is cartesian in &7’ over Fy(g). If Fy is an identity & = %', then
we say Fi is a morphism over 4.

A transformation of fibrations between two (oplax) morphisms of fibrations is just
a pair of natural transformations, one lying above the other. If the two morphisms are
over Z, the transformation is over 4 if its downstairs component is the identity.

3.6. PROPOSITION. Let Fib,,e,5 denote the 2-category of fibrations over %, oplax mor-
phisms of fibrations over %, and transformations over A, and let B, Cat],pe denote
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the 2-category of pseudofunctors B — Cat, oplax natural transformations, and modifi-
cations. Then the above constructions define an equivalence of 2-categories

?ibth“% ~ [%OP7 Gat]opg.

If we restrict to the strong morphisms of fibrations over A on the left and the pseudo
natural transformations on the right, we again have an equivalence

Fiby ~ [B, Cat].

Compared to pseudofunctors, fibrations have the advantage that they incorporate
all the base change functors f* and all their coherence data automatically. We must
remember, however, that the functors f* are not determined uniquely by the fibration,
only up to natural isomorphism.

If ® is a functor such that ®°P: /P — ZB°P is a fibration, we say that ® is an
opfibration. (The term ‘cofibration’ used to be common, but this carries the wrong
intuition for homotopy theorists, since an opfibration is still characterized by a [lifting
property.) The cartesian arrows in .7 are called opcartesian arrows in .o/. A cleavage
for an opfibration consists of opcartesian arrows M — fiM, giving rise to a functor
fi: &4 — o for each morphism f: A — B in A.

For any opfibration, the collection of functors f; forms a covariant pseudofunctor
B — Cat, and conversely, any covariant pseudofunctor gives rise to an opfibration. A
commutative square (2) in which ® and &’ are opfibrations is called a lax morphism of
opfibrations, and it is strong if F; preserves opcartesian arrows; these correspond to
lax and pseudo natural transformations, respectively.

3.7. PROPOSITION. A fibration ®: of — A is also an opfibration precisely when all the
functors f* have left adjoints fi.

PROOF. By definition of f*, there is a natural bijection between morphisms M — N in
o/ lying over f: A — B and morphisms M — f*N in the fiber &74. But if ® is also an
opfibration, these morphisms are also bijective to morphisms fiM — N in @7, so we have
an adjunction &4 (M, f*N) = o/p(fiM, N) as desired. The converse is straightforward. m

We will refer to a functor which is both a fibration and an opfibration as a bifibration.
A square (2) in which ® and @’ are bifibrations is called a lax morphism of bifibrations
if I preserves cartesian arrows, an oplax morphism of bifibrations if it preserves
opcartesian arrows, and a strong morphism of bifibrations if it preserves both.

3.8. EXAMPLES. The fibration Mod: Mod — Ring is in fact a bifibration; the left
adjoint f, is given by extension of scalars. For any category € with pullbacks, the fibration
Arry: €' — € is also a bifibration; the left adjoint f, is given by composing with f.

In many cases, the functors f* also have right adjoints, usually written f,. These
functors are not as conveniently described by a fibrational condition, but we will see in §5
that in a framed bicategory, they can be described in terms of base change objects and a
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closed structure. We say that a fibration is a *-fibration if all the functors f* have right
adjoints f.. Similarly we have a x-bifibration, in which every morphism f gives rise to
an adjoint string fy - f* 4 f..

3.9. EXAMPLES. Mod is a *-bifibration; the right adjoints are given by coextension of
scalars. Arry is a x-bifibration precisely when € is locally cartesian closed (that is, each
slice category €/ X is cartesian closed).

Often the mere existence of left or right adjoints is insufficient, and we need to require
a commutativity condition. We will explore this further in §16.

4. Framed bicategories

Morally speaking, a framed bicategory is a double category in which the 1-cells can be
restricted and extended along the vertical arrows. We will formalize this by saying that L
and R are bifibrations. Thus, for any f: A — B in Dy, there will be two different functors
which should be called f*, one arising from L and one from R. We distinguish by writing
the first on the left and the second on the right. In other words, f*M is a horizontal 1-cell

equipped with a cartesian 2-cell
f M

A——=D
fl cart
B—{~D

while M ¢g* is equipped with a cartesian 2-cell

B M

cart \Lg .

B—~D

A general cartesian arrow in D; lying over (f,g) in Dy x Dy can then be written as
f*Mg* :j> M. We do similarly for opcartesian arrows and the corresponding functors
fi. We refer to f* as restriction and to f, as extension. If f* also has a right adjoint
f«, we refer to it as coextension.

It is worth commenting explicitly on what it means for a 2-cell in a double category
to be cartesian or opcartesian. Suppose given a ‘niche’ of the form

A C

i

B—~D
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in a double category ID. This corresponds to an object M € ID; and a morphism
(f,9): (A,C) — (B,D) = (L,R)(M) in Dy x Dy. A cartesian lifting of this morphism is
a 2-cell

AN e
fl cart J{g
B—=D
such that any 2-cell of the form
E-N-F
fhi 4 lgk
B—=D
factors uniquely as follows:
E—"—F
hl ' lk
A—f*Mg*>C
fl cart \Lg
B——D.
In particular, if h = 14 and k£ = 1, this says that any 2-cell
A—~C
! l U J{g
B—~=D
can be represented by a globular 2-cell
A—"~B
u
A I J\I/[?B.

Therefore, ‘all the information” about the 2-cells in a framed bicategory will be carried
by the globular 2-cells and the base change functors. In particular, we can think of I as
‘the bicategory D equipped with base change functors’. This can be made precise; see
appendix C.

The interaction of fibrational conditions with the double category structure has further
implications. It is reasonable to expect that restriction and extension will commute with
horizontal composition; thus we will have f*(M ® N)g* = f*M ©® Ng*. This implies,
however, that for any 1-cell M : B —+ C and arrow f: A — B, we have

M= f*(Ugo M) fUg® M,



FRAMED BICATEGORIES AND MONOIDAL FIBRATIONS 665

and hence the base change functor f* can be represented by horizontal composition with
the special object f*Ug, which we call a base change object.

In the case of Mod, this is the standard fact that restricting along a ring homomor-
phism f: A — B is the same as tensoring with the (A, B)-bimodule ;B, by which we
mean B regarded as an (A, B)-bimodule via f on the left. For this reason, we write ;B
for the base change object f*Up in any double category. Similarly, we write B for Upf*.

The existence of such base change objects, suitably formalized, turns out to be suffi-
cient to ensure that all restrictions exist. This formalization of base change objects can
be given in an essentially diagrammatic way, which moreover is self-dual. Thus, it it is
also equivalent to the existence of extensions. This is the content of the following result.

4.1. THEOREM. The following conditions on a double category D are equivalent.
(i) (L,R) : Dy — Dy x Dy is a fibration.
(i) (L,R) : Dy — Dy x Dy is an opfibration.

(i1i) For every vertical arrow f: A — B, there exist 1-cells fB: A-+ B and By: B+ A
together with 2-cells

B B U U

U U
7[149 U 7[‘4 U
" if Y. fl " Y,
—B> = fi YUy lf —Bf> = fi YUy lf (5)
i % cl e
B B
Ty o
f‘B B‘f
Us 1B rB /B U By
—> > - - —
il v | = wil o | = ©)
T —5 e B,
e —

PROOF. We first show that (i)=-(iii). As indicated above, if (L, R) is a fibration we define
B = f*Up and By = Up f*, and we let the first two 2-cells in (4) be the cartesian 2-cells
characterizing these two restrictions. The unique factorizations of Uy through these two
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2-cells then gives us the second two 2-cells in (4) such that the equations (5) are satisfied

by definition.

We show that the first equation in (6) is satisfied. If we compose the left side of this
equation with the cartesian 2-cell defining ;B, we obtain

B
|——

oY

Ua B

—f>

*

fB
[——
N P
7(]9 79 =
Y i Y, P
—fB> —|— = l lf@
! T
= —

Thus, the uniqueness of factorizations through cartesian arrows implies that the given
2-cell is equal to the identity, as desired. This shows the first equation in (6); the second

is analogous. Thus (i)=-(iii).

Now assume (iii), and let M: B—+ D be a 1-cell and f: A — B and g: C — D be
vertical arrows; we claim that the following composite is cartesian:

To show this, suppose that

B Do
| | |
fl a3 1ns U ig
R 7M —_
Oy~ M
|
M
N
s
fhl Ja | gk

(7)
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is a 2-cell; we must show that it factors uniquely through (7). Consider the composite

(8)

hi UL | h k| YU lk’

fUcé

7UA> Ua

Y lf gl Y
B T,

Composing this with (7) and using the equations (5) on each side, we get a back again.

Thus, (8) gives a factorization of o through (7). To prove uniqueness, suppose that we

had another factorization

=

|
U N U

N
|
hi %] lk
1B g N
flu Ly ulg = fhllla gk (9)
—Uj% —M-> —|— —|—
|
M

Then if we substitute the left-hand side of (9) for « in (8) and use the equations (6) on
the left and right, we see that everything cancels and we just get 3. Hence, 3 is equal
to (8), so the factorization is unique. This proves that (7) is cartesian, so (iii)=-(i). The
proof that (ii)<(iii) is exactly dual. =

4.2. DEFINITION. When the equivalent conditions of Theorem 4.1 are satisfied, we say
that D is a framed bicategory.

Thus, a framed bicategory has both restrictions and extensions. By the construction
for (iii)=(i), we see that in a framed bicategory we have

[fMg* = ;B®M® D,. (10)
The dual construction for (iii)=-(ii) shows that
fiNg = By ©N © 4D. (11)
In particular, taking N = Upg, we see that addition to
jB= f*Up and By =Ugf”, (12)

we have

fB = UAf! and Bf = f!UA- (13)
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More specifically, the first two 2-cells in (4) are always cartesian and the second two
are opcartesian. It thus follows that from the uniqueness of cartesian and opcartesian
arrows that 1-cells B and By equipped with the data of Theorem 4.1(iii) are unique up

to isomorphism. In fact, if ;B and ;B are two such 1-cells, the canonical isomorphism

B =, ﬁ%’ is given explicitly by the composite

B
[——

o)

U B

—_—]— —|—

I
jﬂ; T

-

UJI IR

[

The case of By is similar.
We can now prove the expected compatibility between base change and horizontal
composition.

4.3. COROLLARY. In a framed bicategory, we have

ff(IMON)g = f*M © Ng* and
HM O N)g = fiM©® Ng,.

PRrROOF. Use (10) and (11), together with the associativity of ©. =

On the other hand, if coextensions exist, we have a canonical morphism
fM © Ng, — f.(M © N)g. (14)
given by the adjunct of the composite
[ (M ®Ng)g" = f*fM ® Ng.g* — M © N,

but it is rarely an isomorphism. In general, coextension is often less well behaved than
restriction and extension, which partly justifies our choice to use a formalism in which it
is less natural.

4.4. EXAMPLES. All of the double categories we introduced in §2 are actually framed
bicategories, and many of them have coextensions as well.

e In Mod, if M is an (A, B)-bimodule and f: C' — A, g: D — B are ring homomor-
phisms, then the restriction f*Mg* is M regarded as a (C, D)-bimodule via f and
g. Similarly, f, is given by extension of scalars and f, by coextension of scalars.
The base change objects ;B and By are B regarded as an (A, B)-bimodule and
(B, A)-bimodule, respectively, via the map f.
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e In Span(%), restrictions are given by pullback and extensions are given by compo-
sition. The base change objects ;B and By for a map f: A — B in % are the spans

A& AL Bpand B L 44 B, respectively. These are often known as the
graph of f. Coextensions exist when % is locally cartesian closed.

e In Ex, the base change functors are defined in [MS06, §11.4 and §12.6], and the base
change objects are a version of the sphere spectrum described in [MS06, §17.2].

e In Dist(¥), restrictions are given by precomposition, and extensions and coex-
tensions are given by left and right Kan extension, respectively. For a #-functor
f: A — B, the base change objects ;B and By are the distributors B(—, f—) and
B(f—,—), respectively.

e In nCob, restriction, extension, and coextension are all given by composing a dif-
feomorphism of (n — 1)-manifolds with the given diffeomorphism onto a collar of
the boundary. The base change objects of a diffeomorphism f: A & B are f and
its inverse, regarded as thin cobordisms.

e In Adj, restriction and extension are given by composing with suitable adjoints. For
example, given h: B — D and adjunctions fi: A= B : f* and ¢g.: C 2 D : g%,
then a cartesian 2-cell is given by the square

—-C
/8 lgz
— D

A
|
B =

where ¢ is the counit of the adjunction g, 4 ¢g*. The base change objects for an
adjunction f, - f* are f; and f*, respectively. Coextensions do not generally exist.

9*|hf!

We also observe that the base change objects are pseudofunctorial. This is related to,
but distinct from, the pseudofunctoriality of the base change functors. Pseudofunctoriality

of base change functors means that for A J.p % ¢ , we have
fHg" (M) = (gf)"M
coherently, while pseudofunctoriality of base change objects means that we have
tBO,C=4C

coherently. However, since base change objects represent all base change functors, either
implies the other.

4.5. PROPOSITION. If D is a framed bicategory with a chosen cleavage, then the opera-
tion f — ¢B defines a pseudofunctor Dy — D which is the identity on objects. Similarly,
the operation f — By defines a contravariant pseudofunctor Dy*? — D.



670 MICHAEL SHULMAN
5. Duality theory

We mentioned in Example 2.7 that the notion of an adjunction can be defined internal
to any 2-category. In fact, the definition can easily be extended to any bicategory: an
adjunction in a bicategory B is a pair of 1-cells F': A—+ B and G: B + A together with
2-cellsn: Up — G ® F and €: F © G — Uy, satisfying the usual triangle identities with
appropriate associativity and unit isomorphisms inserted.

An internal adjunction is an example of a formal concept which is useful in both types
of bicategories discussed in the introduction, but its meaning is very different in the two
cases. In Cat-like bicategories, adjunctions behave much like ordinary adjoint pairs of
functors; in fact, we will use them in this way in §8. In Mod-like bicategories, on the
other hand, adjunctions encode a notion of duality.

In particular, if ¢ is a monoidal category, considered as a one-object bicategory, an
adjunction in % is better known as a dual pair in €, and one speaks of an object Y as
being left or right dual to an object X; see, for example, [May01]. When % is symmetric
monoidal, left duals and right duals coincide.

5.1. EXAMPLES. When ¥ = Modpy for a commutative ring R, the dualizable objects
are the finitely generated projectives. When % is the stable homotopy category, the
dualizable objects are the finite CW spectra.

The terminology of dual pairs was extended in [MS06] to adjunctions in Mod-like
bicategories, which behave more like dual pairs in monoidal categories than they do like
adjoint pairs of functors. Of course, now the distinction between left and right matters.
Explicitly, we have the following.

5.2. DEFINITION. A dual pair in a bicategory D is a pair (M, N), with M: A+ B,
N: B+ A, together with ‘evaluation’ and ‘coevaluation” maps

NOM—Upg and Uy— MGON

satisfying the triangle identities. We say that N is the right dual of M and that M is
right dualizable, and dually.

The definition of dual pair given in [MS06, 16.4.1] is actually reversed from ours,
although it doesn’t look it, because of our different conventions about which way to write
horizontal composition. But because we also turn around the horizontal 1-cells in all the
examples, the terms ‘right dualizable’ and ‘left dualizable’ refer to the same actual objects
as before. Our convention has the advantage that the right dual is also the right adjoint.

Because a dual pair is formally the same as an adjunction, all formal properties of
the latter apply as well to the former. One example is the calculus of mates, as defined
in Example 2.7: if (M,N) and (P,Q) are dual pairs, then there is a natural bijection
between morphisms M — P and () — N.

We define a dual pair in a framed bicategory ID to be just a dual pair in its underlying
horizontal bicategory D. In this case, we have natural examples coming from the base
change objects.
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5.3. PROPOSITION. If f: A — B is a vertical arrow in a framed bicategory D, then
(¢B, By) is naturally a dual pair.

PROOF. Since the base change functor f is left adjoint to f*, we have equivalences
DM ® yB,N)~D(Mfi,N)~D(M,Nf*)~D(M,N O By).

By the bicategorical Yoneda lemma (see, for example, [Str80]), which applies to dual pairs
just as it applies to adjunctions, this implies the desired result.

Alternately, the unit and counit can be constructed directly from the data in Theo-
rem 4.1(iii); the unit is

Ur44>

if“

IR

and the counit is

lfu

Equations (5) and (6) are then exactly what is needed to prove the triangle identities. m

R

In particular, each of the base change objects ;B and By determines the other up to
isomorphism. Combining these dual pairs with another general fact about adjunctions in
a bicategory, we have the following generalization of [MS06, 17.3.3-17.3.4].

5.4. PROPOSITION. Let (M, N) be a dual pair in a framed bicategory with M : A+ B,
N: B+ A, and let f: B — C be a vertical arrow. Then (M fi, fiN) is also a dual pair.
Similarly, for any g: D — A, (¢*M, Ng*) is a dual pair.

PrROOF. We have M fi= M © B and fiN = By ©® N, so the result follows from the fact
that the composite of adjunctions in a bicategory is an adjunction. The other case is
analogous. [

This implies the following generalization of the calculus of mates.

5.5.  PROPOSITION. Let (M, N) and (P,Q) be dual pairs in a framed bicategory. Then
there is a natural bijection between 2-cells of the following forms:

A-N-B B4

fl v lg and J/f.

gi Y
C—4=D D—-C
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PROOF. A 2-cell of the former shape is equivalent to a globular 2-cell Mg — f*P, and a
2-cell of the latter shape is equivalent to a globular 2-cell g N — @ f*. By Proposition 5.4,
we have dual pairs (Mg, gN) and (f*P, Qf*), so the ordinary calculus of mates applies.m

5.6. EXAMPLES. Dual pairs behave significantly differently in many of our examples.

(i) If R is a not-necessarily commutative ring, then a right R-module M : Z -+ R is right
dualizable in Mlod when it is finitely generated projective.

(ii) The only dual pairs in Span(%’) are the base change dual pairs. (This is easy in
Set, and we can then apply the Yoneda lemma for arbitrary %.)

(iii) If M: A—+ B is a right dualizable distributor in Dist(¥#'), and B satisfies a mild
cocompleteness condition depending on ¥ (called ‘Cauchy completeness’), then M
is necessarily also of the form ;B for some #-functor f: A — B. When 7" = Set,
Cauchy completeness just means that every idempotent splits. When ¥ = Ab, it
means that idempotents split and finite coproducts exist. See [Kel82, §5.5] for more
about Cauchy completion of enriched categories.

(iv) Dualizable objects in Ex are studied extensively in [MS06, Ch. 18].

5.7. REMARK. There is also a general notion of trace for endomorphisms of a dualizable
object in a symmetric monoidal category: if (X,Y") is a dual pair and f: X — X, then
the trace of f is the composite

I Lxeyvy i xey ZveXx 1

Traces were extended to dual pairs in a bicategory in [Pon07], by equipping the bicategory
with a suitable structure, called a shadow, to take the place of the symmetry isomorphism.
In [PS08] we will consider shadows in framed bicategories.

Duality in symmetric monoidal categories is most interesting when the monoidal cat-
egory is closed. There is also a classical notion of closed bicategory, which means that the
composition of 1-cells has adjoints on both sides:

B(M ® N, P) =~ B(M,N > P) = B(N, P < M).

Recall that B(M ® N, P) denotes the set of globular 2-cells from M ® N to P. In 2-
categorical language, this says that right Kan extensions and right Kan liftings exist in
the bicategory B.

It is proven in [MS06, §16.4], extending classical results for symmetric monoidal cat-
egories, that when M: A+ B is right dualizable, its right dual is always (isomorphic
to) the ‘canonical dual’ D, M = M > Ug; and conversely, whenever the canonical map
M ® D.M — M > M is an isomorphism, then M is right dualizable. This can also be
stated as the generalization to bicategories of the fact (see [MLI8, X.7]) that a functor G
has an adjoint when the Kan extension of the identity along G exists and is preserved by
G, and in that case the Kan extension gives the adjoint.



FRAMED BICATEGORIES AND MONOIDAL FIBRATIONS 673

5.8. DEFINITION. A framed bicategory D is closed just when its underlying horizontal
bicategory D is closed.

5.9. EXAMPLES. Many of our examples of framed bicategories are closed.

e Mod is closed; its hom-objects are given by

P < M = Hom¢ (M, P)
N > P =Homyu(N, P).

As long as 7 is closed and complete, then Dist(?') is closed; its hom-objects are
given by the cotensor product of distributors (the end construction).

e Span(%) is closed precisely when % is locally cartesian closed.

Ex is also closed. This is proven in [MS06, §17.1]; we will describe the general
method of proof in §14.

5.10. REMARK. A monoidal category is closed (on both sides) just when its corre-
sponding vertically trivial framed bicategory is closed. On the other hand, if a monoidal
category is symmetric, then the left and right internal-homs are isomorphic. In §10 we
will prove an analogue of this fact for framed bicategories equipped with an ‘involution’,
which includes all of our examples.

It is not surprising that there is some relationship between closedness and base change.

5.11. PROPOSITION. Let D be a closed framed bicategory. Then for any f : A — C,
g:B— D, and M : C'+ D, we have
[*Mg* = (D> M) <y
= ,D> (M <Cy)

and in particular
fO =0« Cf
Dy,=,Dr> D
PROOF. Straightforward adjunction arguments. [

Note that this implies, by uniqueness of adjoints, that the restriction functor f* can
also be described as f*N = N < Cy. Of course there are corresponding versions for
composing on the other side.

Moreover, if coextensions exist, then uniqueness of adjoints also implies that we have

fxM =M< C. (15)

Conversely, if D is closed, then (15) defines a right adjoint to f*; thus coextensions exist
in any closed framed bicategory, and also have a natural description in terms of the base
change objects.
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6. The 2-category of framed bicategories

We now introduce the morphisms between framed bicategories. To begin with, it is easy
to define morphisms of double categories by analogy with monoidal categories.

6.1. DEFINITION. Let D and E be double categories. A lax double functor F: D — E
consists of the following.

e Functors Fy: Dy — Eg and Fi: Dy — E; such that LoF} = FyoL and RoF; = FyoR.

e Natural transformations Fp: FiM © FiN — Fy(M ® N) and Fy: Uga — F1(Ua),
whose components are globular, and which satisfy the usual coherence axioms for a
lax monoidal functor or 2-functor (see, for example, [ML98, §XI.2]).

Dually, we have the definition of an oplax double functor, for which Fi and Fy go
in the opposite direction. A strong double functor is a lax double functor for which
F, and Fy are (globular) isomorphisms. If just Fy is an isomorphism, we say that F' is
normal.

We occasionally abuse notation by writing just F' for either Fy or Fj. Observe that
a lax double functor preserves vertical composition and identities strictly, but preserves
horizontal composition and identities only up to constraints. Like the constraints a, [t
for a double category, the maps Fi, and Fy; are globular, but must be natural with respect
to all 2-cells, not only globular ones.

If D and E are just monoidal categories, then a double functor F: D — E is the
same as a monoidal functor (of whichever sort). The terms ‘lax’, ‘oplax’, and ‘strong’ are
chosen to generalize this situation; some authors refer to strong double functors as pseudo
double functors. Since the monoidal functors which arise in practice are most frequently
lax, many authors refer to these simply as ‘monoidal functors’. It is also true for framed
bicategories that the lax morphisms are often those of most interest, but we will always
keep the adjectives for clarity.

6.2. EXAMPLE. Let F': € — 2 be a lax monoidal functor, where the monoidal cate-
gories ¥ and Z both have coequalizers preserved by ®. Then it is well known that F
preserves monoids, monoid homomorphisms, bimodules, and equivariant maps. More-
over, if M: A—+ B and N: B -+ C are bimodules in %, so that their tensor product is the
coequalizer

MBIN__—_ZMIN—MGOGN

then we have the commutative diagram

FM® FBQ FN __—_—ZFM®FN——FM®FN (16)

l | v

FIM® B® N)—=F(M®N)—> F(M ® N)
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in which the top diagram is the coequalizer defining the tensor product of bimodules in &,
and hence the dotted map is induced. Moreover, since Uy in Mod (%) is just A regarded
as an (A, A)-bimodule, we have F(Uy) = Upy. It is straightforward to check that this
isomorphism and the dotted map in (16) are the data for a normal lax double functor
Mod(F): Mod(%¢) — Mod(2).

Note that F' does not need to preserve coequalizers, so the bottom row of (16) need
not be a coequalizer diagram. However, if F' does preserve coequalizers, and is moreover
a strong monoidal functor, so that the left and middle vertical maps are isomorphisms,
then so is the right vertical map; hence Mod(F') is a strong double functor in this case.

In particular, if ¥ = Modgr and 2 = Modg for commutative rings R and S and
f: R — S is a homomorphism of commutative rings, then the extension-of-scalars functor
fi: Modgr — Modgy is strong monoidal and preserves coequalizers, hence induces a strong
double functor. The restriction-of-scalars functor f*: Modg — Modg, on the other hand,
is only lax monoidal, and hence induces a normal lax double functor.

6.3. EXAMPLE. Let F': € — 2 be any functor between two categories with pullbacks.
Then we have an induced normal oplaz double functor Span(F): Span(%) — Span(2).
If F' preserves pullbacks, then Span(F') is strong.

Now suppose that D and E are framed bicategories. Since the characterization of base
change objects in Theorem 4.1(iii) only involves horizontal composition with units, any
normal lax (or oplax) framed functor will preserve base change objects up to isomorphism;
that is, F\(;B) = pe(F'B). If it is strong, then it will also preserve restrictions and
extensions, since we have f*Mg* = ;B ©® M ©® D, and similarly.

More generally, any lax or oplax double functor £': D — E between framed bicategories

automatically induces comparison 2-cells such as

(FfW(FM)— F(fiM) and (17)
F(f*N) — (Ff)"(FN), (18)

by unique factorization through cartesian and opcartesian arrows. As remarked in §3,
the first of these goes in the ‘lax direction’ while the second goes in the ‘oplax direction’.
Thus, for the whole functor to deserve the adjective ‘lax’, the second of these must be an
isomorphism, so that it has an inverse which goes in the lax direction. This happens just
when F' preserves cartesian 2-cells.

However, it turns out that this is automatic: any lax double functor between framed
bicategories preserves cartesian 2-cells, so that (18) is always an isomorphism when F
is lax. Dually, any oplax double functor preserves opcartesian 2-cells, so that (17) is an
isomorphism when F' is oplax.

To prove this, we first observe that for any lax double functor F': D — [E and any
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arrow f: A — B in D, we have the following diagram of 2-cells in E:

Fy

Ura F(Ua) (19)
opcartl lF(opcart)
F
os(FB) " P ()

cart l l F(cart)

UFBTU>F(UB>.

The dotted arrow, given by unique factorization through the opcartesian one, is the special
case of (17) when M = Ujy; we denote it by ;F. The upper square in (19) commutes
by definition, and the lower square also commutes by uniqueness of the factorization.
Similarly, we have a 2-cell (FB)p; — F(By).

If F' is oplax instead, we have 2-cells in the other direction. If F' is strong (or even
just normal), the transformations exist in both directions, are inverse isomorphisms, and
each is the mate of the inverse of the other.

6.4. PROPOSITION. Any lax double functor between framed bicategories preserves carte-
sian 2-cells, and any oplax double functor between framed bicategories preserves opcarte-
sian 2-cells.

PROOF. Let M: B+ D inDand f: A — B, g: C'— D. Then the following composite
is cartesian in D:

B Dy
AL p ¢ (20)
fl cart cart ig
B U‘B B—=D 'D D
and the following composite is cartesian in E:
FB FD
FAL Y pp £ pp U b (21)
Ffl cart cart ng
FB T FB—7FD T2 FD.

Applying F' to (20) and factoring the result through (21), we obtain a comparison map

F(;BOM © Dy) — pp(FB) © FM © (FD)gy, (22)
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which we want to show to be an isomorphism. We have an obvious candidate for its
inverse, namely the following composite.

Fi(FB) par (FD)rg

| | | (23)
=
F(;B) VP F(Dyg)
|
F(;BOM®Dy)

Consider first the composite of (23) followed by (22):

Fi(FB) par (FD)rg
| | |
T

F(;B) F(Dy)

119 30)
— F(;BOMODg)—>

U

| | |
rr(FB) FM (FD)p,

If we postcompose this with (21), then by definition of (22), we obtain

By naturality of the lax constraint for F', this is equal to

Ff(F B) FM (F D)

— s rD,)-
Ffl (cart) F(cart) \LFg
M
F(Us) F(Up)
VFo

|
FM
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Because the lower square in (19) commutes, this is equal to

ry(FB) FM (FD)rg
|

| \
Ffl cart cart \LFQ
—Urp—> 7FTM‘> —Urp—>
| F1|M \
F(Up) F(Up)
IFo
|
FM

which is equal to (21), by the coherence axioms for F'. Thus, by unique factorization
through (21), we conclude that (23) followed by (22) is the identity.

Now consider the composite of (22) followed by (23). By the construction of factoriza-
tions in Theorem 4.1, (22) can be computed by composing horizontally with opcartesian
2-cells; thus our desired composite is

Ura F(;BOM®OD,) Urc
| | |
opcart Ff F(cart) Fg opcart
| s |
F(;B) F(Dy)
IFo
\

F(;BOM®D,)

By definition of ;F and FY, this is equal to

UIIrA F(fB@IjV[QDg) UII:C
I | |
VFy VFy
F(f BOM®GDy)

—FUa)> I —FUc)>
F(opcart) F(cart) F(opcart)
| FM |
F(;B) F(Dy)
9 30]

|
F(; BOM®Dy)
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By naturality of Fy, this is equal to

U}‘?A F(fBGIJMGDQ) UF“C

| | | (24)
Iy I Fy

‘ F(;BoMoD,) ‘
F(Ua) ' F(Uc)

VFo
- F(;BOMODy)—— >
F(stuff)
|
F(;BOM®Dy)

where ‘stuff’ is the composite

R

opcart f cart

cart % opcart

BT U A Un D,

which is equal (modulo constraints) to the identity on ;B ©® M ® D,. Thus, applying
the coherence axioms for F' again, (24) reduces to the identity of F(;B ® M © D,).
Therefore, (23) is a two-sided inverse for (22), so the latter is an isomorphism; hence F
preserves cartesian 2-cells. The oplax case is dual. [

Here we see again the advantage of using fibrations rather than introducing base change
functors explicitly: since fibrations are ‘non-algebraic’, all their constraints and coherence
come for free. This leads us to the following definition.

6.5. DEFINITION. A lax framed functor is a lax double functor between framed bi-
categories. Similarly, an oplax or strong framed functor is a double functor of the
appropriate type between framed bicategories.

We observed in §1 that while 2-functors give a good notion of morphism between both
sorts of bicategories, the right notion of transformation for Mod-like bicategories is rather
murkier. Once we include the vertical arrows to get a framed bicategory, however, it
becomes much clearer what the transformations should be.

6.6. DEFINITION. A double transformation between two lax double functors « :
F — G : D — E consists of natural transformations ag: Fy — Gy and a;: F; — G (both
usually written as «), such that L(ans) = oy and R(aps) = agar, and such that

FALM PN po FALM PN po
IFo aAi Jan af lan iac
FA—rFMoN—FC = GA—>GB—=GC
OtAl lapmon J{ac 1Go
GA | GC GA | GC

G(M®N) G(M®ON)
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and
FA—4 o pg FA—A ~pA .
) W
FA—FUD)—>FA = GA—Uaa—GA
| v e
GA—gif GA GA—ifGA

The framed version of this definition requires no modification at all.

6.7. DEFINITION. A framed transformation between two lax framed functors is sim-
ply a double transformation between their underlying lax double functors.

We leave it to the reader to define transformations between oplax functors. In the case
of ordinary bicategories, there is also a notion of ‘modification’, or morphism between
transformations, but with framed bicategories we usually have no need for these. Thus,
the framed bicategories, framed functors, and framed transformations form a Cat-like
bicategory, which is in fact a strict 2-category.

6.8. PROPOSITION. Small framed bicategories, lax framed functors, and framed transfor-
mations form a strict 2-category FrBi,. If we restrict to strong framed functors, we obtain
a 2-category FrBi, and if we use oplax framed functors instead, we obtain a 2-category

?’I“Biapg.

Of course, double categories, double functors, and double transformations also form
larger 2-categories Dbl,, Dbl, and Dbl,,,.

6.9. REMARK. Recall that we can regard a monoidal category as a framed bicategory
whose vertical category is trivial, and that the framed functors between vertically trivial
framed bicategories are precisely the monoidal functors (whether lax, oplax, or strong).
It is easy to check that framed transformations are also the same as monoidal transfor-
mations; thus MonCat is equivalent to a full sub-2-category of FrBi.

This is to be contrasted with the situation for ordinary ‘unframed’ bicategories. We
can also consider monoidal categories to be bicategories with just one 0-cell, and 2-functors
between such bicategories do also correspond to monoidal functors, but most transforma-
tions between such 2-functors do not give rise to anything resembling a monoidal trans-
formation; see [CG06]. Thus, framed bicategories are a better generalization of monoidal
categories than ordinary bicategories are.

6.10. EXAMPLE. Let ¥ and ¥ be monoidal categories with coequalizers preserved by ®,
and let a: F = G: € — 2 be a monoidal natural transformation between lax monoidal
functors. We have already seen that F' and G give rise to lax framed functors. Moreover,
the fact that « is a monoidal transformation implies that if A is a monoid in €, as: FA —
G A is a monoid homomorphism in &, and similarly for bimodules. Therefore, we have
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an induced framed transformation
Mod(«): Mod(F') — Mod(G).

This makes Mod(—) into a strict 2-functor. Its domain is the 2-category of monoidal
categories with coequalizers preserved by ®, lax monoidal functors, and monoidal trans-
formations, and its codomain is FrBi,. If we restrict the domain to strong monoidal
functors which preserve coequalizers, the image lies in FrBq.

6.11. EXAMPLE. Let ¥, % be categories with pullbacks and a: F' = G: € — Z a
natural transformation. Then « induces a framed transformation

Span(a): Span(F') — Span(G)

in an obvious way. This makes Span into a strict 2-functor from the 2-category of cat-
egories with pullbacks, all functors, and all natural transformations, to FrBiy,.. If we
restrict the domain to functors which preserve pullbacks, the image lies in FrBi.

6.12. REMARK. It is easy to see that any framed functor induces a 2-functor of the
appropriate type between horizontal bicategories, but the situation for framed transfor-
mations is less clear. We will consider this further in appendix B.

7. Framed equivalences

All the usual notions of 2-category theory apply to the study of framed bicategories via
the 2-categories FrBi,, FrBi¢, and FrBiyy,, and generally reduce to elementary notions
when expressed explicitly. Since, as remarked above, the lax framed functors are often
those of most interest, we work most frequently in FrBi,, but analogous results are always
true for the other two cases.

One important 2-categorical notion is that of internal equivalence. This is defined to
be a pair of morphisms F': D — E and G: E — D with 2-cell isomorphisms F'G = Id
and GF = Id. The notion of equivalence for framed bicategories we obtain in this way
solves another of the problems raised in §1.

7.1. DEFINITION. A framed equivalence is an internal equivalence in FrBi,.

Thus, a framed equivalence consists of lax framed functors F' : D & E : G with
framed natural isomorphisms 7 : Idp = GF and € : FG = Idg. It might seem strange
not to require F and G to be strong framed functors in this definition, but in fact this is
automatic.

7.2.  PROPOSITION. In a framed equivalence as above, F' and G are automatically strong
framed functors (hence give an equivalence in FrBi).

We will prove this in the next section as Corollary 8.3.
Since strict 2-functors preserve internal equivalences, our 2-functorial ways of con-
structing framed bicategories give us a ready supply of framed equivalences. For example,
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any monoidal equivalence ¥ ~ & of monoidal categories with coequalizers preserved
by ® induces a framed equivalence Mod (%) ~ Mod(%). Similarly, any equivalence of
categories with pullbacks induces a framed equivalence between framed bicategories of
spans.

As for ordinary categories, we can characterize the framed functors which are equiva-
lences as those which are ‘full, faithful, and essentially surjective’. First we introduce the
terminology, beginning with double categories. Recall that we write (D, (M, N) for the
set of 2-cells of the form

A-Y-B
fl Ja ig
C —=D.

7.3.  DEFINITION. A lax or oplax double functor is full (resp. faithful) if it is full (resp.
faithful) on vertical categories and each map

Fg]D)f<M,N> —>FgEFf<FM,FN) (25)
is surjective (resp. injective).
In the case of a framed functor, however, the notions simplify somewhat.

7.4. PROPOSITION. A laz or oplax framed functor F: D — E is full (resp. faithful) in

the sense of Definition 7.3 if and only if it is full (resp. faithful) on vertical categories and
each functor D(A, B) — E(FA, FB) is full (resp. faithful).

PROOF. Definition 7.3 clearly implies the given condition. Conversely, suppose that
F: D — E is a lax framed functor. We have a natural bijection

oD (M, N) = D(M, f*Ng")

which is preserved by F', since it preserves restriction. In other words, the diagram

D (M, N) = D(M, ng*)
FgEFf(FM, FN) E(FM,F(f*Ng*))

~ lg

E(FM, (Ff)"(FN)(Fg)")

commutes. Thus, if the right-hand map is surjective (resp. injective), so is the left-hand
map. An analogous argument works for an oplax framed functor, using extension instead
of restriction. -



FRAMED BICATEGORIES AND MONOIDAL FIBRATIONS 683

This is yet another expression of the fact that in a framed bicategory, the globular
2-cells carry the information about all the 2-cells. A similar thing happens for essential
surjectivity.

7.5. DEFINITION. A lax or oplax double functor F' : D — E is essentially surjective
if we can simultaneously make the following choices:

>~

e For each object C of E, an object Ac of D and a vertical isomorphism a¢ : F/(A¢)
C, and

e For each horizontal 1-cell N : C'+ D in E, a horizontal arrow My: Ac + Ap in E
and a 2-cell isomorphism

F(M
F(A) "M pap) .
acl an = \Lap
C——D

7.6. PROPOSITION. A lax or oplax framed functor is essentially surjective, in the sense
of Definition 7.5, if and only if it is essentially surjective on vertical categories and each
functor D(A, B) — E(F A, FB) is essentially surjective.

Proor. Clearly Definition 7.5 implies the given condition. Conversely, suppose that F
satisfies the given condition. Choose isomorphisms a¢ : F(A¢) = C for each object C' of
E, which exist because F' is essentially surjective on vertical categories. Then given N :
C -+ D, we have a;Naoj,: F(Ac) -+ F(Ap), so since F': D(Aq, Ap) — E(F(Ac), F(Ap))
is essentially surjective, we have an My : Ac — Ap and a globular isomorphism F(My) =
aiNap. Composing this with the cartesian 2-cell defining o Naj,, we obtain the desired
Qpf. ]

The following theorem and its corollary are the main points of this section. Of course,
we define a double equivalence to be an internal equivalence in Dbl,.

7.7. THEOREM. A strong double functor F : D — E is part of a double equivalence if
and only if it 1s full, faithful, and essentially surjective.

Proor. We sketch a construction of an inverse equivalence G : E — D for F'. Make choices
as in Definition 7.5, and define GC' = Az and GN = My. Define G on vertical arrows
and 2-cells by composing with the chosen isomorphisms; vertical functoriality follows
from F' being full and faithful. We produce the constraint cells for G by composing these
isomorphisms with the inverses of the constraint cells for F' and using that F' is full and
faithful; this is why we need F' to be strong.

The choices from the definition of essentially surjective then give directly a double
natural isomorphism F'G = Idg, and we can produce a double natural isomorphism GF =
Idp by reflecting identity maps in E. Thus G and F' form a double equivalence. [
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7.8. COROLLARY. A strong framed functor F: D — E is part of a framed equivalence
precisely when

e [t induces an equivalence Fy: Dy — Ey on vertical categories, and

e Fach functor F': D(A, B) — E(F A, FB) is an equivalence of categories.

ProOF. Combine Proposition 7.4 and Proposition 7.6 with Theorem 7.7 to see that F
has an inverse which is a strong double functor, hence also a strong framed functor by
Proposition 6.4. m

A framed equivalence F': D &2 E :G clearly includes an equivalence Fy: Dy = Eq : Gy
of vertical categories. It is less clear that it induces a biequivalence D ~ & of horizontal
bicategories. We will see in appendix B, however, that this is true, though not trivial.
This lack of triviality, in the following example, was one of the original motivations for
this work.

7.9. EXAMPLE. There are a number of framed bicategories related to Ex, such as a
fiberwise version Exp where the objects are already parametrized over some space B, and
an equivariant version GEx in which everything carries an action by some fixed group
G. In [MS06, 19.3.5] it was observed (essentially) that GEx¢,, the framed bicategory of
G-equivariant parametrized spectra all over the coset space G/H, and HEx, the framed
bicategory of H-equivariant parametrized spectra, are equivalent.

However, as observed in [MS06], the language of bicategories does not really suffice
to describe this fact. On objects, the equivalence goes as follows: if X is a G-space
over G/H, the fiber X, is an H-space; while if Y is an H-space, G Xy Y is a G-space
over G/H. But the composites in either direction are only homeomorphic, not equal,
whereas the bicategory €z described in [MS06] does not include any information about
homeomorphisms of base spaces.

8. Framed adjunctions

Adjunctions are one of the most important tools of category theory. Thus, from a cate-
gorical point of view, one of the most serious problems with Mod-like bicategories is the
lack of a good notion of adjunction between them. For example, Ross Street wrote the
following in a review of [CKWO91]:

Nearly two decades after J. W. Gray’s work [Gra74], the most useful general
notion of adjointness for morphisms between 2-categories has still not emerged.
Perhaps the good notion should depend on the kind of 2-categories in mind;
2-categories whose arrows are functions or functors are of a different nature
from those whose arrows are relations or profunctors.

In fact, motivated by the desire for a good notion of adjunction, [CKW91] and related
papers such as [Ver92, CKVW98| come very close to our definition of framed bicategory.
In appendix C we will make a formal comparison; for now we simply develop the theory
of framed adjunctions.
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8.1. DEFINITION. A framed adjunction F' - G is an internal adjunction in the 2-
category FrBi,. Explicitly, it consists of lax framed functors F': D — E and G: E — D,
together with framed transformations n: Idpy — GF and ¢: FG — Idg satisfying the
usual triangle identities. Similarly, an op-framed adjunction is an internal adjunction
in FrBigpe.

Experience shows that adjunctions in FrBi, arise more frequently than the other two
types, hence deserve the unadorned name. However, we have the following fundamental
result.

8.2. PROPOSITION. In any framed adjunction F' 4 G, the left adjoint F' is always a
strong framed functor.

SKETCH OF PROOF. This actually follows formally from a general 2-categorical result
known as ‘doctrinal adjunction’; see [Kel74]. For the non-2-categorically inclined reader
we sketch a more concrete version of the proof. We first show that the following composite
is an inverse to Fi: FM © FN — F(M ® N):

FM o N) 299 p(GFEM 6 GFN) £% FG(FM © FN) == FM® FN  (26)

For example, the following diagram shows that the composite in one direction is the
identity.

F(GFM ® GFN) 2% FG(FM @ FN) —~ FM ® FN

F(n®n)T iFG(F@) J{F@
F(MoN)—""  pGF(M & N)—=~ F(M ® N).
\‘\M/

id

The right-hand square commutes by naturality of €, the left-hand square commutes be-
cause 7 is a framed transformation, and the lower triangle is one of the triangle identities.
The other direction is analogous.

Similarly, we show that the following composite is an inverse to Fyy: Upg — F(Ua):

FUL) 2 pUGps S0 FQUp g > Upa, (27)

so that F'is strong. [

The similarity between (26) and (27) is obvious. In fact, these composites are the
mates of the constraint cells for G under an adjunction in a suitable 2-category; the
reader may consult [Kel74] for details. Of course, in an op-framed adjunction, the right
adjoint is strong.

We can now prove Proposition 7.2.

8.3. COROLLARY. Both functors in a framed equivalence are strong framed functors.
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PRrROOF. It is well-known that any classical equivalence of categories can be improved to
an ‘adjoint equivalence’, meaning an equivalence in which the isomorphisms F'G = Id and
Id =2 GF are also the unit and counit of an adjunction F' 4 GG, and hence their inverses
are the unit and counit of an adjunction G + F'. This fact can easily be ‘internalized’ to
any 2-category, such as FrBi,. Thus, any lax framed functor which is part of a framed
equivalence is a framed left adjoint, and hence by Proposition 8.2 is strong. ]

As is the case for categories, we can also characterize framed adjunctions using uni-
versal arrows. A similar result for double categories was given in [Gar07].

Recall that given a functor G: & — ¥, a universal arrow to G is an arrow 7: A —
GFAin 9, for some object FA € &, such that any other arrow A — GY factors through
7 via a unique map FFA — Y in &. Similarly, if G: E — D is a framed functor, we define
a universal 2-cell to be a 2-cell n: M — GFM in D, not in general globular, whose left
and right frames are universal arrows in Dy, and such that any 2-cell M — GN factors
through 7 via a unique 2-cell FM — N in E.

8.4. PROPOSITION. Let G: E — D be a laz framed functor. Then G has a framed left
adjoint if and only if the following are true.

(i) For every object A in D, there is a universal arrow A — GFA.

(ii) For every horizontal 1-cell M : A— B in D, there is a universal 2-cell M — GF M,
as described above.

(1)) If M — GFM and N — GFN are universal 2-cells, then so is the composite

d Y
univ univ
—GFM— —GFN—>
|
G(FM®FN)

(i) If A — GFA is universal, then so is the composite

U

(R

univ YUuniv univ
—Ugra—>

G(UIFA)

If G is strong, then (iii) simplifies to ‘the horizontal composite of universal 2-cells is
universal’ and (iv) simplifies to ‘the horizontal unit of a universal arrow is a universal
2-cell’.
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SKETCH OF PROOF. It is straightforward to show that if G has a left adjoint, then the
conditions are satisfied. Conversely, conditions (i) and (ii) clearly guarantee that Gy and
(G both have left adjoints Fy and Fi, and that LF; = FyL and RF; = FyR. Since E is a
framed bicategory, we can redefine F) by restricting along these isomorphisms to ensure
that LF1 = F()L and RF1 = F()R

Conditions (iii) and (iv) then supply the constraints to make F' into a strong framed
functor. The universal cells give a double transformation n: Id — GF and the counit
e: FG — 1d is constructed as usual. The last statement follows because anything isomor-
phic to a universal arrow is universal. [

Since strict 2-functors preserve internal adjunctions, our 2-functorial ways of con-
structing framed bicategories also give us a ready supply of framed adjunctions.

8.5. EXAMPLE. Since Mod is a 2-functor, any monoidal adjunction between monoidal
categories with coequalizers preserved by ® gives rise to a framed adjunction. Here by
a monoidal adjunction we mean an adjunction in the 2-category MonCat, of monoidal
categories and lax monoidal functors.

For example, if f: R — S is a homomorphism of commutative rings, we have an
induced monoidal adjunction

fi: Modr 2 Mody : f*
and therefore a framed adjunction
Mod(f): Mod(R) = Mod(S) :Mod(f*).

8.6. EXAMPLE. Since Span is a strict 2-functor, any adjunction f*: & = % : f,
between categories with pullbacks gives rise to an op-framed adjunction Span(&) =
Span(.%). If f* also preserves pullbacks, then this adjunction lies in FrBi, hence is also
a framed adjunction.

9. Monoidal framed bicategories

Most of our examples also have an ‘external’ monoidal structure. For example, if M
is an (A, B)-bimodule and N is a (C, D)-bimodule, we can form the (A ® C, B ® D)-
bimodule M ® N. The definition of a ‘monoidal bicategory’ involves many coherence
axioms (see [GPS95, Gur06]), but for framed bicategories we can simply invoke general
2-category theory once again.

In any 2-category with finite products, we have the notion of a pseudo-monoid: this
is an object A equipped with multiplication A x A — A and unit 1 — A satisfying the
usual monoid axioms up to coherent isomorphism. A pseudo-monoid in Cat is precisely an
ordinary monoidal category. Thus, it makes sense to define a monoidal framed bicategory
to be a pseudo-monoid in FrBi. What this means is essentially the following.
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9.1. DEFINITION. A monoidal framed bicategory is a framed bicategory equipped
with a strong framed functor ®: D xD — I, a unit I € Dy, and framed natural constraint
isomorphisms satisfying the usual axioms.

If we unravel this definition more explicitly, it says the following.
(i) Dy and D; are both monoidal categories.
(ii) I is the monoidal unit of Dy and Uy is the monoidal unit of D;.
(iii) The functors L and R are strict monoidal.
)

(iv) We have an ‘interchange’ isomorphism
p(MeP)o(NoQ)=(MON)® (POQ)

and a unit isomorphism

w: Uagp = (Ua @ Up)

satisfying appropriate axioms (these arise from the constraint data for the strong
framed functor ®).

(v) The associativity and unit isomorphisms for ® are framed transformations.

As we saw in §6, a strong framed functor such as ® preserves cartesian and opcartesian
arrows. Thus we automatically have isomorphisms such as f*M ®¢*N = (f®g)* (M N).

9.2. EXAMPLES. Many of our examples of framed bicategories are in fact monoidal.

e The framed bicategory Mod, and more generally Mlod (%) for a symmetric monoidal
%, is monoidal under the tensor product of rings and bimodules. Note that the
tensor product of bimodules referred to here is ‘external’: if M is an (R, S)-bimodule
and N is a (T, V)-bimodule, then M ® N is an (R® T, S ® V)-bimodule.

e If ¥ has finite limits, then Span(%’) is a monoidal framed bicategory under the
cartesian product of objects and spans.

e [Ex is monoidal under the cartesian product of spaces and the ‘external smash prod-
uct’ A of parametrized spectra.

e nCob is monoidal under disjoint union of manifolds and cobordisms.

e Dist(?) is monoidal under the tensor product of ¥ -categories (see [Kel82, §1.4]).
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9.3. EXAMPLE. Recalling that monoidal categories can be identified with vertically triv-
ial framed bicategories, it is easy to check that a vertically trivial monoidal framed bi-
category is the same as a category with two interchanging monoidal structures. More
generally, if I is any monoidal framed bicategory, then the category D(I, I) inherits two
interchanging monoidal structures ® and ®. By the Eckmann-Hilton argument, any two
such interchanging monoidal structures agree up to isomorphism and are braided.

We emphasize that the associativity and unit constraints are wvertical isomorphisms.
For example, in the monoidal framed bicategory Mod, the associativity constraint on
objects is the ring isomorphism (A® B)® C' = A® (B® (). This is to be contrasted with
the classical notion of ‘monoidal bicategory’ in which the constraints are 1-cells, which
would correspond to bimodules in this case. So while a framed bicategory obviously has
an underlying horizontal bicategory, it requires proof that a monoidal framed bicategory
has an underlying monoidal bicategory; see appendix B.

We observe, in passing, that an external monoidal structure automatically preserves
dual pairs.

9.4. PROPOSITION. If (M, N) and (P, Q) are dual pairs in a monoidal framed bicategory,
then so is (M ® P,N ® Q).

PROOF. It is easy to see that any strong framed functor preserves dual pairs, and ® is a
strong framed functor. [

Now, just as an ordinary monoidal category can be braided or symmetric, so can
a pseudo-monoid in an arbitrary 2-category with products. We define a braided or
symmetric monoidal framed bicategory to be essentially a braided or symmetric pseudo-
monoid in FrBi.

More explicitly, a braided monoidal framed bicategory is a monoidal framed bicategory
such that Dy and D; are braided monoidal with braidings s, the functors L and R are
braided monoidal, and the following diagrams commute:

MoON)QRPOQ)—=(POQ)® (M e N)

‘| |

M®P)o(N®Q)—(P®M)® (Q®N)

(Ua®Up) == Usgzs .
7
Up @ Ua—;— Upga

A symmetric monoidal framed bicategory is a braided monoidal framed bicategory such
that Dy and D; are symmetric.

9.5. EXAMPLES. All the examples of monoidal framed bicategories given in Examples 9.2
are in fact symmetric monoidal.
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9.6. EXAMPLE. If D is a braided or symmetric monoidal framed bicategory, then D(1, I)
inherits two interchanging monoidal structures, one of which is braided, and therefore it
is essentially a symmetric monoidal category. Conversely, the vertically trivial monoidal
framed bicategory corresponding to any symmetric monoidal category is a symmetric
monoidal framed bicategory.

We now define the morphisms between monoidal framed bicategories. As usual, these
come in three flavors.

9.7. DEFINITION. A lax monoidal framed functor between monoidal framed bicat-
egories D, E consists of the following structure and properties.

e A lax framed functor F: D — E.
e The structure of a lax monoidal functor on Fy and Fj.
e Equalities LF; = FyL and RF; = FyR of lax monoidal functors.

e The composition constraints for the lax framed functor F' are monoidal natural
transformations.

It is strong if F' is a strong framed functor and Fj and Fj are strong monoidal functors.
If D and E are braided (resp. symmetric), then F' is braided (resp. symmetric) if £ and
F} are. We have a dual definition of oplax monoidal framed functor. A monoidal
framed transformation is a framed transformation such that «g and «; are monoidal
transformations.

These definitions give various 2-categories, each of which has its own attendant notion
of equivalence and adjunction. We will not spell these out explicitly.

9.8. EXAMPLES. The 2-functor Mod lifts to a 2-functor from symmetric monoidal cat-
egories with coequalizers preserved by ® to symmetric monoidal framed bicategories.
Similarly, Span lifts to a 2-functor landing in symmetric monoidal framed bicategories.

Finally, we consider what it means for a framed bicategory to be ‘closed monoidal’.

9.9. DEFINITION. A monoidal framed bicategory D is externally closed if for any
objects A, B,C, D, the functor

®: D(A,C) x D(B, D) — D(A® B,C @ D)

has right adjoints in each variable, which we write < and T .

Explicitly, this means that for horizontal 1-cells M: A+ C, N: B+ D, and P: A®
B+ C® D, there are 1-cells N > P and P < M and bijections

D(M & N,P)~D(M,NS P)~D(N,P I M).

Of course, if D is symmetric, then < and > agree, modulo suitable isomorphisms.
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9.10. ExAMPLES. The monoidal framed bicategory Mod is externally closed, as are Ex
and Dist(¥). If € is locally cartesian closed, then Span(%) is also externally closed.

10. Involutions

In most of our examples, the ‘directionality’ of the horizontal 1-cells is to some extent
arbitrary. For example, an (A, B)-bimodule could just as well be regarded as a (B°?, A%)-
bimodule. We now define a structure which encodes this fact formally.

If D is a framed bicategory, we write D" for its ‘horizontal dual’: D*°? has the same
vertical category as D, but a horizontal 1-cell from A to B in D**°7 is a horizontal 1-cell
from B to A in D, and the 2-cells are similarly flipped horizontally.

10.1. DEFINITION. An involution on a framed bicategory D consists of the following.
(i) A strong framed functor (—)°: D"°P — D.

(ii) A framed natural isomorphism &: ((—)°?)°" = Idp such that (£4)% = Eaer; thus £
and ¢! make (—)° into an adjoint equivalence.

We say an involution is vertically strict if the vertical arrow components of £ are iden-
tities. If D, (—)°, and £ are all monoidal (resp. symmetric monoidal), we say that the
involution is monoidal (resp. symmetric monoidal).

The strong functoriality of (—)° implies that we have

( A) UAO:U

(M @N)” 2= NP®M™.
(f*Mg™)*P = (g*)"(M*")(f)"
(fiMg)® = (g% W(M)(f).

In particular, we have (Af)? = o (A°) and dually. If the involution is monoidal, we
also have

(A® B) = A% @ B
17 =7,

10.2. EXAMPLES. Most of our examples are equipped with vertically strict symmetric
monoidal involutions.

e The involution on Mod takes a ring A to the opposite ring A°, and an (A, B)-
bimodule to the same abelian group regarded as a (B, A°?)-bimodule.

e The involution on Dist(¥') takes a #-category to its opposite and reverses distrib-
utors in an obvious way.
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e The involution on Span(%) takes each object to itself, and a span A J x 4B
to the span B <= X ANy

e The involution on nCob takes a manifold M to the manifold M°P with the opposite
orientation, and reverses the direction of cobordisms in an obvious way.

In all these cases, the 2-cell components of £ can also be chosen to be identities, but this
is not true for all involutions, even vertically strict ones.

e The involution on Ex takes each space to itself, but takes a spectrum E parametrized
over B x A to the pullback s* F over Ax B, where s is the symmetry isomorphism A x
B = B x A. Here s*s*E is only canonically isomorphic to E, by pseudofunctoriality.

In [MS06, 16.2.1] an involution on a bicategory was defined to be essentially a pseudo-
functor (—)°?: B? — B equipped with a pseudonatural transformation &: ((—)% )% =
Ids whose 1-cell components are identities (although the unit axiom for £ was omitted).
It is easy to see that any vertically strict involution on D gives rise to an involution on
D. All the above examples are vertically strict, but in §11 and §15 we will see examples
which are not.

Any symmetric monoidal category, considered as a vertically trivial framed bicategory,
has a canonical involution. The functor (—)° is the identity on 1-cells (the objects of the
monoidal category), and its composition constraint is the symmetry isomorphism:

(A@B)? =A6®B =5 BoA=B?@ A,

All the components of ¢ are identities. In fact, to give an involution on a vertically
trivial framed bicategory which is the identity on 1-cells and for which £ is an identity
is essentially to give a symmetry for the corresponding monoidal category. Thus, we
may view an involution on a framed bicategory as a generalization of a symmetry on a
monoidal category.

One consequence of a monoidal category’s being symmetric is that if it is closed, then
the left and right internal-homs are isomorphic. The original motivation in [MS06] for
introducing involutions was to obtain a similar result for closed bicategories; see [MS06,
16.3.5]. Of course, this is also true for framed bicategories.

10.3. PROPOSITION. IfD is a closed framed bicategory equipped with an involution, then
we have
Mp>N=(NP<qMP)P,
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PROOF. Since (—)? is a framed equivalence, it is locally full and faithful. Thus, if
M:A-+B, N:C—+B,and P: C+ A, we have
D(C,A)(P,M > N)=D(C,B)(P®M,N)
BP CP)((P ® M)°P, N°P)
B, C") (M & P N°)
AP CP) (PP, NP 1 M)
(CoPyor, AOp)Op) <(p0p)0p’ (N 4 MOp)Op)
(C,A)(P, (NP < M°P)°P)

12
3 B EYS

so the result follows by the Yoneda lemma. [

11. Monoids and modules

In most of our examples of monoidal framed bicategories, the external monoidal struc-
ture and the horizontal composition are more closely related than is captured by the
interchange isomorphism: namely, the horizontal composition M ® N is a subobject or
quotient of the external product M @ N. For example, in Mod the tensor product M ®r N
is a quotient of the external product M ® N, while in Span the pullback M xg N is a
subobject of the external product M x N. An analogous relationship holds between the
bicategorical homs <, > and the external homs <, > .

In this section we will generalize the construction of the framed bicategory Mod (%)
of monoids and modules from Example 2.2, replacing the monoidal category ¢ with a
framed bicategory ID. This describes one general class of examples in which the horizontal
composition of ‘bimodules’ is defined as a coequalizer. In §§12-14, we will investigate
framed bicategories constructed in a way analogous to Span. We will then combine these
two constructions in §15 to define framed bicategories of internal and enriched categories.

11.1. DEFINITION. Let D be a framed bicategory.

¢ A monoid in D consists of an object R, a horizontal 1-cell A: R+ R, and globular
2-cells e: R — Aand m: A® A — A called ‘unit’ and ‘multiplication’ such that
the standard diagrams commute. Thus it is just a monoid in the ordinary monoidal
category D(R, R).

e A monoid homomorphism (R, A) — (5, B) consists of a vertical arrow f: R — S
and a 2-cell ¢: A% B such that gpoe=e and pom =mo (¢ ® ¢).

e A bimodule from a monoid (R, A) to amonoid (S, B) is a horizontal 1-cell M : R+ S
together with action maps a,: AOM — M and a,: M®B — M obeying the obvious
compatibility axioms.
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o Let (f,0): (R,A) — (5,B) and (g,v): (T,C) — (U, D) be monoid homomorphisms
and M: (R, A)—+ (T,C), N: (S,B)—+ (U, D) be bimodules. A (¢,1)-equivariant
map is a 2-cell a: M =i> N such that a,(¢ © o) = aay and a,.(a © P) = aa,.

e Let M: R—+ S be an (A, B)-bimodule and N: ST be a (B, C)-bimodule. Their
tensor product is the following coequalizer in D(A, C), if it exists:

MoOBON=M®N — M o N.

Of course, if D is a monoidal category, these notions reduce to the usual ones.

11.2. ExAMPLE. If € has pullbacks, then a monoid in Span(%’) is an internal category
in %, and a monoid homomorphism is an internal functor. A bimodule in Span(%) is an
‘internal distributor’.

11.3. EXAMPLE. A monoid in Mod consists of a ring R together with an R-algebra A,
and a monoid homomorphism (R, A) — (S, B) consists of a ring homomorphism f: R — S
and an f-equivariant algebra map A — B. A bimodule in Mod is just a bimodule for the
algebras.

In order to define a framed bicategory of monoids and bimodules in D, we need to
know that coequalizers exist and are well-behaved.

11.4. DEFINITION. A framed bicategory ID has local coequalizers if each category
D(A, B) has coequalizers and ® preserves coequalizers in each variable. We introduce the
following notations.

e FrBi/ denotes the full sub-2-category of FrBi, determined by the framed bicate-
gories with local coequalizers.

o JF T’Bz’gn denotes the locally full sub-2-category of FrBi, determined by the framed
bicategories with local coequalizers and the normal lax framed functors.

e FrBi? denotes the locally full sub-2-category of FrBi determined by the framed
bicategories with local coequalizers and the strong framed functors which preserve
local coequalizers.

Note that if D is closed, as defined in §5, then ® preserves all colimits since it is a
left adjoint. The following omnibus theorem combines all our results about monoids and
modules in framed bicategories.

11.5. THEOREM. Let D be a framed bicategory with local coequalizers. Then there is a
framed bicategory Mod (D) of monoids, monoid homomorphisms, bimodules, and equiv-
ariant maps in . Moreover:

e Mod(D) also has local coequalizers.
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o If D is closed and each category D(A, B) has equalizers, then Mod(D) is closed.

o [fD is monoidal and its external product ® preserves local coequalizers, then Mod(ID)
has both of these properties. If D is symmetric, so is Mod(DD). If D is externally
closed and each category D(A, B) has equalizers, then Mod (D) is externally closed.

o [fD is equipped with an involution, so is Mod (D). If the involution of D is monoidal
or symmetric monoidal, so is that of Mod (D).

e Mod defines 2-functors FrBi} — FrBif, and FrBi? — FrBi?, and similarly for

the monoidal versions.

Even if F' is a strong framed functor, Mod(F') is only lax unless F' preserves local
coequalizers. If F' is oplax, we cannot even define Mod(F'). Of course, there is a dual
construction Comod, but it arises much less frequently in practice.

11.6. EXAMPLE. If % is a monoidal category with coequalizers preserved by ®, then
Mod (%) has local coequalizers, so we have a framed bicategory Mod(Mod(%')) of alge-
bras and bimodules in €.

11.7. EXAMPLE. If ¥ is a category with pullbacks and coequalizers preserved by pull-
back, then Span(%’) has local coequalizers, so we have a framed bicategory Mlod(Span(%))
of internal categories and distributors in %'

11.8.  EXAMPLE. When 7 is a cocomplete closed monoidal category, we can also con-
struct the framed bicategory Dist(7") of enriched categories and distributors in this way.
We first define the framed bicategory Mat(¥?") as follows: its vertical category is Set, and
the category Mat(¥)(A, B) is the category of Ax B matrices (Map)acapen of objects of 7.
Composition is by ‘matrix multiplication’. It is then easy to check that Mat (%) has local
coequalizers and that Mod(Mat (7)) = Dist(¥’). The monoidal category Mat(¥)(A, A)
is also called the category of ¥ -graphs with object set A.

11.9. EXAMPLE. Unlike these examples, Ex does not have local coequalizers. We will
see a replacement for ‘Mod(Ex)’ in §15.

The rest of this section is devoted to the proof of Theorem 11.5, breaking it up into a
series of propositions for clarity. Although long, the proof is routine and follow-your-nose,
so it can easily be skipped.

11.10. PROPOSITION. If D is a framed bicategory with local coequalizers, then there
is a framed bicategory Mod(D) of monoids, monoid homomorphisms, bimodules, and
equivariant maps i D, and it also has local coequalizers.
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PROOF. The proof that Mod(D) is a double category is similar to the case of a monoidal
category. For example, we need the fact that ® preserves coequalizers to show that
M ® N is a bimodule and that the tensor product is associative. To define the horizontal

composite of bimodule maps a: M :Z> N and ¢: P :j;> Q (where ¢: A :j:> D,vy: B=%
g

E,and y: C ::> F are monoid homomorphisms), we start with the composite

RLS*P)T (28)
ey e |
U—N=V—Q=W
U NOEgQ w

which we would like to factor through the coequalizer defining M ®g P. However, that
coequalizer lives in D(R,T), whereas (28) is not globular. But since D is a framed
bicategory, we can factor (28) through a cartesian arrow to get a map

M®P — f*(NorpQ)g

in D(R,T), and then apply the universal property of the coequalizer to get a map M Op
P — f*(N ®gQ)g*, and hence M ©p P :j> (N ©p Q). This defines a (¢, x)-equivariant

map which we call the horizontal composite a ©y 3. The axioms for a double category
follow directly.

We now show that Mod(D) is a framed bicategory. By Theorem 4.1, it suffices to
show that it has restrictions. Thus, suppose that A: R+ R, B: S+ S, C:T-+T, and

D: U—+U are monoids in D, M: S—+U is a (B, D)-bimodule, and ¢: A :;> B and

Y: C =% D are monoid homomorphisms. We then have the restriction f*Mg*: R—T
9

in D. By composing the cartesian arrow in D with ¢ or 1) and using the actions of B and
D on M, then factoring through the cartesian arrow, we obtain actions of A and C' on
f*Mg*. For example, the action of A on f*Mg* is determined by the equality

R pML R pML
fi ¢ }J cart lg act
S—B>§—>U = R—sMy—>T
act fi cart \Lg
S— U ST

It is straightforward to check that with this structure, the cartesian arrow f*M g* :i> M

in D defines a cartesian arrow ¢*My* :Z:> M in Mod(DD). =
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11.11.  PROPOSITION. Mod defines a 2-functor FrBij — FrBif, , which restricts to a
2-functor FrBi9 — FrBi.

PROOF. Let D,E € FrBi/ and let F': D — E be a lax framed functor. Then F' preserves
monoids, monoid homomorphisms, bimodules, and equivariant maps, for the same reasons
that lax monoidal functors do. We define the unit constraint for Mod(F') to be the identity
on F'A, and the composition constraint to be the result of factoring the composite

FM®FN 22 F(M ® N) —s F(M @y N) (29)

through the coequalizer
FM®FN — FM ©Opg FN (30)

It is straightforward to check that this makes Mod(F’) into a normal lax double functor.
Similarly, the components of a framed transformation /' — G define a framed transfor-
mation Mod(F') — Mod(G).

Finally, if F' is strong and preserves local coequalizers, then (29) is a coequalizer of
the same maps that (30) is. Hence the induced composition constraint is an isomorphism,
so Mod(F) is strong. It is easy to see that Mod(F') also preserves local coequalizers, so
that it lies in FrBi9. ]

11.12. PROPOSITION. If D is a monoidal framed bicategory with local coequalizers pre-
served by ®, then so is Mod(D). If D is symmetric, so is Mod (D).

PROOF. It is easy to check that the 2-functor Mod: FrBi? — FrBi? preserves products,
so it must preserve pseudo-monoids and symmetric pseudo-monoids. [

11.13.  PROPOSITION. Suppose that D has local coequalizers and each category D(A, B)
has equalizers. If D is closed, then Mod(D) is closed. If D is monoidal and externally
closed with local coequalizers preserved by ®, then Mod(D) is externally closed.

PROOF. Just as for monoidal categories. [

11.14. PROPOSITION. If D has local coequalizers and is equipped with an involution, so
is Mod(DD). If D, Mod(D), and the involution on D are monoidal or symmetric monoidal,
s0 is the involution on Mod (D).

PROOF. It is easy to see that Mod(D"*°?) ~ Mod(ID)" ", so we can simply apply the
2-functor Mod to (—)° and &. n

Note, however, that since the vertical arrow components of £ in Mlod(D) are defined
from the 2-cell components of £ in D, the involution of Mod(ID) may not be vertically
strict even if the involution of D is so.
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12. Monoidal fibrations

The generalized Mod construction from §11 defines a horizontal composition from an
external product via a coequalizer. In §14 we will explain how in a cartesian situation,
horizontal compositions can be constructed using a pullback or equalizer-type construction
instead. The basic input for this construction is a structure called a ‘monoidal fibration’,
which includes base change operations and an external product, but a priori no horizontal
composition.

12.1. DEFINITION. A monoidal fibration is a functor ®: &/ — % such that
(i) o/ and % are monoidal categories;
(ii) @ is a fibration and a strict monoidal functor; and

(iii) The tensor product ® of &7 preserves cartesian arrows.

If ® is also an opfibration and ® preserves opcartesian arrows, we say that ® is a monoidal
bifibration. We say that ® is braided (resp. symmetric) if &7, %, and the functor @
are braided (resp. symmetric).

We will also speak of ‘monoidal x-fibrations” and ‘monoidal *-bifibrations’, but without
implying any compatibility between the monoidal structure and the right adjoints f,. This
is because in most cases there is no such compatibility.

12.2. EXAMPLE. Let € be a category with finite limits. Recall that if €' denotes the
category of arrows in %, the codomain functor gives a bifibration Arry: €' — € called
the ‘self-indexing’ of €. It is easy to see that Arry is a monoidal bifibration when % and
¢ are equipped with their cartesian products.

12.3.  ExaAMPLE. If D is a monoidal framed bicategory, then (L, R): D; — Dy x Dy is a
monoidal bifibration. If D is braided or symmetric, so is (L, R).

12.4. EXAMPLE. The fibration Mod: Mod — Ring is a monoidal #-bifibration under
the tensor product of rings and the ‘external’ tensor product of modules.

For most of our applications, such as Theorem 12.7 below and the construction of
framed bicategories in §14, we will require the base category 4 to be cartesian or cocarte-
sian monoidal. However, we see from Examples 12.3 and 12.4 that this is not always the
case, and the general notion of monoidal fibration is interesting in its own right.

Recall from Proposition 3.6 that the 2-category of fibrations ®: &/ — £ is equivalent
to the 2-category of pseudofunctors #°? — Cat. We intend to prove an analogous result
for monoidal fibrations over cartesian base categories, but first we must define the 2-
category of monoidal fibrations.
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12.5. DEFINITION. Let ®: &f — £ and &' : &/’ — %' be monoidal fibrations.

¢ An oplax monoidal morphism of fibrations is a commuting square

o oy (31)

v s

@'?%’

(that is, an oplax morphism of fibrations) together with the data of oplax monoidal
functors on Fy and F; such that the identity ®F; = Fy®’ is a monoidal natural
transformation.

e An oplax morphism is strong if F and F; are strong monoidal functors and F}
preserves cartesian arrows.

e A lax morphism is a square (31) such that Fy and F} are lax monoidal functors, F}
preserves cartesian arrows, and the equality ®F; = Fy®' is a monoidal transforma-
tion.

Any sort of morphism is over £ if Fj is an identity &' = %. If & and &’ are braided
(resp. symmetric), then any sort of monoidal morphism is braided (resp. symmetric) if
the functors Fy and F; and the equality ®F; = Fy®’ are braided (resp. symmetric).

If & and @' are monoidal bifibrations, then a lax monoidal morphism of bifi-
brations is just a lax monoidal morphism of fibrations, while an oplax (resp. strong)
monoidal morphism of bifibrations is an oplax (resp. strong) monoidal morphism of
fibrations which also preserves opcartesian arrows.

A monoidal transformation of fibrations, or of bifibrations, is a transformation of
fibrations whose components are monoidal natural transformations. If the two morphisms
are over 4, then the transformation is over & if its downstairs component is an identity.

12.6. NOTATIONS. Let MF ¢ (resp. MF, MTF) be the 2-category of monoidal fibrations,
oplax (resp. strong, lax) monoidal morphisms of fibrations, and monoidal transformations
of fibrations. We write BMTF and SMTF for the braided and symmetric versions. Let
MTF » denote the sub-2-category of MJF consisting of fibrations, morphisms, and trans-
formations over 4, and so on. Finally, we write MonCat for the 2-category of monoidal
categories, strong monoidal functors, and monoidal natural transformations, and similarly

BrMonCat and SymMonCat.

12.7. THEOREM. If £ s cartesian monoidal, the equivalence of Proposition 3.6 lifts to
equivalences of 2-categories

MF 5 ~ [#B°P, MonCat]

BMTF 5 ~ [BP, BrMonCat]
SMF 5 ~ [BP, SymMonCat].
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This means that, in particular, in a monoidal fibration with cartesian base, each fiber
is monoidal and each transition functor f* is strong monoidal. We call the monoidal
structure on .« the external monoidal structure, and the monoidal structures on fibers
the internal monoidal structures.

In many cases, the internal monoidal structures on the fibers are more familiar and
predate the external monoidal structure. For example, in Arry, the fiber over B is the
slice category €/ B, and the internal monoidal structure is the fiber product over B.

It is crucial that £ be cartesian monoidal for Theorem 12.7 to be true. For example,
the fiber of Mod over a noncommutative ring R is the category Modp of R-modules, which
does not in general have an internal tensor product. But if we restrict to the monoidal
fibration CMod of modules over commutative rings, the tensor product in CRing becomes
the coproduct, so we can apply the dual result, obtaining the familiar tensor product on
Modpy in the commutative case.

12.8. NOTATION. In a cartesian monoidal category 4, we write g for any map which
projects B out of a product; thus we have mg: B — 1, but also rg: AXx Bx(C — AxC.
We also write Ag: B — B x B for the diagonal, and other maps constructed from it such

as AxBx(C—-AxBxBxCC.

PROOF OF THEOREM 12.7. Let ®: o/ — % be a monoidal fibration with a chosen
cleavage, and let B € %. We define a monoidal structure on the fiber o7z as follows. The
unit object is Ip = 71, and the product is given by

MRN =A5(M® N) (32)

where M, N € /g and ® is the monoidal structure of /. To obtain the associativity
isomorphism, we tensor the cartesian arrow

MXN—M@N
(which lives over Ap) with @ to get an arrow
(MEN)®Q — (M@ N)®Q

which is cartesian since ® preserves cartesian arrows. We then compose with another
cartesian arrow over Ap to obtain a composite cartesian arrow

(MRIN)KQ — (MRN)®Q.
We do the same on the other side to get a cartesian arrow

MR(NKQ) — M® (N®Q)
and the unique factorization of

a:(MIN)®QEM®(N®Q)
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through these cartesian arrows gives an associativity isomorphism
(MRXN)KQ=MKX(NKXQ).

for o/g. The pentagon axiom follows from unique factorization through cartesian arrows
and the pentagon axiom for /. The unit constraints and axioms are analogous, using
the fact that mgAp = 1p, as is the braiding when & is braided or symmetric.

Now consider a map f: A — B; we show that f* is strong monoidal. We have the
composite cartesian arrows

FMRFN — MR N —MoN

and
ffIMRN) — MKXN — M®N,

both lying over Agf = (f X f)A4; hence we obtain a canonical isomorphism
FMR N = (MR N).

The unit constraint is similar and, as before, the coherence of these constraints follows
from the uniqueness of factorization through cartesian arrows, as does the fact that the
isomorphisms (fg)* = f*g* and (15)* = Id are monoidal. Therefore, we have constructed
a pseudofunctor B? — MonCat from a monoidal fibration. It is straightforward to
extend this construction to give 2-functors

MFy — [B7, MonCat]
BMTF 5 — [#°?, BrMonCat]
SMF 4 — [BP, SymMonCat].

Uniqueness of factorization again gives the coherence to show that the resulting pseudo-
natural transformations are pointwise monoidal.

Conversely, given a pseudofunctor °° — MonCat, we define a fibration over £ in the
usual way, and define an external product as follows: given M, N over A, B respectively,
let

M&N=n3MX7yN. (33)

The external unit is I, the internal unit in the fiber over 1. For an associativity isomor-
phism we use

(MRN)®Q=n5(mpMXmyN)X 1550
(TpeM Wy N) K7 5Q
TpeM B (e N W)y 5Q)
T M B (mN B T5Q)
M@ (N®Q)

e 1R

Il
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using the monoidal constraints for the strong monoidal functors 7*, the composition
constraints for the pseudofunctor, and the associativity for the internal products. It is
straightforward, if tedious, to check that this isomorphism satisfies the pentagon axiom.
Similarly, we have a unit constraint

M®]1:7TTM|E7TZ[1
E2MXIy
=M

which can be checked to be coherent; thus & is monoidal, and & is strict monoidal by
definition. It is obvious how to define a braiding in the braided or symmetric case making
&/ and ® braided or symmetric. Finally, using the composition constraints and monoidal
constraints, we have:

FM®¢N = f*MRr*g*N
= (fxg)m MR (f x g)'m"N
= (f x g)*(W*M@W*N)
= (fxg)"(M®N),

which we can then use to verify that ® preserves cartesian arrows. Thus we have con-
structed a monoidal fibration of the desired type. It is straightforward to extend this to
a 2-functor and verify that these constructions are inverse equivalences.

12.9. REMARK. Under the above equivalence, pseudofunctors which land in cartesian
monoidal categories correspond to fibrations where the total category & is cartesian
monoidal.

We end this section by introducing a few new examples of monoidal fibrations.

12.10. EXAMPLE. Let € be a category with finite limits and colimits, and assume that
pullbacks in € preserve finite colimits. (For example, % could be locally cartesian closed.)
Let Retr(%) be the category of retractions in €. That is, an object of Retr(%) is a pair of
maps A — X —— Asuch that rs = 14. This is also known as an object X ‘parametrized’
over A, in which case s is called the ‘section’. We define Retry: Retr(4) — € to take
the above retraction to A. It is easy to check that pullback and pushout make ® into a
bifibration, which is a #-bifibration if % is locally cartesian closed.

The fiber over B € € is the category € of objects parametrized over B. It has finite
products, given by pullback over B, but usually the relevant monoidal structure is not
the cartesian product but the fiberwise smash product, defined as the pushout

XI_IBY—>X XBY

| |

B X NpgY.
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The unit is B LU B — B with section given by one of the coprojections. Under the
assumption that pullbacks preserve finite colimits, this defines a symmetric monoidal
structure on g, all the functors f* are strong symmetric monoidal, and the coherence
isomorphisms are also monoidal. Thus by Theorem 12.7, Retry is a symmetric monoidal
fibration, and it is easy to check that it is actually a monoidal bifibration. The external
monoidal structure on Retr(%’) is called the external smash product A.

12.11. EXAMPLE. Suppose that % has finite limits and colimits, and not all pullbacks
preserve finite colimits, but there is some full subcategory % of % such that pullbacks
along morphisms in # do preserve finite colimits. Then we can repeat the construction
of Example 12.10 using parametrized objects whose base objects are restricted to lie in
2. This is what is done in [MS06, §2.5], with ¥ = J# the category of k-spaces and
B = % the category of compactly generated spaces. By a slight abuse of notation, we
call the resulting monoidal *-bifibration Retrmop, since we have only been prevented from
considering all retractions in Top by point-set technicalities. The objects of Retr(Top)
are called ex-spaces.

12.12. EXAMPLE. For each space B € %, a category .5 of orthogonal spectra para-
metrized over B is defined in [MS06, Ch. 11]. A map f: A — B of spaces gives rise to
a string of adjoints fi 4 f* 4 f, which are pseudofunctorial in f. Each category .5 is
closed symmetric monoidal under an internal smash product Ap, each functor f* is closed
symmetric monoidal, and so are the composition constraints. Thus, by Theorem 12.7, we
obtain a symmetric monoidal fibration which we denote Sp. The external smash product
A is defined in [MS06, 11.4.10] just as we have done in (33).

To show that Sp is in fact a monoidal x-bifibration, one can check directly that A
preserves opcartesian arrows. However, this will also follow from Proposition 13.17 below.

12.13. EXAMPLE. Let & = % as in Example 12.12, but instead of .5 we use its
homotopy category Ho.#. It is proven in [MS06, 12.6.7] that fi 4 f* is a Quillen
adjunction, for a suitable choice of model structures on .#, hence it descends to an
adjunction on homotopy categories which is still pseudofunctorial; thus we obtain another
functor Ho(Sp): &/ — % which is a bifibration.

The external smash product A is proven to be a Quillen left adjoint in [MS06, 12.6.6];
thus it descends to homotopy categories to make &7 symmetric monoidal. Since [MS06,
13.7.2] shows that A preserves cartesian arrows, Ho(Sp) is a symmetric monoidal fibration,
and the same methods as in Example 12.12 show that it is a monoidal bifibration. The
derived functors f* also have right adjoints, although these are constructed in [MSO06,
13.1.18] using Brown representability rather than by deriving the point-set level right
adjoints; thus Ho(Sp) is a monoidal *-bifibration.

13. Closed monoidal fibrations

We now consider two different notions of when a monoidal fibration is ‘closed’. To fix
terminology and notation, we say an ordinary monoidal category % with product X is
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closed if the functors (M X —) and (— X NNV) have right adjoints (— <« M) and (N » —),
respectively, for all M, N. Of course, if € is symmetric, then P « M = M » P. If €
and Z are closed monoidal categories and f*: € — & is a strong monoidal functor, then
there are canonical natural transformations

J(N»P)— [*"N» [P (34)
/(P 4«N)— f*P <« f*N. (35)

When these transformations are isomorphisms, we say that f* is closed monoidal. Of
course, in the symmetric case, (34) is an isomorphism if and only if (35) is.

13.1. DEFINITION. Let ®: &/ — 2 be a monoidal fibration where % is cartesian
monoidal (so that each fiber is a monoidal category). We say @ is internally closed
if each fiber o7 is closed monoidal and each functor f* is closed monoidal.

However, in any monoidal fibration, we can also ask whether the external product
®: Ay X Dp — DazB
has adjoints <, > , with defining isomorphisms
Daop(M @ N, P) = d/4y(M,N> P) = a/g(N,P < M).

If so, then for any f: C'— A and g: D — B there are canonical transformations
ffIN>P)— N> (f®1)'P (36)
g(PIM)— (1®g*PIM (37)

defined analogously to (34) and (35). For example, (36) is the adjunct of the composite

FFINEP)®@N — (f@1)*(NE P)@N) — (f@1)"P.

13.2. DEFINITION. Let ®: &/ — % be a monoidal fibration. We say that & is exter-
nally closed if the adjoints <, & exist and the maps (36) and (37) are isomorphisms
for all f,g.

13.3. EXAMPLES. If ¥ is locally cartesian closed, then Arry is internally and externally
closed. If € also has finite colimits, then Retry is internally and externally closed.

13.4. EXAMPLE. The fibration Sp of parametrized orthogonal spectra over spaces is
internally and externally closed; its internal homs are defined in [MS06, 11.2.5] and the
base change functors are shown to be closed in [MS06, 11.4.1]. We postpone consideration
of Ho(Sp) until later.

13.5. EXAMPLE. The fibration Mod: Mod — Ring is externally closed. If N is a B-
module and P is an A® B-module, the external-hom N > P is Homp (N, P), which retains
the A-module structure from P. In this case, internal closure makes no sense because the
fibers are not even monoidal.
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13.6. EXAMPLE. The monoidal *-bifibration CMod of modules over commutative rings
is also externally closed. In this case the fibers Modpg are closed monoidal, but neither
fi nor f*is a closed monoidal functor.

13.7. ExamPLE. If D is a monoidal framed bicategory, then the monoidal bifibration
(L, R) is externally closed just when D is externally closed in the sense of §9. The fact
that (36) and (37) are isomorphisms in this case will follow from Proposition 13.17, below.

13.8. REMARK. Contrary to what one might expect (see, for example, [MS06, §2.4]),
external closedness does not imply that the monoidal category 7 is closed in its own
right. For one thing, N & P is only defined when N € &g and P € &/4«5. But even
when defined, N & P is not an internal-hom for «: if M € @/, then the morphisms
M — N > P in &/ are bijective not to all morphisms M ® N — P, but only those lying
over f x 1 for some f: C' — A.

In the rest of this section, we will prove that under mild hypotheses, internal and
external closedness are equivalent, and give useful dual versions of the maps (34), (35),
(36), and (37). We begin by comparing the internal and external homs.

13.9. PROPOSITION. Let @ be either

(i) a monoidal x-fibration in which A is cartesian monoidal, or

(11) a monoidal bifibration in which A is cocartesian monoidal.

Then the right adjoints < , ™ ezist if and only if ® has closed fibers (i.e. the right
adjoints <, » exist).

PROOF. Suppose first that 4 is cartesian and each fiber is closed. Then for N € o/ and
Q € 4 we define

N Q= (mp). (73N » Q). (38)
and similarly for <. Conversely, if <, & exist, then for NV, Q € @74 we define
N» Q=N ((A4).Q) (39)

and similarly for «. It is easy to check, using the relationships between ® and X estab-
lished in Theorem 12.7, that these definitions suffice.
In the cocartesian case, these relationships become
MXN =V, (M®N)
M@ N =ZnMXnN,

where V4: AU A — A denotes the ‘fold” or codiagonal, and n: ) — A is the unique map
from the initial object. Therefore, the analogous definitions:

Mw» N=MTB (V'N)
MSN:n*(n!MbN).

allow us to pass back and forth between internal and external closedness. [
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This equivalence is valuable because sometimes one of the two types of right adjoints
is much easier to construct than the other.

13.10. ExAMPLE. The homotopy-level fibration Ho(Sp) has the adjoints <, > , since
the adjunction between A and ™ in Sp is Quillen (see [MS06, 12.6.6]). This then implies,
by Proposition 13.9, that the fibers of Ho(Sp) are all closed monoidal. This would be
difficult to prove directly, since we have no homotopical control over the internal monoidal
structures in Sp.

In order to prove a full equivalence of local and external closedness, we need to assume
an extra condition on the commutativity of right and left adjoints. Suppose that ®: o/ —
2 is a fibration and that the square

A--pB (40)

k g

CT)D

commutes in 4. Thus we obtain a square

Ay <" (41)

T
ﬂc T ﬂ D
which commutes up to canonical isomorphism. If ® is a bifibration, there is a canonical

natural transformation
k' — [, (42)

namely the ‘mate’ of the isomorphism (41). Explicitly, it is the composite
kh* =5 kih*g g = kik* f g — fg.
Similarly, if ® is a #-fibration, there is a canonical transformation
" fo — h.k". (43)

13.11. DEFINITION. If ® is a bifibration (resp. a *-fibration), we say that the square (40)
satisfies the Beck-Chevalley condition if the natural transformation (42) (resp. (43))
is an isomorphism. We say that ® is strongly BC if this condition is satisfied by every
pullback square, and weakly BC if it is satisfied by every pullback square in which one
of the legs (f or g, above) is a product projection. If instead all pushout squares satisfy
the Beck-Chevalley condition, we say that ® is strongly co-BC.

If ® is a *-bifibration, then (42) and (43) are mates under the composite adjunctions
g 4 g*f. and kh* - h,k*, so that one is an isomorphism if and only if the other is.
Thus, a x-bifibration is strongly or weakly BC as a bifibration if and only if it is so as a
x-fibration.
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13.12. EXAMPLES. The monoidal bifibrations Arry and Retry are always strongly BC,
as is the monoidal *-bifibration Sp (see [MS06, 11.4.8]).

13.13. EXAMPLE. The monoidal *-bifibration CMod, whose base is cocartesian monoidal,
is strongly co-BC.

13.14. ExAMPLE. The homotopy-level monoidal #-bifibration Ho(Sp) is only weakly
BC; it is proven in [MS06, 13.7.7] that the Beck-Chevalley condition is satisfied for pull-
back squares one of whose legs is a fibration in the topological sense (which includes
product projections, of course). It does not satisfy the Beck-Chevalley condition for arbi-
trary pullback squares; a concrete counterexample is given in [MS06, 0.0.1]. One intuitive
reason for this is that since Sp also incorporates ‘homotopical” information about the base
spaces, we should only expect the derived operations to be well-behaved on homotopy
pullback squares. This is our main motivation for introducing the notion of ‘weakly BC’.

Of course, the idea of commuting adjoints is older than the term ‘Beck-Chevalley
condition’. In the theory of fibered categories, what we call a ‘strongly BC bifibration’ is
referred to as a ‘fibration with indexed coproducts’.

We will eventually use Beck-Chevalley conditions in our construction of a framed
bicategory from a monoidal fibration (Theorem 14.2), but we mention them in this section
for the purposes of the following result.

13.15. PROPOSITION. Let ®: of — A be a monoidal *-fibration in which % is cartesian
monoidal. Then

(i) if @ is internally closed and weakly BC, then it is externally closed, and

(i) if ® is externally closed and strongly BC, then it is internally closed.

In particular, a strongly BC' monoidal x-fibration is internally closed if and only if it is
externally closed.

SKETCH OF PROOF. Under the equivalences (38) and (39), each of the maps (34) and (36)
is equal to the composite of the other with a Beck-Chevalley transformation, and similarly
for (35) and (37). It turns out that both of these transformations come from pullback
squares; thus since 7 appears in (38) but A appears in (39), the weak condition is good
enough in one case but not the other. n

Now, if f* is strong monoidal and has a left adjoint f, there is a canonical map
fMX f*N) — fiM X N. (44)

When the monoidal categories in question are closed, this is the mate of (34), so one is
an isomorphism if and only if the other is. In particular, if ® is a monoidal bifibration
with cartesian monoidal base and closed fibers, then ® is internally closed if and only if
the maps (44), together with the analogous maps

A(FFNRM) — NR fiM, (45)

are all isomorphisms. This dual condition is sometimes easier to check.
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13.16. EXAMPLE. Topological arguments involving excellent prespectra are used in
[IMS06, 13.7.6] to show that the derived maps (44) are isomorphisms, and therefore Ho(Sp)
is internally closed. Since it is weakly BC, we can then conclude, by Proposition 13.15(i),
that it is externally closed as well.

In a similar way, if ® is any monoidal bifibration with right adjoints <, & , then (36)
has a mate

which is an isomorphism if and only if (36) is. But (46) is an isomorphism just when
— ® N preserves the opcartesian arrow M — fiM, so we have the following.

13.17. PROPOSITION. Let ® be a monoidal fibration which is also an opfibration and
such that the right adjoints <, & exist. Then ® preserves opcartesian arrows (that is,
& is a monoidal bifibration) if and only if ® is externally closed.

13.18. EXAMPLE. As remarked earlier, this implies that a monoidal framed bicategory
D is externally closed in the sense of §9 if and only if the monoidal bifibration (L, R) is
externally closed in the sense of this section.

13.19. EXAMPLE. In the converse direction, Proposition 13.17 can be used to show that
Ho(Sp) and Sp are monoidal bifibrations, since we know that they are externally closed.
This could also be shown directly.

13.20. COROLLARY. Let ® be a strongly BC monoidal *-bifibration over a cartesian
base and having closed fibers. Then ® is internally and externally closed.

PROOF. Since ® is a x-fibration, by Proposition 13.9 it also has right adjoints <, > .
Then, since it is a monoidal bifibration, it is externally closed by Proposition 13.17. But
since it is strongly BC, Proposition 13.15(ii) then implies that it is also internally closed.m

14. From fibrations to framed bicategories

We now prove that any well-behaved monoidal bifibration gives rise to a framed bicategory.
The reader may not be too surprised that there is some relationship, since many of our
examples of monoidal bifibrations look very similar to our examples of framed bicategories.
In this section we state our results; the proofs will be given in §§16-17 after we consider
an important class of examples in §15.

To motivate the precise construction, consider the relationship between the framed
bicategory Span(%¢’) and the monoidal bifibration Arry: €' — 4. A horizontal 1-cell
M: A- B in Span(%) is a span A <« M — B, which can also be considered as an
arrow M — A x B, and hence an object of € over A x B. The horizontal composition of
M: A- Band N: B (C'is given by pulling back along the maps to B, then remembering
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only the maps to A and C"
M xg N
M / \ N
A s \ B / ~ C
But this can also be phrased in terms of the maps M — A x B and N — B x C by taking

the product map
MxN—AxBxBxC,

pulling back along the diagonal Ap:

M xp N M x N

| |

AxBx(C—=AxBxBxC

and then composing with the projection 7g: A x B x C' — A x C. In terms of the
monoidal bifibration Arre, this can be written as

M X B N = (WB)IA*B(M X N) (47)

Similarly, the unit object U, in Span(%) is the span A «— A — A, alternatively
viewed as the diagonal map A — A x A. This can be obtained (in a somewhat perverse
way) by pulling back the terminal object 1 along the map m4: A — 1, then composing
with the diagonal As: A — A x A. In the language of Arry, we have

UA == (AA)!WZL (48)

We now observe that the expressions (47) and (48) can easily be generalized to any
monoidal bifibration in which the base is cartesian monoidal, so that we have diagonals
and projections. This may help to motivate the following result.

14.1. DEFINITION. We say that a monoidal bifibration ®: &/ — A is frameable if A
is cartesian monoidal and ® is either

(i) strongly BC or
(ii) weakly BC and internally closed.

14.2. THEOREM. Let ®: of — P be a frameable monoidal bifibration. Then there is a
framed bicategory Fr(®) with a vertically strict involution, defined as follows.

(i) Fr(®), = A.
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(ii) Fr(®),, L, and R are defined by the following pullback square.
Fr(@)l — o/

(L,R)\L l@

B X B—— B

Thus the horizontal 1-cells A— B are the objects of &/ over A x B, and the 2-cells
M :j> N are the arrows of & over f X g.

(i1i) The horizontal composition of M: A—+ B and N: B+ C is
M6 N = (mp)Ap(M 2 N),
and similarly for 2-cells.

(iv) The horizontal unit of A is
UA = (AA)!'/TZ[-

(v) The involution is the identity on objects and we have M°P = s*M, where s is the
symmetry isomorphism.

If ® is externally closed and a x-bifibration, then Fr(®) is closed in the sense of §5. If ®
is symmetric, then Fr(®) is symmetric monoidal in the sense of §9 and its involution is
also symmetric monoidal.

14.3. EXAMPLES. As alluded to above, if % has finite limits, the symmetric monoidal
bifibration Arry gives rise to the symmetric monoidal framed bicategory Span(%’), which
is closed if ¥ is locally cartesian closed.

14.4. EXAMPLE. If € has finite limits and colimits preserved by pullback, then the
monoidal bifibration Retry gives rise to a symmetric monoidal framed bicategory of para-
metrized objects, which we denote Ex(%). It is also closed if € is locally cartesian closed.

Applied to the monoidal *-bifibration Retrrop of ex-spaces from Example 12.11, we
obtain a framed bicategory Ex(Top) of parametrized spaces which is both symmetric
monoidal and closed.

14.5. ExAMPLE. The monoidal *-bifibration Sp of parametrized orthogonal spectra
gives rise to a point-set level framed bicategory of parametrized spectra, which we may
denote Sp. It is symmetric monoidal and closed.

14.6. EXAMPLE. The homotopy-category monoidal *-bifibration Ho(Sp), which is weakly
BC and internally closed, gives rise to a framed bicategory Ho(Sp). This is the same as
the framed bicategory we have been calling Ex ever since §2. Similarly, Ho(Retrrop) gives
rise to a homotopy-level framed bicategory Ho(Ex(Top)) of parametrized spaces. Both
of these framed bicategories are symmetric monoidal and closed. These are the only ones
of our examples which are weakly rather than strongly BC.

The dual version of Theorem 14.2 says the following.
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14.7. THEOREM. If ®: o/ — A is a strongly co-BC monoidal bifibration where A
is cocartesian monoidal, then there is a framed bicategory Fr(®) with a vertically strict
wnvolution, defined as in Theorem 14.2, except that composition is given by

M®N =5"V(M & N)

and units are given by

UA = V*H!I.

If ® is externally closed and is a x-bifibration, then Fr(®) is closed. If ® is symmetric,
then Fr(®) and its involution are symmetric monoidal.

14.8. EXAMPLE. The monoidal *-bifibration CMod gives rise to the framed bicategory
CMod, which is symmetric monoidal and closed. However, Mod cannot be constructed
in this way, because the category of noncommutative rings is not cocartesian monoidal.

Like our other ways of constructing framed bicategories, these results are 2-functorial.
To state this precisely, we need to define the right 2-categories. In §12 we defined lax,
strong, and oplax monoidal morphisms of bifibrations to be those that preserve both the
monoidal structure and the base change in appropriate ways. These morphisms, together
with the monoidal transformations defined there, give us 2-categories MbiF, MbiF, and
MbiF,. Let MF™ denote the full sub-2-category of MbiF spanned by the frameable

monoidal bifibrations, and similarly for M?ﬂrpe and MJY.

14.9. THEOREM. The construction of Theorem 14.2 extends to a 2-functor
Fr: MF* — FrBi

and similarly for oplax and lax morphisms.

14.10. ExXAMPLE. The 2-functor Span: Cart — FrBi clearly factors through Fr via a
2-functor Arr: Cart — MIF™.

14.11. EXAMPLE. Let biCartP*® denote the 2-category of categories with finite limits and
finite colimits preserved by pullback, functors which preserve finite limits and colimits, and
natural transformations. Then we have a 2-functor Retr: biCart®™ — MF™. Composing
this with Fr defines a 2-functor Ex: biCart?® — FrBi.

As with our other 2-categories, we automatically obtain notions of equivalence and
adjunction between monoidal bifibrations, and these are preserved by 2-functors such as
Fr. As usual, we can also characterize these more explicitly; we omit the proof of the
following.

14.12.  PROPOSITION. An adjunction F 4 G in MFT between ®: of — B and &' o' —
AB' consists of the following properties and structure.

(i) F is a strong monoidal morphism of bifibrations and G is a lax monoidal morphism
of bifibrations;
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(i) We have monoidal adjunctions Fo: B =B Gy and Fy: o = " :Gy;

(11i) We have equalities ®'Fy = Fo® and G, = Go®' which are monoidal transforma-
tions; and

(iv) The adjunction Fy = Gy ‘lies over’ Fy - Gy in the sense that the following square
commutes:

o (M,GyN) —= o'(F,M,N)

% lqy

%(A, G(]B) ? %/(F()A, B)

14.13. REMARK. In fact, these conditions are somewhat redundant. For example,
left adjoints automatically preserve opcartesian arrows and right adjoints automatically
preserve cartesian ones, and the right adjoint of a strong monoidal functor is always
lax monoidal. These are consequences of ‘doctrinal adjunction’ (see Proposition 8.2
and [Kel74]) and a property called ‘lax-idempotence’ (see [KLI7]).

In many cases, Fy and G are the identity, and the entire adjunction is ‘over %’ in the
sense introduced in Definition 12.5.

14.14. EXAMPLE. Let € have finite limits and finite colimits preserved by pullback.
Then there is a forgetful lax monoidal morphism Retry — Arry lying over €. Carte-
sian arrows are given by pullback in both cases, and hence are preserved strongly, but
opcartesian arrows are given by pushout in Retry and mere composition in Arre, hence
are preserved only laxly. The lax monoidal constraint is given by the quotient map
MxN— MAN.

This forgetful morphism has a left adjoint

(—)s: Arry — Retrg. (49)
which takes an object X — A over A to the retraction
A— X, =XUA— A

We say that the functor (—). adjoins a disjoint section. It is straightforward to check that
(—) is a strong monoidal morphism of bifibrations and the pair satisfies Proposition 14.12.

As € varies, the forgetful morphisms define a 2-natural transformation from the 2-
functor Retr to the 2-functor Arr, while the morphisms (—), form an oplax natural
transformation Arr — Retr. This remains true upon composing with the 2-functor Fr,
so we obtain framed adjunctions

(—)+: Span(¥¢) = Ex(¥) :U

where the right adjoint is 2-natural in % and the left adjoint is oplax natural in %.
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14.15. EXAMPLE. It is essentially shown in [MS06, Ch. 11] that we have an adjunction
Y% Retrmep & Sp : Q™. (50)
of monoidal bifibrations lying over % . Applying Fr, we obtain a framed adjunction
¥ Ex(Top) = Sp : Q™. (51)

The fiber adjunctions are shown to be Quillen in [MS06, 12.6.2], so passing to homotopy
categories of horizontal 1-cells, we obtain a framed adjunction

¥°°: Ho(Ex(Top)) = Ex : Q™. (52)

15.  Monoids in monoidal fibrations and examples

We have seen that well-behaved monoidal bifibrations give rise to framed bicategories,
and that framed bicategories with local coequalizers admit the Mod construction, so it is
natural to ask what conditions on a monoidal fibration ensure that the resulting framed
bicategory has local coequalizers.

15.1. DEFINITION. Let ®: & — 2% be a fibration.

e We say that ¢ has fiberwise coequalizers if each fiber @75 has coequalizers and
the functors f* preserve coequalizers. Note that this latter condition is automatic
if ® is a *-fibration, since then f* is a left adjoint.

e Similarly, we say that ® has fiberwise equalizers if each fiber /g has equalizers
and f* preserves equalizers, the second condition being automatic if ® is a bifibra-
tion.

e If & is a monoidal fibration with fiberwise coequalizers, we say these coequalizers are
preserved by ® if the functors ®: @4 X @/ — Fagp all preserve coequalizers
in each variable. This is automatic if the right adjoints <, > exist.

15.2.  PROPOSITION. Let ® be a frameable monoidal bifibration with fiberwise coequaliz-
ers preserved by ®. Then:

(i) The framed bicategory Fr(®) has local coequalizers, so there is a framed bicategory
Mod(Fr(®)).

(i1) If ® is symmetric, then Fr(®) is a monoidal framed bicategory with local coequalizers
preserved by ®; hence Mod(Fr(®)) is also monoidal.

(iii) If © is externally closed, a *-fibration, and has fiberwise equalizers, then Fr(®) is
closed and its hom-categories have equalizers; hence Mod(Fr(®)) is also closed.
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PROOF. Since the hom-category Fr(®)(A, B) is just the fiber of ® over A x B, it has co-
equalizers. And since M ©® N = mA*(M ® N), where ® and A* preserve coequalizers by
assumption and 7 preserves all colimits as it is a left adjoint, these coequalizers are pre-
served by ©®; thus Fr(®) has local coequalizers. Item (i) then follows from Theorem 11.5.

For (ii), we need to know what the external monoidal structure of Fr(®) is. When
we prove in Proposition 17.1 that Fr(®) is monoidal, we will define this external product
to be essentially that of ®, but with a slight twist. Namely, if (M) = A x B and
O(N) = C x D, then we have (M ® N) = (A x B) x (C x D), whereas their product in
Fr(®) should lie over (A x C) x (B x D). Thus we define the external product M &' N
of Fr(®) to be the base change of M ® N along the constraint isomorphism

(AxC)x (BxD)=(Ax B)x(CxD).

In particular, we have M ®@' N &£ M ® N; thus ® preserves coequalizers because ® does.
It then follows from Theorem 11.5 that Mod(Fr(®)) is monoidal.
Finally, (iii) follows directly from Theorems 14.2 and 11.5. n

15.3. EXAMPLE. If € has finite limits and coequalizers preserved by pullback, then its
self-indexing Arre satisfies the conditions of Proposition 15.2, and we obtain the framed
bicategory Mod(Span(%)) of internal categories and distributors which we mentioned in
Example 11.7.

However, we can also obtain enriched categories and distributors, by starting with a
different monoidal bifibration.

15.4. EXAMPLE. Given any ordinary category ¥/, let Fam(¥?") be the category of fami-
lies of objects of #". That is, an object of Fam(7") is a set X together with an X-indexed
family {A,}.ex of objects in #". Then there is a fibration Famy : Fam(?") — Set which
is sometimes called the naive indexing of ¥; its fiber over a set X is the category 7#X.
The reader may check the following.

e If ¥/ is a monoidal category, then Famy is a monoidal fibration; the external product
of {Az}zex and {By}yey is {Az ® By}ayexxy. The fiberwise monoidal structure
is the obvious one. If ¥ is braided or symmetric, then so is Famy .

e If ¥ has small coproducts (resp. products), then Famy is a strongly BC bifibration
(resp. #-fibration). If ¥ is also monoidal and ® preserves coproducts, then Famy is
a monoidal bifibration.

e If ¥ has coequalizers preserved by ®, then Famy has fiberwise coequalizers preserved
by ®. If ¥ has equalizers, then Famy, has fiberwise equalizers.

e If 7 is closed, then Famy is internally closed. Thus, by Corollary 13.20, if ¥ also
has small products, then Famy is externally closed.
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In particular, when 7 is monoidal and has colimits preserved by ®, Famy is frameable
and Fr(Famy ) has local coequalizers, so we can define Mod(Fr(Famy)). It is easy to see
that Fr(Famy ) is equivalent to the framed bicategory Mat(?') defined in Example 11.8,
where we observed that Mod(Mat(7)) ~ Dist(¥).

This suggests that we can view a frameable closed symmetric monoidal *-bifibration
® with fiberwise equalizers and coequalizers as a ‘parametrized’ version of a complete and
cocomplete closed symmetric monoidal category ¥, and that we can view the associated
framed bicategory Mod(Fr(®)) as a parametrized version of Dist(#'). The other example
of Arry seems to bear this out.

In fact, we can view the monoidal bifibrations Famy, and Arre as living at opposite
ends of a continuum. In Famy, the base category Set is fairly uninteresting, while all the
interesting things happen in the fibers. On the other hand, in Arry, the base category €
can be interesting, but the fibers carry essentially no new information, being determined
by the base. Other monoidal bifibrations will fall somewhere in between the two, and
monoids in the resulting framed bicategories can be thought of as ‘categories which are
both internal and enriched’.

15.5. EXAMPLE. If € has finite limits and finite colimits preserved by pullback, then
Proposition 15.2 applies to the monoidal bifibration Retry, so that Mod(Ex(%)) is a
symmetric monoidal and closed framed bicategory. A monoid in Ex(%) may be thought
of as a ‘pointed internal category’ in ¢. For example, a monoid in Ex(Set) is a small
category enriched over the category Set, of pointed sets with smash product, meaning
that each hom-set has a chosen basepoint and composition preserves basepoints. Similarly,
a monoid in Ex(Top) is a ‘based topological category’. If its space of objects is discrete,
then it is just a small category enriched over based topological spaces, but in general it
will be ‘both internal and enriched’.

Applying Mod to the disjoint-sections functor (=), from Example 14.14, we obtain
a framed functor Mod(Span(%)) — Mod(Ex(%’)). Thus, any internal category can be
made into a pointed internal category by ‘adjoining disjoint basepoints to hom-objects’.

15.6. EXAMPLE. Proposition 15.2 applies to the point-set fibration Sp of parametrized
spectra, so Mlod(Sp) is a symmetric monoidal and closed framed bicategory. A monoid in
Sp can be viewed as a category ‘internal to spaces and enriched over spectra’; if its space
of objects is discrete, then it is just a small category enriched over orthogonal spectra.

To obtain other examples, we can apply Mod(¥X*°) to any based topological category
as in Example 15.5, and thereby to any internal category in Top with a disjoint section
adjoined. Certain monoids in Sp arising in this way from the topologized fundamental
groupoid ITM or path-groupoid PM of a space M play an important role in [Pon07].

A good case can be made (see [MS06]) that a monoid in Sp is the right parametrized
analogue of a classical ring spectrum, since when its space of objects is a point, it reduces
to an orthogonal ring spectrum. The more naive notion of a monoid in Spz with respect
to the internal smash product Ag is poorly behaved because, unlike the situation for the
external smash product A, we have no homotopical control over Ag.
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The above two examples give framed bicategories with involutions which are not ver-
tically strict, since the 2-cell components of £ in Fr(®) are not identities.

15.7. EXAMPLE. Proposition 15.2 does not apply to the homotopy-level monoidal fi-
bration Ho(Sp), since the stable homotopy categories of parametrized spectra do not in
general admit coequalizers. Rather than Mod(Ex) = Mod(Ho(Sp)), the correct thing to
consider is ‘Ho(Mod(Sp))’. Here the objects are honest monoids in Sp, whose multipli-
cation is associative and unital on the point-set level, just like in Mlod(Sp), but we pass
to homotopy categories of horizontal 1-cells. We then need to use a ‘homotopy tensor
product’ to define the derived horizontal composition, as was done in [Pon07]. We hope
to investigate the homotopy theory of framed bicategories more fully in a later paper.

15.8. EXAMPLE. We can construct various monoidal fibrations over any ‘Set-like’ cat-
egory & by mimicking the constructions of classical Set-based monoidal categories. For
example, we have a fibration Abgs over & whose fiber over B is the category Ab(&/B)
of abelian group objects in &/B. If & is locally cartesian closed, has finite colimits, and
the forgetful functors Ab(&/B) — & /B have left adjoints, then this is a strongly BC
«-bifibration (see [Joh02b, D5.3.2]). If & is cocomplete, the tensor product of abelian
group objects can be defined internally and makes Abes a monoidal bifibration; monoids
in the corresponding framed bicategory Ab(&’) give a notion of ‘Ab-category in &”.

For example, if & is a category of topological spaces, then any vector bundle over a
space B gives an object of Ab(&/B). One might argue, analogously to Example 15.6,
that monoids in Ab(&’) give a good notion of a ‘bundle of rings’.

The theory of such relative enriched categories appears to be fairly unexplored; the only
references we know are [GG76] and [Prz07]. We will explore this theory more extensively
in a later paper; in many ways, it is very similar to classical enriched category theory. We
end with one further example of this phenomenon.

If 7 is an ordinary monoidal category with coproducts preserved by ®, then any small
unenriched category C' gives rise to a ‘free’ #-category ¥'[C]| whose hom-objects are given
by copowers of the unit object:

V[Clxy) = ] I (53)
C(z,y)

For a monoidal fibration ®: &/ — A, the analogue of an unenriched category is an internal
category in #. The following is an analogue of this construction in our general context.

15.9. PROPOSITION. Let & have finite limits and let ®: o — P be a strongly BC
monoidal bifibration. Then there is a canonical strong monoidal morphism of bifibrations

Arry — @ (54)

which takes an object X . B of B/B to the object fir I of o/5. Consequently, there
s a canonical framed functor
Span(%) — Fr(®) (55)
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and thus, if ® has fiberwise coequalizers preserved by ® and %A has coequalizers preserved
by pullback, a framed functor

Mod(Span(%)) — Mod(Fr(®)). (56)

15.10. EXAMPLE. When ® = Famy for an ordinary monoidal category 7, the morphism
Arry — Famy takes a set A to [[, /. Thus the induced framed functor Dist(Set) —
Dist(7) is exactly the ‘free #-category’ operation (53) described above.

15.11. EXAMPLES. More interestingly, when ® is Retry, the morphism Arry — Retry
is the disjoint-section operation described in Example 14.14. And when ® is the monoidal
fibration Sp of orthogonal spectra, the morphism Arr, — Sp first adjoins a disjoint sec-
tion, then applies the parametrized suspension-spectrum functor X*° from Example 14.15.
Therefore, if C'is an internal category in topological spaces, the ‘topologically internal and
spectrally enriched category” ¥>°C', considered in Example 15.6 is in fact ‘freely generated
by C” in this canonical way.

16. Two technical lemmas

In preparation for our proof of Theorem 14.2 in §17, in this section we reformulate the
Beck-Chevalley condition and internal closedness in terms of cartesian arrows.

16.1. LEMMA. Let ®: o7 — A be a bifibration. Then a commuting square

A-—"-B (57)

kl g

C T> D
in A satisfies the Beck-Chevalley condition if and only if for every M € /g, the square (57)
lifts to some commutative square

M= (58)

g |

M — M
P

in &/ in which ¢ and Y are cartesian and x and & are opcartesian.

Note that given ¢, x, & lifting h, k, g with y opcartesian, there is exactly one v lifting
f which makes (58) commute. Thus the condition can also be stated as “Given any
cartesian ¢ and opcartesian y, £, the unique morphism  over f making (58) commute is
cartesian”.
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PRroOOF. Choose a cleavage. Then by the universal properties of cartesian and opcartesian
arrows, there is a unique dotted arrow living over 1o which makes the following pentagon

commute:
cart

h*M M
Ojcy iopcart
kvh* M agM
| SN A{
J g M.

We claim that in fact this dotted arrow is the component of the Beck-Chevalley natural
transformation (42) at M. To see this, we fill out the diagram as follows.

cart

h*M > M
h*n\ N 2z < n
g g M g9 M
opcart - \:\
N
opcart kj*f*g,M opcart
opcart i cart cart
kh* o
kh* M 22 ki g* g M - = > knk* f*g M
e \\if*gz
N
=g M —= g M.

Here the dashed arrows are unique factorizations through (op)cartesian arrows. This
exhibits the dotted arrow as the composite of a unit, canonical isomorphism, and counit,
which is the definition of the transformation (42). This proves our claim.

Therefore, if (42) is an isomorphism, the composite kyh*M = f*g M — g M is carte-
sian, and hence we have a commuting square of cartesian and opcartesian arrows as
desired. Conversely, if we have such a commuting square, then clearly for some choice of
cleavage, the dotted arrow is the identity; hence it is an isomorphism for all cleavages. m

As always, it simplifies our life greatly to work with cartesian arrows rather than
chosen cleavages. For example, we can now easily show the following.

16.2. COROLLARY. If D is a monoidal framed bicategory, then the square

AoCc 2L Bec (59)

1®gl ll@g

in Dy satisfies the Beck-Chevalley condition for the bifibrations L and R.
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PROOF. Let M: B® C' —+ E be a horizontal 1-cell and consider the following diagram in
R7YE).

((BoC)oOM -~ (B C)® M —— M

opcarti iopcart

The arrows labeled cartesian or opcartesian are obtained from the cartesian ;B — B and
opcartesian C — D, via ® and ©. The square commutes by functoriality of ®, so the
result follows from Lemma 16.1. [

16.3. COROLLARY. If D is a monoidal framed bicategory in which Dy is cartesian
monoidal, then the monoidal bifibration (L, R) is weakly BC.

PROOF. Taking D = 1 in the square (59) shows immediately that L and R are weakly
BC; an analogous square in Dy x Dy applies to (L, R). [

To deal with the ‘weakly BC and internally closed’ case of Theorem 14.2, we also need
a statement about cartesian arrows that makes use of the closed structure. Recall that if
f* is strong monoidal and has a left adjoint fi, then f* is closed monoidal if and only if
the dual maps

A(MR f*N) — FMEN (60)
A(FNRM) — N® fiM (61)

are isomorphisms. This latter condition is amenable to restatement in fibrational terms,
using the characterization of X in terms of ® and A*.

16.4. LEMMA. Let ®: & — A be an internally closed monoidal bifibration, where A is
cartesian monoidal. Then for any f: A — B in B, and any M, N in & with (M) =
A, ®(N) = B, the square

A—1 .p (62)

o) |as

AXAWBXB

i A lifts to a square
opcart

AWM @ f*N) =—=Ap(fiM @ N) (63)

cart l i cart

M® f*N M &N

_
opcart@cart

i </, and dually.



720 MICHAEL SHULMAN

PROOF. A cleavage gives us an opcartesian M — fiM, a cartesian f*N — N, and
cartesian arrows on the left and right, inducing a unique arrow on the top which lifts f.
We then observe that A% (M @ f*N) 2 M X f*N and AL(fiM @ N) =2 fiM K N, so
factoring the top arrow through an opcartesian arrow gives us precisely (60). Since ® is
internally closed, this is an isomorphism, so the top arrow must be opcartesian. [

17. Proofs of Theorems 14.2 and 14.9

This section is devoted to the proofs of Theorems 14.2 and 14.9 (and the dual version
Theorem 14.7). To make the proofs more manageable, we split them up into several
propositions.

17.1. PROPOSITION. Let ®: o&f — A be a strongly BC monoidal bifibration, where 98
is cartesian monoidal. Then there is a framed bicategory Fr(®) defined as follows.

(ii) Fr(®),, L, and R are defined by the following pullback square.

Fr(@)l E— ,Qf

(L,R)\L l@

BXB—— B

Thus the horizontal 1-cells A— B are the objects of &/ over A x B, and the 2-cells
M :j> N are the arrows of & over f X g.

(i1i) The horizontal composition of M: A= B and N: B C' is
Mo N = (rphA5(M @ N),

and similarly for 2-cells.

(iv) The horizontal unit of A is
UA == (AA)!WZ[-

If @ is symmetric, then Fr(®) is symmetric monoidal.

PROOF. Throughout the proof, we will write P = Fr(®) for brevity. Since we intend
to construct an algebraic structure (a framed bicategory), we choose once and for all a
cleavage (and opcleavage) on @, and reserve the notations f*, f; and so on for the functors
given by this cleavage. However, we will still use (op)cartesian arrows which are not in
this cleavage in order to construct the constraints and coherence.

We have the structure and operations, at least, of a double category essentially already
defined, except for the functoriality of ©® and U. It is easy to see that ® is a functor, since



FRAMED BICATEGORIES AND MONOIDAL FIBRATIONS 721

®, A*, and m are functors. The functoriality of U is similar, but perhaps not as obvious
since it is a functor Py — P;. Its action on an arrow f: A — B is given by the unique
factorization Uy as follows.

cart opcart

I vl
|
N

Thus, to show that P is a double category, it suffices to construct coherent associativity
and unit constraints. The following arguments should remind the reader of the proof of
Theorem 12.7, although they are more complicated.

Note first that for horizontal 1-cells M: A—+ B and N: B -+ C in P, we have ®(M) =
A x B and ®(N) = B x C, and the chosen cleavage gives us canonical morphisms

Ua
I
I 1 Uy
Y Y
k
T‘—B opcart UB

M®N &AM @ N) P2 (25)A%(M ® N) =M o N. (64)

We begin with the associativity isomorphism. So suppose in addition to M, N we have
@: C -+ D. Then since ® preserves (op)cartesian arrows, we can construct the following
diagram.

(MON)®Q

opcart cart

opcart

(Mo N)©Q<""AL(M&N)®Q AL(MON)®Q) —=(MON)©Q.

AN T
- e
cart ~ . opcart
cart

Ao (M e N)e Q)

Here the solid arrows are part of the chosen cleavage. The dashed arrow is a unique
factorization, which is cartesian by Proposition 3.4(ii). The dotted arrow, also a unique
factorization, is opcartesian by the Beck-Chevalley condition (Lemma 16.1), because the
square in question lifts the pullback square

AxBxCxDiAxBxCxCxD

wBl lnB

AxCxD AxCxC xD.

Ac
Composing the two opcartesian arrows on the right, we obtain a span

opcart

(MeN)®Q<""As.(Ma@N)®Q) > (Mo N)o Q. (65)

We perform an analogous construction for M ® (N ® @), then factor the associativity iso-
morphism for ® through these cartesian and opcartesian arrows to obtain an associativity
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isomorphism for ©:

opcart

(M&N)®© Q<= Ap(MON)®Q) =—~(MON)©Q (66)

l v '

v
M@ (N®Q) < Ape(M®(N®Q) = Mo (NOQ).
This isomorphism is natural because it is defined by unique factorization. The proof
that it satisfies the pentagon axiom is similar to its construction: we tensor (65) with
R: D+ FE, then use the Beck-Chevalley condition again for the square

ABCDE —- ABCDDE

| |
ADE — ADDE

(where we omit the symbol x) to obtain a span

opcart

(MeN)®Q)®@ R Ay h(MoN)®Q)@R) 25 (MON)©Q)O R (67)
By uniqueness of factorizations, the isomorphism
(MON)OQRQ)OR=(MONOQ)OR,

obtained by applying the functor —® R to (66), is the same as the isomorphism obtained
by factoring the isomorphism

(MON)®Q)®@R=(M®(N®Q)®R

through the span (67). Therefore, by inspecting the following diagram and using unique
factorization again, we see that the pentagon axiom for ® implies the pentagon axiom for
©.

(MON)©Q)OR

~_— —

(M@N)Q\(Q@R)e/_%/¢\% Mo (NeoQ)oR

(M®N)® (Q®R) (M®(N®Q))®R
= = L _i & o
I I
M@ (N®(QeR)<=—Me(NoQ)®R)
/ ~ \
M@(Né@@m) ~ M@@‘@Q)@R)
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Now we consider the left unit transformation. Let M: A+ B and recall that Uy =
(Aq)miI, so that we have

] cart 7T* Iopcart UA
A .
Tensoring this with M and adding the arrows from (64) for Uy ® M, we have
Ua® M (68)
@M< 74T @ M A4 (Ug @ M) 22 U, o M.
RN cart e 7
> e ‘opcart

/IR

M

The solid arrows marked cartesian or opcartesian are part of the chosen cleavage. The
other solid arrow is the left unit constraint for ®, which is an isomorphism, hence also
cartesian. The dashed arrow is cartesian by Proposition 3.4(ii), and the dotted arrow is
opcartesian by the Beck-Chevalley condition for the pullback square

A

Ax B Ax Ax B (69)

3| |axi

AxAxBWAxAxAxB.

Since the composite of the two opcartesian arrows on the right is opcartesian and lies over

1axpB, it is an isomorphism
M=U,60 M
which we take as the left unit isomorphism for ©. Its naturality follows, as before, from

unique factorization. The right unit isomorphism is analogous.
We now show the unit axiom. We tensor the diagram

TQM=——M-—=Uso& M

with N and compose with the defining cartesian and opcartesian arrows for ® to obtain
the following diagram.

N® (Uao M) (70)

cart

opcart

NoI@M)<—NoM AN Us0 M) ZEE N6 (Uso M).
A 7

~
N =

cart > N e —"'dbcart
AN ® (I® M))
We do the same for (N ©®U,4)® M. By universal factorization, the two unit isomorphisms
NoOUsoM)=ZNOM
(NoUsy)oM=NoM
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are given by factorization through these (op)cartesian arrows, as is the associativity iso-
morphism
(NOUsA) OME=NGUso M).

Thus, as for the pentagon, the unit axiom for ® implies the unit axiom for ©.

This shows that P is a double category. Since the pullback of a bifibration is a bifi-
bration, (L, R) is a bifibration. Thus, by Theorem 4.1, P is a framed bicategory.

We now assume that ® is symmetric and show that P is a symmetric monoidal framed
bicategory. Since Py = £, it is already (cartesian) symmetric monoidal. The monoidal
structure of IP; is almost the same as that of </, but with a slight twist. If M: A+ B
and N: C'— D, so that ®(M) = A x B and ®(N) = C x D, then we have

(M@ N)=(Ax B) x (CxD)

whereas the product of M and N in [P should be an object of .27 lying over (AxC)x (Bx D).
But the chosen cleavage gives us a cartesian arrow ending at M ® N lying over the unique
constraint

(AxC)x (Bx D)= (Ax B)x(CxD),

and we call its domain M ®’ N. Since cartesian arrows over isomorphisms are isomor-
phisms, we have M ®' N = M ® N. Similarly, the unit for <7 should be Uy = (Ay)i(m)*1,
and since m; = 1; and A; is the unique isomorphism 1 = 1 x 1 we have U; = I; we
define I’ = U;. The constraints and coherence axioms for ® and I pass across these
isomorphisms to make P; a symmetric monoidal category under ®’, with (L, R) a strict
symmetric monoidal functor.

Thus, to make P a symmetric monoidal framed bicategory, it remains to construct
coherent interchange and unit isomorphisms and show that the monoidal associativity
and unit constraints are framed transformations. Our by-now familiar procedure gives
the following diagram for the interchange isomorphism.

®
(\}L/

For the the unit isomorphism we have

opcart

(N Q) <" A*(M & P)®(N&'Q)) > (M@ P)® (N &' Q)

| -

(PRQ) <A (MN)'A(PRQ) —=(MON)® (PoQ).

opcart

(M &' P)

R
R

(M ® N)

cart opcart

*
]<77TAXB[ UAXB

{9

I®]<HtW2]®WE[4>UA®/UB-

opcart

As before, by factoring known commuting diagrams through cartesian and opcartesian
arrows, we can show that these constraints are framed transformations and satisfy the
monoidal coherence axioms. [
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17.2. COROLLARY. If ®: of — A is a strongly co-BC monoidal bifibration where A
is cocartesian monoidal, then there is a framed bicategory Fr(®) defined as in Proposi-
tion 17.1, except that composition is given by

M&®N =n"Vi(M® N),

units are given by

UA == V*H!I,
and similarly for the other data. If ® is symmetric, then Fr(®) is symmetric monoidal.

PROOF. Simply apply Proposition 17.1 to the strongly BC monoidal bifibration ®° : o7 °P
— PP, since AP is cartesian monoidal. n

We now consider the case when ® is only weakly BC. Most of the pullback squares for
which we used the Beck-Chevalley condition in Proposition 17.1 had one of their legs a
product projection, so those parts of the proof carry over with no problem. However, there
was one which involved only diagonal maps, and this is the problem that Lemma 16.4 was
designed to solve. This is essentially the same method as that used in [MS06, Ch. 17| for
the case of Ho(Sp).

17.3. PROPOSITION. Let ®: o&f — A be a weakly BC and internally closed monoidal bi-
fibration, where A is cartesian monoidal. Then the same definitions as in Proposition 17.1
give a framed bicategory, which is symmetric monoidal if Y is.

PROOF. There is only one place in the proof of Theorem 14.2 where we used a Beck-
Chevalley property for a ‘bad’ square: in proving that the unit transformation is an
isomorphism, using the square (69). In this case, the dotted arrow in (68) which we want
to be opcartesian is defined by unique factorization from a square of the form

M oo = A%(Us @ M) (71)

cart \L \L cart

PIOM—— Uy ® M,

opcart®1
This is almost of the form (63), but not quite, since it lies over the square
AAB
AB—"> AAB

AABl lAAAB

AAB mAAAB
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which is not of the form (62). But we can decompose it into another pair of squares:

AaB

AB AAB

\LAAB AAAB\L

ABAB —24BAsB— AABAAB

J/WB WAﬂBl

AAB o AAAB

Here the top square is of the form (62), where f = A B. If we then construct (71) by
lifting in stages, we obtain

7/ — =A% (Us @ M) (72)

l cart cart \L

WZBI®M——>7T*BUA®7T2M

i cart cart \L

I @M Uy ® M.

—_
opcart®1

where the outer rectangle is the same as (71). We can then obtain the bottom square as
the product of a square

gl ——>mUy

cart l l cart

vl Ua,

opcart

where the dashed arrow is opcartesian by the Beck-Chevalley condition, and a square

M-->m3M
\Lcart
M=——==M.

where the dashed arrow is cartesian by Proposition 3.4(ii). Thus the dashed arrow in (72)
is of the form opcart ® cart, so by Lemma 16.4, the dotted arrow is opcartesian as desired.
Since the unit transformation that we have just shown to be an isomorphism is the same as

the transformation defined in the proof of Theorem 14.2, the same proof of the coherence
axioms applies. [

Note that Corollary 16.3 shows that any monoidal framed bicategory with cartesian
base is weakly BC, so being weakly BC is a necessary condition for the construction of
Theorem 14.2 to give a framed bicategory. We do not know whether being weakly BC is
sufficient for frameability without closedness, but we suspect not.
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17.4. PROPOSITION. If ® is a frameable monoidal bifibration, then Fr(®) has a vertically
strict involution given by the identity on objects and M°P = s*M on 1-cells. If O 1is
symmetric, this involution is symmetric monoidal.

PROOF. Left to the reader. m

17.5. PROPOSITION. Let ®: of — A be a frameable monoidal *-bifibration which is
externally closed. Then the resulting framed bicategory Fr(®) is closed.

PROOF. Define N > P = N > A,n*P. Writing D for the horizontal bicategory of Fr(®),
we have

D(M ® N,P)=D(mA*(M & N), P)
~ DAY (M @ N), 7" P)
=DM ® N,A.7"P)
=D(M,N> A 7*P)
=D(M,N > P)
The construction of < is similar. m

17.6. PROPOSITION. Let ® be an externally closed and strongly BC monoidal *-bifibration
in which % is cocartesian monoidal. Then the resulting framed bicategory Fr(®) is closed.

PROOF. Define N> P = N &> V*n,P. Again writing D for the horizontal bicategory of
Fr(®), we have

D(M ® N,P)=D(n*Vi(M & N), P)
=D(Vi(M ® N),n.P)
~D(M ® N,V*n,P)
=D(M,N>V'nP)
=D(M,N > P)
The construction of < is similar. [

Finally, we sketch the proof of Theorem 14.9.

17.7. PROPOSITION. The construction of Theorem 14.2 extends to a 2-functor
Fr: MF"™ — FrBi

and similarly for oplax and lax morphisms.
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SKETCH OF PROOF. Let F': & — U be a morphism in the appropriate domain category.
We define Fr(F') to be Fj on vertical categories. If M : A+ B, so that ®(M) = Ax B and
thus W(Fy(M)) = Fo(A x B), we let Fr(F)(M) = (Fy )1 Fy (M), where Fy: Fy(A x B) —
FoA x FyB is the unique oplax constraint downstairs (which is an isomorphism if F' is
strong or lax).

The horizontal composition and units are built out of the monoidal structure and the
functors f* and fi, so the lax or oplax constraints for these induce lax or oplax constraints
for a strong double functor. For example, suppose F': & — W is a lax monoidal morphism
of fibrations and that M: A—+ B and N: B C are horizontal 1-cells in Fr(®). Then
M ® N comes with a diagram

MoN<A*MeN) 2L o N (73)
lying over
AXBXBXxB<=—AXxBx(C—=AxC. (74)

Applying F' to (74), we obtain the following diagram (omitting the symbol x).

F(ABBC) F(ABC) F(AC) (75)

T: Tg T:

(FA)(FB)(FB)(FC) ~— (FA)(FB)(FC) —— (FA)(FC).

Applying F' to (73), and adding the defining arrows for FM @ F N, we obtain

F(M®N)<" F(A*(M® N)) — F(M ® N)

| ? A

FM@FNWA*(FM(gFN)mFM@FN

The dashed and dotted arrows follow by factoring the lax constraint of F' through the
given cartesian and opcartesian arrows. Since F' does not preserve opcartesian arrows,
the top-right solid arrow is not necessarily opcartesian, but this does not matter. The
unit constraint is similar.

Finally, the oplax case is dual to this; the only difference is that all the vertical arrows
go the other way, and in (75) they are no longer isomorphisms. n

A. Connection pairs

As mentioned in §1, the questions which led us to framed bicategories have been ad-
dressed by others in several ways. In this section we explain how framed bicategories are
related to connection pairs on a double category; in the other appendices we consider
their relationship to various parts of bicategory theory.
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For further detail on connection pairs, we refer the reader to [BS76, BM99] and
also to [Fio06], which proved that connection pairs are equivalent to ‘foldings’. Our
presentation of the theory differs from the usual one because we focus on the pseudo

case, which turns out to simplify the definition greatly. The following terminology is
from [GP04, PPDO06].

A.1. DEFINITION. Let D be a double category and f: A — B a vertical arrow. A
companion for f is a horizontal 1-cell ;B: A -+ B together with 2-cells

f‘B 7U‘A9
fi 4 and ) J{f
s B

P
|——
Ua
— = B B
U U
v lf —F- —f- -
Bl = fi vy lf wl v || =
T R L
—J—) o
B
|—
/B

A conjoint for f is a horizontal 1-cell By: B —+ A together with 2-cells

By Ua

By
|[——
i .
U B U B
fi v —P - = —F
L R g Y
vl e sl
s ;

Comparing this definition with Theorem 4.1(iii), the following becomes evident.
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A.2. THEOREM. A double category is a framed bicategory exactly when every vertical
arrow has both a companion and a conjoint.

One can prove in general that companions and conjoints are unique up to canonical
isomorphism, that (;B, By) is a dual pair if both are defined, and that the operations
f ¢B and f + By are pseudofunctorial insofar as they are defined.

The following definition is then easily seen to be equivalent to those given in [BS76,
BM99, Fio06]. Because it was originally motivated by double categories like the ‘quintets’
of a 2-category, it includes only companions and not conjoints.

A.3. DEFINITION. Let I be a strict double category. A connection pair on D is a
choice of a companion ;B each vertical arrow f such that the pseudofunctor f +— ;B is a
strict 2-functor.

Thus, an arbitrary choice of companions on a non-strict double category may be called
a ‘pseudo connection pair’, and a choice of conjoints may be called a ‘pseudo op-connection
pair’. Theorem A.2 then states that a double category is a framed bicategory precisely
when it admits both a pseudo connection pair and a pseudo op-connection pair.

B. Biequivalences, biadjunctions, and monoidal bicategories

We now consider the question of how much of the structure of a framed bicategory D is
reflected in its underlying bicategory D. Note that any bicategory may be considered as
a framed bicategory with only identity vertical arrows; we call such framed bicategories
vertically discrete. If FrBi, denotes the underlying 1-category of FrBi and Bicat
denotes the 1-category of bicategories and pseudo 2-functors, we have an adjunction

Bicat = FrBi. (76)

in which the left adjoint considers a bicategory as a vertically discrete framed bicategory,
while the right adjoint takes a framed bicategory to its underlying horizontal bicategory.
The left adjoint Bicat — FrBiy does not extend to a 2-functor or 3-functor, but in
the other direction, any framed transformation a: F — G: D — E can be ‘lifted’ to an
oplax transformation between the underlying pseudofunctors as follows. For an object
A €D, we define
&A = (aA)*(UGA) : A+ GA.

For a horizontal 1-cell M: A+ B, we define
&M: FM@&/B = (FM)(OJB)I — (OZA)*(GM) = &/A @GM

to be the globular 2-cell corresponding to oy : FM =2 GM. It is easy to check that this
op
defines an oplax natural transformation between the pseudo 2-functors induced by F' and

G.
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If D and € are bicategories, we write Bicat,,(D, ) for the bicategory of pseudo 2-
functors, oplax natural transformations, and modifications from D to €. By the pseudo-
functoriality of base change, Proposition 4.5, the above construction defines a pseudo-
functor

FrBi(D,E) — Bicaty, (D, E). (77)

We can also allow lax or oplax functors on both sides. Note, however, that framed
transformations always give rise to oplar natural transformations.

We would like to say that this construction extends to a functor from FrBi to the
tricategory of bicategories, but unfortunately there is no tricategory of bicategories which
includes oplax natural transformations, since the composition operation

Bicat,,(F, E) x Bicat,, (D, E) — Bicat,y (D, F)

would be only an oplax 2-functor. We could allow the codomain to be a sort of ‘oplax
tricategory’, such as the ‘bicategory op-enriched categories’ of [Ver92, 1.3], but this would
take us too far afield. Instead, we merely observe that if a happens to be a framed natural
isomorphism, then « is a pseudo natural equivalence. This suffices to prove the following.

B.1. PROPOSITION. An equivalence of framed bicategories induces a biequivalence of
horizontal bicategories.

ProoF. If F, G are inverse equivalences in FrBi, then they give rise to pseudofunctors,
and by the above observation, the framed natural isomorphisms FG = Id and Id = GF
give rise to pseudo natural equivalences. [

For example, this implies that in Example 7.9, the horizontal bicategories GExg g and
HEz actually are biequivalent. However, we believe the equivalence is more naturally
stated, and easier to work with, in FrBi.

In a similar way, we can lift a monoidal structure on a framed bicategory to a monoidal
structure on its horizontal bicategory. Many examples of monoidal bicategories actually
arise from monoidal framed bicategories. This is useful, because monoidal bicategories are
complicated ‘tricategorical” objects, whereas monoidal framed bicategories are much easier
to get a handle on. See [GPS95, Gur06, CG07] for a definition of monoidal bicategory.

B.2. THEOREM. If D is a monoidal framed bicategory, then any cleavage for D makes
D into a monoidal bicategory in a canonical way.

SKETCH OF PROOF. D already has a product and a unit object induced from I, so it suf-
fices to construct the constraints and coherence. We consider the associativity constraints,
leaving the unit constraints to the reader. Since D is a monoidal double category, it has
a vertical associativity constraint

1 (A9B)®C=A® (B C).

But since D is a framed bicategory, this vertical isomorphism can be ‘lifted’ to an equiv-
alence in D:
a=a"(A®B)®C): (A®B)@C+A® (B C(C)



732 MICHAEL SHULMAN

with adjoint inverse ((A ® B)® C’) a*; this will be the associativity equivalence for the
monoidal bicategory D. We need further a ‘pentagonator’ 2-isomorphism

aoaoa~aoad.
But the coherence pentagon for the vertical isomorphism a tells us that
aoaoa=aoa

and since base change objects are pseudofunctorial by Proposition 4.5, this equality in D,
becomes a canonical isomorphism in D, which we take as the pentagonator.

It remains to check that this pentagonator satisfies the ‘cocycle equation’ for relations
between quintuple products. However, since all the pentagonators are defined by universal
properties (being canonical isomorphisms between two cartesian arrows), both sides of the
cocycle equation are also characterized by the same universal property, and therefore must
be equal. [

In contrast to these well-behaved cases, a framed adjunction F': D = E : G does
not generally give rise to a biadjunction D = €. It does, however, give rise to a local
adjunction in the sense of [BP88J; this consists of an oplax 2-functor F': D — &, a lax
2-functor G: € — D, and an adjunction

D(A,GB) = &(FA, B). (78)

In a biadjunction, F' and G would be pseudo 2-functors and (78) would be an equivalence.
When F' and G arise from a framed or op-framed adjunction, a local adjunction (78)
is given by
(F—)er

D(A, GB) E(FA,B).

n*(G-)
Of course, in a framed adjunction F' is strong, while in an op-framed adjunction G is
strong. A bit more 2-category theory than we have discussed here (see [Kel74]) gives us
a notion of ‘lax/oplax’ framed adjunction, in which the left adjoint is oplax and the right
adjoint is lax; these also give rise to local adjunctions between horizontal bicategories.

In this way, practically any framed-bicategorical notion gives rise to a counterpart on
the purely bicategorical level. For example, by a process similar to that in Theorem B.2,
any involution on D gives rise to a ‘bicategorical involution’ on D.

Of course, we can also define monoids and bimodules in any bicategory; in this context
monoids are often called monads, since in Cat they reduce to the usual notion of monad.
The fact that both internal and enriched categories are monoids in appropriate bicategories
is well-known, and bicategory theorists have studied categories enriched in a bicategory as
a generalization of categories enriched in a monoidal category; see [Wal81, Str81, Str83a,
Str83b, CJSV94, KLSS02].

However, pure bicategory theory usually starts to break down whenever we need to
use vertical arrows. For example, it is harder to get a handle on internal or enriched
functors purely bicategorically. In the next appendix we introduce a structure called an
equipment which is sometimes used for this purpose, for example in [LS02].
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C. Equipments

For the theory of equipments we refer the reader to [Woo82, Woo85, CJSV94, Ver92].
From our point of view, it is natural to introduce them by asking how the vertical arrows
of D are reflected in D. We know that there is a pseudofunctor Dy — D sending f: A — B
to the base change object ;B; this pseudofunctor is bijective on objects and each ;B has
a right adjoint in D. Thus we almost have an instance of the following structure.

C.1. DEFINITION. A proarrow equipment is a pseudo 2-functor (—): KX — M be-
tween bicategories such that

(i) K and M have the same objects and (—) is the identity on objects;

(ii) For every arrow f in K, f has a right adjoint ]?in M; and
(iii) m is locally full and faithful.

The only difference is that in an equipment, X is a bicategory rather than the 1-
category Dy, but condition (iii) means that the 2-cells in K are determined by those in
M anyway. Thus, given a framed bicategory D, we can factor the base-change object
pseudofunctor Dy — D as -

Dy —= % 2D
where i is bijective on objects and 1-cells and (—) is locally full and faithful. The objects
and morphisms of X are those of Dy, and its 2-cells from f — g are the 2-cells ;B — B
in D. We have proven the following.

C.2. PROPOSITION. If D is a framed bicategory, then the above pseudofunctor (—) is a
proarrow equipment.

Note that in the proarrow equipment arising from a framed bicategory, the bicategory
X is actually a strict 2-category. However, this is essentially the only restriction on the
equipments which arise in this way.

C.3. PROPOSITION. Let (—): K — M be a proarrow equipment such that X is a strict
2-category. Define a double category ID whose

e Objects are those of X (and M);
o Vertical arrows are the arrows of K;

e Horizontal 1-cells are the arrows of M; and

o 2-cells
A-Y-p
f Ja g
CTD

are the 2-cellsa: M ©G — f ® N in M.
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Then D is a framed bicategory.

SKETCH OF PROOF. First we show that D is a double category. The vertical composite

1| va Jo
—N->
| v

P

is defined to be the composite

M ® kg Mo (Gok)
(Mo ok
(fON)Ok
fFO(NOE)
fo(hoP)
(fonor
hfo® P.

R R J= R 21w

The coherence theorems for bicategories and pseudofunctors imply that this is vertically
associative and unital. Horizontal composition of 1-cells is defined as in M, and horizontal
composition of 2-cells is defined analogously to their vertical composition. The constraints
come from those of M. N

Finally, for an arrow f: A — B in K, and f the right adjoint of f, it is easy to check
that the 2-cells

7 7 s s
ol - e ol [
po ——
U U f !

defined by identities and by the unit and counit of the adjunction f - ]?, satisfy the
equations of Theorem 4.1(iii). Thus D is a framed bicategory. n

At the level of objects, it is easy to show that the two constructions are inverses up
to isomorphism. In order to state this as an equivalence of 2-categories, however, we
would need morphisms and especially transformations between equipments, and it is not
immediately obvious how to define these.

The approach to constructing a 2-category of equipments taken in [Ver92] is essentially
to first make equipments into double categories, as we have done, and define morphisms
and transformations of equipments to be morphisms between the corresponding double
categories. This makes our desired equivalence true by definition. Actually, [Ver92] uses
‘doubly weak’ double categories to deal with equipments where X is not a strict 2-category,
and thus obtains a tricategory rather than a 2-category, but the idea is the same.
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Thus, framed bicategories can be regarded as a characterization of the double cate-
gories which arise from equipments. However, since the correct notions of morphism and
transformation are apparent only from the side of double categories, we believe it is more
natural to work directly with framed bicategories.

C.4. REMARK. The authors of [CKW91, CKVW98]| consider a related notion of ‘equip-
ment’ where X is replaced by a 1-category but the horizontal composition is forgotten. If
D is a framed bicategory, then the span

Dy <= D; - Dy (79)

has the property that L is a fibration, R is an opfibration, and the two types of base change
commute, making it into a ‘two-sided fibration’ from Dy to Dy in the sense of [Str80]; these
are essentially what [CKVWO8] studies under the name ‘equipment’. The fact that L is
also an opfibration, and R a fibration, in a commuting way, make (79) into what they
call a starred pointed equipment. This structure incorporates less of the structure of a
framed bicategory, but it was sufficient in [CKW91, CKVW98] to obtain a 2-category or
tricategory of equipments and a notion of equipment adjunction. It is easy to check that
any framed adjunction gives rise to an equipment adjunction in their sense.

D. Epilogue: framed bicategories versus bicategories

We end with some more philosophical remarks about the relationship of framed bicat-
egories to pure bicategory theory. For any bicategory B, there is a canonical proarrow
equipment ﬁ: K — B, where X is the bicategory of adjunctions f 4 f in B. When B is
a strict 2-category, so is K, and the resulting framed bicategory is what we called Adj(B)
in Example 2.7. In general, we obtain a ‘doubly weak’ framed bicategory which we also
call Adj(B).

Thus, we can regard the theory of framed bicategories, or of equipments, as a gen-
eralization of the theory of bicategories in which we specify which adjunctions are the
base change objects, rather than using all of them. A certain amount of pure bicate-
gory theory can be regarded as implicitly working with the framed bicategory Adj(B);
frequently 1-cells with right adjoints are called maps and take on a special role. See, for
example, [Str81] and [CKWS8T7].

This purely bicategorical approach works well in bicategories like Dist(?'), because,
as we mentioned in Example 5.6(iii), the mild condition of ‘Cauchy completeness’ on
the ¥ -categories involved is sufficient to ensure that any distributor with a right adjoint
is isomorphic to a base change object. However, in other framed bicategories, such as
Mod and Ex, there will not be a good supply of ‘Cauchy complete’ objects, so framed
bicategories or equipments are necessary. Moreover, even when working with Dist(¥),
framed bicategories are implicit in some of the bicategorical literature, such as the ‘calculus
of modules’ for enriched categories; see, for example, [SW78, Woo82, CKW87, Str83a].
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Finally, framed bicategories are much easier to work with than ordinary bicategories
or equipments, because the vertical arrows form a strict 1-category rather than a weak
bicategory. In situations where this fails, we can still use ‘doubly weak’ framed bicate-
gories, as in [Ver92], but a good deal of simplicity is lost. However, in almost all examples,
this strictness property does hold, and the virtue of framed bicategories is that they take
advantage of this fact. For example, this is what enables us to define the strict 2-category
FrBi and apply the powerful methods of 2-category theory, rather than having to delve
into the waters of tricategories.
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