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COHOMOLOGY THEORY IN 2-CATEGORIES

HIROYUKI NAKAOKA

ABSTRACT. Recently, symmetric categorical groups are used for the study of the
Brauer groups of symmetric monoidal categories. As a part of these efforts, some al-
gebraic structures of the 2-category of symmetric categorical groups SCG are being
investigated. In this paper, we consider a 2-categorical analogue of an abelian category,
in such a way that it contains SCG as an example. As a main theorem, we construct a
long cohomology 2-exact sequence from any extension of complexes in such a 2-category.
Our axiomatic and self-dual definition will enable us to simplify the proofs, by analogy
with abelian categories.

1. Introduction

In 1970s, B. Pareigis started his study on the Brauer groups of symmetric monoidal cat-
egories in [6]. Around 2000, the notion of symmetric categorical groups are introduced
to this study by E. M. Vitale in [9] (see also [8]). By definition, a symmetric categor-
ical group is a categorification of an abelian group, and in this sense the 2-category of
symmetric categorical groups SCG can be regarded as a 2-dimensional analogue of the
category Ab of abelian groups. As such, SCG and its variants (e.g. 2-category G-SMod of
symmetric categorical groups with G-action where G is a fixed categorical group) admit
a 2-dimensional analogue of the homological algebra in Ab.

For example, E. M. Vitale constructed for any monoidal functor F' : C — D be-
tween symmetric monoidal categories C and D, a 2-exact sequence of Picard and Brauer
categorical groups

P(C) — P(D) — F - B(C) — B(C).

By taking 7y and m;, we can induce the well-known Picard-Brauer and Unit-Picard exact
sequences of abelian groups respectively. In [7], A. del Rio, J. Martinez-Moreno and
E. M. Vitale defined a more subtle notion of the relative 2-exactness, and succeeded
in constructing a cohomology long 2-exact sequence from any short relatively 2-exact
sequence of complexes in SCG. In this paper, we consider a 2-categorical analogue of an
abelian category, in such a way that it contains SCG as an example, so as to treat SCG
and their variants in a more abstract, unified way.
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In section 2, we review general definitions in a 2-category and properties of SCG, with
simple comments. In section 3, we define the notion of a relatively exact 2-category as a
generalization of SCG, also as a 2-dimensional analogue of an abelian category. We try
to make the homological algebra in SCG ([7]) work well in this general 2-category. It will
be worthy to note that our definition of a relatively exact 2-category is self-dual.

category 2-category
general theory | abelian category | relatively exact 2-category
example Ab SCG

In section 4, we show the existence of proper factorization systems in any relatively
exact 2-category, which will make several diagram lemmas more easy to handle. In any
abelian category, any morphism f can be written in the form f = e o m (uniquely up
to an isomorphism), where e is epimorphic and m is monomorphic. As a 2-dimensional
analogue, we show that any 1-cell f in a relatively exact 2-category S admits the following
two ways of factorization:

(1) iom = f where i is fully cofaithful and m is faithful.

(2) eo j = f where e is cofaithful and j is fully faithful.

(In the case of SCG, see [3].) In section 5, complexes in S and the relative 2-exactness are
defined, generalizing those in SCG ([7]). Since we start from the self-dual definition, we
can make good use of duality in the proofs. In section 6, as a main theorem, we construct
a long cohomology 2-exact sequence from any short relatively 2-exact sequence (i.e. an
extension) of complexes. Our proof is purely diagrammatic, and is an analogy of that for
an abelian category. In section 5 and 6, several 2-dimensional diagram lemmas are shown.
Most of them have 1-dimensional analogues in an abelian category, so we only have to be
careful about the compatibility of 2-cells.

Since SCG is an example of a relatively exact 2-category, we expect some other 2-
categories constructed from SCG will be a relatively exact 2-category. For example,
G-SMod, SCG x SCG and the 2-category of bifunctors from SCG are candidates. We will

examine such examples in forthcoming papers.

2. Preliminaries

DEFINITIONS IN A 2-CATEGORY.

2.1.  NOTATION. Throughout this paper, S denotes a 2-category (in the strict sense).
We use the following notation.

SV S! S?: class of O-cells, 1-cells, and 2-cells in S, respectively.

S!(A, B) : 1-cells from A to B, where A, B € S°.

S%(f,g) : 2-cells from f to g, where f,g € S'(A, B) for certain A, B € S°.

S(A, B) : Hom-category between A and B (i.e. Ob(S(A4, B)) = S'(A, B), S(A, B)(f,g) =

S2 (fa g)) :
In diagrams, — represents a 1-cell, = represents a 2-cell, o represents a horizontal
composition, and - represents a vertical composition. We use capital letters A, B, ... for

0-cells, small letters f,g,... for 1-cells, and Greek symbols «, 3, ... for 2-cells.
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For example, one of the conditions in the definition of a 2-category can be written as
follows (see for example [4]):

2.2. REMARK. For any diagram in S

/]‘CI\x /g“l\«
Ao B 8l C,
~_ 7 ~_7
fa 92
we have
(fioB) (aogs) =(aogi):(faop). (1)

(Note: composition is always written diagrammatically.)

This equality is frequently used in later arguments.
Products, pullbacks, difference kernels and their duals are defined by the universality.

2.3. DEFINITION. For any A; and Ay € S°, their product (Ay X Ay, p1,p2) is defined as
follows:
(a) Al X A2 S SO, pi € Sl(Al X AQ,AZ') (Z = 1,2)
(bl) (existence of a factorization)
For any X € S° and ¢; € SY(X, A;) (i = 1,2), there exist ¢ € SY(X, A} x Ay) and

& € SZ(Q ° Pi, 4i) ( 1 2)
O

A1<—A1 XA24>A2

(b2) (uniqueness of the factorization)
For any factorizations (q, &1, &) and (¢, &7, &) which satisfy (bl), there exists a unique
2-cell n € S*(q,q') such that (nop;)-& =& (i =1,2).

qopi==q op;
4qi
The coproduct of Ajand A, is defined dually.

2.4. DEFINITION. For any Ay, Ay, B € SY and f; € S'(A;, B) (i = 1,2), the pullback
(A1 X Ag, f1, 5,€) of f1 and fy is defined as follows:
(a) Ay xp Ay € 8%, f1 € S1 (A1 xp Az, Ay), f5 € SN (A1 x5 Ag, A1), £ € S*(fio fa, f0 fr).
A
f2
\
Al XB A2 M’E
2 1
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(bl) (ezistence of a factorization)
For any X € S°, g, € SY(X, As), g2 € SH(X, A1) and n € S*(g10 fa, g20 f1), there exist
g€ SI(X,A1 X Ay), & € SQ(QO 1> 9i) (i =1,2) such that (§; 0 fa) - n=(g0&) (&0 f1).

g1
! A2 19J2
/\&—f; \f gofiofalsgiofy

X*S;Al XB A2 13 B gofﬂ O uﬂ
%} /;1 gofrohgg=00h
92 Ay o

(b2) (uniqueness of the factorization)
For any factorizations (g,&1, &) and (¢, &}, &) which satisfy (b1), there exists a unique

2-cell ¢ € S*(g,9') such that (o f])- & =& (1 =1,2).
The pushout of f; € S'(4, B;) (i = 1,2) is defined dually.

2.5. DEFINITION. For any A, B € S® and f,g € S (A, B), the difference kernel

(DK(f,9),d(s.9), P(1.9))

of f and g is defined as follows:
(a) DK(f,9) € 8°, d(s) € S'(DK(f,9), A), ¢(r9) € S*(d(s9) © fodis.9) 0 9)-

; dg,g)0f
/_\
K(/.9) d(1.9) A B DK(f,g)ﬂU/,B
29 g
d(f,9)°9

(bl) (existence of a factorization)
Forany X € 8°, d € S(X, A), ¢ € S*(do f,dog), there exist d € S'(X,DK(f,g)), ¢ €

S*(dod(yg),d) such that (do @iq) - (wog) = (pof) .

(b2) (uniqueness of the factorization)
For any factorizations (d, ¢) and (d',

n e S*(d,d') such that (nody) - ¢ =

The difference cokernel of f and g is defined dually.
The following definition is from [2].

6. DEFINITION. Let f € S}(A, B).

) f is said to be faithful if f* := —o f:SYC,A) — SY(C, B) is faithful for any C € S°.
)

) [

") which satisfy (bl), there exists a unique 2-cell

2.

(1
(2) f is said to be fully faithful if f* is fully fazthful for any C € S°.

(3 is said to be cofaithful if f* := fo— : SYB,C) — SYA,C) is faithful for any
C eSO

(4) f is said to be fully cofaithful if f* is fully faithful for any C € S°.
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PROPERTIES OF SCG. By definition, a symmetric categorical group is a symmetric
monoidal category (G, ®,0), in which each arrow is an isomorphism and each object
has an inverse up to an equivalence with respect to the tensor ®. More precisely;

2.7. DEFINITION. A symmetric categorical group (G, ®,0) consists of
(al) a category G

(a2) a tensor functor ® : G x G — G

(a3) a unit object 0 € Ob(G)
(ad)

ad) natural isomorphisms

aspc: AR (B®(C)— (A®B)®C,
AMO0®A—A pa:AR0— A ap:A®B—-B®A

which satisfy certain compatibility conditions (cf. [5]), and the following two conditions
are satisfied:

(bl) For any A, B € Ob(G) and f € G(A, B), there exists g € G(B, A) such that fog=
idA, go f = ldB

(b2) For any A € Ob(G), there exist A* € Ob(G) and na € G(0, A ® A*).

In particular, there is a ‘zero categorical group’ 0, which consists of only one object 0
and one morphism idy.

2.8. DEFINITION. For symmetric categorical groups G and H, a monoidal functor F
from G to H consists of

(al) a functor F: G — H

(a2) natural isomorphisms

Fyp:F(A® B) — F(A)® F(B) and F; : F(0) — 0

which satisfy certain compatibilities with o, A, p, v. (cf. [5])

2.9. REMARK. For any monoidal functors F' : G — H and G : H — K, their composition
FoG:G — Kis defined by

(FOG)A,B = G(FA,B)OGF(A),F(B) (2)
(FoG); := G(Fj)oGy. (3)

In particular, there is a ‘zero monoidal functor’ Og i : G — H for each G and H, which
sends every object in G to Oy, every arrow in G to idg,, and (Ogm)aps = Ay’ = py
(Ogm)r = idy. It is easy to see that Og o Ogx = Ogx (VG, H, K).

2.10. REMARK. Our notion of a monoidal functor is equal to that of a ‘y-monoidal
functor’ in [7].
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2.11. DEFINITION. For monoidal functors F,G : G — H, a natural transformation ¢
from F to G is said to be a monoidal transformation if it satisfies

Va0 Gap = Fapo(pa® pp)
Fr = ¢ooGr. (4)
The following remark is from [9].

2.12.  REMARK. By condition (b2), it is shown that there exists a 2-cell e, € G(A*®A, 0)
for each object A, such that the following compositions are identities:

A—00A — (AA)®A - A A" ®A) — A®0— A

ALt na®l 1®ea PA
A* — A0 — A*Q(ARA") —m (A*RA) A — R A* — A*
p;i 1®77A « 6A®1 )\A*

For each monoidal functor F' : G — H, there exists a natural morphism 4 : FI(A*) —
F(A)*.
2.13. DEFINITION. SCG 1is defined to be the 2-category whose 0-cells are symmetric cat-
egorical groups, 1-cells are monoidal functors, and 2-cells are monoidal transformations.

The following two propositions are satisfied in SCG (see for example [1]).
2.14. PROPOSITION. For any symmetric categorical groups G and H, if we define a
monoidal functor F @cu G : G — H by

(F ®cuG)an = (F(A® B) ® G(A® B)

Fy B®Ga,B

— F(A)® F(B)® G(A) ® G(B)

— F(A)®G(A)® F(B) ® G(B))
(FoexG) = (PG ™ 101 =571,

then (SCG(G, H), ®¢u, 0gm) becomes again a symmetric categorical group with appropri-
ately defined o, \, p,~y, and

Hom = SCG(—, —) : SCG x SCG — SCG
becomes a 2-functor (cf. section 6 in [1]).

In SCG, by definition of the zero categorical group we have S'(G,0) = {0g o}, while
S'(0, G) may have more than one objects. In this point SCG might be said to have ‘non
self-dual’ structure, but S'(G,0) and S'(0,G) have the following ‘self-dual’ property.

2.15. REMARK. (1) For any symmetric categorical group G and any monoidal functor
F : G — 0, there exists a unique 2-cell ¢ : F' = 0g .

(2) For any symmetric categorical group G and any monoidal functor F' : 0 — G,
there exists a unique 2-cell ¢ : F' = 0.

PROOF. (1) follows from the fact that the zero categorical group has only one morphism
idg. (2) follows from condition (4) in Definition 2.11. "
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The usual compatibility arguments show the following Lemma.

2.16. LEMMA. Let F': G — H be a monoidal functor. For any A, B € Ob(G),

W
fr——(f®lp)ong

G(A® B*,0)
W

and

\I/A,B G(A & B*,O) G(A, B)
W W
9|—>pAf1 o (1A®5§1) O, yup O (g®1p) o Ap

are mutually inverse, and the following diagram is commutative;

G(A, B) 2 G(A® B*,0)

F(A), F(B)) o H(F(A® B*),F(0)),
‘I’Fm A/i,;;
H(F(A) ® F(B)*,0)

F(

HI(

where @iB is defined by

04 5 H(F(A® B*), F(0)) H(F(A) ® F(B)*,0)

h—— (1F(A) ® (L§>_1) o (FA,B*)_l oho Fy.

3. Definition of a relatively exact 2-category

LocALLy SCG 2-CATEGORY. We define a locally SCG 2-category not only as a 2-category
whose Hom-categories are SCG, but with some more conditions, in order to let it be a
2-dimensional analogue of that of an additive category.

3.1. DEFINITION. A locally small 2-category S is said to be locally SCG if the following
conditions are satisfied:

(A1) For every A, B € S°, there is a given functor ®a 5 : S(A, B) x S(A, B) — S(A, B),
and a given object 045 € Ob(S(A, B)) = S'(A, B) such that (S(A,B),®ap,045) be-
comes a symmetric categorical group, and the following naturality conditions are satisfied:

04po0pc=04c (VA B,Cec8%
(A2) Hom = S(—,—) : S xS — SCG s a 2-functor which satisfies for any A, B,C € S°,

(OA,B)ﬂI = idOA,C S SQ(OA,Cv OA,C) (5>
(048); =idog, € S*(0c,5,0c,5). (6)
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(A3) There is a 0-cell 0 € S° called a zero object, which satisfy the following conditions:
(a3-1) S(0,0) s the zero categorical group.

(a3-2) For any A € S° and f € S'(0, A), there exists a unique 2-cell 05 € S*(f,00.4).
(a3-3) For any A € S° and f € S'(A,0), there exists a unique 2-cell 74 € S*(f,040).
(A4) For any A, B € S°, their product and coproduct exist.

Let us explain about these conditions.
3.2. REMARK. By condition (A1) of Definition 3.1, every 2-cell in a locally SCG 2-
category becomes invertible, as in the case of SCG (cf. [9]). This helps us to avoid being

fussy about the directions of 2-cells in many propositions and lemmas, and we use the
word ‘dual’ simply to reverse 1-cells.

3.3.  REMARK. By condition (A2) in Definition 3.1,

fﬁ = fO— : S(B,C) - S(A7C)

f> = —of:S8(C,A) — S(C,B)
are monoidal functors (VC' € SY) for any f € S'(A, B), and the following naturality
conditions are satisfied:

(a2-1) For any f € SY(A,B),g € SY(B,C) and D € S° we have (f o g)* = ¢* o f* as
monoidal functors.

CDHSBD

A—l.p_9.¢ D \\\ //
(fog)*

(a2-2) The dual of (a2-1) for —.
(a2-3) For any f € SY(A, B),g € S*(C, D), we have f*og’ = ¢’ o f* as monoidal functors.

S(B,C) L~ 5(4,0)
D ng/ O ig*’
S(B. D) —~S(A, D)

Since already (f o g)f = g o f* as functors, (a2-1) means (f o g)% = (g% o f%);, and by
(3) in Remark 2.9, this is equivalent to

(fog)i=1rg)) fi=(fodh) fi.
Similarly, we obtain

(fog); =(f1o9)- g, (7)
(fiog) g =(fog) fi (8)
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3.4. REMARK. By condition (A2), for any f,g € S*(A, B) and any a € S*(f,g), ao—:
f# = ¢* becomes a monoidal transformation. So, the diagrams

ao(k®h) aolp ¢

o(k®h) foOpc=—g0o0p¢c

g
f ghﬂ O ﬂg}i, N and \ /
® g

(aok)®(coh) (g o k) X (g o h)

are commutative for any C € SY and k,h € S'(B,C). Similar statement also holds for
—oa: fP=¢.

3.5. COROLLARY. In a locally SCG 2-category S, the following are satisfied:
(1) For any diagram in S

/"h\ /f;\
C_lle_A_ o B
S~ 7 ~_7
OC,A g
we have
hoa=(cof)-fi-g7 (s og) (9)
(2) For any diagram in S
f h
S~ T
g 0B,c
we have
aoh=(foe) fi-gi " -(goc). (10)
(3) For any diagram in S
/f\ /g\_\
A UO‘ B Uﬁ C,
S~ 7 S~ T
0a,B 0B,c
we have
(foB)-fi= (Oéog) 91 (11)
PROOF. (1) (hoa) = (c0 f)- (0ca0a) (e og) = (o f)- fi-gi " (e og). (2) is the
dual of (1). And (3 ) follows from (5), (6), (9), (10). n

3.6. REMARK. We don’t require a locally SCG 2-category to satisfy S'(A4,0) = {040},
for the sake of duality (see the comments before Remark 2.15 ).

RELATIVELY EXACT 2-CATEGORY.
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3.7. DEFINITION. Let S be a locally SCG 2-category. S is said to be relatively exact if
the following conditions are satisfied:

(B1) For any I-cell f € SY(A, B), its kernel and cokernel exist.

(B2) For any 1-cell f € SY (A, B), f is faithful if and only if f = ker(cok(f)).

(B3) For any 1-cell f € SY(A, B), f is cofaithful if and only if f = cok(ker(g)).
It is shown in [9] that SCG satisfies these conditions.

Let us explain about these conditions.

3.8. DEFINITION. Let S be a locally SCG 2-category. For any f € S'(A, B), its kernel
(Ker(f),ker(f),er) is defined by universality as follows (we abbreviate ker(f) to k(f)) :
() Ker(f) € 8°, k() € S'(Ker(f), A), < € S(k(f) 0 £,0).
(bl) (ezistence of a factorization)

For any K € S°, k € SY(K, A) and € € S*(ko f,0), there exist k € S'(K,Ker(f)) and
g€ S%(kok(f), k) such that (o f)-e = (koey) - (k).

(b2) (uniqueness of the factorization)
For any factorizations (k,g) and (k',e') which satisfy (bl), there exists a unique 2-cell
¢ € S*(k, k") such that (Eok(f)) & =¢.

3.9. REMARK. (1) By its universality, the kernel of f is unique up to an equivalence.
We write this equivalence class again Ker(f) = [Ker(f), k(f),e¢].
(2) It is also easy to see that if f and f’ are equivalent, then

[Ker(f), k(f)7€f] = [Ker(f/>7k(f/)75f’]'

For any f, its cokernel Cok(f) = [Cok(f),c(f),n¢] is defined dually, and the dual
statements also hold for the cokernel.

3.10. REMARK. Let S be a locally SCG 2-category, and let f be in S'(A, B).
For any pair (k,¢) with k € S}(0, A),e € S*(ko f,0)

e N

0~4>A——>B

and for any pair (k',¢’) with ¥’ € S*(0, A),&’ € S*(k o f,0), there exists a unique 2-cell
¢ € S?(k, k') such that (o f) - =e.
PROOF. By condition (a3-2) of Definition 3.1, e € S*(ko f,0) must be equal to the unique

2-cell (6 o f) - f]. Similarly we have ¢’ = (6 o f) - f], and, £ should be the unique 2-cell
O - 0, € S?(k, k'), which satisfies (£o f) &' =e. .
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From this, it makes no ambiguity if we abbreviate Ker(f) = [0, 09 4, f3] to Ker(f) = 0,
because [0, k,e] = [0,k,¢'] for any (k,e) and (k',¢’). Dually, we abbreviate Cok(f) =
(0,040, f7] to Cok(f) = 0.

By using condition (A3) of Definition 3.1, we can show the following easily:

3.11. EXAMPLE. (1) For any A € S° Ker(040: A — 0) = [A,id4, idg).
(2) For any A € S°, Cok(0g 4 : 0 — A) = [A, idy,idy].

3.12.  CAuTION. (1) Ker(0p4 : 0 — A) need not be equivalent to 0. Indeed, in the case
of SCG, for any symmetric categorical group G, Ker(Opg : 0 — G) is equivalent to an
important invariant 7 (G)|[0].

(2) Cok(040 : A — 0) need not be equivalent to 0 either. In the case of SCG, Cok(0gp :
G — 0) is equivalent to mo(G)[1].

3.13. REMARK. The precise meaning of condition (B2) in Definition 3.7 is that, for
any 1-cell f € S'(A, B) and its cokernel [Cok(f),cok(f), ], f is faithful if and only if
Ker(cok(f)) = [A, f,ns]. Similarly for condition (B3).

RELATIVE (CO-)KERNEL AND FIRST PROPERTIES OF A RELATIVELY EXACT 2-CATEGORY.
Throughout this subsection, S is a relatively exact 2-category.

3.14. DEFINITION. For any diagram in S

A B C, (12)

its relative kernel (Ker(f, @), ker(f, ), e(s)) is defined as follows (we abbreviate ker(f, ¢)
to k(f,¢)) :
(a) Ker(f, ) € 8°, k(f, ) € S'(Ker(f, ), A), &1, € S*(k(f, ) 0 1,0).
(b0) (compatibility of the 2-cells)

E(fp) 18 compatible with ¢ i.e. (k(f,¢)o¢)-k(f, o) = (g0 0 9) - 97
(bl) (existence of a factorization)

For any K € S°, k € SY(K, A) and € € S*(k o f,0) which are compatible with o, i.e.
(ko) -k = (cog)- g, there exist k € SY(K,Ker(f,)) and £ € S®(k o k(f, ), k) such

that (co f) - = (koe(sy)) - (k)5
%
// Vb 7
Ker(f, 90)_/

(b2) (uniqueness of the factorization)
For any factorizations (k,€) and ( ') which satisfy (bl), there exists a unique 2-cell

£ € S*(k, k") such that (Eo k(f,¢)) € =¢.

/
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3.15. REMARK. By its universality, the relative kernel of (f,¢) is unique up to an
equivalence. We write this equivalence class [Ker(f,¢), k(f,¢),e(s.4)]-

3.16. DEFINITION. Let S be a relatively exact 2-category. For any diagram (12) in
S, its relative cokernel (Cok(g, ¢), cok(g, ), m(gs)) s defined dually by universality. We
abbreviate cok(g,p) to c(g, ), and write the equivalence class of the relative cokernel

[COk(ga SO)? C(g, 90)7 7T(g,<p)] .

3.17. CAUTION. In the rest of this paper, S denotes a relatively exact 2-category, unless
otherwise specified. In the following propositions and lemmas, we often omit the statement
and the proof of their duals. Each term should be replaced by its dual. For example, kernel
and cokernel, faithfulness and cofaithfulness are mutually dual.

3.18. REMARK. By using condition (A3) of Definition 3.1, we can show the following
easily. (These are also corollaries of Proposition 3.20.)
(1) Ker(f, f) = Ker(f) (and thus the ordinary kernel can be regarded as a relative kernel).

0
/‘m
A“ B

0

(2) ker(f, ) is faithful.

3.19. LEMMA. Let f € SY(A, B) and take its kernel [Ker(f),k(f),es]. If K € S°,
k € SYK,Ker(f)) and o € S*(k o k(f),0)

0

AN
R T =

0

is compatible with €, i.e. if o satisfies

(0o f) f1=(koes) ki, (13)
then there exists a unique 2-cell ¢ € S*(k,0) such that o = (( o k(f)) - k(f)5.

PROOF. By (13), o : ko k(f) = 0 is a factorization compatible with £; and f;. On the
other hand, by Remark 3.4, k(f)’ : 00 k(f) = 0 is also a factorization compatible with
£, f2. So, by the universality of the kernel, there exists a unique 2-cell ¢ € S?(k,0) such

that o = (C o k(f)) - k(f)}. -
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It is easy to see that the same statement also holds for relative (co-)kernels. In any rel-
atively exact 2-category, the relative (co-)kernel always exist. More precisely, the following
proposition holds.

3.20. PROPOSITION. Consider diagram (12) in S. By the universality of Ker(g) =

[Ker(g),¢,¢|, f factors through { uniquely up to an equivalence as p: fol = [, where
f €S (A Ker(g)) and p € S*(fol, f):

Ker(g)

Then we have Ker(f,¢) = [Ker(f),k(f),n], where n := (k(f) o p™') - (epo0l) -} €
S2(k(f) o f,0). We abbreviate this to Ker(f,¢) = Ker(f). -

PROOF. For any K € S°, k € SY(K, A) and o € S?*(ko f,0) which are compatible with ¢,
ie. (0og) g =(koy)- ki, if we put

p=(kop) o eS(kofol,0),

then p is compatible with €. By Lemma 3.19, there exists a 2-cell ¢ : ko f = 0 such
that p = (( o £) - £5. So, by the universality of Ker(f), there exist k € S'(K, Ker(f)) and

o € S*(kok(f),k) such that (go f)-¢ = (koey)- (k)5. Then, ¢ is compatible with ¢ and

,
0

and the existence of a factorization is shown. To show the uniqueness of the factorization,
let (k',0’) be another factorization which is compatible with o, 7, i.e. (¢’ o f) -0 =
(K on)- (K)}. Then, by using 1 = (k(f)oe™!)-(e;ol)-¢; and (ol = p-£;7" = (kog)-o- £},
we can show ((¢’ o f) - () ol = ((K o¢gy) - (E/ﬁ) o (. Since ¢ is faithful, we obtain
((cof)-¢)=(Koegy)- (K")%. Thus, ¢’ is compatible with ¢ and ;. By the universality
of Ker(f), there exists a 2-cell £ € S%(k, k') such that (£ o k(f)) - ¢’ = o. Uniqueness of

such ¢ € S*(k, &) follows from the faithfulness of k(f). n

3.21. PROPOSITION. Let f € SY (A, B), g € SY(B,C) and suppose g is fully faithful.
Then, Ker(f og) = [Ker(f),k(f),(e0g)-g}]. We abbreviate this to Ker(f o g) = Ker(f).
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PROOF. Since g is fully faithful, for any K € S° k € S}(K, A) and o € S*(ko fog,0),
there exists p € S?(k o f,0) such that o = (pog) - g5. And by the universality of Ker(f),
there are k € S'(K, Ker(f)) and ¢ € S*(k o k(f), k) such that (co f)-p= (koey) - (k)k.
Then, it can be easily seen that ¢ is compatible with o and (gf o g) - g}:

(cofog) o= (ko((erog) g)))- / 5
%’\x fg
(Efog)

Thus we obtain a desired factorization. To show the uniqueness of the factorization, let
(k',o’) be another factorization of k which satisfies

(o'ofog)-o=(Ko((er09) 97) (K

Then, we can show ¢’ is compatible with p and ;. By the universality of Ker(f), there
exists a 2-cell £ € S?(k, k') such that (o k(f)) ¢’ = g. Uniqueness of such ¢ follows from
the faithfulness of k(f). n

By definition, f € S'(A, B) is faithful (resp. fully faithful) if and only if —o f :
S%(g,h) — S%(go f,ho f) is injective (resp. bijective) for any K € S° and any g,h €
S!(K, A). Concerning this, we have the following lemma.

3.22. LEMMA. Let f € S}(A, B).
(1) f is faithful if and only if for any K € S° and k € S'(K, A),

—o f:S%k,0) — S*(ko f,00 f) is injective.
(2) f is fully faithful if and only if for any K € S° and k € S}(K, A),
—o f:S*k,0) — S*(ko f,00 f) is bijective.

ProOOF. By Lemma 2.16, we have the following commutative diagram for any g,h €
SYK, A):
2 ®on 2 *
;(g, h) =7 S 9 ® ]1\’(?)1‘

S*(go f.hof) S*((g@h*) o f,00 f)
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So we have

—o f:S%(g,h) — S%*(go f,ho f) is injective (resp.bijective)
& —of:S%g®h*0)— S (g®h*)o f,00 f) is injective (resp.bijective).

3.23. COROLLARY. For any f € SY(A, B), f is faithful if and only if the following
condition is satisfied:

ao f=idps = a=idy (VK € S, Va € S*(0x.4,0x.4)) (14)

PrOOF. If f is faithful, (14) is trivially satisfied, since we have idpoy = idg o f. To
show the other implication, by Lemma 3.22, it suffices to show that — o f : S?(k,0) —
S%(ko f,00 f) is injective. For any ay, as € S?(k,0) which satisfy a; of = ayo f, we have
(a7t ag)of = (a0 f)™t (a0 f) = idges. From the assumption we obtain aj ' - ay = idy,
ie. a; = ao. |

The next corollary immediately follows from Lemma 3.22.

3.24. COROLLARY. For any f € SY(A,B), f is fully faithful if and only if for any
K eS8 ke SYK,A), and any o € S*(ko f,0), there exists unique 7 € S?(k,0) such
that o = (T o f) - f7.

3.25. COROLLARY. For any f € S*(A, B), the following are equivalent:

(1) f is fully faithful.
(2) Ker(f) =0.

PrOOF. (1)=(2)

Since f is fully faithful, for any & € S'(K, A) and € € S*(ko f,0), there exists a 2-cell
€ € S?(0k.a, k) such that (g0 f) = (0o f2)- 05 -7 = (0o f2) -7, and the existence of
a factorization is shown. To show the uniqueness of the factorization, it suffices to show
that for any other factorization (k',£’) with (/o f)-& = (k' o f2) - (K)%, the unique 2-cell
7 € S*(K',0) (see condition (a3-2) in Definition 3.1) satisfies (7 0 0) - &£ = £’. Since f is
faithful, this is equivalent to (To0o f)- (g0 f)-e = (¢'o f) - &, and this follows easily from
700=(700)-05= (k) and (to00 f)- (0o f2) = (K o f2)- (r00). (see Corollary 3.5.)
(2)=(1) Since Ker(f) = [0,0, 2], for any K € S, k € S}(K, A) and any o € S?*(ko f,0),
there exist k& € S'(K,0) and ¢ € S?(k 0 0, k) such that (g o f)-o = (ko f2)- (k)% Thus
7= o 'k} satisfies 0 = (7 o f) - f2. If there exists another 7/ € S%(k,0) satisfying
o = (7' o f) - f, then by the universality of the kernel, there exists v € S%(k,0) such
that (vo0) -7~ = 7. Since vo 0 = k% by (11), we obtain 7 = 7/. Thus 7 is uniquely
determined.
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3.26. PROPOSITION. For any f € SY(A, B), the following are equivalent.
(1) f is an equivalence.

(2) f is cofaithful and fully faithful.

(3) f is faithful and fully cofaithful.

PROOF. Since (1)< (3) is the dual of (1)< (2), we show only (1)<(2).

(1)=(2) : trivial.

(2)=(1) : Since f is cofaithful, we have f = cok(ker(f)), Cok(k(f)) = [B, f,e¢]. On
the other hand, since f is fully faithful, we have Ker(f) = [0,0, f7], and so we have
Cok(k(f)) = [A,id4,ido]. And by the uniqueness (up to an equivalence) of the cokernel,
there is an equivalence from A to B, which is equivalent to f. Thus, f becomes an

equivalence.
0 B
/}7
fies

R — Jequiv.
0 A\ |

MXA

3.27. LEMMA. Let f : A — B be a faithful 1-cell in S. Then, for any K € S° and
k € SY(K,0), we have S*(k 0 0g ker(f), Ok Ker(p)) = {K57}-

O Ker(f)

m

K 0 Ker(f)

k OO,Ker(f)

PROOF. For any o € S?(k o Og ker(f), Ok Ker(s))s We can show ((o o k(f)) - k(f)}) o f =
(ko k(f)}) k) o f. By the faithfulness of f, we have (oo k(f))-k(f); = (ko k(f)})- k.
Thus, we have ¢ o k(f) = k% o k(f). By the faithfulness of k(f), we obtain o = k. "

3.28. COROLLARY. f : A — B is faithful if and only if Ker(0g 4, f7) = 0.

PROOF. Since there is a factorization diagram with (0p ker(s) © €5) - (OO,Ker(f))ﬂ[ = (k(f) 0

-1
Ker({) K
| \*
N A — B 9
1 A /
00,4 ﬁ\\\i

00, Ker(f) Qk(f)
/

0

(see (a3-2) in Definition 3.1) we have Ker(0g 4, f7) = Ker(Og ker(s)) by Proposition 3.20.
So, it suffices to show Ker(0pker(s)) = 0. For any K € S° and k € S'(K,0), we have
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S?(k 0 0oker(f), Ok Ker(f)) = {k;} by the Lemma 3.27. So Opker() becomes fully faithful,
and thus Ker(0g ker(s)) = 0.

Conversely, assume Ker(0g 4, f7) = 0. For any K € S” and o € S(0x 4,0 1) satisfy-
ing ao f =1idgos, we show a = idy (Corollary 3.23).

By ao f =idooy, o is compatible with fi:

Ker(0p., f7) =0 0

So there exist k € S*(K,0) and € € S*(k o idg, 0k ) satisfying
(e0004) o= (koidg) - kb

Since £ 0 0y 4 = k& by (5) and (10), we obtain o = id,. =

In any relatively exact 2-category S, the difference kernel of any pair of 1-cells g, h :
A — B always exists. More precisely, we have the following proposition:

3.29. PROPOSITION. For any g,h € S'(A, B), if we take the kernel Ker(g @ h*) =
[Ker(g @ h*), k,e] of g ® h* and put € := \Ilkog,koh(@’ggjih(g kYY) € S%(k o g koh), then
(Ker(g ® h*), k,€) is the difference kernel of g and h.

PROOF. For any K € S° and ¢ € S'(K, A), there exists a natural isomorphism (Lemma
2.16)

S%(Lo (g ® h*),0) S*(tog,Loh)
W W
O 5 = \Ijﬂog,foh(ggfh(o- ' E%))

So, to give a 2-cell 0 € S?({ o (g ® h*),0) is equivalent to give a 2-cell & € S*(£ o g,l o h).
And, by using Remark 3.4 and Corollary 3.5, the usual compatibility argument shows the
proposition. [

In any relatively exact 2-category S, the pullback of any pair of morphisms f; : A; — B
(1 = 1,2) always exists. More precisely, we have the following proposition:

3.30. PROPOSITION. For any f; € S'(A;, B) (1 = 1,2), if we take the product of Ay and
Ay (Ay X Ag,p1,p2), and take the difference kernel (D,d, ) of p1 o fi and py o fo

/Pﬁk Ly \fi

D A1 X AQ B D ‘H’(‘D )
~_ 7 d\ /
pa2ofa op2 2 P

then, (D,d o py,dopy,p) is the pullback of fi and f.
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PROOF OF CONDITION (bl) (IN DEFINITION 2.4). For any X € S° ¢, € S'(X, 4))
(i = 1,2) and n € S%*(g1 © f1,92 © f2), by the universality of A; X A, there exist g €
SH(X, A; x Ay) and &; € S*(dop;, g;) (i = 1,2). Applying the universality of the difference
kernel to the 2-cell

(:i=(&0ofi) n- (&' o fa) €eS*(goprofi,gopso fa), (15)

we see there exist g € S'(X, D) and ¢ € S*(g o d, g)

C\ piofi

1) AixA, =B (16)
p20of2
such that
(go) - (Copao fo) =((opiofi)-C. (17)

By (15) and (17), we have (g o ¢) - (((Cop2) - &) o f2) = (((Cop1) - &) o fi) - n, and
thus condition (b1) is satisfied.

(Cop1)- 5
/7 1 N
DAY

(Cop2)- 5

proof of condition (b2)

If we take h € SY(X, D) and n; € S?(hodop;, ¢;) (i = 1, 2) which satisfy (hop)-(n20fs) =
(1o f1)-n, then by the universality of A; x A,, there exists a unique 2-cell k € S?(hod, g)
such that

(kopi) & =m (i=1,2). (18)

Then, x becomes compatible with ¢ and (, i.e. (hop)-(kopso fo) = (kopio f1)-(. So,
comparing this with factorization (16), by the universality of the difference kernel, we see
there exists a unique 2-cell y € S*(h, g) which satisfies

(xod)-(=r (19)

Then we have (xodop;) - ((opi) & = (kopi)-& =mn (i =1,2). Thus x is the desired
2-cell in condition (b2), and the uniqueness of such a x follows from the uniqueness of x
and x which satisfy (18) and (19). =
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By the universality of the pullback, we have the following remark:

3.31. REMARK. Let
Al XB AQ \M]f B (20)

be a pull-back diagram. Then, for any K € S°, g,h € S}(K, A; xpAs) and «, 8 € S%(g, h),
we have

aofl=pF0f (i=12)= a=0.

Proor. To the diagram
gofi
K g%ﬂ

s

g0f2 A

f2
~ B,
=

1
1

the following diagram gives a factorization which satisfies condition (b1) in Definition 2.4.

gOf1 ; AQ
O fl \2
K 4>9A1 X B AQ \Hﬁ B

@Al/;l

gofy

Since each of id, : ¢ => g and ao 37! : g = ¢ gives a 2-cell which satisfies condition
(b2), we have a o 37! = id by the uniqueness. Thus o = (3. n

3.32.  PROPOSITION. (See also Proposition 5.12.) Let (20) be a pull-back diagram. We
have

(1) f1: faithful = f|: faithful.

(2) fi: fully faithful = f|: fully faithful.

(3) fi: cofaithful = fi: cofaithful.

PROOF. proof of (1) By Corollary 3.23, it suffices to show aco f] = idgoyr = o = id, for any
K € SYand o € S*(0x 4, x s Ay, Ok Ay x s 45 )- Since (008)-(ao fho f1) = (ao fiofy)-(00&) =
idoofrop, - (00&) = 00&, we have awo fy o fi = idgogrer, = idgog; © f1. Since fi is faithful,
we obtain a o f; = idg.s,. Thus, we have avo f] = idgops = 1idg o f{ (i = 1,2). By Remark
3.31, this implies a = id,.

proof of (2) By (1), f; is already faithful. By Corollary 3.23, it suffices to show that for
any K € S°, k € SY(K, A; xp Ay) and any o € S%(k o f],0), there exists a unique 2-cell
k € S%(k,0) such that o = (ko f]) - (f])}. Since f; is fully faithful, for any K € S°,
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k € SYK,A; xpg As) and any o € S*(k o f,0), there exists 7 € S?(k o f5,0) such that
(Tofl)-(fi)y=(ko&) (0o fy)-(fa); Then, for the diagram

Ay ;

0 1
/ [ \
K ()" B,
\

0
Ay f2

each of the factorizations

0

0 A2 AQ
PN o,
\ \ (] >b\ / \

K4>A1><BA2 ﬂf B K‘@lfé ><B
/s, %_féA/
1

satisfies condition (b1) in Definition 2.4. So there exists a 2-cell x € S?(k,0) such that
o= (ko fl)(f])}. Uniqueness of such x follows from the faithfulness of fi.

proof of (3) Let (A; x Ay, pi,p2) be the product of A; and A,. For idy, € S'(Ay, A)
and 0 € S'(A;, Ay), by the universality of A; x A, there exist i, € S'(A;, A1 X Ay),
& € S%(iyopy,ida,) and & € S?(ig0ps,0). Similarly, there is a 1-cell 75 € S'(Ay, Ay X Ay)
such that there are equivalences isopy >~ id4,, is0p; ~ 0. If we put ¢ := (p10.f1)®(p20 f2)*,
then by Proposition 3.29 and 3.30, we have A; xp Ay = Ker(t). So we may assume
Ker(t) = [A1 xp As,d, &) and f] = d o ps.

/,’WE:\

A1 XBAQ?A1XA2

B

Since i1 ot and f; are equivalent;

ipot~(ijopro fi)®(iyopyo fy) =~ (ida, o f1) @ (00 f5) ~ f1,

by the cofaithfulness of fi, it follows that ¢ is cofaithful. Thus, we have B = Cok(ker(t)),
i.e. Cok(d) = [B,t,&]. By (the dual of) Corollary 3.23, it suffices to show fj o a =
idfe0 = a = idg for any C' € S° and any a € S*(04,,c,04,,c). For the 2-cell (d opz)ﬁl €
S?(dopy004,c,0) (see the following diagram), by the universality of Cok(d), there exist
u e SY(B,C) and v € S%(t o u,py 0 0) such that (do~) - (dops): = (g, 0 u) - uy. Thus, if
we put 7' := - (p2 0 ), we have

(dov)-(dops)s=(do) (dopyoa)-(dop)
=(do7) - (floa) (dops)i=(e;0u)-u).
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So, v and ' € S?(t o u,py 0 0) give two factorization of py o 0 compatible with &; and
(dop,)t. By the universality of Cok(d) = [B, t, ], there exists a unique 2-cell § € S2(u, u)
such that

(tof)-y=1" (21)

A 1 equivalence

i1 fi o
LN
Al XBA2>A1XA2t4>B
Op2 \U,"/ ui'/\!u
i . )
As T va = (C
0

Then we have (i10£08)-(1107) = 107" = (1107)-(i10p00) = (ir07)-(€200)-(000)- (£ 100) =
(11 0 7y), and thus, (i; o t) o f = id; ot0u. Since i; ot =~ fi is cofaithful, we obtain § = id,.
So, by (21), we have v = 7' = v - (p2 0 @), and consequently ps o @ = id,,s0. Since po is
cofaithful (because iy o py >~ id 4, is cofaithful), we obtain o = idy. n

3.33.  PROPOSITION. Consider diagram (12) in S. If we take Ker(f, ) = [Ker(f, ¢), ¥, €],
then by the universality of Ker(f) = [Ker(f), k(f),e¢], £ factors uniquely up to an equiv-
alence as

where (g0 f)-e = (Loey)- (£)s. Then, £ becomes fully faithful.

PROOF. Since £ o k(f) is equivalent to a faithful 1-cell ¢, so £ becomes faithful. For any
K € 8% ke SYK,Ker(f,¢)) and o € S* (ko £,0), if we put o’ := (koe™) - (g0 k(f)) -
k(f)} € S*(ko(,0), then o’ becomes compatible with €. So, by Lemma 3.19, there exists
7 € 82(k,0) such that ¢/ = (10 ¢) - £, i.e.

(koe™) (0 ok(f)- (k(f));=(Tol)-1}. (22)

Now, since (kog)-(10l)- £} = (tolok(f))-(Lok(f)); by Corollary 3.5, (22) is equivalent

to (o0 k(f)) - (k(f); = (T o Lok(f)) - (€ o k(f)) - ((F)].

Thus, we obtain o o k(f) = ((1 0 £) - £}) o k(f). Since k(f) is faithful, it follows that
o = (T o) - £;. Uniqueness of such 7 follows from the faithfulness of £. Thus £ becomes
fully faithful by Corollary 3.24. [

4. Existence of proper factorization systems

4.1. DEFINITION. For any A, B € S° and f € S'(A, B), we define its image as Ker(cok(f)).
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4.2. REMARK. By the universality of the kernel, there exist i(f) € S'(A4,Im(f)) and

v € S2(i(f) o k(c(f)), f) such that (coc(f)) - mp = (i(f) o exp)) -i(f)%. Coimage of f is
defined dually, and we obtain a factorization through Coim(f).

4.3. PROPOSITION. [Ist factorization] For any f € S'(A, B), the factorization v : i(f) o
k(c(f)) = f through Im(f)

Z(f\\ ﬂ / ()

Im(f)

satisfies the following properties:

(A) i(f) is fully cofaithful and k(c(f)) is faithful.

(B) For any factorization n : i o m = [ where m is faithful, following (bl) and (b2)
hold:

(bl) There exist t € S*(Im(f),C), (m € S*(tom, k(c(f))), ¢ € S?(i(f) o t,i)

C

e
z(Jx /;(C(f)

m(f)

such that (i(f)o(n) -t = (G o m) - 1.
(b2) If both (t,m, G) and (¢',C! () satisfy (b1), then there is a unique 2-cell k € S*(¢,t')

such that (i(f)ok)-(l = ¢ and (kom) -, = Gn.

Dually, we obtain the following proposition for the coimage factorization.

4.4. PROPOSITION. [2nd factorization] For any f € S'(A,B), the factorization u :
c(k(f)) o j(f) = [ through Coim(f)

Coim( f

/ﬂ\

satisfies the following properties:

(A) 5(f) is fully faithful and c(k(f)) is cofaithful.

(B) For any factorization v : e o j = f where e is cofaithful, following (bl) and (b2)
(the dual of the conditions in Proposition 4.3) hold:
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(bl) There exists s € S*(C, Coim(f)), (. € S*(e o s,c(k(f))), and ¢; € S*(so j(f),7)

Coun(f)

C(k(f/ \

C] B

P

such that (eo () - v = (C0j(f)) - p.
(b2) If both (s, Ce, ;) and (', ¢, C}) satisfy (b1), then there is a unique 2-cell X € S*(t,t')

such that (Ao j(f))- (= ¢ and (eo )¢ = (..

In the rest of this section, we show Proposition 4.3.
4.5. LEMMA. For any f € S'(A, B), i(f) is cofaithful.
PROOF. It suffices to show that for any C' € S° and a € S*(Opm(s),cs Omn(r),0)
0

i(f) N
A—=Im(f) |« C,
~__"7

0

we have i(f) o a = id;(f).0 = a = idy. Take the pushout of k(c(f)) and Om(p),c

k(C(fy B AN ZB

ﬂﬁ

A Im(f)

and put
, . & . (io);
& o= (G0 ) n=(908) (&0 fi)lic); = (K(c(f)) o ip = Doic == 0)
& = € (aoic)- (ic) = (k(e(f)) oin == 00ic 28 0 0ip "X ).
Then, since i¢ is faithful by (the dual of) Lemma 3.32, we have
o = ldo < O iC = idOoiC < 6 . (Oz o) Zc) . (’Lc)% = g . idOoiC . (20)3 < 51 = 52.

So, it suffices to show &; = &. For each ¢ = 1,2, since Cok(k(c(f)) = [Cok(f),c(f),ecp)l:
there exist e; € S'(Cok(f),C ][ B) and &; € S*(c(f) o e;,ip) such that
Im(f)

(k(c(f)) o ci) - & = (capy 0 €) - (€] (23)
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Cok(f)

iB

Kt e
e

C B

m(f) —— Ig)

Since by assumption i(f) o a = id;(f)00, We have
i(flo& = (i(f)o&) - (i(f)oaocic) (i(f)o (ic)])
= (i(f) 0 ) - (idi(pyo00ic.) - (i([f) 0 (ic)]) = i(f) © &u.

So, if we put @ := (171 oig) - (i(f) 0 &) - (i(f))4 € S2(f 0ip,0), this doesn’t depend on
i =1,2. We can show easily (foe) @ = (m;0¢;) ()} (i = 1,2). Thus (e1,2;) and
(es,€2) are two factorizations of ip compatible with @ and 7.

2 Cok(f)

By the universality of Cok(f), there exists a 2-cell 3 € S?(ey, es) such that (c(f)of3)- g9 =
g1, and thus we have ;' = e;' - (¢(f) o 7). So, by (23), we have

&= (k(e(f)oer") (eqpoer) - (er)]

= (k(c(f) oerh) - (K(c(f)) oc(f) o 57 - (eepy 0 €1) - (e1)]
(k(c(f)) o 551) ‘ (5c(f) oey) - (62)3 = &o.

ol

4.6. LEMMA. Let f € SY(A,B). Let ¢ : i(f) o k(c(f)) = f be the factorization of
f through Im(f) as before. If we are given a factorization n : i om = f of f where
i € SYA,C), m € SYC,B) and m is faithful, then there exist t € S*(Im(f),C), ¢; €
S2(i(f) o t,i) and ¢, € S*(t om, k(c(f))) such that ({om) -n = (i(f) o Cm) -t

PROOF. By the universality of Cok(f), for w := (™" oc(m)) - (iomy)-it € S2(f o c(m),0),
there exist m € S'(Cok(f), Cok(m)) and 77 € S*(c(f) om,c(m)) such that

(fom) - m = (mpom)- (m);. (24)
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0 0 Cok(f)
“fxx //7
A—"—=B LT |m
s \
Cok(m)

Since m is faithful by assumption, it follows Ker(c(m)) = [C, m, 7. By the universality
of Ker(c(m)), for the 2-cell

¢ = (k(e(f) 0T Y) - (eapy 0 M) - (M)} € S*(k(c(f)) 0 c(m), 0), (25)

there exist t € S'(Im(f),C) and ¢, € S%*(t o m,k(c(f))) such that (¢, o c(m)) ¢ =
(t o ) - th. B
If we put ¢ := (i(f) o () - ¢, then the following claim holds:

4.7. CLAM. Each of the two factorizations of f through Ker(c(m))
niiom=f and (:i(f)otom = f

18 compatible with m,, and 7.

B—>Cok (m)

/N =

If the above claim is proven, then by the universality of Ker(c(m)) = [C, m, m,,], there
exists a unique 2-cell ¢; € S2(i(f) ot, i) such that ({;om)-n = ¢. Thus we obtain (¢, (, G)
which satisfies ({; om) -7 = ¢ = (i(f) o () - ¢, and the lemma is proven. So, we show
Claim 4.7.

(a) compatibility of n with m,,, ™

This follows immediately from the definition of 7.

(b) compatibility of ¢ with m,,, 7

S5

We have
i(No¢ = (ocm)-(for™) (™ oc(f)om)
(i(f) o ee(py o)) - (i(f) © (M)})
5 (toc(m))-m i)y

From this, we obtain (i(f) ot omy,) - (i(f)ot}) = (Coc(m))-m-i(f)5". So we have
(Coclm))-m=(i(f) otomu) - (i(f) o t7) - i(f)i" = (i(f) o t o ma) - (i(f) 0 1)}
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4.8. LEMMA. Let A,B,C € S°, f,m,i € S*, n € S? be as in Lemma 4.6. If a triplet
(1, . ) (where ' € S'(Im(f), C), &), € St 0 m, k(e(f)), ¢, € S(i(f) o ', 1) satisfies

(i(f) o Gn) -t =(Gom) -, (26)
then (/. becomes compatible with ¢ and m,, (in the notation of the proof of Lemma 4.0),
i.e. we have (¢, 0 c(m)) - ¢ = (t' o mp) - (1)

4.9. REMARK. Since m is faithful, ¢/, which satisfies (26) is uniquely determined by ¢’
and (] if it exists.

ProoOF OF LEMMA 4.8. Since we have
i(f) o (¢ 0 c(m) - ¢)
(Gomoc(m))-(noc(m))-(fot)- (" oc(f) om)
- (i(f) 0 ee(y oM - (i(f) © (M)7)
= ((i(f) ot o mm) - (i(f) o (),

24

26,1

we obtain (¢/, o c(m))-¢ = (t' omy,) - (t’)g by the cofaithfulness of i(f). m

4.10. COROLLARY. Let A, B, C, f, m, i, n as in Proposition 4.3. If both (t,n, ) and
(t',¢!,C!) satisfy (b1), then there exists a unique 2-cell k € S?(t,t') such that (i( f)ok)-(l =
G and (kom) - (', = (.

PROOF. By Lemma 4.8, there exists a 2-cell k € S?(¢,t') such that (k om) -/, = (, by
the universality of Ker(c(m)) = [C,m,m,,]. This k also satisfies ¢; = (i(f) o k) - ({, and

79

unique by the cofaithfulness of i(f). n

Considering the case of C' = Im(f), we obtain the following corollary.

4.11. COROLLARY. For any t € S'(Im(f),Im(f)), ¢n € S?*(t o k(c(f)), k(c(f))) and

G € S*(i(f)ot,i(f)) satisfying (Gok(c(f))) -t = (i(f)olmn)-t, there exists a unique 2-cell
k€ S%(t,idmm(p)) such that i(f)or = ¢ and ko k(c(f)) = G-

Now, we can prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. Since all the other is already shown, it suffices to show the
following;:

4.12. CrLAM. For any C € SY and any g, h € S'(Im(f), C),

i(f) o —:8%g,h) — S*(i(f) 0 g,i(f) o h)
18 surjective.

So, we show Claim 4.12. If we take the difference kernel of g and h;

digny - DK(g,h) — Im(f), @gn) @ dgn ©9 = dgn o h,
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then by the universality of the difference kernel, for any 3 € S?(i(f) o g,i(f) o h) there
exist i € S'(A,DK(g,h)) and A € S*(i o d(gn),i(f))

/\g

4>Im ) =C

d(g h)

7

h

such that (i o)) - (Aoh)=(Aog)-f.

If we put m := dgpn) o k(c(f)), then m becomes faithful since d4 ) and k(c(f)) are
faithful. Applying Lemma 4.6 to the factorization n := (Ao k(c(f))) -t :iom = f, we
obtain t € S'(Im(f), DK(g,h)), Cn € S%(t om, k(c(f))) and ¢ € S?(i(f) ot,i) such that
(Gom)-n=(i(f) o (y) - t. Thus we have

(G odign o k(c(f))) - Ao k(c(f))) - v = (i(f) 0 Gm) - ¢

So, if we put G, := (G 0 digy) - A € S2(i(f) 0 t 0 (g, i(f)), then we have

(Ciok(c(f)) = (i(f) o Gn) -t

By Corollary 4.11, there exists a 2-cell k € S*(tod(y ), idmn(y)) such that xok(c(f)) = Gn
and i(f)or = (;. If we put v := (k" 1og)-(topin)) - (koh) € S*(g,h), we can show that
« satisfies i(f) o a = 3. Thus i(f) o — : S*(g,h) — S%(i(f) 0 g,i(f) o h) is surjective. m

4.13. REMARK. In condition (B) of Proposition 4.3, if moreover i is fully cofaithful, then
t becomes fully cofaithful since i and i(f) are fully cofaithful. On the other hand, ¢ is
faithful since k(c(f)) is faithful. So, in this case t becomes an equivalence by Proposition
3.26.

Together with Corollary 4.11, we can show easily the following corollary:

4.14. COROLLARY. For any f € S'(A, B), the following (b1) and (b2) hold:
(b1) If in the factorizations

C '’
AN AN
A—F—B A—F—B

m,m’ are faithful and i,i" are fully cofaithful, then there exist t € SY(C,C"), (n € S%(t o
m/,m), and ¢; € S*(iot,i’) such that (io(p)-n = (Gom') 7.

(b2) If both (t, o, G) and (', ¢, C!) satisfy (b1), then there is a unique 2-cell k € S*(t,t)
such that (iok) -l = ¢ and (kom') - (! = Gn.
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4.15. REMARK. Proposition 4.3 and Proposition 4.4 implies respectively the existence
of (2,1)-proper factorization system and (1,2)-proper factorization system in any relatively
exact 2-category, in the sense of [2].

In the notation of this section, condition (B2) and (B3) in Definition 3.7 can be written
as follows:

4.16. COROLLARY. For any f € S*(A, B), we have;

(1) f is faithful iff i(f) : A — Im(f) is an equivalence.

(2) f is cofaithful iff 7(f) : Coim(f) — B is an equivalence.
PROOF. Since (1) is the dual of (2), we show only (2).

In the coimage factorization diagram

Coim

C(k(f%fu <<\J)(
A f

f)
B,

since ¢(k(f)) is cofaithful and j(f) is fully faithful, we have
f is cofaithful<= j(f) is cofaithfulP = j(f) is an equivalence. m
rop. 3.

5. Definition of relative 2-exactness
DIAGRAM LEMMAS (1).

5.1. DEFINITION. A complex Ay = (A, d2,67) is a diagram

ny “**nir¥n

0 0

/}m /m

t An—2dr> n—1 73 A, JA An-l—l A An—|—2 t

\U/ n—2 W W
0 0 0

where A, € S°, d? € SY(A,, Any1), 67 € S%(d4 | o d?,0), and satisfies the following
compatibility condition for each n € Z :

(d;?—l © (5;?+1) : (d;?—l)ﬁl = (52‘ © dfﬂ) © (dﬁ—i—l)g

5.2. REMARK. We consider a bounded complex as a particular case of a complex, by
adding zeroes.

0 0
/(TS‘)?\ m
-0 0 A Ay Az

dg‘u

0

A
0

0
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5.3. DEFINITION. For any complezes Ay = (A,,d3,04) and By = (B,,d2,68), a

complex morphism fo = (fu,An) : Ae — B, consists of f, € SY(A,, B,) and \, €
S2(d? o fri1, fn 0 dB) for each n, satisfying

(8 0 far1) - (far1)] = (di_y 0 Aa) - Anmr 07 - (fam1 ©67) - (fa1)-

iy iy da dﬁﬂ
e Ap o —>Ap A, An Apgo---

\ I | I I \ I
fn—2 szvl ! f‘JV va-u Jlf‘y—z

...Bn_2dB—>Bn_1dB—>Bn—B>Bn+l—)Bn+2...

dB dB

n—2 n—1 n+1

5.4. PROPOSITION. Consider the following diagram in S.

AIL>B1

ai A l/b (27)
A2 B

If we take the cokernels of fi and fy, then there exist b € S'(Cok(f1),Cok(fy)) and
A€ S?%(c(f1) ob,boc(fs)) such that

(mpob)- (D) = (fioX)- (Aoe(fa)) - (aomy,) - df.

0

1

Ay —— Db — bOk(fl)
ai )\\U/ é \U/X \LB
Ay —— By —= )COk(f2)

0

If (B’,X’) also satisfies this condition, there exists a unique 2-cell & € S%(b, l_)/) such that
.

(c(f1) 0 €)X =X

PRrROOF. This follows immediately if we apply the universality of Cok(f1) to (Ao c(f)) -

(aomy,)-at € S2(fioboc(f),0). =

5.5.  PROPOSITION. Consider the following diagrams in S,

A1L>B1

wl w4 -I-B
N/ B A\
\le A2l lbi/ A3TB;3

A?’TBS



572 HIROYUKI NAKAOKA

which satisfy (fioB) A= (A1oby)-(a10Xe)- (o f3). Applying Proposition 5.4, we obtain
diagrams

B -YLbok(f) B —Lbok(f)) B, "Lbok(f,)

S T I S = 12
By — =z Cok(fs)  By— = Cok(fa)  By—_= Cok(fs)

with
(mp,00)- ()} = (fioX) - (Noc(fs) - (aomyp,) af (28)
(mr 001) - (01); = (fioX) - (Moc(fe) (aromy) - (ar)}
(mp, 002) - (B2)] = (faoXa) - (Aaoc(fs)) (azomy,) - (a)}.

Then, there exists a unique 2-cell 3 € S?(by o by, b) such that

(c(fi)oB)-A=(Aoby)-(b1oXy) - (Boc(fs)).
PROOF. By (28), X is compatible with 77, and (Ao ¢(fs)) - (a0 7p,) - d.

0 COk(fl)
- 7
ml)
/

h B, >/X

Wﬁa\)
0 Cok(f3)

(Aol f3))-(aom s, )-a

A

(Sl

On the other hand, X := (M oby) - (byoAg) - (Boc(fs)) is also compatible with 7, and
(Aoc(fs)) - (aomy,) -aﬁl. So, by the universality of the Cok(f1), there exists a unique 2-cell
B € S%(by 0 by, b) such that (c(fi)oB) - A=\, u

5.6. COROLLARY. Let (fn, \n) : (Apn,d2,62) — (B,,d2,68) be a complex morphism.

ny “nir¥n ny “**nir¥n

Then, by taking the cokernels, we obtain a complex morphism (c(f,), ) : (Bp,dZ,65) —
(Cok(fn) a SB) which satisfies

Yy Y n

(A ompy) - (D)5 = o c(farn)) - (a0 Xa) - (s, 0dy) - (), (29)
for each n.

PROOF. By Proposition 5.4, we obtain c_if and ), which satisfy (29). And by Proposition
5.5, for each n, there exists a unique 2-cell STE: € SQ(C_lf_l oaf, 0) such that ((6Zoc(fry1))-
c(frs1)r = (dB oN) - (M1 o c_lf) (c(fu1) 0 Sf) - ¢(fn_1)%. By the uniqueness of  in
Proposition 5.5, it is easy to see that

—B =B —B —B =B —
(511 © dnJrl) ’ (dn+1)3 = (dnfl © 6n+1> ’ (dn,1)§
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These are saying that (Cok( fn), s n) is a complex and (c(f,), \,) is a complex mor-
phism. [

5.7. PROPOSITION. Consider the following diagram in S.

By taking the cokernels of fi and fy, we obtain
1 c(f1
Ay L By *(>)COk<f1)

al/ )\M, é U)\' \LB
Ay o B, W:)C()Mﬁ)v

and from this diagram, by taking the cokernels of a,b,b, we obtain

\i
Colk(a) = Coﬁ( ) 2 Cok (D).
Q\W

0

Then we have Cok(f,) = [Cok(b), c(f2),Ts,]. We abbreviate this to Cok(f,) = Cok(b).
PROOF. Left to the reader. ]

5.8.  PROPOSITION. In the following diagram, assume fo : Ae — Be is a complex

morphism.
0

dA /ﬂ\52 dA

Al *> A2 *> Ag
P St AP 2 (30)

314>B24>B3

W

0
If we take the cokernels of di' and d{g,

c(df)
Al 4> A2 4> COk(d )
1i/ >\1\U/ J;z X1U i/?z
e —_— B
B1 d{3 BQ c(d{a)COk(dl )
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then by the universality of cokernel, we obtain c_l;4 € S'(Cok(di"), A3) and 5;4 € S%(c(df) o
3124, ds') such that (df‘ogf)-ég‘ = (Wd,fxoc_i?)-(af)g. Similarly, we obtain c_if € S'(Cok(dP), By),
55 € S?(c(d?) ofif, dB) with (d?ong) 05 = (mgn oZZQB) : (323)3 Then, there exists a unique
2-cell Ay € Sz(EQA o f3, f5 oaf) such that (c(d{') o Xy) - (A oaf) “(f2 ogf) = (SQA o f3) A
PROOF. If we put 6 := (df! o \;') - (04 o f3) - (f3)}, then both the factorizations

G50 fs)-Aa ¢ c(d)o(dyofs) = frodl
Mody)-(f2005) : cld)o(Fyody) = frodf

are compatible with 7,4 and . So the proposition follows from the universality of Cok(d3').
1
]

5.9.  PROPOSITION. In diagram (27), if we take the coimage factorization p, : c(k(a)) o
jla) = a and py : c(k(b)) o j(b) = b, then there exist f € S'(Coim(a),Coim(b)),
A € S%(froc(k(b)),clk(a)) o f) and Ay € S?(f o j(b),j(a) o f2) such that (fyoup) -\ =
(A1 0(b)) - (c(K(a)) 0 A2) - (pta © f2)-

A — B
I I
/%a)) In C(kéb)N
a| “Coim(a) - f > Coim(b)= | (31)
X i[5 j(‘b) /
(a) 2
jV Y /
= f2 By

Moreover, for any other (f', |, \,) with this property, there exists a unique 2-cell & €
S%(f, f) such that A; - (c(k(a)) o &) = N, and (£0j5(D)) - Ny = o.

PROOF. Since the coimage factorization is unique up to an equivalence and is obtained
by the factorization which fills in the following diagram, we may assume Ker(a) =

[Ker(a), k(a),e,], Cok(k(a)) = [Coim(a), c(k(a)), T, and (k(a) o ta) - €4 = (Th(a) ©

j(a)) - j(a);.
C01m(a)

Ker *> Al / Fj(a)
&\
0 Ao

Ker(b) = [Ker(b),k(b),es],
Cok(k(b)) = [Coim(b),c(k(D)), Trw))

Similarly, we may assume
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and (k(b) o ) - &5 = (mrw) © 4 (b)) - 5(b)5. By (the dual of) Proposition 5.4, there are
f, € S'(Ker(a),Ker(b)) and A € S*(f o k(b),k(a) o fi) such that (Ao b) - (k(a)o A) -
(ea0 f2) - (f2)) = (L oep) - (il)ﬁl Applying Proposition 5.8, we can show the existence of
(f, A1, A2). To show the uniqueness (up to an equivalence), let (f', A}, \}) satisfy

(from) - A= (X 0j®) (c(k(a))oAy) - (hao fa).

From this, we can obtain

(f, omw) - (f,)7 = (Ao c(kb)) - (k(a) o M) - (myay © f) - 7

And the uniqueness follows from the uniqueness of 2-cells in Proposition 5.4 and Propo-
sition 5.8. n

5.10. PROPOSITION. Let f, : Ay — B, be a complex morphism as in diagram (30). If
we take the cokernels of f1, fa, f3 and relative cokernels of the complex Ay and By as in
the following diagram, then we have Cok(f;) = Cok(af,gf).

0
@ e g c(d 54
Ay — Ay —— A i ok(d', 63')
I I
fll Alﬂ f2 )‘Qﬂ f3 Hﬂ \L?3
A \i
B1 B2 B3 B QOk(d2B?5QB>
c(dy ,03")

af \ dz
c(f1)\L Xlﬂ/ C({;Q) XQH’ J{C(fB)
Cok( f1) = Cok(f2) = Cok(fs)

0

PROOF. Immediately follows from Proposition 5.7, Proposition 5.8 and (the dual of)
Proposition 3.20. m

5.11. PROPOSITION. In diagram (27), if a is fully cofaithful, then the following diagram
obtained in Proposition 5.4 1s a pushout diagram.

B, —cok(f)

bi Ix iE
B, W:)C()k(ﬁ)

PROOF. Left to the reader. m
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Concerning Proposition 3.32, we have the following proposition.
5.12. PROPOSITION. Let
A xp Ay s A,
Bl el lfQ
Ay B

f1
be a pullback diagram in S. If fi is fully cofaithful, then fi is fully cofaithful.

PROOF. Since f; is cofaithful, in the notation of the proof of Proposition 3.32, Cok(i;) =
[Ay, p2, &) and Cok(d) = [B, t,&]. Applying Proposition 5.7 to the diagram

0 Ay

oi J iil

Al XBAQ;’Al XA2

we obtain
Cok(f1) = 0 < Cok(f;) = 0.
0 0 A, id A,
ol J i J ifl
Al XBAQ’d>A1 X AQ’tHB
O e J io
Ay 0

id

Al XBA2

fl

0

5.13.  PROPOSITION. In diagram (27), assume a is cofaithful. By Proposition 5.9, we
obtain a coimage factorization diagram as (31). If we take the cokernel of this diagram as

B — YV Cok(f1)

\ \
c(k(b)) 3 ck®)
b 'V ! Ay

then the factorization

Cok(f

A\

Clok( 1) —— Cok(f2)

becomes again a cotmage factorization.
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PROOF. It suffices to show that ¢(k(D)) is cofaithful and j(b) is fully faithful. Since c(k(b))
and c¢(f) are cofaithful, it follows that c¢(k(b)) is cofaithful. Since j(a) is an equivalence,

Coim(b) "% Cok(f)
TO) > O}
By o2 Cok( f2)

is a pushout diagram by Proposition 5.11. By (the dual of) Proposition 5.12, j(b) becomes
fully faithful. [

DEFINITION OF THE RELATIVE 2-EXACTNESS.

5.14. LEMMA. Consider the following diagram in S.

A—Ll-p-—9.¢ (32)
~_d

If we factor it as

A C (33)

with

(pog)-w = (foe)) ()
(fo®)-¢ = (mr09)- @)1,
then Cok(f) = 0 if and only if Ker(g) = 0.

PROOF. We show only Cok(f) = 0 = Ker(g) = 0, since the other implication can be
shown dually. If Cok(f) =0, i.e. if f is fully cofaithful, then we have

Cok(f) = Cok(f o k(g)) = Cok(k(g)) = Coim(g).

Thus the following diagram is a coimage factorization, and § becomes fully faithful.

Cok(f) .
7 1N

e
B g

C
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5.15. DEFINITION. Diagram (32) is said to be 2-exact in B, if Cok(f) = 0 (or equiva-
lently Ker(g) =0 ).

5.16. REMARK. In the notation of Lemma 5.14, the following are equivalent :
(i) (32) is 2-exact in B.
(ii) f is fully cofaithful.
(iii) g is fully faithful.
(iv) c(f) = cok(k(g)) (i.e. Cok(f) = Coim(g)).
(v) k(g) = ker(c(f))  (ie. Ker(g) = Im(f)).
PROOF. By the duality, we only show (i) < (iii) < (v).
(i) < (iii) follows from Corollary 3.25.
(iii) = (v) follows from Proposition 3.21.
(v) = (iii) follows from Proposition 4.3. n

Let us fix the notation for relative (co-)kernels of a complex.

5.17. DEFINITION. For any complex Ay = (Ay, dy, 0,) in S, we put
( ) [ n( )7 nvCA] _Ker(dna5n+1)
(2) [Q"(As), 4, p] = Cok(di—1,6p-1)-
5.18. REMARK By the universality of Ker(d,, d,+1) and Lemma 3.19, there exist k,, €
SYA,_1,Z"(Ad)), Vn1 € S*(kp o zn,dp—1) and vy 9 € S*(dp—2 © ky, 0) such that
(Unpodp) 0n = (knoCn)- (kn)ul
(dn—Q o Vn,l) : 5n—1 = (Vn,Q o zn) : (Zn)z
% Vn 1ﬂ \
g —dn—2>A,_ 1 —dn- 1= A, — dn —>An+1 n+2

W

On the other hand, by the universality of Ker(d,), we obtain a factorization diagram

0

/Z:ﬂ—><:_\

An 27dn 2>An 1—dn1— A, dn*>An+1 n_|_2
n l/ \ ,H\(; Edn
—n 1 (dn
Ker

which satisfy

(6, 0dn) - 0n = (dyoyoca,) (doy)i
(dn-208,)n1 = (8,1 0 k(dn)) - (k(dn));



COHOMOLOGY THEORY IN 2-CATEGORIES 579

By Proposition 3.20, there exists a factorization of z, through Ker(d,)

Zn(AL) 0

\Cn

Ker(d, {/V

(€, 0dn) - Gn = (24 0¢a,) - (22)]-

AnJrl

which satisfies

Moreover z,, is fully faithful by Proposition 3.33.

By the universality of Ker(d,,), we can show easily the following claim.

5.19. CLAIM. There exists a unique 2-cell ¢, € S(kn 0 zn,d,_1)

Z"(Aa)

0 & ; 0
\/ \ >

An_Z*dn 2>An 1 Cn/ Zn /Cn Anidn%AnJ’_l

O 1// \ \\jdn
0 o 1\ kdn) -

Ker(d,)

such that R
(Cn o k<dn)) : én = (kn Ogn) *Un,1-

This Zn also satisfies
(d -20 Cn) "Yn—1 — (Vn,2 Oén) ' (gn)g

5.20. REMARK. Dually, by the universality of the cokernels, we obtain the following
two factorization diagrams, where g, is fully cofaithful.

ey M\N

dnt1
]_*dn 1914 dn»An+l

A8

Cok(d

n+2
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Q"(A)

_ _ dn+l
ATZ pnx qn Pn n+2

Cok(d,

We define relative 2-cohomology in the following two ways, which will be shown to be
equivalent later.

5.21. DEFINITION.

H{L(A-) = COk<kn>Vn,2>
H}(As) = Ker(ly, tin2)
5.22.  LEMMA. In the factorization diagram (33) in Lemma 5.14, if we take the cokernel
(

of [ and the kernel of g, then there exist w € S'(Cok(f), Ker(g)) and w € S*(c(f) ow o
k(q), k(g) o c(f)) such that

(fow)-(poc(f) -7 = (mrowok(g)) - (wok(g)); (34)
(wog)- (k(g)o®) -2y = (c(f)owoeg) - (c(f)ow)i. (35)
Cok(i) — Ker(9)
) )
0 I /

\

Ker(g) ‘”ﬂ Cok

! \ku (f)/
e Y N 7|

Moreover, for any other factorization (w',w’) with these properties, there exists a unique
2-cell k € S*(w,w') such that (¢(f) o ko k(7)) - w' = w.

ProOOF. Applying Proposition 5.4 to

A= 4
dhey s (36)
Ker(g) — B,
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we obtain w; € S*(Cok(f), Cok(f)) and wy € S*(c(f) 0wy, k(g) o ¢(f)) which satisfy

(fown)-(goc(f) 7= (mpow) - (w)}. (37)
Then (w1 07) - (k(g) 0 P) - g4 € S*(c(f) o w1 07, 0) becomes compatible with 7.

0
Tf

A=+ Ker(g) e Cok(i)wﬂ> C

W

0 (w109)-(k(9)0%)-¢q

By Lemma 3.19, there exists a 2-cell 6 € S(w; 0 g,0) such that

(c(f) 0 8) - e(f); = (wi07) - (k(g) 0P) - &g

So, if we take the cokernels of k(g) and w;, then by Proposition 5.8, we obtain the following
diagram:

Ker(g) o) ? — Coim(g) ——C

Jp Jo
c(f)l = o) = HC\L =
¥

Cok(f) = Cok(f) = Cok(wy) —=C

g

Applying Proposition 5.7 to (36), we obtain
[Cok(w:),z, (2)}] = Cok(0 - Coim(g)).

Thus ¢ is an equivalence. Since j(g) is fully faithful, g' becomes fully faithful. Thus the
following diagram is 2-exact in Cok(f).

Cok(f) “4 Cok(f) L— ¢ (38)
_W
0
So if we factor (38) by w € S'(Cok(f), Ker(7)) and wy € S*(wok(g), w,) as in the diagram

Ker(g 0

/ w\\

Cok(f) o= Colﬁ( f)—=¢C (39)

0
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which satisfies
(woeg) - wi=(wr07) -0,
then w becomes fully cofaithful by Lemma 5.14. If we put w := (c(f) o wa) - wi, then

(w,w) satisfies conditions (34) and (35).
If (w',w') satisfies

(fow) (poc(f) -mp = (mpow ok(g))- (W ok(g)) (40)
(W'og)-(k(g)op) g5 = (e(f) 0w ogg)- (cf) 0w,
then, since both the factorization of k(g) o ¢(f) through Cok(f)

S elf) ow' o k(g) = (g) o clf)
wr 1 oc(f)ow = k(g) oc(f)

are compatible with 7y and (poc(f))-ms by (37) and (40), there exists wh € S*(w'ok(g), w1)
such that -

(c(f)ows) - wy =uw'.

Then we can see w) is compatible with e and . So, comparing this with the factorization
(39), by the universality of Ker(g), we see there exists a unique 2-cell x € S?(w,w’) such
that (ko k(g)) - wy = wy. Then & satisfies (¢(f) ok 0 k(g)) - w’ = w. Uniqueness of such x
follows from the fact that c(f) is cofaithful and k(7) is faithful. "

5.23. PROPOSITION. In Lemma 5.22, w is an equivalence.

PrROOF. We showed Lemma 5.22 by taking the cokernel first and the kernel second, but
we obtain the same (w,w) if we take the kernel first and the cokernel second, because of
the symmetricity of the statement (and the uniqueness of (w,w) up to an equivalence)
of Lemma 5.22. As shown in the proof, since (38) is 2-exact in Cok(f), w becomes fully
cofaithful in the factorization (39). By the above remark, similarly w can be obtained
also by the factorization

Cok(f)

/U\

A—>Keﬁ g) — Ker(9q)

0

where the bottom row is 2-exact in Ker(g). So w becomes fully faithful. Thus, w is fully
cofaithful and fully faithful, i.e. an equivalence. [
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5.24. COROLLARY. For any complex Ay = (An,dy,0,), if we factor it as
HY(A.)  Hi(Ad)

A \
(kn Un, 2) k(en IJ»n 2)
0
0
kn
/ uw\ ﬁ lu\ Joe
An 2TQ>An 1 n+1 oo An+2

i

0
(in the notation of Definition 5.17, Remark 5.18 and Remark 5.20), then there exist
w € SYHP(AL), HY(Ad)) and w € S*(c(kn, vp2) 0w o k(€y, fin2), 2n © qn) such that
(know)  (Vn10Gn)  pn = (T(knvnz) © W O k(ln, fin2)) - (wo k(gnaﬂn,2))3

(c

(w © fn) ) (Zn © /~Ln,1) o = (km Vn,2) cwo 5(€n,un,2)) ) (C(kna Vn,2) © w)ﬁl

H”(A.> % Hp(AL)
\
C(kn VUn, 2) k(e”ﬂ iu’n 2)

w
In
p Un, 2 /\U/V'r\ Hn, 1\U/ :U'n 2
n+1
6"‘{}

n2 EAn 1 dns n+2
TL

0
For any other factorization (w',w'") with these conditions, there exists a unique 2-cell
k € S*(w,w') such that (c(kn,vp2) o ko k(ly, insg)) W = w. Moreover, this w becomes an
equivalence.
PRrOOF. For the factorization diagrams
0

/TW><§“\

A _9 —dn— 2>A _1—dn— 19'14
%\ ﬂay/y
Cok(d

O

n 1*dn lﬁA — dnp —> n+17dn+1 >ATL+2

Ker n+1

n+1
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which satisfy

(dn—2 o 5n—l) Op1 = (7T dp—2 © dn 1) (C_Z )b

(Sn—l od,) 6, = (c(dn-g)o ) n) - c(dn )
(én—i-l © dn+1) ’ 5n+1 = (dn o 8dnJrl) ( n)g

(dn-10 én—l—l) 0n = (0,0 k(dny1)) - k(d n—l—l)

there exists a unique 2-cell §f € S?(d,,_, od,,, 0) such that

((5;2 ° k(dn-l-l)) ) k<dn+1)|} = (;ln—l o ém—l) Op
(c(dn—2) 0 0) - c(dn2); = (bn-10d,)-8

n*

By Proposition 3.20, applying Lemma 5.22 and Proposition 5.23 to the following diagram,
we can obtain Corollary 5.24.

Thus H}'(A.) and HY(A,) are equivalent. We abbreviate this to H™(A,).

5.25. DEFINITION. A complex A, is said to be relatively 2-exact in A, if H"(A.) is
equivalent to zero.

5.26. REMARK. If the complex is bounded, we consider the relative 2-exactness after
adding zeroes as in Remark 5.2. For example, a bounded complex

is relatively 2-exact in B, and this is equivalent to the 2-exactness in B by Remark 3.18.
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6. Long cohomology sequence in a relatively exact 2-category
DIAGRAM LEMMAS (2).

6.1. LEMMA. Let A, be a complex in S, in which A5 =0 and dy =0 :

0 (41)

Then, (41) is relatively 2-ezact in As and Ag if and only if Cok(da,dy) = A4, i.e.
[Qg(A-)a%,Ps] = [A4>d3>53]-

PROOF. As in Remark 5.20, we have two factorization diagrams

(As)

SN / / N

Ay —do — A3 —ds — Ay

ANV

Cok(d,) Cok(ds)

where @, is fully cofaithful. We have

(41) is relatively 2-exact in Ay & Cok(ds, 03) =0
& Cok(ds) =0« Cok(gz0fl3) =0

Prop. 3.20

& Cok(l3) = 0 < {3 is fully cofaithful
Prop. 3.21

and

(41) is relatively 2-exact in Aj & Ker(ls, (£5)5) = 0
& . Ker(¢3) = 0 < /3 is fully faithful.

Rem. 3.1

Thus, (41) is relatively 2-exact in A3 and A4 if and only if ¢ is fully cofaithful and fully
faithful, i.e. £ is an equivalence. [

By Remark 3.18, we have the following corollary:
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6.2. COROLLARY. Let (A,,d,,6,) be a bounded complex in S, as follows:

Then, (42) is relatively 2-evact in Ay and As if and only if Cok(dy) = [As, d3, 63].

6.3. LEMMA. Let A, be a complex. As in Definition 5.17, Remark 5.18 and Remark
5.20, take a factorization diagram

Zn+1
/:.1 I Zn+1c
Vn+1 1 n+1
Un+1 2
n+ \ d i1
I*d" 1‘>A 7‘1" n—i—l—>

s

(Vn+1,1 © dn—i—l) ' 5n+1 n+1 © Cn—l—l) (k’n-‘rl)ﬁl

(k

(dnfl o Vn+1,1) Op = (Vn+1 20 Zn+1) (Zn+1>3
(
(

which satisfies

(dn—l © ,Un,l) 0p = (pno ) ( )3
(:un,l o dn-i-l) : 5n+1 = Gn © Hn, 2) (Qn)

Then, there exist x, € S'(Q"(A,), Z"™(A,)), & € S* (w0 2ni1, bn) and m, € S*(q,
T, kny1) such that

(gn o dnJrl) *Hn2 = (xn © Cn+1> ' (mn)ﬁl
(qn o gn) *Hn1 = (7771 o Zn-‘,—l) *VUn41,1
(dn-10Mn)  Vng12 = (Pnoxy)- (M)? (43)

Moreover, for any other (x! &, n.) with these properties, there erists a unique 2-cell
Kk € S*(zp,x)) such that (ko z,41) - &, =&, and (gn o K) -1, = M-

n

PROOF. By the cofaithfulness of ¢,, we can show , 2 is compatible with d,,1». By the
universality of the relative kernel Z""1(A,), there exist x, € SY(Q"(A,), Z""(A,)) and

&, € S (0 2p41, £y) such that

(gn © dnJrl) “ P2 = (xn © <n+1) ’ (xn)ﬁl
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Then, both the factorizations
Vnt+11 - kn—H 0 Zpt1 =— dn
(Qn o fn) *Hn1 ¢ Gn O Tp O Zpyl — dn

are compatible with ¢,,; and d,41. Thus by the universality of relative kernel Z"*1(A,),
there exists a unique 2-cell n,, € S%(g, 0%, ki 1) such that (¢,0€,) tn1 = (1,92n11) Vaa1.1-
It can be easily seen that 7, also satisfies (43). Uniqueness (up to an equivalence) of
(T, &ny M) follows from the universality of the relative kernel Z"™1(A,) and the uniqueness
of 1. ]

6.4. LEMMA. Consider the following complex diagram in S.
0
m
A=—F—=B—5—C (44)
If (44) is 2-exact in B and g is cofaithful, then we have Cok(f) = [C, g, ¢].
PROOF. If we factor (44) as

C,

then, since (44) is 2-exact in B, § becomes fully faithful. On the other hand, since g is
cofaithful, g is also cofaithful. Thus g becomes an equivalence. [

6.5. LEMMA. Consider the following complex morphism in S.

0

m

AT 4, B,
Nooposl s

Ay By —— Bs 0

dB d 0
0

If the complezes are relatively 2-exact in As, A3 and Bs, B3 respectively, i.e. they satisfy
Cok(d?') = [As, df, 631 and Cok(dP) = [Bs, d¥,6P] (see Corollary 6.2), then the following
diagram obtained by taking the kernel of fo becomes 2-exact in As.

id

0

//7}\

Ker(f2)k(f2)od‘24 3 . fs

(k(f2)0r)- (e py0dB)-(dF)}

By (45)
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PRrROOF. By taking the kernels of id4, and f> in the diagram

di!
Ay — A

id|| Al ifg
Al?BQ

1

and taking the cokernels of Oy 4, and k( f2), we obtain the following diagram by Proposition
5.8, where 0 = k(fy)5 - (df)} "

0 0 Al id Al id Al

oi — j/dff‘ = E'{‘i = ldlB (46)
Ker(fo) 342 c(k(fz)gj,?;ﬁ(h)j(fz) B
f2

By taking the cokernels of Og ker(s,), di and df in (46), we obtain the left of the following
diagrams, while by Proposition 5.13 we obtain the right as a coimage factorization if we

take the cokernels of df', E? and d¥ in (46):

0 f2
/’m /’_\
Ker(fs) ) Ay f2 By fg)b f2§(f24>32
id O dg*l = ldf dg‘l = dQ\L = J/dB

Ker(fQ)k 2 A3 7 Bg A3 T> (fS)

w <(k(f3)) U’“f
0 I3
(k(f2)or)-(ep,0d8)(dF);

On the other hand by Proposition 5.7, if we take the compatible 2-cell v = (k(f2) o k1) -

(i) 0 dy) - (dy )7 € S2(k(fo) 0 dft o c(k(f5)), 0),
0
/m
Ker(fs) H Tt bonn (f2)
id O dé“i = idQ

Ker(fg)k ” As C(k(f)gjoim(fg)

W

0
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then we have Cok(k(fs) o ds') = [Coim(f3),c(k(f3)),v]. It can be easily shown that v is
compatible with sy, and (k(f2) o k) - (g5, o dB) - (dB)}.

@ oim( f3)

(f2) Az prq |3(f3)

odA
(k(f2)or)-(ey0dF): (dzB)g\J*f\’/i Bs

0

Since Cok(k(f2) o df) = [Coim(f3),c(k(fs)),v] and j(f3) is fully faithful by Proposition
4.4, this means (45) is 2-exact in Aj. =

6.6. LEMMA. Consider the following complex morphism in S.

0

dA /ﬂ\52 dA

A1*>A2*>A3
1i/ )\1ﬂ/ f2 Azﬂ/ l/f:s (47)
0—"= B — B2 == By

W

If the complezes are relatively 2-exact in As and By, By respectively, then the following
diagram obtained by taking the kernels

0

/Téz/\

Ker(f) Ti“) Ker(f2) ng Ker(f3) (48)

is 2-exact in Ker(fs).

PROOF. If we decompose (47) into

di't " ) d3
A —Ker(dy) Ker(dy) — A2 —2s A,
fl\L )\IU iiQ and igi/ 1\U/ f2 /\QU \LfB
0
0 B, d?TKer(df) Ker( dB%H 32 e Bs

then by (the dual of) Proposition 5.7, we have Ker(dy) = Ker(f f,). Since APt is an
equivalence by (the dual of) Corollary 6.2, the diagram obtained by taklng the kernels of

fiand f,

Af

dl
Ker(fl) — Ker(iQ)
k| Al |+
Al 7 Ker(d?)

1
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becomes a pullback diagram by (the dual of) Proposition 5.11. Since d‘fT is fully cofaithful,
di'" becomes also fully cofaithful by Proposition 5.12. This means (48) is 2-exact in

Ker(fs). ]

6.7. LEMMA. Consider the following complex morphism in S.

0
m
A, i) A, i) A,
/\1U id Azu \LfB (49)
Ay 5 Ay 5 Bs

0

id

If f5 is faithful and the bottom row is 2-exact in As, then the top row is also 2-exact in

A,.
PROOF. By taking the cokernels of di' and d” in (49), we obtain (by Proposition 5.8)
EA
id XQ\U/ \Lf?)
COk(dIB> ET> Bg.

2

Since Ef is fully faithful, by taking the kernels in this diagram, we obtain the following
diagram.

0 > Ker(fs)
Ty OJ, 3 ik(fg)
4 k(@) o
Ker(dy ) —> Cok(d{') -d5 — A3
oi il X ifs

2

0

In this diagram, we have

—A —A
Ker(dy) = Ker(Ker(d,) — 0) Prop. 5.7 Ker(0 — Ker(fs)) , = ¢

This means that the top row in (49) is 2-exact in As. ]
6.8. COROLLARY. Let
0
P RN YN

Al ?AQ?AS and BlT{B-AQTg>33
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be two complexes, and assume that there exist 1-cells f1, f3 and 2-cells A1, Ao, 0 as in the
following diagram

By dB dg Az
f1 )Q/\Ag/z/)\: f3
A /d{‘?UU %’\B

1 3

where f1 is cofaithful and f3 is faithful. Assume they satisfy
(A1) (\ody) 65 = (freo)- (/1)
(d2) (df oX) 0= (52 o f3)- (fs)k}-
Then, if the diagram

31?142?33
1 2

18 2-exact in Ao, then the diagram

0
/5/;7{\
A17>A27>A3
1 2

s also 2-exact in As.

Proor. This follows if we apply Lemma 6.7 and its dual to the following diagrams:

0 0
314>A24>B3 A14>A24>A3
i N i o fha o dd]] o dd| el \Lfs
A14>A24>B37 A14A>AQT>B3

N 2 Lo

0

By Corollary 6.8, it can be shown that the 2-exactness plus compatibility implies the
relative 2-exactness (see [7] in the case of SCG):

6.9. COROLLARY. Let Ay = (A, dy,0,) be a complex in S. If
m
A 1(14>A TAnJrl

n—1 n

1s 2-exact in A,, then A, is relatively 2-exact in A,.
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PRrOOF. This follows immediately if we apply Corollary 6.8 to the following diagram (see
the proof of Corollary 5.24):
Ker(dn+1)

- 2i \ \+1 l

Cok(d,,— ) Apia
\M/

n+1)

]
CONSTRUCTION OF THE LONG COHOMOLOGY SEQUENCE.
6.10. DEFINITION. A complex in S
0
m
A B C (50)

f g
15 called an extension if it is relatively 2-exact in every 0-cell.

6.11. REMARK. By Corollary 6.2 (and its dual), (50) is an extension if and only if
Ker(g) = [4, f,¢] and Cok(f) = [C, g, ¢].

6.12. DEFINITION. Let (fo, Ae) : Ae — Be and (ge, ke) : Be — Co be complex mor-
phisms and e = {@y : frn 0 gn = 0} be 2-cells. Then,

e N

A. TB. T>C. (51)

15 said to be an extension of complexes if it satisfies the following properties:
(el) For every n, the following complex is an extension:

(€2) o satisfies
()‘n ° gn—i—l) ) (fn © "fn) ) (@n o dg) ’ (dg)k} = (dﬁ © Qon—i-l) ) (dﬁ)ﬁl

Our main theorem is the following:
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6.13. THEOREM. For any extension of complexes in S

0

P RN

AQT)BQT)COJ

we can construct a long 2-exact sequence:

0 0

T
i H"?B,) —~ H"ﬁ(}.) = H™U(A,) —= H™(B,) —= - -

~_ 4+ ~_ ¥

0 0
6.14. CAUTION. This sequence is not necessarily a complex. (See Remark 6.19.)

We prove this theorem in the rest of this section.

6.15. LEMMA. In the notation of Lemma 6.3, we have
(1) Ker(z,) = H"(A,),
(2) Cok(z,) = H"™(A,).

PROOF. We only show (1), since (2) can be shown in the same way. In the notation of
Lemma 6.3 and Remark 5.18, we can show that the factorization

(Q?n O£n+1) ’ gn : (.CL’n Ogn—l—l) © k(dn+l) - gn

is compatible with €4, , and p,, .

Q"(A.) N
\/ﬁnﬁﬁ\ doin
mnoénfl / An+1 An+2

&Ednﬁ—l
0

k(dn+1)
Ker(dn+ 1 )

(@nol,, ) n

So, by Proposition 3.20, Proposition 3.21 and the fact that z,_; is fully faithful, we have
H"(As) = Ker(ly, pin2) = Ker(z, 0 2, ;) = Ker(z,). ]

6.16. LEMMA. For any extension (51) of complexes in S, we can construct a complex

morphism
0

Q" (A,) OTAR Q"(B,) WO7RE Q"(Ce) ——0
w;‘}i ;‘n‘u xfi U,En \L:cg
0 0 Zn+1 (14.)Zn7L (f.)Zn+1(B.)Zn+ (gl)Zn+1(C.>

0



594 HIROYUKI NAKAOKA

where the top line is a complex which is relatively 2-exact in Q™(B,), Q"(C,), and the
bottom line is a complex which is relatively 2-exact in Z" 1 (A,), Z"(B,).

PRrROOF. If we take the relative cokernels Q"(A,), Q"(B.) and Q"(C,) of the complex
diagram

A, MRS
An—2 An—l An An+1
fn—Qi/ An—Q\U/ \Lfn—l \U/An—l l/fn \U/An \Lfn+1
Bn 2 Bn 1 Bn n
— - +1
dy_, 7 7
gn—2i Hn_Q\U, \Lgn—l ‘UN"—l l/gn \U,Hn \Lgn-ﬁ-l
Cho _ C C
", 5¢ Tﬂ bag " dg] i
0

then by (the dual of) Proposition 3.20, Proposition 5.4 and Proposition 5.5, we obtain a
factorization diagram

A
dn s an &

Anfl — An
nll An— 1U Jn| An—1 1U Q"\Sfo) \U/anlﬂ lfnﬂ
B, ——>Q"(Bs) —5— B

Bn—l
5 1 qn | EE
gn—1 i Kn— 1U gnl Kn— 11@ Q" (ge) \U/Enfl,Z \Lgn-kl
Y
Cn—l 4 ] n C Qn Co) T) n+1

and a 2-cell Q"(p.) € S*(Q™(f,) 0 Q™(g),0), which satisfy compatibility conditions in
Proposition 5.4 and Proposition 5.5. It is also easy to see by the universality of the relative
cokernels that

(6 0 M) - iz 0 di) - (Q7(fo) © p1il) - (Q"(f))7 = (it © fura) - (fasa)r-

Now, since

is relatively 2-exact in B,, and C,,, we have Cok(f,) = [Cn, gn, ¥n]. So, from Cok(f,,) =
[Chy Gny n) and Cok(fr,—1) = [Cr—1, Gn—1, ¥n—1], by Proposition 5.10 we obtain

Cok(Q"(fo)) = [Q"(C4), Q™(ga), Q" (06)],

i.e. the complex

0
/’_Z—Tam o
QA g @ (Ba) = Q1(C) —0
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is relatively 2-exact in Q™ (B, ), @"(C,). Dually, we obtain a factorization diagram

dA
Ay TLHZ”H(A.) i>An+1 s Ao
l n41, Q\U/ Z"+1(f-) U/An+1,1 lfn-H \U)\n-kl \Lfn-l»Q
Bl ?ZnH(B-)?BnH
C,

B Bn+2
n+1 | n+1 n+1
Ent1 Q\U/ Z"*l(g.) U,ﬁn-u,l J{gn-kl \U,Nn-!—l J{gn+2
1
> ZnJr (Co) o = LYn+1 Cn+2
kn+1 Zn+1 n+1

such that

(Z;?H ° Ant1) - (An—&—l,l © dfﬂ) : (ZnJrl(fO) © <n+l) ZnH(f )ﬁl
= (C;?-i-l O fnia) - (fn+2)1-

Then, it can be shown that each of the factorizations

Q)&+ QM) ewl ozl = Q" (f) o]
(0 Ataa) - (&1 o fara) - Ancre + xh 0 27N (fo) o2l = Q"(fu) o L]

are compatible with ¢, and (Q"(f.) o p)},) - (Q"(f.))5.

n oB . n( fq # n n 'OE (O™ (fe f

T T

"(fo)ox 7} Bpiy RAL Biia iv“‘oz”“(f- By T Byiyo
\ /y \ / e
ZTL+1 . on( f ogB Zn+1 L

(=} O/\n+1 1) (f';?ofn-ﬁ-l)'xn—lﬁ

So, by the universality of the relative kernel, there exists a unique 2-cell \, € S2(Q™(f.) 0
xB a2 o Z"HL(£,)) such that

(Xnozf—f—l) ’ (xfoﬁ;lrm) (5 Ofn+1) n-12 = Q"(fs) 0 f

This A, also satisfies (g2 o Ay) - (2 o Z"T(f,)) Angre = Quor1028) - (fuon?) (see
Remark 6.17). Similarly, we obtain a 2-cell &,, € S?(Q™(gs) 0 2%, :vf o Z”“(g.)) such that

(Fno2$0y) - (@h 0 Bpiy1) - (€2 0 gni1) - Fn12 = Q"(ge) 0 &5
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In the rest, we show the following:
(Q"(fa) 0 Fn) - (M0 2" (ga) - (w7} 0 2" () - () = (Q" () 0 2f)) - ()7 (52)
We have the following equalities:
(Q(fo) 0 Fn o 2li1) - (Ano 2" (g4) 0 2711)
= (@'(f)°Q"(9.) 0 &) - (Q"(J) o Rty ) - (120 gat)

: ((&?)_1 O frt1© Gnt1) - (xﬁ OAnH,l O Gnt1) - (Iﬁ © Zn+1(f°) oﬁn+1,1>’

(Q"(¢ps) © 355 o Zg—i-l) ( g © zf+1)3 : (-fﬁ © Z;;l+1)ﬁl_1 - ( ﬁ © Z;?H © @;Jlrl)
= (Q"(f) 0 Q" (90) 0 E9) - (Q"(fa) 0 Tyt 10) - (N1 © Gst)
: ((57?)_1 o fn+1 o gn+1)7

(2%1)3’1 = (x;? © Z;?H)ﬁfl ( ﬁ © Zfﬂ o 90;i1> ‘ (xﬁ ON, 4110 Int1)
: (33? ° Zn+1(fo) Oﬁn+1,1) : (xf o Zn“(@-) o ZS—H) : ((xﬁ)ﬁl © Zg+1)-
From these equalities and the faithfulness of z¢ ;, we obtain (52). "

6.17. REMARK. It can be also shown that Xn in the proof of Lemma 6.16 satisfies

(qg1 © }‘Vn) ’ (77;? © Zn+1<f°>> ’ An+1,2 = (Xﬂ—Ll © l’f) ) (f” © nf)

By Lemma 6.15 and Lemma 6.16, Theorem 6.13 is reduced to the following Proposi-
tion:

6.18. PROPOSITION. Consider the following diagram in S, where (A,, dZ,52) is a com-
plex which is relatively 2-exact in Ay and Asz, and (B,,d2,08) is a complex which is
relatively 2-exact in By and Bs.

0
TR TN
A A B0
fll’ AlU Jf/2 U& J/f3
0 By —= B, Bs

DNy
0

Assume fo : Ag — B, is a complex morphism. Then there exist d € S'(Ker(f3), Cok(f1)),
o € 8%(dy 0d,0) and B € S*(d oaf, 0) such that the sequence

0 0

e TN N B

Ker(f1) = Ker(fawowlwok(m (53)

0 0
is 2-exact in Ker(fs), Ker(f3), Cok(f1), Cok(f3).
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6.19. REMARK. This sequence does not necessarily become a complex. Indeed, for
a relatively exact 2-category S, the following are shown to be equivalent by an easy
diagrammatic argument:

(i) Any (53) obtained in Proposition 6.18 becomes a complex.

(ii) For any f € S'(A, B),

0
€
> A——>pB—Cok 4
Ken(f i A B k) (54)
0
is a complex.

(Indeed, if (54) is a complex for each of fi, f and f3, then (53) becomes a complex.)
Thus if S satisfies (ii), then the long cohomology sequence in Theorem 6.13 becomes
a complex. But this assumption is a bit too strong, since it is not satisfied by SCG. This

is pointed out by the referee.

PROOF OF PROPOSITION 6.18. Put Ker(ds o f3) = [K, k, (]. If we take the kernel of the
diagram

0

A —= A, Ay —2 >0

I
OJ« &l dfofs © lfs (55)
Y

where & := (85! o f3) - (f3)}, then by Proposition 5.5 we obtain a diagram

0

/m

Al LK JgKeI‘(fg)
ol k| @l [ (56)

Ly T
0

id

Ay

0

which satisfies

(kyoep,) (k)i = (&0 f3) ¢
(Grodsiofs) & = (kio()- (k)
(k1o&)- (& 0dy)- 63 (az 0 k(f3)) - k(f3)]-

By Lemma 6.6,
0

S e

Ay e K jQKer(fS)
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is 2-exact in K. On the other hand, by (the dual of) Proposition 5.11,

K —"%Ker(fy)
k\L o) |5
A, As

2

is a pullback diagram, and k, becomes cofaithful since df is cofaithful. Thus, we have
Cok(ky) = [Ker(f3), ko, as] by Lemma 6.4. Dually, if we put Cok(f; 0d?) = [Q, g, p], then
we obtain the following diagram

0 Al —— A1 0
f1 J/ O fi Otzl’lB Yo lo
A

0
0 By —af = By —df = Bs

which satisfies

m o= (f)F ' (fiodd™)
p = (from)-(mp 0q)o (@)
idg = mo-(frod? o) (pog)-(g)F
08 = (dfom)-(moq)- (c(fi)oB) - c(f)f.

and we have Ker(g2) = [Cok(f1),q1,B2]. (The “un-duality” in appearance is simply be-
cause of the direction of the 2-cells.) Thus, we obtain complex morphisms:

Al HBl i(>f

Ay Cok(f1)

| |
kll Sl 2L o B \LQI
Y ¥
K*k>A2*f2>BQ—Q»Q
|
kQJ/ foogp 2o g lqa
Y v
Ker f3]2(4> A3 s Bg B3
If we put
¢ == kofiog

ak (10 faoq)-(Mogq)-p
Bo = (ko faony')-(koAy')-¢,
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then, it can be shown that the following diagram is a complex.

0

Ay ——K—>0 B;
1W

Since Cok(k;) = [Ker(f3), k2, as] as already shown, we have a factorization diagram

Ker(f3)
//M | \
QKU’

Bq
\W

which satisfies

(kyodk) -ax = (ago?)- (E)?

@k o) B = (k20Bg)- (k).
Similarly, since Ker(q2) = [Cok(f1), g1, 52], we have a factorization diagram

0

/’£><‘\

%\ﬂﬂ/\ﬂ/

COk fl

which satisfies

(Byow) o = (cof)-(c)
(k1 O@Q) rag = (agoq)- (QI)bI-

299

Then, there exist d € S'(Ker(f3), Cok(f1)), a' € S*(ky o d,c) and 3T € S?*(d o ¢q1,¢) such

that
(kloozT) cQ = (azod)-dg

(B0 g) - B (do ) - dj
(kyo ) -ax = (afoq) -QQ
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(note that Cok(ky) = [Ker(f3), k2, ao] and Ker(gs) = [Cok(f1), g1, F2] (cf. Lemma 6.3)):
Ker(f3)

N\

K ar/ d /ﬁ* Q/ .

Cok(f1)

k1

Ay

Applying (the dual of) Proposition 5.8 to the diagram

Ker(f1) - Ker(f2) % Ker(f3)
k(fl)l M) k(ﬁ) Ao} lk(f:a)
Ay —af 9fL*dé“ - Az
Ol éol) dé‘;fs O ifs
0 By——— B,

id

0

we see that there exist & € S'(Ker(fs), K), & € S2(di o k', k(f1) o k1), & € S*(dy, k' o ky)
and ¢ € S*(K ok, k(f2)) such that

8 = (dito&) - (& oks) - (k(fi)oas) - k(f)]
Ay = (&0k(fs)) (K o&)-(£ody)
(do&)- A = (&ok)-(k(f1)o&).

Similarly, there exist ¢ € S'(Q, Cok(f2)), 1, € S3(q1 0 ¢, d; ), 7 € S2(qz 0 ¢(fs), ¢ o dy)
and 7 € S*(qo ¢, c(f2)) such that

<B

(Baoclfs)) - c(fs)y = (qom)-(nody) B,

(mod)-(c(fi)eom) = (don) N

—B
(nzoc(f3)) - (gom)-(nody) = Xa
If we put
ag = (dy o B1) - (& 00) - (K oK) - (§0 fa0q)- (e, 09) - g,
then it can be shown that ay : c_i’; odo q, = 0 is compatible with ;.

0
/(;ﬂ“\ q2
Ker(f>) @COk(fl) a ﬁfﬁ

0

By
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So by Lemma 3.19, there exists a € S?(dj o d,0) such that

(aoq)- (91)3 = Q.

Dually, if we put
—B _
fo:=(alody) - (com™) - (Byod) - (ko from)- (koms) ki,

then Gy : ke odo 3? = 0 is compatible with ay, and there exists 3 € S?(d o c_lf, 0) such
that
(k20 B) - (k2)} = fo.
0 0
e AN /7}5\:35\ 2
Ker(f1) oy Ker(f2) T Ker(f3) 4 Cok(f1) = Cok(f2) = Cok(f3)
0 0

In the rest, we show that this is 2-exact in Ker(f;), Ker(fs3), Cok(f;), Cok(f2). We show
only the 2-exactness in Ker(f;) and Ker(fs), since the rest can be shown dually. The
2-exactness in Ker( f3) follows immediately from Lemma 6.6. So, we show the 2-exactness
in Ker(f3). Since we have Cok(d{!) = [A3,dy', 65 and Cok(f,0dP) = [Q, g, p], there exists

a factorization (¢, )
0

A — > Ay —5 A2 5
M R =y e (57)

id

Ay

such that
(dif o) (A1oq)-p=(8300) -1}

Applying Lemma 6.5 to diagram (57), we see that the following diagram becomes 2-exact
in AgZ

% (k(f2)om1) (e, °q)-q;
Ay——>0Q (58)

Ker(fg)k(

f2)ods

Then it can be shown that (o 0 qa) - (fa0m5 1) : dff 0ol o gy = fo0d? is compatible with
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54 and (A o dB) - (fodB) - (f1)5. So, comparing the following two factorizations

(w1 OtI2 f20772 D)

L v / K/‘

qug >\2 f3

w / / oo} /

(Arodg)-(f1003) (f1 (Arod3): (f105B) (f1)
we see there exists a unique 2-cell wy € S%(£ o o, f3) such that
(df oma) - Ao = (wioq)- (faomy ).
Then it can be shown that each of the two factorizations

(1) (O‘/TOqQ'QQ:kQOqul:C
(2) (§0f)-(kow): kyok(fs)ol = ko froqg=c

is compatible with as and ag.

ocToql §20f (koww1)
Ker f3 Ker f3
Ay M K qu1 Ay M K k(fs

So there exists a unique 2-cell @z € S?(d o q1, k(f3) o £) such that
(kaows) - (§200) - (kow) = (04T091) '@Q

(recall that Cok(k;) = [Ker(fs), k2, as]). Then we have (w3 o ¢2) - (k(f3) o w2) - €, =
(do ) dj

Ker(fg) - COk(fl)
k(f3 w3U q‘1 \
Y
0 <:A3 Q? 0 (59)
‘ 2
f: w2 2
N\ w? U qv ¥
By =——————= B3

id



COHOMOLOGY THEORY IN 2-CATEGORIES 603

By taking kernels of d, ¢ and idpg, in (59), we obtain the following diagram.

Ker(d) =% Ker( f) —> Cok(f1)
Ml m kg s iql
\

Ker(?) m /4‘3 ¢ Q
Ol Ezﬂ f3 W2ﬂ, l(h
v
0 5 B3 —— B3

Since Ker(0 : Ker(¢) — 0) = Ker(d) by (the dual of) Proposition 5.7, so k(f3) becomes
an equivalence. On the other hand, the following is a complex morphism, where s :=

k(f2) Od?-
0

Ker(fy) = Ker(f3) = Cok(f1)
id| 2l lk(fs) J=s i‘ll (60)
Ker(fz) w— A3 Q

0 (h(f2)om1)(epy00)4)
Thus by taking kernels of d and ¢ in diagram (60), we obtain the following factorization
by (the dual of) Proposition 5.8.

ds

@ P v

Ker(fy) — Ker(d) —> Ker(f3)
id 3| i@ J=s ik(fs)
Ker(f2)w As

ds

s

Since (58) is 2-exact in As, so s becomes fully cofaithful. Since k(f3) is an equivalence,

this means (d3) is fully cofaithful, and

/’La\\
Ker(fs) 7?) Keﬁ(f:%) e Cok(f1)

becomes 2-exact in Ker(f3). =
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