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QUOTIENTS OF UNITAL A, -CATEGORIES

VOLODYMYR LYUBASHENKO AND OLEKSANDR MANZYUK

ABSTRACT. Assuming that B is a full A,-subcategory of a unital A..-category € we
construct the quotient unital A..-category D =‘C/B’. It represents the A¥ -2-functor
A — A% (C,A)mod B, which associates with a given unital A.-category A the A.-cat-
egory of unital A,.-functors € — A, whose restriction to B is contractible. Namely,
there is a unital As-functor e : € — D such that the composition B — € —— D

is contractible, and for an arbitrary unital A..-category A the restriction A,.-functor
(eX1)M : A% (D, A) — A% (C, A)mod 3 is an equivalence.

Let G, be the differential graded category of differential graded k-modules. We prove
that the Yoneda A.-functor Y : A — A% (A°P,C,) is a full embedding for an arbitrary
unital A.-category A. In particular, such A is A.-equivalent to a differential graded
category with the same set of objects.
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Let A be an Abelian category. The question: what is the quotient
{category of complexes in A} /{category of acyclic complexes}?

admits several answers. The first answer — the derived category of A — was given by
Grothendieck and Verdier [Ver77].

The second answer — a differential graded category D — is given by Drinfeld [Dri04].
His article is based on the work of Bondal and Kapranov [BK90] and of Keller [Kel99].
The derived category D(A) can be obtained as H°(DPe'r).

The third answer —an A, -category of bar-construction type — is given by Lyubashenko
and Ovsienko [LO06]. This A,.-category is especially useful when the basic ring k is a
field. It is an A-version of one of the constructions of Drinfeld [Dri04].

The fourth answer — an A.-category freely generated over the category of complexes
in A — is given in this article. It is Ay.-equivalent to the third answer and enjoys a certain
universal property of the quotient. Thus, it passes this universal property also to the
third answer.

1. Introduction

Since A.-algebras were introduced by Stasheff [Sta63, II] there existed a possibility to
consider A..-generalizations of categories. It did not happen until A, -categories were
encountered in studies of mirror symmetry by Fukaya [Fuk93] and Kontsevich [Kon95].
Aso-categories may be viewed as generalizations of differential graded categories for which
the binary composition is associative only up to a homotopy. The possibility to define
A-functors was mentioned by Smirnov [Smi89], who reformulated one of his results in
the language of A.-functors between differential graded categories. The definition of
A-functors between A..-categories was published by Keller [Kel01], who studied their
applications to homological algebra. Homomorphisms of A..-algebras (e.g. [Kad82]) are
particular cases of A.-functors.

Aqo-transformations between A.-functors are certain coderivations. Given two A.-cat-
egories A and B, one can construct a third A..-category A, (A, B), whose objects are
Ao-functors f : A — B, and morphisms are A, -transformations (Fukaya [Fuk02], Kon-
tsevich and Soibelman [KS06, KS07], Lefevre-Hasegawa [LHO03|, as well as [Lyu03]). For
an A..-category C there is a homotopy invariant notion of unit elements (identity mor-
phisms) [Lyu03]. They are cycles xi§ € sC(X,X) of degree —1 such that the maps
(1®i§)ba, —(iS @1)by : sC(X,Y) — sC(X,Y) are homotopic to the identity map. This al-
lows us to define the 2-category A%, whose objects are unital A..-categories (those which
have units), 1-morphisms are unital A.-functors (their first components preserve the units
up to a boundary) and 2-morphisms are equivalence classes of natural A..-transforma-
tions [Lyu03]. We continue to study this 2-category. Notations and terminology follow
[Lyu03], complemented by [LO06] and [L.MO6].

Unital A..-categories and unital A..-functors can be considered as strong homotopy
generalizations of differential graded categories and functors. Let us illustrate the notion
of A-transformations in a familiar context.
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1.1. DIFFERENTIAL FOR AOO—TRANSFORMATIONS COMPARED WITH THE HOCHSCHILD
DIFFERENTIAL. Let A, B be ordinary k-linear categories. We consider A(_,_) and B(-, -)
as complexes of k-modules concentrated in degree 0. This turns A and B into differential
graded categories and, thereby, into unital A, -categories. An A.-functor between A
and B is necessarily strict, for (sA)®* = A®F[k] and sB = B[] are concentrated in
different degrees if & > 1. Thus, a unital A,-functor f : A — B is the same as an
ordinary k-linear functor f. Let f,g : A — B be k-linear functors. All complexes
C((sA)®H(X,Y),sB(X f,Yg)) are concentrated in degree k — 1. Their direct product

U= J[ Gl(sA)®(X,Y),sB(Xf,Yg))
X,YeOb A

is the same, whether taken in the category of k-modules or graded k-modules or com-
plexes of k-modules. It is the module of k-th components of A.-transformations. The
graded k-module of A-transformations sA. (A, B)(f, g) is isomorphic to the direct prod-
uct [[r—, Vs taken in the category of graded k-modules [Lyu03, Section 2.7]. That is,
[SA (A, B)(f, 9)]" = T1i— U}, where U7 is the degree n part of ¥,. Therefore, in our case
it simply coincides with the graded k-module W[1] : Z > n +— ¥, ; € k-mod. The graded
k-module sA. (A, B)(f,g) is equipped with the differential By, rB; = rb®? — (=)"br
[Lyu03, Proposition 5.1]. Since the only non-vanishing component of b (resp. f) is by
(resp. f1), the explicit formula for components of r By is the following:

(rBi)ki = (i@ reby+ (e ® gi)bo — (=) Y (1% @by @ 1)
atc=k—1

Recalling that degr, = k — 1, we get the differential in W[1] also denoted Bj:

T'kBl = (f1 (29 T'k)bg + (Tk & gl)bg + (—)k Z (1®a X bQ & 1®C)7°k,
at+c=k—1

where r, € Uy, rp, By € V1. We consider an isomorphism of graded k-modules ¥ — ¥’ :
Z > k — W, given by

Voo (5@ @8)rs ' = sl e U, & H C(A®(X,Y), B(Xf,Yg)).
X,Y€Ob A

Its inverse is W}, 3 t; — (s¥%)7 s € ¥y, This isomorphism induces the differential
d: W, — W, ted = s [(s¥F) " Mys] By - s
The explicit formula for d is

tkd = (f ® tk)mQ + Z (_1)a+1(1®a ® mo ® 1®C)tk + (—1)k+1(tk ® g)mg.
a+c=k—1
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Up to an overall sign this coincides with the differential in the Hochschild cochain com-
plex C*(A, yB,) (cf. [Mac63, Section X.3]). The A-bimodule ;B acquires its left A-mod-
ule structure via f and its right A-module structure via g. Therefore, in our situa-
tion A.-transformations are nothing else but Hochschild cochains. Natural A, -trans-
formations r : f — g : A — B (such that degr = —1 and rB; = 0) are iden-
tified with the Hochschild cocycles of degree 0, that is, with natural transformations
t=rs':f—g: A — B in the ordinary sense.

When A, B are differential graded categories and f, g : A — B are differential graded
functors, we may still interpret the complex (sA (A, B)(f,g), B1) as the complex of
Hochschild cochains C*(A, ;B,) for the differential graded category A and the differen-
tial graded bimodule ;B,. Indeed, for a homogeneous element r € sAy (A, B)(f,g) the
components of rB; are

(rBi)k = rib1 + (fr @ ri—1)ba + (16—1 @ g1)bo
_ (_)T Z (1®a ® bl ® 1®C),r.k o (_)r Z (1®a ® b2 ® 1®C)Tk—1‘

a+1+4c=k a+2+c=k

For A..-functors between differential graded categories or A.,-categories the differential
By is not interpreted as Hochschild differential any more. But we may view the complex
of A,-transformations as a generalization of the Hochschild cochain complex.

1.2.  MAIN RESULT. By Definition 6.4 of [LO06] an A,-functor g : B — A from a
unital A.-category B is contractible if for all objects X, Y of B the chain map g¢; :
sB(X,Y) — sA(Xg,Yg) is null-homotopic. If g : B — A is a unital A.-functor, then
it is contractible if and only if for any X € ObB and any V € ObA the complexes
sA(Xg,V) and sA(V, Xg) are contractible. Equivalently, gi* =0:9g — g: B — A
[LO06, Proposition 6.1(C5)]. Other equivalent conditions are listed in Propositions 6.1-
6.3 of [LOO06].

Let B be a full A,-subcategory of a unital A,-category C. Let A be an arbitrary
unital A,-category. Denote by AY (C, A)meas the full A,-subcategory of A% (C,A),
whose objects are unital A,-functors € — A, whose restriction to B is contractible. We
allow consideration of A.-categories with the empty set of objects.

1.3. MAIN THEOREM. In the above assumptions there exists a unital A.-category D =
q(C|B) and a unital As-functor e : € — D such that

1) the composition B —— C —° D is contractible;

2) the strict Ao -functor given by composition with e
(eX1)M : AL (D, A) — AL (C, A)moa B, fref,

is an As-equivalence for an arbitrary unital A.-category A.
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PROOF. Let us prove the statement first in a particular case, for a full subcategory 1 B
of a strictly unital A.-category C. Then the representing A, -category D = (G\B)
is constructed in Section 5.2 as an A..-category, freely generated over € by application
of contracting homotopies H to morphisms, whose source or target is in B. The strict
As-functor € : € — D is identity on objects and €; is an embedding. Theorem 6.5
asserts umtahty of D = Q(C|B). By construction, the A-functor € : € — D is unital
and B —— € — D is contractible. By Theorem 5.13 the restriction strict A.-functor
restr : A% (D, A) — A% (C,A)moas is an A,-equivalence. Thus, D and ¢ : € — D
represent the A% -2-functor A — A% (E,A)mo 45 in the sense of 1), 2), as claimed.

Let now B be a full A, -subcategory of a unital A-category C. There exists a differ-
ential graded category € with Ob € = Ob €, and quasi-inverse to each other A-functors
Y :€C— € ¥:C — Csuch that ObY = ObV¥ = idgpe (by Remark A.9 this fol-
lows from the A, -version of Yoneda Lemma — Theorem A.7). Let B C € be the full

differential graded subcategory with ObB = Ob B. By the previous case there is a uni-
tal A.-category D and a unital A-functor e : € — D representing the AY -2-functor

A— A% (C,A)_ .5 in the sense of 1), 2). By considerations in Appendix B (Corollaries
B.10, B.11) the pair (D,e = (C RN CRELER D)) represents A% (C, A)moas. Indeed,

(Y&l

(e®R1)M = (A% (D, A) EY 4v @ 4) = T A (@A) p0as)

is a composition of two A, -equivalences. [

Notation for our quotient constructions is the following. The construction of Sec-
tion 5.2 is denoted Q(-|-). When it is combined with the Yoneda A.-equivalence of
Remark A.9 we denote it q(-|-).

The 2-category A% = H°A“ has unital A.-categories as objects, unital A,-functors
as 1-morphisms and equivalence classes of natural A.-transformations as 2-morphisms
[Lyu03]. Thus, A% (€, A)(f, g) = [HOA% (€, A))(f. g) = H(AL (€, A)(f, g), my).

A zero object of a category € is an object Z, which is simultaneously initial and
terminal. For a linear (Ab-enriched, not necessarily additive) category &€ this can be
formulated as follows: &(Z,X) = 0 and €(X,Z) = 0 for any object X of €. This
condition is equivalent to the equation 1, =0 € £(Z, 7).

1.4. COROLLARY. The unital As-functor e : € — D from the main theorem has the
following property: composition with e in the sequence of functors

AL(D,A) —— AL (€, A) — AL (B, A)
is an equivalence of the category A (D, A) with the full subcategory
Ker(A%, (€, A) — A% (B, A)) = H(AL(C, A)moa s, m1) C AL (C, A),

consisting of unital A -functors f : C — A such that the restriction f}g B —Aisa
zero object of A% (B, A).
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PROOF. A unital Ax-functor g : B — A is contractible if and only if gi*=0:9 —g:
B — A, thatis, 1, =0 € A&;(B,A)(g, g). Thus, for unital g contractibility is equivalent
to g being a zero object of A% (B, A). "

The main theorem asserts that the chain map e. = s(eX1) My s~ : A% (D, A)(f,g) —
At (C,A)(ef,eg) is a homotopy isomorphism, while Corollary 1.4 claims only that it
induces isomorphism in 0-th homology.

1.5. UNIQUENESS OF THE REPRESENTING A,-CATEGORY. With each strict A% -2-
functor F : A% — AY is associated an ordinary strict 2-functor F' : A% — Av FA = FA
[LMO06, Section 3.2]. With a strict A% -2-transformation A = (\4) : F' — G : A% — A%
is associated an ordinary strict 2-transformation A\ = (A4) : F — G : AY, — A% in
cohomology [ibid]. Assume that A is a natural A% -2-equivalence. Since A4 : FA — GA
are As-equivalences, the 1-morphisms A, : FA — GA are equivalences in the 2-category
Au_. Composing A with the 0-th cohomology 2-functor H® : A% — Cat, we get a 2-natural
equivalence H\ : H'F — H°G : A“ — Cat, which consists of equivalences of ordinary
categories H%(\4) : H'(FA) — H°(GA). In particular, if F = A" (D, ) for some unital
Aso-category D, then
H'F = H Av (D, ) = Av (D, ).

Indeed, both the categories H’Av (D, A) and A% (D, A) have unital A-functors D — A
as objects and equivalence classes of natural A, -transformations as morphisms. If X :
A (D,.) - G: AL — A% is a natural A% -2-equivalence (G is unitally representable by
D), then HO(\4) : Av (D, A) — H°(GA) : A% — Cat is a 2-natural equivalence. Thus,
HOG is represented by D in the 2-category sense and D is unique up to an equivalence
by Section C.18.

In particular, if G = A% (C, _)moda s, then with each object e of GD = A% (C,D)moas
is associated a strict A% -2-transformation

A= (eX1)M : A% (D, A) — A% (C, A)moas : As — AL.

We have identified H°G(A) with Ker(A% (C,A) — A% (B, A)) in Corollary 1.4. The
strict 2-natural equivalence H°\ : H'F — H°G : A% — Cat identifies with the strict
2-transformation

HG\De . Au (D, ) — H°G : AL — Cat
from Proposition C.12, since
eX1)M _ e o= .
(f:D—A) I—>( ) ef (6)(HOG(f)) def, (f)H G\D ’
(r:f—9g:D—A) ,@% er — (6)([‘]0@(7“)) def, (T)Hoé)\ﬂe‘

Therefore, the pair (D, e) represents the strict 2-functor H'G : A% — Cat in the sense of
Definition C.17.
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1.6. COROLLARY. The pair (D,e : € — D) is unique up to an equivalence, that is, for
any other quotient (D’ e’ : € — D') there exists an Ax-equivalence ¢ : D — D' such that
e¢ is isomorphic to €.

The proof immediately follows from results of Section C.18.

The unital A,-category D obtained in the main theorem can be replaced with a
differential graded category by the A,.-version of Yoneda Lemma (Theorem A.7). We may
restrict Corollary 1.4 to differential graded categories B, €, A for the same reason. Then
it becomes parallel to the second half of main Theorem 1.6.2 of Drinfeld’s work [Dri04],
which asserts exactness of the sequence of categories

T(D,A) — T(C,A) — T(B,A)

in the same sense as in Corollary 1.4. Here T is a certain 2-category whose objects are
differential graded categories. It is not known in general whether categories T'(C,A) and
Au (G, A) are equivalent. If k is a field, then, as B. Keller explained to us, equivalence
of A% (€, A) and T(€,A) can be deduced from results of Lefévre-Hasegawa [LHO03, Sec-
tion 8.2].

1.7. BASIC PROPERTIES OF THE MAIN CONSTRUCTION. The proof of universality of
D = Q(C|B) is based on the fact that D is relatively free over €, that is, it admits a
filtration

C=DyCcH D CcQHTDyCcQC---CD

by A-subcategories D; and differential graded subquivers Q;, such that the graded
subquiver D; C Q,4; has a direct complement N;; (a graded subquiver of Q;;), and such
that D, is generated by N;;; over D;. The precise conditions are given in Definition 5.1
(see also Proposition 2.2). This filtration allows to write down a sequence of restriction
A -functors

Ago(ea-/q)modﬁ D Afoul('Do, Ql;ﬂ) A Albou('DhA)
—— AV (D, Qg A) —— AYY(Dy, A) e AV (Dy, Q53 A) —— ... (41)
and to prove that each of these A.-functors is an equivalence, surjective on objects

(Theorem 4.7, Propositions 5.7, 5.10). The category Ai“l(ﬁj, Q;41;A) is defined via pull-
back square (14)

Afoul(®j7 Qj+1; A) - Al(QjJrla A)
7
ALY(Dy, A) —— Ay(Dy, A)

The A.-categories D; are not unital, but only pseudounital — there are distinguished
cycles i € (sD;)7', which are not unit elements of D; if 5 > 0. The index vu in
A% indicates that we consider pseudounital A.-functors — a generalization of unital
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ones (Definition 4.1). Their first components preserve the distinguished cycles up to a
boundary. The A..-equivalence A¥*(D, A) — A" (C,A)meas is the limit case of (41)
(Theorem 5.13).

The proof of unitality of D = Q(C|B) for strictly unital € is based on the study of
the multicategory of A.-operations and contracting homotopies operating in D (Theo-
rem 6.5).

1.8.  DESCRIPTION OF VARIOUS RESULTS. The proof of Theorem 4.7 is based on de-
scription of chain maps P — sA.(FQ,A)(¢,1) to the complex of (¢,1))-coderivations
(Proposition 2.7), where FQ is the free A, -category, generated by a differential graded
quiver Q. A similar result for the quotient FQ/s'I over an A..-ideal I is given in Propo-
sition 2.10. Of course, any A.-category is a quotient of a free one (Proposition 3.2). We
also describe homotopies between chain maps P — sA..(FQ, A)(¢, 1) (Corollary 2.8),
and generalize the result to quotients FQ/s~'I (Corollary 2.11).

In Section 8 we consider the example of differential graded category € = C(A) of
complexes in a k-linear Abelian category A, and the full subcategory B C € of acyclic
complexes. The functor H% factors through a functor g : D(A) — H°(Q(C|B)) by
Corollary 8.2. It is an equivalence, when k is a field.

In Appendix A we define, following Fukaya [Fuk02, Lemma 9.8|, the Yoneda A.-func-
tor Y : A® — A (A, Cy), where C, is the differential graded category of complexes of
k-modules. We prove for an arbitrary unital A,-category A that the Yoneda A, -func-
tor Y is an equivalence of A°P with its image — full differential graded subcategory of
A(A, C) (Theorem A.7). This is already proven by Fukaya in the case of strictly uni-
tal Ay-category A [Fuk02, Theorem 9.1]. As a corollary we deduce that any % -small
unital A,.-category A is A,.-equivalent to a % -small differential graded category (Corol-
lary A.8).

In Appendix C we lift the classical Yoneda Lemma one dimension up — to strict
2-categories, weak 2-functors and weak 2-transformations. In the completely strict set-up
such lifting can be obtained via enriched category theory, namely, that of Cat-categories,
see Street and Walters [SW78], Kelly [Kel82]. The present weak generalization admits a
direct proof.

An important result from another paper is recalled in simplified form, in which it is
used in the present paper:

1.9. COROLLARY. [to Theorem 8.8 [Lyu03]] Let C be an A-category and let B be a
unital As-category. Let ¢ : C — B be an A -functor such that for all objects X, Y
of € the chain map ¢1 : (sC(X,Y),b1) — (sB(X¢,Y),b1) is homotopy invertible. If
Ob¢ : ObC — Ob B is surjective, then C is unital and ¢ is an A -equivalence.

PRrROOF. Let h: ObB — Ob € be an arbitrary mapping such that h - Ob ¢ = idop . The
remaining data required in Theorem 8.8 of [Lyu03] can be chosen as yrg = ypy = Uigf :
k — (sB)~Y(U,U) for all objects U of B. We conclude by this theorem that there exists
an A, -functor ¢ : B — € with Ob = h, quasi-inverse to ¢. ]
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Logical dependence of sections is the following. Appendices A and C do not depend on
other sections. Appendix B depends on Appendix A. Sections 2-8 depend on appendices
and on sections with smaller number. Dependence on the first section means dependence
on Corollary 1.9 and on overall notations and conventions. Being a summary, the first
section depends on all the rest of the article.

1.10. CONVENTIONS AND PRELIMINARIES. We keep the notations and conventions of
[Lyu03, LO06, LMO06], sometimes without explicit mentioning. Some of the conventions
are recalled here.

We assume that most quivers, A.-categories, etc. are small with respect to some
universe 7. It means that the set of objects and the set of morphisms are %/ -small,
that is, isomorphic as sets to an element of % [GV73, Section 1.0]. The universe % is
supposed to be an element of a universe %', which in its turn is an element of a universe
", and so on. All sets are supposed to be in bijection with some elements of some of the
universes. Some differential graded categories in this paper will be %’-small % -categories.
A category C is a % -category if all its sets of morphisms C(X,Y) are % -small [GV73,
Definition 1.1].

The % -small ground ring k is a unital associative commutative ring. A k-module
means a 7% -small k-module.

We use the right operators: the composition of two maps (or morphisms) f: X — Y
and g : Y — Zisdenoted fg: X — Z; amap is written on elements as f : x +— xf = (x)f.
However, these conventions are not used systematically, and f(x) might be used instead.

The set of non-negative integers is denoted N = Z,.

We consider only such A.-categories C that the differential b : T'sC — T'sC vanishes
on TYsC, that is, by = 0. We consider only those A.-functors f : A — B, whose 0-th
component f, vanishes.

1.11. ACKNOWLEDGEMENTS. We are grateful to all the participants of the A..-category
seminar at the Institute of Mathematics, Kyiv, for attention and fruitful discussions,
especially to Yu. Bespalov and S. Ovsienko. We thank all the staff of Max-Planck-Institut
fiir Mathematik in Bonn for warm hospitality and support of this research. The main
results of this article were obtained during the stage of the first author in MPIM, and
a short term visit to MPIM of the second author. We are indebted to M. Jibladze for
a valuable advice to look for an operadic approach to the quotient category. We thank

B. Keller for the explanation of some results obtained by K. Lefévre-Hasegawa in his
Ph.D. thesis.

2. Quotients of free A,-categories

2.1. DEFINITION. Let C be an As-category, and let I C sC be a graded subquiver with
ObI = ObC. The subquiver I is called an Ay -ideal of € if

Im (bas145 ¢ (s€)%* @1 ® (s€)®F — s€) C I
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for all o, B > 0.

If I C sCis an Ay -ideal of an A, -category €, then the quotient graded quiver
&=0C/s ' TwithOb& =0beC, &(X,Y) =C(X,Y)/s ' I(X,Y) has a unique A..-category
structure such that the natural projection m : s€ — s€ = sC/I determines a strict
Ago-functor 7 : € — €. Multiplications b¢ in € are well-defined for & > 1 by the equation

c
[(sC)®* e T s€/I]
&
- [(8@)®k b (s@)®k / Y (€)% @I ® (€)% ~ (se/1)F se/f].
a+1+0=k

Let Q be a differential graded k-quiver. There is a free A,.-category FQ, generated by
Q [LMO06, Section 2.1]. Let R C sFQ be a graded subquiver. Denote by I = (R) C sFQ
the graded subquiver spanned by multiplying elements of R with some elements of sFQ
via several operations b7%, k > 1. It can be described as follows. Let t € J4, be a plane
rooted tree with i(¢) = n input leaves. Each decomposition

(1<) = (1% Uty U191 - (192 U g, U 19%) -ty (1)

of t into the product of elementary forests gives a linear ordering < of t. Here a1 +k1+ 0, =
n and N = |¢| is the number of internal vertices of t. An operation

1921 ®bhT 2 @195 1822 ®b72 @186 b7 2
b, = (sFQ5" 1 sFQEmtIth : Y, sFQ)  (2)

is associated with the linearly ordered tree (¢, <). Different choices of the ordering of ¢
change only the sign of the above map. In particular, one may consider the canonical linear
ordering t. of t [LMO06, Section 1.7] and the corresponding map bi 2. So the subquiver
I C sF9Q is defined as

I=(R)= Z Im(b]? : sQ%* ® R ® Q% — sFQ),

tegyite
where the summation goes over all o, 3 € Z>y and all trees with o + 1 + 3 input leaves.

2.2. PROPOSITION. Let R C sFQ be a graded subquiver such that Rby? C (R) = I.
Then IbJ2 C I, I is an As-ideal of FQ, and & = FQ/s7 11 is an A -category.

PROOF. Clearly, I is closed under multiplications by, k& > 1, with elements of sFQ.
Let us prove that for all ¢ € T,

Im(bj : sQ%* ® R® sQ%7 — sFQ)by° C I (3)

using induction on [¢|. This holds for |t| = 0, ¢ = | by assumption. Let [t| = N > 0
and assume that (3) holds for all ¢ € T5o with |[¢/| < N. The tree t can be presented as
t=(t; U+ Utg)t for some k> 1. We have b2 = £(bJ° @ - @ b7 2)bi°, |t;] < N and
a+c>0
T == Y (1P @i @19,
a+q+c=k
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One of the a + 1 + ¢ factors of
(sQ** ® R® sQ®”) (b @ -+ @ b 7) (17" @ b]? © 1%°) (4)
is contained in I (for ¢ = 1 this is the induction assumption). Hence,

(sQ**® R@ sQ®?) (b @ -+ @ b, ) (1% @ b) % @ 19°)b3 3y . C 1,
and the inclusion 772 C I follows by induction.
Therefore, I is stable under all b2, k > 1, so it is an A.-ideal, and & = FQ/s7' is

an As.-category. [

2.3. AL -FUNCTORS FROM A QUOTIENT OF A FREE A, -CATEGORY. The following
statement is Proposition 2.3 from [LMOG6].

2.4. PROPOSITION. Let Q be a differential graded quiver, and let A be an A..-category.
Aso-functors f : FQ — A are in bijection with sequences (f1, fx)k>1, where f| : sQ —
(sA,by) is a chain morphism of differential graded quivers with the underlying mapping
of objects Ob f : ObQ — Ob A and f; : T"sFQ — sA are k-quiver morphisms of degree
0 with the same underlying map Ob f for all k > 1. The morphisms f; are components
of f for k> 1. The component f; : sFQ — sA is an extension of fi.

In fact, it is shown in [LMO06, Proposition 2.3] that such a sequence (f], fx)r>1 extends
to a sequence of components of an A-functor (fi, fx)r>1 in a unique way.

We are going to extend this description to quotients of free A.-categories. Let a
graded subquiver R C sFQ satisfy the assumption Rb7°? C (R) = I. Denote by 7 :
FQ —> & = FQ/s'I the natural projection strict A,-functor.

2.5.  PROPOSITION. An Ay -functor f : FQ — A factorizes as f = (?Q e L. A)

for some (unique) Aoo-functor f:& = A if and only if the following two conditions are
satisfied:

1. Rfl = 0,’
2. (sFQ®* @ I ® sFQ®P) foi115 =0 for all o, B € Zxg such that o+ 3 > 0.

PROOF. If f = f, then f; = ¥ fi and the above conditions are necessary.
Assume that the both conditions are satisfied. Let us prove that If; = 0. We are
going to prove that for all £ € T

b72 :
(5% @ R® sQ%° —=» 550 s 54) =0 (5)

by induction on [¢|. This holds for [t| = 0, ¢ = | by assumption. Let |[¢{| = N > 0 and
assume that (5) holds for all ¢ € T>o with |t/| < N. The tree ¢t can be presented as
t=(t; U+ Utg)t for some k > 1. We have b2 = £(bJ° @ - @ b7 2)bi°, |t;] < N and

k

a+c>0

b = Z (fi, @ - @ fi, )bt — Z (1% @ b)° © 1%°) fas14e- (6)

i1+ =k a+q+c=n
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One of the a 4 1 + ¢ factors of (4) is contained in I and also one of the [ factors of
(s9° ® R®sQ*) (b} @ @ b)) (fi, @ -+ @ fi)

is contained in / (for i; = 1 this is the induction assumption). Hence, the right hand side
of (6) is contained in I, and I f; C I follows by induction. Therefore,

(sFQ¥* ® I ® sFQ®P) f C Z (sFQ¥* @ I @ sFQ¥7)(fi, @ -+ ® fi,) =0

i1+ +i=a+1+8

for all o, 3 > 0. Clearly, f factorizes as f = 7. [

2.6. TRANSFORMATIONS FROM A FREE A,-CATEGORY. The following statement is
Proposition 2.8 from [LMOG6].

2.7. PROPOSITION. Let ¢, : FQ — A be As-functors. For an arbitrary complex P of
k-modules chain maps u: P — sAx(FQ, A) (¢, 1)) are in bijection with the following data:
(v, ug)k>1

1. a chain map v’ : P — sA1(Q, A)(¢, ),

2. k-linear maps

up: P— [ C((sFQ(X,Y), sA(X o, V1))

X,Y€ObQ
of degree 0 for all k > 1.
The bijection maps u to ux = u - pry,
u restrgy restr
u = (P —— $AL(FQ,A) (9, ) —> sA1(FQ, A) (o, ¥) i sA1(Q,A) (o, w)) (7)

The inverse bijection can be recovered from the recurrent formula

a,B
(_)png(pul) = _(pd)uk + Z (¢aa & buq & ¢cﬁ)b£+1+ﬁ
a+q+c=k
a+B>0
— (=P ) (1% @b ®1%) (pua1ip) : (sFQF — sA, (8)
atq+p=k

where k > 1, p € P, and ¢ua, Vep are matriz elements of ¢, 1.
The following statement is Corollary 2.10 from [LMO06].
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2.8. COROLLARY. Let ¢, 1) : FQ — A be A -functors. Let P be a complex of k-modules.
Let w: P — sAx(FQ,A)(p,v) be a chain map. The set (possibly empty) of homotopies
h:P — sAx(FQ,A)(¢,¢), degh = —1, such that w = dh + hBy is in bijection with the
set of data (W', hy)g>1, consisting of
1. a homotopy ' : P — sA1(Q,A)(o,0), degh’ = —1, such that dh' + W'B; = W/,
where
restr )

w = (P " sAx(FQA)(6,1) "5 sA(FQA) (6, 1) " 5A1(Q,A) (6, )

2. k-linear maps

hi:P— [ G(sFQTX,Y),sA(Xe, V1))

X,Y€eObQ
of degree —1 for all k > 1.

The bijection maps h to hy, = h - pry,

o= (P — sA0(FQA) (6, 1) 5 s A1 (FQ,A) (6, 1) = 541(Q,4)(6,1)).  (9)
The inverse bijection can be recovered from the recurrent formula

a,B
(=)"br(ph1) = pwp — (pd)hr — Y (bua @ phy @ Yep)basivs

a+q+c=k
a+c>0

— (=) Z (197 ® by @ 199)(phasise) : (sFQ®F — sA, (10)
a+q+c=k

where k > 1, p € P, and ¢ua, Vep are matriz elements of ¢, 1.

2.9. TRANSFORMATIONS FROM A QUOTIENT OF A FREE A.-CATEGORY. We are go-
ing to extend the above description to quotients of free A.,-categories. Assume that
a graded subquiver R C sFQ satisfies Rby? C (R) = I. Let A be an A.-category.
Composition with the projection A,-functor 7 : FQ — & = FQ/s7 T gives a strict
As-functor L™ = (m W 1)M : Ao(E,A) — A(FQ,A). It is injective on objects
and morphisms, that is, both maps ObL™ : ¢ +— w¢ and LT : sA(E, A)(o,0) —
$A(FQ, A)(mp, 1)), r — mr are injective. We are going to characterize the subcom-
plex sAx(E,A)(p, 1) —— sAL(FQ, A)(me, ).

2.10. PROPOSITION. Let P be a complex of k-modules, and letu : P — sA(FQ, A) (7o, m1))
be a chain map. Denote
up=u-pry: P— ] C((sFQ™(X,Y), sA(X¢,YV)), k> 0.
X,Y€0bQ

Then the image of u is contained in the subcomplex sA.(E, A)(p,1) if and only if the
following two conditions are satisfied:
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1. R(puy) =Im(puy : R(X,Y) — sA(Xo,Y)) =0 for allp € P;

2. (8FQ%® I ® sFQ®8)(puy) =0 for allp € P and all o, B > 0 such that a+ 1+ 3 =
k> 1.

PRrooF. The conditions are obviously necessary. Let us prove that they are sufficient.
First of all, we are going to show that I(pu;) = 0. Namely, we claim that

(s9%* @ R ® sQ¥°)b]°(puy) = 0 (11)

for all trees t € T;;rlw. We prove it by induction on [¢[. For [¢| = 0, ¢ = | this holds by
assumption 1. Let t € Ty be a tree with || = N > 0 internal vertices. Assume that (11)
holds for all ¢ € T5o with |#/| < N. The tree ¢ can be presented as t = (¢; LI - - - Utg)t for
some k> 1,50 b2 = +(b/? @ --- @ b7 )79, and |t;| < N. Formula (8) in the form

m,n

() = ~(pd)ui + > (5 G © g © TV
a+q+c=k
a+c>0
— (=) Z (1" @ be @ 199 (pgsire) - sF,A® -+ @ 8F,Q — sA  (12)
a+q+c=k

implies that

(sQ%°*® R® SQ®’6)biQ(pu1) = (59" @ R®@sQ®*) (/@ - @ big)bgg(pul)
C (sFQ¥7 ® I ® sFQ¥)[(pd)uy]
+ Z(SQ®“ ® R® Q) (b0 @ -+ @ b)) (77 Gam @ puiq @ T Wen )V 140
+ Z (sFQ* @ I ® sFQ®M) (purs14p) = 0.

A+u>0

Indeed, summands with ¢ = 0 vanish due to Im; = 0, summands with ¢ = 1 vanish due
to induction assumption (11), and other summands vanish due to condition 2.
Thus condition 2 holds not only for £ > 1 but for k =1 as well. At last

m,n

(sFQ%® 1 ®sFQ%)(pu) C Z (sFQ% R I ®5FQ%) (TP am @ Ptiq DT en) = 0,

a+q+c=a+1+4

and the proof is finished. [

Let us extend the description of homotopies between chain maps to the case of quotient
of a free A,.-category. We keep the assumptions of Section 2.9.
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2.11. COROLLARY. Let P be a complex of k-modules, and let v: P — sA(E, A)(p, 1)
be a chain map. Denote

w= (P —25 5Au(&,A)(, 1)) —— 54 (FQ, A) (7, T1))).

Let h: P — sA(FQ,A)(np, 1)) be a homotopy, degh = —1, w = dh + hBy. Then the
image of h is contained in the subcomplexr sA.(E, A)(o, ) if and only if it factorizes as

h= (P —"5 sAx(E,A) (¢, V) — sA(FQ,A) (g, T0))),
where degn = —1, v = dn+nBy, orif and only if the following two conditions are satisfied:
1. R(phy) =Im(phy : R(X,Y) — sA(X¢,Y)) =0 for allp € P;

2. (sFQ%® I ® sFQ®8)(phy) =0 for allp € P and all o, 3 > 0 such that o+ 1+ 3 =
E>1.

PROOF. Given pair (w, h) defines a chain map w : Cone(idp) — sA(FQ, A)(wo, 1)),
(¢,ps) — qw + ph, such that

w= (P ML pg P[1] = Cone(idp) -, sAx(FQ, A)(mg, m))).

The image of h is contained in sA, (&, A)(¢, ) if and only if the image of W is contained
in sAx(E,A)(¢,1). By Proposition 2.10 this is equivalent to conditions:

1. R(quy) =0; 1", R(phy) = 0;
2. (sFQ%* ® I ® sFQ¥9)(quy) = 0; 2" (sFQ¥ @ I ® sFQ%)(phy,) =0

for all ¢,p € P and all o, 3 > 0 such that « + 1+ 3 = k > 1. However, the conditions 1’
and 2’ are satisfied automatically by Proposition 2.10 applied to w and v. [

3. A simple example

We want to consider an example, which is almost tautological. The non-trivial part
of it is the concrete choice of a system of relations R generating an ideal. Let D be an
Aso-category. We view it as a differential graded quiver and construct the free A,.-category
FD out of it. We choose the following subquiver of relations: Rp = -, Im(b;” — b,
sD®" — sFD). More precisely, a map 0, : (sD)®" — sFD, n > 2, is defined as the
difference

0y = ((s®)®n = (sFD)*" ?—Dﬁ sF, D s?@) _ ((S-D)®n _bf_) D = sFD s?@),

and Rp =) -, Im(d,).
3.1. LEMMA. The subquiver I = (Rp) C sFD is an Ay -ideal.
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PROOF. According to Proposition 2.2 it suffices to check that Rpb{® C (Rp). As

a+c>0
0 D = 2P~ S (1@ B 9 19,
at+k+c=n
we have
a+c>0
(7 = 270 € (2672 + Y (15" @6 @ 1900, ) + (Ro)
a+k+c=n
a+c>0
C—m(BPP+ Y (1% @b @ 1%, ) + (Ro) = (Ro),
a+k+c=n
and the lemma is proven. [

Let us describe the ideal I = (Rp) C sFD. Let t' € T be a tree, and let ¢ =
(1" U ¢, LU 199) - ¢, Define a map &,y as the difference

Qa1 FD 1@ bf/D
Sapy = ((sD)Fm 2 EL (sF:1D)%° @ 5F, D ® (sF\D)® —= sF,D sFD)
®agpD o108 bf/@
_ ((S'D)®” 19°®b) ®1 (S,D)®a+1+,8 _ (S?"D)®a+1+’6 < sFy D —— S?@)

fork > 1, a+k+ 0 =n. Clearly, > Im(da k) = I. These compositions can be simplified.
Let h be the height of the distinguished vertex t; in ¢t.. Then the above difference equals

\ltl—h gl
Oa bt = ((S®)®a+k+ﬂ = (sFD)=" O, sF,D — 53"@)

RagpD g1®8 sl
— ((SD)®0¢+/€+5 % (S@)®a+1+ﬁ — (S§|@)®a+1+ﬁ 2 sFD —— 8?@).

With the identity map id : D — D is associated a strict A,.-functor id: 5D - D
[LMO06, Section 2.6]. Its first component equals

~ AN b2 _
id; = (s&,D 2L rilgp 5 sD) (13)

for each linear ordering (¢, <) of a plane rooted tree t € T%, with i(t) = n input leaves.
Note that in the above formula bgz) = 45!, In particular, for the canonical linear
ordering t. the formula becomes

sltl D

~ 4 b
id; = (83’}@ 2T =, 5@).

Here ® D 108 ® D 9186 pD
1921 gbD @1©61 1822 gbD @1852
b o = (5D —— s sDEFIHA - .. =2, sD)
corresponds to the ordered decomposition
(t, <) = (1" Uy, U190y - (1992 Uy, L 19%2) gy,

of (¢, <) into the product of forests, a; + ky + 81 = n, and bg?i) has a similar meaning,.
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3.2. PROPOSITION. The A-category FD /s~ (Rp) is isomorphic to D.

PROOF. Let & = FD /s !(Ryp) be the quotient category. The projection map 7 : sFD —
s€ with the underlying map of objects Obnm = ido,p determines a strict A,-functor

m : FD — &E. The embedding 1; = (5@ — sFD " 58) with the underlying
identity map of objects Obt = idg,p determines a strict A,-functor ¢ : D — €. Indeed,
1PE = D1y 1 sDE — 5€, for Im(b7P — bP) = Imd,, C I C sTFD.

We claim that the A-functor id : D — D factorizes as id = (3’“@ e 4 ’D)

for some A..-functor id: & — D. Indeed, both conditions of Proposition 2.5 are satisfied.
The second is obvious since id is strict. The first condition Rpid; = 0 follows from the
computation (b22 — bP)id; = id?" b2 — b2 id; = 0 : sD®* — sD. Thus, id: € — D is a
strict Ao -functor. N

Both ¢ and id induce the identity map on objects. Clearly, ¢ -id = idp. Furthermore,
¢ is surjective on morphisms because every element of F;D reduces to an element of D
modulo (Rp). Therefore, ¢ is invertible and A-functors ¢ and id are strictly inverse to
each other. ]

3.3.  COROLLARY. (Rp)id; = 0.

4. As-categories and quivers

4.1. DEFINITION. [Pseudounital A..-categories] A pseudounital structure of an A -cat-
egory D is a choice of an element [1x] € H Y(sD(X, X), by) for each object X of D. By 1x
we mean a representative of the chosen cohomology class, degix = —1. An Ay -functor
f:D — A between two pseudounital As-categories is called pseudounital if it preserves
the distinguished cohomology classes, that is, Lﬁf —12f1 € Imby for all objects X of D.

The composition of pseudounital A..-functors is pseudounital as well. The full sub-
category of pseudounital A, -functors is denoted A¥%(D,A) C A (D, A).

A unital A, -category A has a canonical pseudounital structure: § = xif'. An
Ao -functor f : D — A between unital A,-categories is unital if and only if it is pseu-
dounital for the canonical pseudounital structures of D and A [Lyu03, Definition 8.1].

Let D be a pseudounital A, -category, let Q be a differential graded quiver with Ob Q =
Ob D, and let in® : D — Q be an A;-functor, such that Obin® = idg,p and in : sD —

sQ is an embedding. Let A be a pseudounital A..-category.

4.2.  A.i-FUNCTORS AND TRANSFORMATIONS. We define A, .-category A% (D, Q;A)
via pull-back square

A (D, Q;A) —— A1(Q,A)

_|
l JAl(in'D A) (14)
AY(D, A) —=54 4 (D, A)
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In details, the objects of A%“(D,Q;A) are pairs (f, f'), where f : D — A is a
pseudounital A.-functor, f' : Q — A is an A;-functor such that Ob f = Ob f’ and
fi= f{’si). Morphisms of A% (D, Q;.A) from (f, f') to (g,¢') are pairs (r,7”), where r €
As(D, A)(f,9), 7" € A1(Q, A)([f', g') are such that degr = degr’, ro = r(, and :'rﬂﬂ).
For any n-tuple of composable morphisms (77, p?) € sA.1(D, Q. A)((f77, ¢ 1), (f7, 7)),
1 < j < n, their n-th product is defined as

() © - ® (07 By (' @+ @ 1) B (0 © - ) By).
It is well-defined, because formulas for By agree for all Apy-categories, 1 < N < oo. The
identity B> = 0 for A% (D, Q;.A) follows from that for A%*(D,A) and A;(Q, A). Thus,
A% (D, Q; A) is an A..-category.

4.3.  PROPOSITION. If A is unital, then the Ay -category A% (D, Q;A) is unital as well.
PROOF. Let us denote by (15X i4)M the A.-transformation id — id : AY (D, Q; A) —
A% (D, Q; A), whose n-th component is

r'ph)@ @@ p") — (e - @r"Ri*Y)M,, ' ® - @ p" Ki")M,).

It is well-defined, since formulas for multiplication M agree for all Ay-categories, 1 < N <
co. In asense, (1K) M for A% (D, Q;A) is determined by a pair of A,-transformations:
(1Xi*)M for AZ(D, A) and for A;(Q,A). Since the latter two A..-transformations are
natural and satisfy

(IRIMM @ (1RIMYM]B, = (1K) M,

the Au-transformation (15 i4)M for A% (D, Q:A) has the same properties.
We claim that (1 Xi4)M is the unit transformation of A%"(D,Q;A) as defined in
[Lyu03, Definition 7.6]. Indeed, it remains to prove that chain endomorphisms

0= (18 (1 RINM) Bz, ¢ = (1) [(1RF)M]o © 1) By :

L (54t (D, AN 1) (9:9)). Bi) — @
are homotopy invertible for all pairs (f, f'), (g, ¢') of objects of A (D,Q;A). We have
(7“, 7’/>CL = ((T ® giA)B% (7“/ ® g/iA)BQ)a

(r,r")e = (T(fi‘A ® 1)By, 7' (fi* ® 1)32).

As a graded k-module ® = [V, where

Vo= ][] sA(Xf. Xg),

XeObD
Vi= J] CQX.Y) sAXfYg),
X, YeObD
Vo= I GsD™(X,Y),sAXfYg)  for  n>2. (15)

X,YeObD
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Consider the decreasing filtration ® = &g > &y D --- D P, D P,,; D ... of the complex
®, defined by ®, =0 x ---x 0 x [[*_ V,,. We may write

Q= {(r,r") € ® | 1o =0},
o, ={(r,00€d®|Vi<n r =0} for  n>2.

The differential B; preserves the submodules ®,,. It induces the differential

d=C (L) — > G b 1% 1)

a+146=n

in the quotient V,, = ®,,/®,, 1. Due to

Q,,€

[(T ® giA)BQ]k - Z(T & giA)eklbl - Z (faa X Tp X ey ® (giﬂ)q X gee)ba+7+5+2
l a+p+ctgte=k

and similar formulas, the endomorphisms a,c : ® — & preserve the subcomplexes ®,,.
They induce the endomorphisms gra, grc: V,, — V, in the quotient complex V,,:

(Tll) gra = H (X7YT/1 ® Ygi(d)q)bglv Ti €W,
X,Y€ObD

(Mygre=J] xvrilesis e bg,
X,Y€ObD

(rn)gra= H (xy7Tn® ygigl)béq, rn €V,, m=0orn=2.
X,Y€ObD

(rn)gre= H xvrn(xrin © 1)y
X,Y€ObD

Due to unitality of A, for each pair X, Y of objects of D there exist k-linear maps
xvh,xyh : sA(Xf,Yg) — sA(Xf,Yg) of degree —1 such that

(1® vy )by =1+ xyh-d+d- xyh, (16)
(xpigt@ byt = =1+ xyh'-d+d- xyh' (17)

We equip the k-modules ®¢ = [[>2 V% with the topology of the product of discrete
Abelian groups V4. Thus the k-submodules ®¢ = 0m! x [[>2 V¥ form a basis of
neighborhoods of 0 in ®¢. Continuous maps A : V¢ — VP are identified with N x N-
matrices of linear maps A, : V¢ — V.2 with finite number of non-vanishing elements
in each column.

In particular, the maps B, : ®¢ — ®@*1 are continuous for all d € Z. Let us introduce
continuous k-linear maps H, H' : [[°, V¢ — T[>, V¢! by diagonal matrices xy7, —
xyTnxyh, xyrn — xyrnxyh'. We may view gra, grc as diagonal matrices and as
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the corresponding continuous endomorphisms of [[72, V/%. Equations (16), (17) can be
written as
gra=1+ Hd+ dH, grc=—1+H'd+dH'

The continuous chain maps

N=a—-HB ~BH-1, N=c—HB -BH +1:[[vi— ][V
n=0

n=0

have strictly upper triangular matrices. Therefore, the endomorphisms 1 + N, —1 + N’ :
102, Vid — T2, Vid are invertible. Their inverse maps correspond to well-defined N x N-
matrices Y .oq(—N)"and — > ;7 (N’)". Since a, ¢ are homotopic to invertible maps, they
are homotopy invertible and the proposition is proven. [

4.4. A STRICT AY-2-FUNCTOR. Let us describe a strict A% -2-functor F': A% — A%.
It maps a unital A -category A to the unital A,-category A" (D,Q;A). The strict
unital A.-functor

FA,B = AZ;LI('D7 Qa —) : Azo(‘Au B) - Ago (Afoul(ﬂu Qv‘A)7 Ai?l(ﬂv Qv B))

is specified by the following data. It maps an object f : A — B (a unital A.-functor) to
the object

AZ(D,Q; f) = (A%(D, f), A(Q, f)) = (1R f)M, (1K f)M),

aunital Ao-functor AY (D, Q; A) — A% (D, Q; B), which sends (g, ¢’) € Ob A¥" (D, Q; A)
to (gf,q'f) € Ob A:foul(ﬁ, Q; B). Its n-th component is

(A (D, % Ol s (K pH) @@ (", p") = (K @ @1 B f) Mao, (0 @ - @p" B f) M)

An A-transformation ¢ : f — g : A — B is mapped by [Afoul(ﬁ, Q; )i to the A -trans-
formation

AZ(D, Q5 9) = (AL(D,q), Ai(2,9) = (1R q)M, (1K q) M),
whose n-th component is
[AZU(D, %) (rph) @@ (" p") = ((F @ @r"Rq) My, (p' @ - - @ p" R g) Myy).

Thus, a strict Ao-functor Fup = A% (D,Q; ) is constructed. It is unital, because the
unit element fi® of f € Ob A% (A, B) is mapped to the unit element Afo“l(ﬁ, Q; fi®) =
(1R fi®)M, (1K fi®)M) of ALY (D,Q; f) € Ob A" (FA, FB).

Necessary equation, given by diagram (3.1.1) of [LMO06] follows from the same equation
written for AY%(D, _) and for A;(Q, ). Therefore, the strict A% -2-functor F' is constructed.
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4.5. AN A, -CATEGORY FREELY GENERATED OVER AN A, -CATEGORY. Let D be
a pseudounital A.-category, let Q be a differential graded quiver with ObQ = ObD,
equipped with a chain embedding sD —— sQ, identity on objects. Assume that there
exists a graded k-subquiver N C Q, ObN = Ob D, which is a direct complement of D.
Thus, D & N = Q is an isomorphism of graded k-linear quivers. Then there exists a
differential in the graded quiver sM = N and a chain map « : sM — sD such that
Oba = idop» and Q = Cone a. Indeed, the embedding in® in the exact sequence

in? prN
0—sD—5Q—M[2] =0

is a chain map. Thus the graded k-quiver M[2] = sN = Coker(in®) acquires a differential
d™ such that pr” is a chain map. The differential in sQ has the form

(t,ms)bE = (tbP + ma, msd™) = (tbP + ma, —md™s) (18)

fort € sD(X,Y), m € M[1](X,Y), where o : sM(X,Y) — sD(X,Y) are k-linear maps
of degree 0. The condition (b?)? = 0 is equivalent to o being a chain map. Therefore,
sQ = Cone(a : sM — sD).

Define a pseudounital A,.-category €= FQ/s™'(Ryp), where Rp =, -, Tm(d,) for

b, = ((sD)*" —— (sFQ)*" LA sFQ) — ((sD)*" D sFQ).

Repeating word by word the proof of Lemma 3.1 we deduce that J = (Rp) C sFQ is an
A-ideal. The distinguished elements tx € (s€)7'(X, X) are those of D C &. Let A be
a pseudounital A,-category. There is the restriction strict A,-functor

restr : AY(€,A) — AV (D, Q; A), T (:z:}D,x’Q).

If A is unital, then the above A.-functor is unital, because the unit element fi*
f € Ob A%(€, A) is mapped to the unit element ((fi%)|,, (fi*)|,) = (f| i, f|1?) of
f ‘D’f’Q) < ObAZgl('D7 Q;‘A)

4.6. PROPOSITION. The map Obrestr : Ob A¥%(&, A) — Ob A% (D, Q; A) is surjective.
An object (f, f') wa“ (@ Q; A) is the restriction of a unique pseudounital A -functor
f & — A such that Obf = Ob f, f1’ 0 = J1, ﬁ}wm = f, and ﬁ vanishes on all
summands of T*s& containing the factor sN for k > 1.

PROOF. Let us define an A..-functor f FQ — A via Proposition 2.4 by the following
data. On objects it is Ob f Ob f = Ob f’, the restriction to sQ of the first component
is f1 = f/. On each direct summand of T*sFQ, k > 1, containing the factor sN we set

fk = 0 On the direct summand T*sFD of T*sFQ we define

fo = (ThsFD 2, L heD sA)
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for £ > 1, where ialA is defined by (13). These requirements specify f completely. It is
pseudounital, since fl’sD = f; and f is pseudounital.

Let us prove that the A,-functor f factors as f = (H’Q e L, A) for some unique
Ase-functor f. Denote J = (Rp) C sFQ. We have to check conditions of Proposition 2.5.
The second condition, (sFQ®* @ J ® SITQW)faJng = 0 if « + 6 > 0, holds on direct
summands of sFQ®* ® J ® sFQ®P which contain a factor sN in some of FQ. It holds also
on summands of J of the form Im(b/?: - @ SN® -+ ® Rp ® - - — sFQ) or Im(bJ? :
- QRp®---@sN®- - — sFQ). We have to verify that (sFD®* @I ®sFD) fo 1,5 =0
if « + (8 > 0, where I C sFD is the ideal described in Lemma 3.1. This equation holds
true because

(sFD% © I @ sFDP) foy s = (sFD @ T ® sFDNide T fosrsg =0

due to equation [ i?il = 0, obtained in Corollary 3.3. Therefore, the second condition of
Proposition 2.5 is verified.

Let us observe that the restriction of f to FD coincides with FD —2u D L, A,
A ~ Rk A
Indeed, their components are equal, fk},ﬂ) = idfQ - fx for k£ > 1, and fl‘s,f@ = fi =
i?il - f1:sD — sA. Hence, f’&“@ =id - f by Proposition 2.4.
}83@ = (SS"D 4, sp N SA). Hence, R@fl = Rpialfl = 0 due

to Corollary 3.3. Therefore, the first condition of Proposition 2.5 is also verified and fv
exists. Uniqueness of such f is obvious. [

In particular, fl

The projection map m; : sFQ — s€ with the underlying map of objects Ob7 = idop

determines a strict A,-functor 7 : FQ — &. The embedding ¢; = (s@ ' sFQ 58)
with the underlying identity map of objects Ob: = idop, p determines a strict A.-functor
t:D — & Indeed, (£"0¢ = b1y : D" — &, for Im(b7P — bP) = Im 4, C J C sFQ.
These A-functors produce other strict A,.-functors for an arbitrary A.,-category A. For
instance, the functor

(mR1)M : Au(E,A) = A (FQ,A), T T,
injective on objects and morphisms, and the restriction A..-functor
restr = (LK 1)M : A (E,A) = Ax(D, A), Y=y =7.

4.7. THEOREM. Let & = FQ/s 1 (Ryp), where D, Q satisfy assumptions of Section 4.5.
Then the restriction As-functor

restr : AYY(E,A) — AV (D, Q; A) (19)

is an As-equivalence, surjective on objects. The chain surjections restr; admit a chain
splitting.
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PROOF. Let us prove that the chain map

restry : sAL(E,A)(f,9) — sAL (D, % A) ((flp, flo), (9], 9l0)) (20)

is homotopy invertible for all pairs of pseudounital A..-functors f,g : € — A. This will
be achieved in a sequence of Lemmata.

The graded k-quiver decomposition Q = D @ N implies that the graded k-quiver FD
is a direct summand of FQ. The projection pr® : sFQ — sFD annihilates all summands
with factors sN. Define a degree 0 map

idy

w = (s&"Q pr?? sFD S’D).

4.8. LEMMA. There exists a unique chain map

u: SAool('D7 Q"A)((ﬂ@vﬂQ)? (g|®7g|Q)) - SAOO(SUQ,.A)(WJC, 77-9)

such that v’ obtained from u via formula (7) equals

u' = restro : $As1 (D, Q. A) ((f| o, fla), (9lp, gla)) — sAL(Q, A)(fla, gla), (p.¥)) — 1,

and for k > 1 the maps uy are

U = [SAool('D7 Q"A) ((f|®v f|Q)7 (g|®7g|9)) Ek_) H Qk(S'D(X)k(X, Y)? S‘A(va Yg))

X,Y€ObD
w®Fk
HEED ] Qo9 (X Y) ALY )| (00) = = =
X,Y€ObD
PROOF. Apply Proposition 2.7 to P = sA4x1(D, Q;A)((f]o, fla), (9]p, 9la)). n

4.9. LEMMA. The map u from Lemma 4.8 takes values in
54 (€, A)(f,9) C sAx(FQ, A)(nf, mg).

PRrOOF. Let us verify conditions of Proposition 2.10. We have Jw = 0. Indeed, @
vanishes on summands of J = (Rp) of the form Im(by2 : - - @sN®@- - @ Rp®- - - — sFQ)
or Im(b7?: - @ Rp®@ - @ sN® -+ — sFQ). Looking at I = J N TFD we find that
Jw=1w = Ii/c\h = 0 by Corollary 3.3. Therefore,

(sFQ%* @ J @ sFQ29) ((p, pug) = (sFQ%* @ J ® sFQ)w®*p,, = 0, (21)

and the second condition of Proposition 2.10 is verified.
Let us check now that Rp((p,p)u;) = 0 for any element

(p,7) € A1 (D, Q. A)((f]D, fla), (g]m. gla))-
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That is,

()P0 = 01) (0, p)ur) = 0 sDFH(X,Y) — sA(Xf,Yg) (22)
for £ > 1, where i : D —— sFQ is the embedding of differential graded k-quivers. By
definition (8)

(=P (o, ' )wr) = =i [(pBy, p'Br)us]

m,n

+ Z (77 fam @ 1 ((p, ' )ug) @ i®c7ri®cgcn)bﬁz+1+n
a+q+c=k
a+c>0

— (P Y (1% @070 © 19 (9 tasise) s SDPH(X,Y) — sA(Xf,Yg).
a+q+c=k

For an arbitrary (¢,t') € sAx1(D, Q;A)((fh;, fla), (g|D,g|Q)), in particular for (p,p’) or
(pB1,p'By), we have for k > 1

() ug) = (6 )G (%%, 1) = £,C (@, 1)C, (197, 1) = 6,C, (i®*w®", 1) =t (23)
due to relation itw = idsp. For k = 0 or 1 we also have i**((¢,#)uy) = t;. Indeed,
(t,t)uo = (t,t)u’ pry =ty = to,
i((t, ) uy) = in®((t,)) pr; = in®t] =t,.
Notice also that (sD SRR £ LI s€) = 11, hence, i® 77 for, = (5 fam = Fam Lof

(f|D)am- Due to already proven property (21) we may replace i®qbff 2 in the last sum with
bg)i. Therefore,

m,n

(_)pi®kbgg((pap/>u1) = _(pBl>k + Z (?am ® Pq ® gcn)bﬁJrlJrn
at+q+c=k
a+c>0
— (=P ) (1P @b @ 1) ((p, p)uasive)
a+q+c=k
= —(pB1)k + (p0™)x — (=)° Z (1% @ b7 @ 1%)paripe + (=) 21

= —(pb" = (=)"07p), + (0 — (=)" (07D + (=)70i((p, P )ur)
= (=)"b;i((p, p)u) : sDEH(X,Y) — sA(Xf,Yg)

and (22) is proven. We conclude by Proposition 2.10 that there is a chain map ® such
that

u= (sAZ(D, 2 A) ((flp: fla), (gl glo)) —— sAL(E, A)(f, g)
&ML o 4 (FQ, A)(xf,mg)), (24)

so the lemma is proven. [
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4.10. LEMMA. The map ® from (24) is a one-sided inverse to restry:

(5AZ3(D. Q5 4) (1, fla), (gl gla)) —— sAL (€, A)(f.9)

restry

" sAL (D, 9. 4) (flos fla), (910, 9l)) ) =id
PROOF. Recall that restr; is the componentwise map

(1B 1) Moy, (j R 1) Moy) : sAZ(E,A)(fr9) = 5Ax1(D, % A) ((flp. fla), (9]p, 9la))

r= ()i (orgr) = () rs0, G757k k=0,1)

Also (71X 1) My, : sALY(E, A)(f, g) —— sA(FQ A) (T f,mg), 7 = (1) — 7 = (72%r)p

is componentwise. Introduce another componentwise map of degree 0

L': sAu(FQ,A) (7 f, mg) = sAx1 (D, Q. A) ((f]D, fla) (9]p, gla)).

q=(qu)r = ((i®ka)k>0: (inQ®k Qk)k:o,l)-

As 1, = (sﬂ) SR o LTS 38) and j; = (sQ SR SRS 58), the lower triangle in
the following diagram commutes:

5 A51(D, 95 A) ((flo, fla), (gD, glo))

P

— u

D-restry = sAY(E, AL, 9) (25)

restry (wX1) Mo

Lt

$Ase1(D, Q% A)((flos fla). (9]p, 9la)) 8 A0o(FQ, A)(n f, Tg)

Thus the whole diagram is commutative and ® - restr; = uL’. We have proved in (23) and
(4.5) that for all (p,p') € s4x1(D,Q;.A)((flp, fla), (9], gl0)) and all k € Zx, we have
i ((p, p')ur) = pr. Similarly,

in*[(p, p')w] = (p.p')u' pry = py.
Therefore,

nQ@k(

(]%p,)‘b restr; = ((i®k(p,p/)uk)k:>0, (i p,p/)uk)k;:o,l) = ((pk)@o, (pZ)kzo,l) = (p,p'),

and the equation @ - restr; = idsa__, (D,0.4)((fl0.fl0)( is proven. n

glp,gla))
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4.11. LEMMA. Denote by v the chain map
v =1id —restr; - ® : sA(E,A)(f,9) — sA(E,A)(f,9).
Denote by w the chain map
w= [s4 (&, A)(f,9) == sAx(E. A)(f. 9) T 54 (FQ, ) (x, mg).

There exists a unique homotopy h : sAx(E, A)(f, g) = sAx(FQ,A)(nf, mg) of degree —1
such that w = Bih + hBy,

B = (540 (€, A)(f,9) —— sAxe(FQ, A)(7f, 7g)

restrg 1 restr )

—> 54 (FQ,A)(nf, mg) —> sAL(Q,A)(jf,79)) =0,

he=0:54(&A)f9) = ] G(sFQ*M(X,Y), sA(Xf,Yg)),  fork>1.

X,YeObD
PROOF. We use Corollary 2.8, setting P = sA«(E,A)(f,g). We have

w = [s400(&,A)(f,g) E2 54 (FQ, A)(r f, mg)]
_[SAOO(87'A)(f7 ) m 8Aool(® Q; A)((f‘@a f’Q)a (g’Dag’Q» L) SAOO(‘{TQ"A)(Wfa Wg)]
due to (24). Due to (7), w’ defined in condition 1 of Corollary 2.8 is
W' = [sAu(E,A)(f, 9) T 54 (FQ, A)(n f,mg)
restr<1 restr }

5 SA(FQA) (T f, mg) — sA;(Q, A)(Jf,Jg)
— 54 (&, A) (£, 9) 5 540 (D, Q5 A) ((flo, £la), (glps gl0)) —— sAL(Q,A) (i £, 5g)],

restrg

where j : Q — & is the embedding A;-functor, j; = (sQ — sFQ 58). We get

restrg 1

w' = [sAu (&, A)(f, 9) —b sAi(E,A)(f. 9)
LEOMo, A (FQ, A) (rf, mg) LEME 5 4,(Q,A) (i jg)]
— [sAx (&, A)(f, g) LETEIIN, s 4 1 (D, 23 A) ((Fl. o). (g]9. 910)
I 5A1(Q,A) (5, 59)]
= [540(E, A)(f,g) =5 M 5 44(Q,A) (i 7))
 [sAx(E,A)(fg) 5 T 540(2,4) (. 4g)] = 0.

Therefore, ' = 0 satisfies Bih' + h'B; = 0 = w’. Hence, the unique homotopy h is
constructed by Corollary 2.8. [

restrgy

5141(8 A)(f )
restr<1 SAl(S .A)(f, )
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4.12. REMARK. In the case of Lemma 4.11 h-pr, = h, =0if k > 1 or if £ = 0. Indeed,
(9) together with A’ = 0 implies that hg = hpr, = k' pr, = 0, moreover,

rhilso =71h'pr; = 0:s5Q(X,Y) = sFQ(X,Y) — sA(Xf,Yyg), (26)
where r € sA(E,A)(f,g). Therefore, recurrent formula (10) simplifies here to

(_)rblfg(rhl) = TWg — Z (ﬂ'i@afam ®@rh; ® 7Ti®cgcn)b£+l+n :
a+1+c=k
(sFQP(X,Y) — sA(Xf,Yg). (27)
4.13. LEMMA. The homotopy h constructed in Lemma 4.11 factorizes as

h= (s A€, A)(f,9) — sAx (€, A)(f,9) C 5400 (FQ, A) (nf, mg))

for a unique homotopy n of degree —1 such that v = Byn + nBjy.

PROOF. Let us show that h satisfies conditions of Corollary 2.11. The second is obvious.
The first is Rp(rhy) = 0 for any r € sA (&, A)(f, g), that is,

(=) (15672 — bPi)(rhy) = 0: sDPH(X,Y) — sA(Xf,Yg). (28)
From (27) we find the formula for k& > 1

m,n

(_)ri®kbk§Q(7"h1) = i®k(7"wk) - Z (65 fam @ i(rh1) @ L?Cgcn)brﬂﬁun
a+1+4+c=k
= L?krk_i@)k[(brvj?ﬂ)uk]_ Z (?am@n’(rhl)@?cn)bﬁ—i—l—i—n : Sﬂ@k(Xu Y) - S‘A(va Yg)
a+1+4c=k
A particular case of (26) is
i(rhy) = [in®(rh/)] pr; = 0, (29)

due to b = 0, where the A;-functor in® : D < Q is the natural embedding. For our
concrete choice of u; we get

(=) %% (rhy) = &, — i@ P, = 00 sDPF(X,Y) — sA(X f,Yg),
since (sD L 550 sD) = id. Therefore, i**b)%(rhy) = 0 and bi(rhy) = 0 due to
(29). We conclude that (28) is satisfied, and by Corollary 2.11 there exists a homotopy

n:8Ax(E,A)(f,9) — sAx(E,A) (S, 9),

such that degn = —1, h=n - [(x K 1)My] and v = Byn + nB;. n

w
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Lemmata 4.10 and 4.13 show that the maps restr; and ® given by (20) and (24) are
homotopy inverse to each other.

The A.-functor restr is surjective on objects by Proposition 4.6, and its first compo-
nent is a homotopy isomorphism. Therefore, it is an A.-equivalence by Corollary 1.9,
and Theorem 4.7 is proven. [

4.14. COROLLARY. The collection of Ax-functors (19) is a natural A% -2-equivalence.

PROOF. The restriction A -functors A¥%(€, A) — A¥*(D, A) and AY“(E,A) — A(Q,A)
are strict A% -2-transformations. By (14) the restriction A-functor A%*(&, A) — A% (D, Q; A)
is also a strict A% -2-transformation. It is an A.-equivalence by Theorem 4.7. (]

4.15. REMARK. The maps ®, n constructed in the proof of Theorem 4.7 satisfy

© -1 =0:sA5(D, % A)((f|o, flo): (9], 9la)) — sAL(E,A)(F, 9)-

Indeed, ® - composed with an embedding,
.- (TR1) My = @ h: sAZ(D, QA ((f]o. Fla), (9], gla)) — 5A«(FQ, A)(nf,7g),
is a degree —1 homotopy such that

By (®h) + (Ph)By = ®(B1h + hB;) = dw

= ®(id —restry @)(m X 1) My, = (id —P restry )@ (7 X 1) My, = 0.
We have ®hpr, = & - hy =0 for £ > 1 and
(®h)" = Phrestrg restr = @ - ' = 0.

The 0 homotopy for 0 chain map also has these properties, and by Corollary 2.8 we
conclude that ®h = 0.

4.16. REMARK. The equation

n -restr; = 0: sAL(E,A)(f,g) — sAfgl(@, Q;A)((ﬂD, fla), (9|®>9|Q))

also holds. Indeed, the decomposition restr; = (7 X 1)My,; - L' from diagram (25) implies
that A A
n-restry =n- (X 1)My - L'=h-L".

For any r € sA%“(&,A)(f, g) all components of the element

rhL = (((%F (rhy))ks0, (2% (rhy) )kmo1) € sAZ(D, Q3 A) ((f] o, fla), (gls gla))

vanish except, possibly, those indexed by k£ = 1 by Remark 4.12. However, i(rh;) = 0 by
(29), and, moreover, in“(rh;) = 0 by (26), thus, all the components of rhL’ vanish.
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4.17. REMARK. We have not used in the proof of Theorem 4.7 the assumption of pseu-
dounitality of D and €. Its assertion holds without this property. If A is unital, then the
restriction A..-functor
restr : Ao (€, A) = Aoc1 (D, Q5 A)
is an A..-equivalence, surjective on objects. Its first component maps admit a chain
splitting. In the particular case D(X,Y) = 0 for all X, Y € Ob Q we get Theorem 2.12 of
[LMO6]: the A,-functor
restr : Ao (FQ, A) — A;(Q,A)

is an A,.-equivalence.

5. Relatively free A,,-categories

Hinich [Hin97] defines standard cofibrations of differential graded algebras. This notion
is generalized by Drinfeld to semi-free differential graded categories [Dri04]. We give a
definition in the spirit of these two definitions in the framework of A..-categories.

5.1. DEFINITION. Let e : € — D be a strict Ay-functor such that Obe is an isomor-
phism, and ey : sC — sD is an embedding. The A -category D is relatively free over C,
if it can be represented as the union of an increasing sequence of its A-subcategories D;
and differential graded subquivers Q;

DoCcQ{CcDiCcQQCcDy,CcQcC---CD (30)
with the same set of objects Ob D, such that
1. S®0 = (88)61;

2. for each j = 0 the embedding of graded quivers D; —— Q; 1 admits a splitting map
Qjy1 —> D, of degree 0;

3. for each j > 0 the unique strict As-functor FQ; — D; extending the embedding
Q; —— D; factors into the natural projection and an isomorphism

fTer — :‘FQJ‘/S_I(R]') = 'Dj,
where the system of relations R; = Rp, , C sFQ; is R; = -, Im(d,) for

FQ. D
5o = (D)%™ s (sFQ,)®" 20y 5FQ;) — ((sDy_y)®" 2 5Dy = 5FQ;).
When all differential graded quivers N; = Coker(D,;_; —— Q;) have zero differential
and the k-modules N;‘?(X, Y') are free for all j > 1, k € Z, we say that D is semi-free over
€ in accordance with terminology of Drinfeld. In fact, if in Definition 5.1 one replaces
A-categories with differential graded categories and adds the above assumption on Nj,
then one recovers Definition 13.4 from [Dri04] of semi-free differential graded categories.
The system of relations R; is the minimal one that ensures that the natural embedding
sD;_1 — sFQ,/(R;) = sD; is the first component of a strict A-functor. In semi-free
case we may say that D; is freely generated by N; over D;_;.
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5.2. THE MAIN CONSTRUCTION. Let € be a unital A,-category, and let B C C be its
full subcategory. The unit i$ is abbreviated to ip.

A vertex of a tree is k-ary if it is adjacent to k£ + 1 edges. A unary vertex is a l-ary
one.

Define a labeled tree t = (t; Xo, X1, ..., X,) as anon-empty (non-reduced) plane rooted
tree t with n leaves, such that unary vertices are not joined by an edge, equipped with a
sequence (Xo, X1,...,X,) of objects of C.

Let e be an edge of ¢. If ¢ is the smallest number such that i-th leaf is above e, the
domain of e is defined as dom(e) = X; ;. If k is the biggest number such that k-th
leaf is above e, the codomain of e is defined as codom(e) = Xj. An admissible tree is
a labeled tree (t; Xo, X1, ..., X,) such that for each edge e adjacent to a unary vertex
dom(e) € Ob B or codom(e) € ObB (or both).

The set of vertices V() of a rooted tree ¢ has a canonical ordering: = < y iff the
minimal path connecting the root with y contains x. A C-admissible tree is an admissible
tree (t; Xo, X1, ..., X,) such that top (maximal with respect to <) internal vertices are
unary.

Define a graded quiver € with the set of objects Ob & = Ob €. The Z-graded k-module
of morphisms between X,Y € Ob € is defined as

Xo=X, Xn=Y
EXV =P P sEnry), (31)
n2=1 admissible (¢;X0,X1,...,.Xn)

sE(t)(Xo, Xn) = s€(t) = s€(Xo, X1) @ - -+ @ sC(X,,_1, X,,) [t — [t]5],

where |¢|; is the number of unary internal vertices of ¢, and |t|~ is the number of internal
vertices of arity > 1.

The vertices of arity £ > 1 are interpreted as k-ary multiplications of degree 1. Unary
vertices are interpreted as contracting homotopies H of degree —1. Define an A..-structure
on € in which operations by, k > 1, are given by grafting. So for £ > 1 the operation by
is a direct sum of maps

by = sl @ @ slel @ sl =1 58 (1) (Y0, V1) @ - - @ s€(t) Ve, Ya) — sE() (Yo, Ya),

where [t| = |t|s — |t|y and t = (t; U - - - U tg) - tg. In particular, |t| = |t1] + - - - + |tx| + 1.

Let t = (¢; Xo, X1, ..., X,) be an admissible tree, whose lowest internal vertex is not
unary. In particular, ¢ might be the trivial tree t = (|; Xy, X7). Assume that X, € ObB
or X,, € ObB (or both). Denote by H the k-linear map

H =s:s&(t)(Xo, Xp) = s€(Xo, X1) @ - @ s€(Xp—1, X)) [[th — [t]5]
— 5C(X0, X1) @ -+ @ sC(Xpe1, Xo) [1 + [th — [t]5] = s€(t - t1)(Xo, X,)

of degree —1. Here t; = (}; Xo, X,,) is the unary corolla.
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The operation b; is determined by the given differential b; : s€ — sC and by the
recursive substitutions

a+5>0
bibri=— Y (1%®@b,@1%boriyg, k> 1, (32)
a+p+pB=Fk
Hby :=1— b H, (33)

where H stands for a unary vertex. Identity (32) is satisfied for & > 1 by definition of b;.
We have to prove that 3 = 0. Assume that k > 1, then

a+B>0

bt == Y (19" @b, @ 19%)bas115b)
a+p+B=k
Y+0>0
= Y (1% eh, @1 1% @b, 1%
atp+pB=k

y+g+d=a+1+8

= Z (1% @b, © 1%° @ by @ 19°)bascrs42
a+pte+q+o=k

- Z (1®7 ® by ® 197 ® by ® 1®ﬁ)bw+n+ﬁ+2
y+a+ntp+B=k

v+6>0
#3100 X 056 8,81000] 817y

y+r4+o=k K+p+A=r
= ) (1T @01,
y+1+6=k

because the sum in square brackets vanishes for r > 1 by (32). We also have
Hb; = (1= b H)by = by — by (1 — by H) = b1 H.

By induction the equation bﬂse = 0 implies that b = 0 on s€. Therefore, € is an
Ao-category by the same argument as in the proof of Proposition 2.2 of [LMOG].
It has an ideal (Re)4, generated by the k-subquiver Re =3, -, Im(d,) for

(¢

5y = ((5€)°" —— (€)™ 2 5€) — ((s€)%" —2s 5€ = 5€)

by application of operations 19*® H @197, 19¢®b,1%7 for p > 2. By Lemma 3.1 Reb$ C
(Re) C (Re)y, where (Re) denotes the ideal generated by application of 19 ® b, @ 19°
(p > 2) only. Similarly to Proposition 2.2 this implies that (Re) b5 C (Re);. Indeed, let
t = (t; Xo, X1,...,X,) be an admissible tree, whose lowest internal vertex is not unary.
Assume that Xy € ObB or X,, € ObB, so that ¢ - t; is admissible. For an arbitrary
z € (Re)+(t)(Xo, X,) there exists zH € (Re)+(t - t1)(Xo, Xy), and zby € (Re)+(Xo, Xn)
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by induction. Due to (33) zHby = z — zby H € (Re), which proves the claim. Therefore,
the ideal (Re) is stable with respect to all A.-operations, including b;.

Denote by D = &/s7}(Re)+ = Q(C|B) the quotient A, -category. It has a direct sum
decomposition similar to that of &€

Xo=X, Xnpn=Y

sD(X,Y) =P $ sD(t)(X,Y),

n21 C-admissible (¢;X0,X1,...,Xn)

sD(t)(Xo, Xn) = s&€(1)(Xo, Xp) = 5€(Xo, X1) ® - - - ® sC(X,, 1, X)) [t} — [t]5],

with the only difference that the sum is taken over C-admissible trees t. We can view D
as a graded k-subquiver of &.
The category € is embedded in D (via a strict A.-functor) as

sDo(X,Y) = sD()(X,Y) = sC(X,Y)

for the trivial tree t = (|; X,Y’). Let us show that D is relatively free over C.

Let us define for j > 0 the A-subcategories D; and differential graded subquivers
Q;.1 of D so that embeddings (30) hold. Each leaf ¢ and the root of a tree can be connected
by the unique minimal path. We say that internal vertices occurring at this path are
between the root and the leaf ¢. Define for j > 0 the A,-subcategory D, = @,D(t) of D,
where the summation goes over all

C-admissible trees t with no more than j unary
internal vertices between the root and any leaf.

(C1)

Define for j > 1 the graded subquiver N; = @, D(t) of D, where the summation goes over
all trees t satisfying (C1) and such that

there exists a leaf ¢ of ¢ with j unary internal vertices between the
root and /; the lowest internal vertex (adjacent to the root) is unary.

(C2)

One can easily see that for j > 1
SQj = S'Dj_l @ SNj

is a differential graded subquiver of D; C D. For example, Dy = D(|) = €, Ny = ’D(*),
9, =D(])®D(}), and Dy = D(|) ® &¢D(t), where ¢ runs over admissible trees with the
only unary internal vertex v, such that all other internal vertices lie on the minimal path
between the root and v.

The inclusion map of differential graded quivers i : sQ; —— sD; induces a unique
strict Aso-functor 7 : FQ; — D; [LM06, Corollary 2.4].

5.3. PROPOSITION. The map iy : sFQ; — sD; is surjective and its kernel is (Rp,_,).
Thus it induces an isomorphism t1 : sFQ;/(Rp,_,) — sD;.
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PROOF. The strict Ao-functor 7 : FQ; — D; is described in [LM06, Section 2.6] as follows.
Let t be a reduced labeled tree, with n input leaves, and let < be a linear order on Vert(t),
such that < y implies z < y for all z,y € Vert(t). The choice of < is equivalent to
the choice of decomposition into product of elementary forests (1). The linearly ordered
tree (t, <) determines the map b?;gé) : (sFQ;)®" — sFQ, given by (2) and a similar map

b(it) o 1 (sD;)®" — sD;. In the commutative diagram from [LMO06, Section 2.6]

SFQ

on Y69
(sQ,) — ——— sF,9;

\t\

e, | (31)

(S®j>®n &) S®j

the top map is invertible, so 7; is uniquely determined by this diagram.
Being the first component of a strict A,.-functor 7; satisfies, in particular, the equation

FQ; 5 jon D
((sD;1)%" s (s92))" 2 sFQ; — sD;) = ((sD;1)*" S (sD;)9" 2 D)
D .

= ((sDj-1)"" 2 Dy = 5D)) = ((sD;0)™" " 5Dy ©— 5F1Q; — 5D).

It implies Rp, 41 = 0. Since 7 is strict we have also (Rp,_,)i1 = 0. Thus there is a strict
Ao-functor ¢ ‘with the first component ¢; : sFQ;/(Rp, ,) — sD;, identity on objects.

Let us construct a degree 0 map ¢ : sD; — sFQ, for j > 1. Let t be a tree that satisfies
(C1). Denote by UV(t) C Vert(t) the subset of unary internal vertices. Let minUV(¢)
be the subset of partially ordered set (UV(t),=<) consisting of minimal elements. Let
L C Leaf(t) be the subset of leaves ¢ such that between ¢ and the root there are no unary
vertices. Let L be the set of leaf vertices above leaves from L. Using the canonical linear
ordering t. = (t,<) of Vert(t) [LMO06, Section 1.7] we can write the set L LI minUV(¢) as
{u; <--- <wug}. For any 1 < p <k denote by t, the C-admissible subtree of ¢ with

Vert(t,) = {y € Vert(t) | y = u,} U {new root vertex r,}.

Edges of t, are all edges of ¢ above w, plus a new root edge between u, and r,. In
particular, if u, € L, then t, = | is the trivial tree. Denote by ¢’ the reduced labeled tree,
which is ¢ with all vertices and edges above minUV (¢) removed. It has precisely k leaves.
Thus ¢ is the concatenation of a forest and ¢':

We have

Vert(t) = Vert(t') U |_| Vert(t,), Leaf(¢ |_| Leaf (¢ Leaf(t') = |_| Out(t,).

p=1
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Correspondingly, the labels of the p-th leaf of ¢’ are those of Out(t,).
Being simply a shift, the k-linear map bi :sD(t)®@- - -®@5D(ty) — sD(t) is invertible.

Therefore, for any element x € sD(t) there exists a unique tensor Y, 2zl @ --- ® z} €
sD(t1) ® -+ ®sD(ty) such that x = >, (2| ® - ® z,i)btji. We have 2, € sD(t,) C s9;, in
particular, 2/, € sD(|) = s€, if u, € L. Define

zh = Z Dby, fesfﬂ,Q

Commutative diagram (34) implies that z¢i; = >, (2{ @ -+ ® z,i)bij = x. Therefore,

[sD; —2— sFQ;, 5 sFQ;/(Rp, ,) —— sD;] =id. (36)

Let us prove that ¢m preserves the operations b, for n > 1. Indeed,

iTQj

Dj _ AR ™
b2i (¢m1) — (fm1) ="y, = (D)% 22220 s, sFQ;/(Ro, ,)]-

Consider trees 7y, T, ..., T, satisfying condition (C1), labeled so that the operation
by sD(m) ® -+ - ® sD(1,) — sD; makes sense. The quiver (sD;)®" is a direct sum of
such sD(11)®- - -®sD(7,). If some of trees 7, are not trivial, then by’ ¢ = ¢®"by, *, because
constructing ¢ for 7 = (1 UrpU- - -UT,)-t, is equivalent to decomposing each 7, as in (35),
collecting the upper parts, and gluing the lowest parts 7, into 7/ = (r{ U7y U---U7)) - t,.
If all trees 7, are trivial, then D(7,) = D(]) = € and

(bt = "B )my = (b — Uy )m = 02 (s€)°" — sFQ;/(Ro,_,),

due to Remy C Rp,_,m = 0.
We claim that

[sFQ; — sD; — sFQ; — sFQ,/(Ro, ,)] = [sFQ; —— sFQ,/(Rp, ,)]. (37)

First of all, the restriction of this equation to sQ; = s3|Q; holds true:

[sQ; — sD; 2 sFQ; 1 sFQ, /(Ro, ,)] = [sQ; —— 559, — sFQ,/(Ro, ,)].
(38)
Indeed, sQ; = sD;_; @& sN;. On the first summand we get for x € sD;_4(¢)
Tty = Z(z ®-® zk)bt, - Z - ® z,i)bigj

SEEN Z 2 QR zp) b "+ (Rp,_,) =) (4 ®~--®z,i)bij’l + (Rop, ,) = 2m

)

by Proposition 3.2 because z; € sD;_y. On the second summand we get for z € sN;(t)

(51 @ T
ThH—— T h—— X —— T
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since t' = |. Thus, (38) is verified.
Now we prove (37) on the generic summand sJF,Q; of sFQ;, where 7 is a reduced
labeled tree with n leaves. The first map below is an isomorphism:

[(s9,)®" == 5F,0; — sD; 2™ sFQ,/(Ro, )]
b?<j T
S@j ? S?Qj/(RDj—l)]
17 n T n b"‘<
(59,)5" < (sD;)8m 2, (sS"Q /(Rp, )" == sF9;/(Ry, )]

(52;)%" = (sF9,)" 2 (s5Q;/(Ro, )" — 539,/ (R, )]

FQ;

(52,)°" " 57,9, ™ 59, /(Roy, )]
by (38) and by the fact that the considered maps i, ¢m and m; commute with b,_
Rewriting (37) in the form
[sFQ; ™o sFQ;/(Rp, ,) —— sD; —*— sFQ; ™ sFQ,/(Ro, ,)]
= [sFQ; —» sFQ;/(Ro, ,)],

we find by surjectivity of m; that
[sFQ,/ (R, ) —— sD; —2— sFQ; — sFQ,/(Rop, ,)] = id.
Together with (36) this proves that ¢m; is an inverse to ¢;. "

5.4. COROLLARY. The Ay-category D = Q(C|B) is relatively free over C.
5.5. THE FIRST EQUIVALENCE. Let A be pseudounital, then the restriction functor
AL (Do, 91 A) = AL(CA), (£ f) = f
takes values in the full subcategory A%%(C, A)moas- Indeed, let (f, f') be an object of
Aw“ 1(Do, Q1; A). For arbitrary objects X, Y of B we have
fi=[sC(X,Y) — 50 (X, y) -1 sA(Xf, Y )]
— [sD()(X, V) 2 50, (X, Y) I sA(XF, Y f)]
= [sD()(X, v) 2R SA(X £ Y f)],
where H is the map H : sD(|) —— sD(t;) —— 5Q,. Hence, the above f; is null-homo-
topic. By Definition 6.4 of [LO06] the A -functor f }3 is contractible.

A short exact sequence of chain maps of complexes is semisplit (resp. semisplittable)
if it is split (resp. splittable) as a sequence of degree 0 maps of graded k-modules.
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5.6. LEMMA. Let 0 — C —2— A .B - 0 be a semusplittable exact sequence of
complezes of k-modules. If C is contractible, then this sequence is splittable, and the
splitting chain map v : B — A can be chosen so that v is homotopy inverse to (3.

PrROOF. Let ¢ : A — C be a map of degree 0, such that a¢ = 1o. Assume that
l¢ = Hd+dH for a homotopy H : C' — C of degree —1. Then ¢ = (¢H)d = pHd+dpH :
A — C'is a chain map, and at) = apHd+dapH = Hd+dH = 1¢. Denoteby v : B — A
the unique k-linear map such that v = 0, v = 1. The splitting injection v = ker ¢ is a
chain map. The sequence looks as follows

a B
0—-C—A—B—0.

Since A is a direct sum C' @ B, we have

idg —fv = Yo = (pHd + dpH)a = (pHa)d + d(pHa) = vd + d,

H a

where v = (A NG C A) is a homotopy. ]

5.7. PROPOSITION. Let A be unital, then the restriction strict As-functor
restr : A:foul(ﬁo, Q1;A) — AL (C, A)moa s (39)

18 an Aso-equivalence, surjective on objects. The chain surjections restry admit a chain
splitting.
PROOF. First of all, restr is surjective on objects. Indeed, assume that f : € — A is

unital and B < € — - A is contractible. We have to extend the chain maps fi :
sC(X,Y) — sA(Xf,Yf) to chain maps f] : sQ1(X,Y) — sAXf,Yf). If XY ¢ ObB,
then sQ;(X,Y) =sC(X,Y) and f{ = f1. f X € ObB or Y € Ob B, then sQ;(X,Y) =
sC(X,Y) @ sD(t)(X,Y) as a graded quiver, and the complex A(X f,Y f) is contractible
by Proposition 6.1(C1), (C2) of [LO06]. Let xxy : sA(X[f,Yf) — sA(Xf,Y[) be a
contracting homotopy for A(X f,Y f). Define

fi = (sD(L)(X,Y) = s€(X,Y) T SAX,Y ) 25 SA(XT,Y ).

Then H f] = fixxy. Since H = s : s€ — sD(t;) is invertible, the equation

Hfiby — Hb f{ = Hfiby + biH f] — fi = fixxybi +bifixxy — f1=0:
sC(X,Y) — sA(Xf,Yf)

implies that f] is a chain map.
Let us prove that the restriction chain map

restry - sAL (€, Qi AN ((f, ), (9:9) = sA=(€A)(frg),  (rr')mr
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is homotopy invertible. This map is a product over n € Zx, of the restriction maps
P Vo — V! of the graded k-modules of n-th components (compare (15) with analogous
decomposition of sA(C,A)(f,g)). Clearly, the maps p,, = id for n =0 or for n > 1. On
the other hand, for n =1

p1 = Hgk(ine, 1):
[[ GG Y)sAXfYe)— [ GGCX.Y) sAXf Yg))

X,Yeobe X,Yeobe

is surjective with the kernel Ker p1 = [[xycopeCu(sD(t)(X,Y), sA(X f,Yg)), because
the sequence 0 — s€ — sQ; — sD(t;) — 0 is semisplit. Since we may write the kernel as

Kerp1 = H Qk(5®(tl)(X7 Y>7S'A(Xf7 Yg))a

XeObB,YeObC
or XeObCYeObB

it is contractible, because contractibility of f|, g} g+ B — A implies contractibility of
complexes A(X f,Yg) by Proposition 6.1(C1), (C2) of [LO06].
Summing up, the first term of the semisplit exact sequence

restry

0 — Kerrestr; —— sAx1(C, Q13 A)((f, /), (9.9")) sA(C,A)(f,9) — 0

is contractible. By Lemma 5.6 this sequence admits a splitting chain map

v:sAx(CLA)f,9) — sAx1(C, Q;A)((f, 1), (979/))a

and v is homotopy inverse to restr;. Applying Corollary 1.9 we conclude that (39) is an
A-equivalence. n

5.8.  COROLLARY. AY -2-transformation (39) is a natural A% -2-equivalence.

5.9. PROPOSITION. Let A be a unital Ay -category, let D be a pseudounital A, -category
with distinguished cycles 1Y, let Q be a differential graded quiver and let N be a graded
quiver such that ObD = ObQ = ObN and Q = DON. Suppose that N(X,Y') # 0 implies
that 1¥ € Tmb; or ' € Imby. Then an arbitrary pseudounital Ao -functor f : D — A
extends to an object (f, f') € Ob Aiﬁ(@, Q; A) for some f'.

PROOF. Let sM = N be the differential graded quiver and let a : sM — sD be the chain
map defined in Section 4.5. There exists a homotopy f : sM(X,Y) — sA(Xf,Y f) of
degree —1 such that

afi = for + dWUF s M(X,Y) — sA(XF, Y f).

Indeed, the case of M(X,Y) = 0 being obvious, we may assume that tx € Imb; or
ty € Imb;. Then XinA €itxfi+Imb;, CImby or yinA €ty fi +Imby C Imby. Since A is
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unital, the complex sA(X f,Y f) is contractible with some contracting homotopy h. We
may take f = afih.
Define a degree 0 map

= (59(X,Y) = sD(X, V) & sN(X, V) L2 s a(x 1.y f)).
For arbitrary p € sD(X,Y), m € sM(X,Y) = N(X,Y) we have

(p,ms)(fibf = b7 f1) = pfiblt + mfolt — (pb7 + ma) fi + (md™Ms)s™'f
= p(fib = b7 f1) + m(foft + W f —af) =0

by (18). Therefore, fi is a chain map and f{}ﬂ) = fi. =

5.10. PROPOSITION. In assumptions of Proposition 5.9 the restriction strict A -functor
restr : A2 (D, Q;A) — AY(D, A), (x,2') — x (40)

is an As-equivalence, surjective on objects. The chain surjections restr; admit a chain
splitting.

PROOF. Let us prove that for an arbitrary pair of objects (f, f'), (g, ¢') of A% (D,Q;A)
the restriction chain map

s451(D, QA ((f, 1), (9,9')) — sAx(D, A)(f, 9)

is homotopy invertible. This map is a product over n € Zx, of the restriction maps
pn : Vi, — V! of the graded k-modules of n-th components (compare (15) with analogous
decomposition of sA.(D,A)(f,g)). Clearly, the maps p, = id for n = 0 or for n > 1. On
the other hand, for n =1

p1 = Hgk(inD, 1):
[[ GGoXY)sAXfYg)— ] GDX,Y)sAXf,Yg)

X,Y€ObD X,YeObD
is surjective with the kernel Ker p1 = [ ycopp Ce(sN(X,Y), sA(Xf,Yg)). As in proof
of Proposition 5.9 N(X,Y) # 0 implies that xiy € uxfi + Imb; C Imb; or y,ift €
tygr + Imb; C Imby, hence, sA(X f,Yg) is contractible. Therefore, for all objects X, Y
of D the complex C, (sN(X,Y), sA(X f,Yg)) is contractible. Thus, Kerrestr; = Ker p; is

contractible.
Summing up, the first term of the semisplit exact sequence

restry

0 — Kerrestr; —— sAs1(D, % A) ((f, ). (9.9")) sAx(D, A)(f,9) =0

is contractible. By Lemma 5.6 this sequence admits a splitting chain map

v:sAx(D,A)f,9) — sAx1(D, Q;A)((f, ), (gygl))y
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and v is homotopy inverse to restr;.
By Proposition 5.9 the surjection

Ob A (D, Q;A) 3 (f, f)) — f € Ob A¥*(D, A)

admits a splitting f — f = (f, ). Applying Corollary 1.9 we conclude that (40) is an
A-equivalence. n

5.11. COROLLARY. AY -2-transformation (40) is a natural A -2-equivalence.

An easy converse to Lemma 5.6 is given by

5.12. LEMMA. Let : A — B, v: B — A be chain maps of complezxes of k-modules,
such that v = idg. Denote C' = Kerv, then A ~ C®B. If § is a homotopy isomorphism,
then the chain complex C s contractible.

PROOF. Being one-sided inverse to homotopy isomorphism 3, the map v is homotopy
inverse to (3. Therefore, id4 —8v = hd + dh for some homotopy h : A — A of degree —1.
Since C' is the image of the idempotent idy —Bv = pr -in®, we have

idg = in® pr?in® pr¥ = in%(id4 —Bv) pr° = (in® hpr®)d + d(in® h pr).
Thus, ide = Hd + dH for H = in® hpr® : C — C, and C is contractible. .
5.13. THEOREM. Let A be a unital A -category, and let D = U;>D; = limij =
Q(C|B) be as in Section 5.2. Then the restriction strict A -functor

restr : AV(D, A) — A“ (€, A)mod s
is an Ax-equivalence, 2-natural in A, surjective on objects. The chain surjections restry
admit a chain splitting.

PROOF. All restriction strict A.-functors in the sequence

Ago(ea-/q)modﬁ D A:foul('Do, Ql;ﬂ) A A’é’o“(@l,ﬂ)

e AV (D, Qp A) e AVY(Dy, A) e ALY (Dy, Qa3 A) —— ... (41)
are A,-equivalences (and natural AY -2-equivalences). They are surjective on objects.
The first components are surjective and admit a chain splitting. For the first functor it
follows from Proposition 5.7. For other odd-numbered functors it follows from Proposi-
tion 5.10. Indeed, if X € Ob B, then xi§ = xiSHb; € Im(b; : sD(X, X) — sD1(X, X)).
For even-numbered functors it follows from Theorem 4.7.

Let us show that A%%(D,A) is the inverse limit of (41) on objects and on morphisms.
There are restriction strict A..-functors

restr : AYY(D, A) — A% (C, A)moan C AL (C,A), f= fle,
restr : Afo“(ﬂ,ﬂ) — Afoul(ﬁj, QjJrl;-A), f = (f’D]w f‘QjJrl)? j 2 07
restr : AV(D, A) — AL(D;, A), feflo, 721
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They agree with the functors restr from (41) in the sense restr - restr = restr.
Since D = U;»¢D;, pseudounital A,-functors f : D — A are in bijection with se-
quences (f7); of pseudounital Au-functors f7: D; — A such that f7*!| = fi. In other
J

words, Ob A¥%(D, A) is the inverse limit of the sequence of surjections
Ob A% (€, A)moas <— Ob ALY (Dg, Q15.A) <— Ob AL (Dy, A)
<+— Ob A% (Dy,Qy;A) —— Ob ALY(Dy, A) <—— Ob A% (Dy, Q3; A) ¢— ...
In particular, the map

Obrestr : Ob AY(D, A) — Ob A (€, A)moa

is surjective.
Let f,g : D — A be pseudounital A,-functors. Since D = (Uj>0®j) U(U];le),
Aso-transformations p: f — g : D — A are in bijection with sequences

(%"t % 0% 00, )

of A.-transformations p/ : f lp, = glp, : Dj — A, j = 0, and Aj-transformations

p7: flo, = glo, : Q5 — A, j > 1, such that p7+1}®_ =P, pﬂg = p'/. In other words,
J J

Ao(D,A)(f,g) is the inverse limit of the sequence of splittable chain surjections

AOO(G,A)(f|@,g|@) D\— AOOl('DOv Ql;A)((f|®07f|Q1)7 (g|®ovg|91)> S ..
<+— AOO('Dj7'A)(f|‘Dj7g|®j) <+— AOOl((Dﬁ Qj+1;‘A)((f|®j7f|Qj+1)7 (g|Dj7g|Qj+l)) < ..

Since these surjections are splittable, the above sequence is isomorphic to the sequence of
natural projections

n n+1
Coi—CyxCia—CyxCy x Oy <— ... < HCmq— HCmq—
m=0 m=0

for some complexes C,, of k-modules. Its inverse limit is [[°_, C}, ~ Aoo(D, A)(f,g). By
Lemma 5.12 all C,, are contractible for m > 0. Therefore, [[>_, C, is contractible. We
obtain a split exact sequence

0= T Cn — Ax(D A)(f. 9) == Ax(€, A)(fles gle) — 0

m=1

with contractible first term. By Lemma 5.6 8 = srestr; s~! is a homotopy isomorphism.

Using Corollary 1.9 we prove the theorem. [
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6. Unitality of D

We are going to prove that if € is strictly unital, then the A.-category D constructed in
Section 5.2 is not only pseudounital, but unital with the unit elements xi$ € sD(])(X, X) C
sD(X, X). Let us describe k-linear maps h : sD(X,Y) — sD(X,Y) of degree —1 such
that

1 — (1®i$)by = bih + hby : sD(X,Y) — sD(X,Y). (42)

The homotopy h is called the right unit homotopy. Let t be a C-admissible tree. Let y
be its rightmost leaf vertex. Let vg < v1 < .-+ < v, < vp41 = y be the directed path
connecting the root vy with y, p > 0. Vertices v; and v;;; are connected by an edge for
all 0 <@ < p. Let ¢, 1 < i < p be the tree t with an extra leaf attached on the right to
the vertex v; if v; is n-ary, n > 1 as in

Xo X0 X Xoo1 Y i Y
v

X, X,.1 Y
\/ - \T%

If v; is unary, we attach an extra leaf on the right to v; and add two more unary vertices
above and below it as in

" v X Y yif Y

<

)

U

=

X Y

The obtained trees t; are C-admissible.
Let  be a homogeneous element of sD(¢)(Z,Y). Define ] = 2®yi§ € sD(t)(Z,Y) =
sD(t)(Z,Y) @ sC(Y,Y). We claim that if € is strictly unital, then the map

p
h:xw— Z +af (43)
i=1

with an appropriate choice of signs satisfies (42). To describe the signs and to prove the
claim we study the set of operations acting in D.

6.1. A MULTICATEGORY OPERATING IN D. Let o/ ” be the free graded k-linear (non-
symmetric) operad, generated by

— a 0-ary operation iy € 42%0(2/3(0) of degree —1,

— a unary operation H € a/a’ > (1) of degree —1,
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— an n-ary operation b, € s/ ®(n) of degree 1 for each n > 1.

The construction of free non-symmetric operads uses plane trees instead of abstract trees.
Otherwise it is similar to the case of symmetric operads, see e.g. [MSS02]. The operad
o, of operations in A..-algebras (e.g. [Mar00]) is a suboperad of AP,

Actually we need a multicategory [Lam69, Lam89| rather than an operad. A multi-
category is a many object version of an operad, a (non-symmetric) operad is a one-object
multicategory. So we define a graded k-linear multicategory ! 93, whose objects are
pairs of objects of €, thus Ob.ZY® = Ob€ x ObC. For n > 0 the graded k-module of
morphisms

Q{OE/B((X{7 Xl)? (Xéa XQ): R (X7/w Xn); (Y/, Y))
is 0 unless X; =Y’ X,, =Y and X; = X, for all 1 < i < n. For n = 0 the graded

k-module of morphisms ! B(; (Y')Y)) is 0 unless Y’ = Y. The morphisms of 28 are
freely generated by

— 0-ary operations xig € Mog/g(; (X, X)), X € ObC of degree deg xip = —1,

— unary operations H = Hxy € Jafog/g((X, Y);(X,Y)), X,Y € ObC, where X €

ObB or Y € Ob B, of degree deg H = —1,

— n-ary operations b, € JZZS/B((XO,Xl), (X1, Xa)y ooy (X1, Xn); (XO,Xn)), of de-
gree degb, =1 for X, ..., X,, € ObC, n > 1.

We shall not insist on distinguishing between the operad A/ and its refinement — the
multicategory ! 3, leaving the choice of context to the reader.

Similarly to the operad 7., [Mar00], governing A.-algebras, the multicategory AP
has a differential d — a derivation of degree 1, such that d?> = 0. In general, a derivation d
of degree p of a graded k-linear multicategory .# is a collection of k-linear endomorphisms
dof #(Zy,...,7Z,;Z) of degree p, such that all compositions (which are of degree 0)

MZ%(}/&,,Y]C,ZZ)(@%(ZD,Zn,Z) —>%(Zl,...,Zl',l,i/l,...,Yk,ZiJrl,...,Zn;Z)
(44)
satisfy the equation

with the sign conventions of this article. If d*> = 0, we may say that p; are chain maps.
Since o/</® is free, its derivations are uniquely determined by their values on genera-
tors. In particular, the derivation d of degree 1 is determined by these values:

XiOd - 07
Hxyd=1xy) (the unit element of ,;zfoi/ﬁ((X, Y); (X,Y))),
p>1, a+c>0
bud=— > (19®b,@1%)bay14e, 0> 1.

a+p+c=n
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For o/</® we use the notation (1% ® b, ® 1%)bsq14. referring to the action of A% in

A.-algebras as a synonym of the usual operadic notation (b, ®ba+1+4¢)ftat1 = bpOat1batite-
Since the derivation d has odd degree, the k-linear map d? is also a derivation. Its value on
all generators is 0 (for b, it follows from a similar result for o7, see e.g. [Mar00, MSS02]).
Therefore, d?> = 0, d is a differential, and .7, —— AP is a chain embedding.

The so defined differential d is distinguished by the following property. The action
maps

[0 SE(X(), Xl) & 88(X17X2) K- ® Sg(Xn_l,Xn)
® MOS/%((XO, X1), (X1, X2), ..., (Xpo1, Xn); (Xo, Xn)) — s€(Xo, X,,)  (45)

are chain maps, where s€(_, ) is equipped with the differential b;. It suffices to check this
on generators of AP, For them the property follows from (32), (33) and the equation
xighy = 0.

Let & 2{73 be a submulticategory of S B, generated by H and b,, n > 2, with the

same set of objects Ob .o/ 2{73 = Ob.o//®. It is a differential graded submulticategory
without O-ary operations: &/%/2(;(X,Y)) = 0 for all X,Y € Ob@. As a k-linear graded
multigraph .o/ SO/ ® has the following description. For n > 1

AP (X0, X1), (X1, Xa), ., (Xnmr, X)) (Xo, X)) = & k[lt]: — [t]5],
admissible (¢;X0,X1,...,Xn)
(46)
other k-modules &7 %/®((X{, X1), (X5, Xa), ..., (X!, X,,); (Y',Y)) vanish.
The embedding of & %/® is denoted
Vil S e S OB (47)

The following general results are valid for an arbitrary embedding ¢ : # ~—— .# of
differential graded k-linear multicategories, such that Ob ¢ =idoy, 4z, and #Z(; Z) = 0 for
all Z €e Ob# =Ob.Z.

6.2. DEFINITION. A right derivation 0 of degree p of the embedding v : M —— A is a
collection of k-linear maps

/A VAT A R /A VAT /YA

of degree p for all Zy, ..., Z,,7Z € Ob.# , such that compositions u; from (44) satisfy

MM M MM
L®6+5®{ = j& , L®5J = jé
MM MM W

if1<i<n.
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Clearly, for n =0 the map 6 : 4(;Z) =0 — 4 (; Z) is 0.
An example of a right derivation is given by an inner right derivation. Let Ay €
M (Z; Z) be a family of morphisms of degree p. For n > 0 define

ady : M (Z1,.... 20, 7Z) — M(Z1, ..., 700 7)
fe(fex)m — (=) Az, @ Hn = for Az — (=)PAz, 0, f.

One verifies easily that ad) is a right derivation, which we call inner.

One can show that if 0 is a right derivation of ¢, and d is a derivation of .#Z such
that .#d C .#, then their commutator [§,d] = dd — (—)%9dd is a right derivation of ¢
as well. In particular, it applies to a differential d of degree 1. If § = ad, is inner, then
[0, d] = ad,q is also inner.

6.3. EXAMPLES OF RIGHT DERIVATIONS. Consider embedding (47) and take the family
of morphisms

Axy) = (1@ yio)by = yip 02 by € S/ P((X,Y); (X,Y)).

Since \(x,yyd = 0, we have [ady,d] = adyg = 0. Thus, § = ad(1giy), commutes with d.

Let us show that ady = [5, d] for some right derivation n : &%/% — AP of 1. Since
o 2{73 is a free multicategory, any such right derivation is uniquely determined by its value
on the generators H and b,, n > 1. We define a right derivation 7 of ¢ of degree —1 by
the following assignment:

Hxyn=Hxy(1®yig)bHxy,
ban = (15" @ x,i0)bps1. (48)

Any operation f € o/ So/ B can be presented as
f=(g@ )15 @6, )(17% @ep,) ... (1797 @ ey, ey,

for some g € QSO/B, where ey = H and e, = b, if p > 1. Then

k
= (T g@ (1% @ey) ... (15 @epn) ... (19 @ ey, ey, (49)

=1

Let us prove that
[7]7 d] = 77d + d7l = ad(l@io)bz . (50)

Since the difference of the both sides is a right derivation of ¢, it suffices to prove (50) on
generators. First we find that

HX,Y(T]d + d??) = [HX’y(l ® Yio)bgHXA/]d + 1(X,Y)77
=Hxy(1®yig)bs — (1 ® yig)boHxy = Hxy ad(1gig)bs -
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For n > 2 we have

p>1, ¢>0
ba(nd + dn) = (1" @ 10) (hpind) = > (1%° @ by @ 1) (Buy140m)
a+p+c=n
p>1,a>0
- Z (1% ® bp)ba+1n
a+p=n
p>1, a+c>0
= - Z (17" ®10) (1% @ by ® 1) Dg14c
a+p+c=n+1
p>1, ¢>0
- Z (1®a ® bp ® 1®C)(1®a+1+c ® iO)ba+c+2
a+p+c=n
p>1,a>0 p>1,a>0
— Y (1% @b) (1% @ig)bara + Y [19°® (1% @ o)byia)bat
a+p=n a+p=n
p>1, a4+c>0
= - Z (17" ®10) (1% @ by ® 1) Dgs14c
a+p+c=n+1
p>1,e>1
+ Z (19" @) (1%" ® by ® 19)bg14
a+p+e=n+1
p>1,a>0 q>2,a>0
+ Y (17 Ri)(1™ @b Db+ Y, (17" @i0)(1% @ by)bass
a+p=n a+qg=n+1
=— > (1"Qi)b,e k- Y (1% @) (1% @ by)bars
0+p+1=n+1 a+24-0=n+1

= bn(l ® io)bQ - [1®n—1 ® (]. ® io)b2]bn

= bn ad(1®i0)b2 .

Thus equation (50) is verified.
Notice that the graded quiver s€ defined by (31) is a free & So/B—algebra, generated by
the graded quiver sC. Indeed, (31) can be written as

Xo=X, Xn=Y
sE(X,Y)=EP $C( X0, X1) ® -+ @ sC(Xp_1, X,))®

n>1 D G Xn_1€ObG

® ﬁgo/%((XO: Xl): (Xla XQ): ceey (anla Xn); (X07 Xn))

due to (46). Compare with the usual free algebras over an operad, e.g. [MSS02]. The
operations H, b, for n > 2 act in s€ via multicategory compositions in o/ SF.
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The multigraph AP is expressed via o /B as follows:

dog/g((Xm X1)7 (Xh X2)7 R (Xn—h Xn); (X07 Xn))
= @ %S{B((va}/ﬁa(}/17}6)7'"7(%717%);()(07)(71))[]{0_""'+kn]7 (51)

(Yo, Y1,....Y,) = (Xo,.... X0, X1, ..., X0, .., Xy oo, X)),
~ NG _ N J

ko+1 ki+1 kn+1

where p = ko+- - -+k,+n. Indeed, O-ary operations can be performed first. The summand
of (51) corresponds to insertion of ky symbols x,ip, k&1 symbols x,ip, and so on. In terms
of trees such summand is described by concatenation of the forest

Xo Xo Xo X4 X, X, X, X, X,
SR T BT T A B I
—— —— ——
ko k1 kn

with an admissible tree (¢; Yy, Y7,...,Y,).
The action (45) of A in s€ is described as follows. An element

(i@l i @10 ®@1& i) f € AP (X0, X1), - s (Xno1, X0); (X0, X)),
where f € &/%%((Yo, V1), (Y1,Y2), ..., (Ypm1, Y,); (X0, X,,)), acts by the map

o .®k ° .k .

88(X07X1> Q& SS(anlaXn)
5C(Xo, Xo)®™ @ sE€(Xo, X1) @ sC(X1, X1)®F @ - ®@ s&(X,_1, X)) ® 5C(X,, X,,)&Fn

followed by the action of f via multiplication in multicategory o/ So/ B that is, via grafting
of trees. )
Define a k-linear map h : s€(X,Y) — s€(X,Y) of degree —1 for all objects X, Y of
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C as follows:

n, Xo=X, Xn=Y
P X0 X))@ @5C(Xnor, X)) @ LI (X0, X1), -+, (X1, Xn)s (Xo, X))

X1,..,Xn-1€0bC

,1®n®nJ/

P seXo X))@ @5C(Xnor, X)) @ FI P (X0, X1), -+, (X1, Xn)s (Xo, X))

SE(J(, Y)
The concrete choice (48) of value of 1 on generators shows that on the summand
SC(Xo, X1) ® - @ sC( X1, X)) ® LI ((Xo, X1), - -, (X1, Xa); (Xo, Xo))
the map h takes values in
5C(Xo, X1) @ - @8C( X1, X,,) @5C( X, X)L 2 (1, (Xne1, Xy (Xony X5 (Xo, X))

Due to (49) the explicit formula for A has the form (43) with the concrete choice of signs.
Let us compute the commutator

—hbf — bEh = (19" @ n)abl + bE(1%" @ n)a

:(1®n®77>< Z (1®a®bl®1®c)®1+1®n®d)a
a+14c=n

+ < Y (1™ehel™)e 1+1®”®d>(1®”®7})a
a+1+c=n
= [19" ® (nd + dn)]a = [1°" ® ad @i, ]
SG(XO, Xl) X Se(anla Xn) ® %2{3((){07 Xl)a ] (anla Xn)a (X07 Xn)) -
SG(XO, X1)® . '®5€(Xn—17 Xn)®S€(Xn7 Xn)®%§<3/8( ) (XTL—17 Xn)u (Xn7 Xn); (X07 Xn))
We write an element 2y ® --- ® 2, ® f of the source, which is a direct summand of
s€(Xo, X,), in the form (23 ® -+ ® z,)f, meaning that z; € sC(X;_1,X;) and f is a
composition of expressions 19 ® b, ® 19¢ and 19* ® H ® 1%¢ ending in b, or H. Then
— (21 ® -+ @ 2,) F](AOY +DER) = [(21 @ -+ - @ 2,) (f- ad(1igype )|
— {[(Zl(g)..-@zn)f ®Xn10}b8 (1@ ® 2z @ x,i5) (12" L@ b5) f. (52)
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6.4. PROPOSITION. Assume that C is a unital A -category with the unit elements sat-
1sfying equations
(1®ig)by =1,
(1% ®@i§)bpyr =0,  ifn>1.

Then there exists a map h : sD — sD such that
(88 e Ty s@) = (88 oD 5@).
The map h : sD — sD is a right unit homotopy for D.

PROOF. We have to prove that (R).h C (R),. The left hand side is the sum of images
of maps

(127 ® b © 199) fln — (1% @ bE @ 1%°)(fn) : sC®* — sE. (53)
If ¢ > 0, this map equals

(197 @ b, ® 19) (fn) = (1%* @ by, ® 1%°)(fn),
and the claim holds. If ¢ = 0, expression (53) is

(1% @ b5)(fn) — (1% @ b)) (fn) + (=) (1% @ (1% @i5)b,,) f
= (1% ®b;)(fn) — (1% @ by)(fn)
+ (=) (1 @i5) (1% @ by ) f — (=) (1% @ig) (1% @ by yy) f
+ (=) (1% @ (1" @i5)bS, ) f + sCF — s€

and the last summand equals 0. So the claim holds, and h exists.
Property (52) turns into

WP +bPh=1—-(1®i5)b : sD(X,Y) — sD(X,Y).
Therefore, h is a right unit homotopy for D. [

6.5. THEOREM. Assume that C is a unital A -category with the unit elements satisfying
equations

(1®i$)by = 1, (S @ 1)by = —1,
(19" @ i§)bny1 = 0, (1§ ®19")byy =0, ifn>1.

Then the Aso-category D is unital.

PROOF. Besides constructing D from the pair (€, B), we may apply the construction
to the pair (C°P, BP), and we get an A.-category isomorphic to D°?. The opposite
Ao-category AP to an A,-category A is the opposite quiver, equipped with operations
b,”, see Definition A.4. In particular, ¥ = b; and (z ® ip)b3” = —z(ip ® 1)bo. Thus we
may use hop, = h for D°P in place of b’ for D. Thus, A-category D is unital. [
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6.6. COROLLARY. If C is strictly unital, then the Ay -category D is unital.

6.7. COROLLARY. The A% -2-functor A — A% (C, A)moas is unitally representable for
an arbitrary unital A -category C by

(C.e:€—qEB) Y (e,e YT " QEB)).

where Y : € — € is the Yoneda Ao -equivalence identity on objects from Remark A.9.

ProOF. By Corollary B.11 it suffices to prove unital representability for differential graded
categories € in place of €. In this case the representing unital A,-category Q(C|B) exists
by Corollary 6.6. [

7. Equivalence of two quotients of A..-categories

Let B be a full A, -subcategory of a unital A, -category C. By Remark A.9 there ex-
ists a differential graded category € with Ob€ = ObC, and quasi-inverse to each other
Ag-functors Y : € — €, ¥ : € — € such that ObY = ObV¥ = idgpe. Let B C C be
the full differential graded subcategory with ObB = ObB. The quotient A.-category
Q(C|B) and the quotient A,-functor € : € — D is constructed in Theorem 5.13. The

same Q(€|B) denoted also q(€|B) with the quotient A-functor e = (€ e D)
represents the A% -2-functor A — A% (C, A)mod 5-

There is also a construction of [LO06] which gives a unital A,.-category D(C|B) and,
in particular, a differential graded category D(€|B). These are smaller than Q(C|B),
however, we are going to prove that all these three A, -categories are equivalent. Thus
a simpler construction D(C|B) enjoys the same universal properties as q(C|B) does. As
a graded k-quiver A = D(C|B) has the set of objects ObA = Ob €, the morphisms for
X, Y € ObA are

S.A(X, Y) = @Cl Cn_IGBSG(X, Cl) (059 SG(Cl, 02) Q- Se(cnfg, Cn,1> & S@(Cn,l, Y),

.....

where the summation extends over all sequences of objects (C1,...,C,_1) of B. To the
empty sequence (n = 1) corresponds the summand sC(X,Y’). The operations b, : sA®" —
sA are restrictions of maps by = 0, by = b and for n > 2

b =p™ Y 1%®b, @19 THC @ (T7'5€)%" 2 @ T's€ — T>'sC.

myq<k;t<l

via the natural embedding sA C T>'sC of graded k-quivers [LO06, Proposition 2.2]. Here
k) - TRTP215@ — T>1s@, k > 1, is the multiplication in the tensor algebra.
Denote by Q(C|B) = D the quotient A, -category, constructed in Theorem 5.13.
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7.1. LEMMA. There is a chain quiver map v : sD(C|B) — sQ(C|B), whose summands
Py SC(X,C1) ® sC(C1,C2) ® -+ @ sC(Cha, Crm1) ® sC(Ch—1,Y) — sQ(C|B)(X,Y)

for C; € Ob B are defined by recurrent relation: 1, = e; : sC(X,Y) —— sQ(C|B)(X,Y)
1s the natural embedding, and for n > 1

n—1

77Z)n == Z(e?k ® 77Z)n—k]{)bk:—|—1‘ (54)

k=1
For example, 1, = —(e; ® e H)b,
Y3 = (e1@e; @etH) (1@ b H)by — (e1 @ ey ® et H)by .
In general, expansion of (54) contains 2"~% summands.
PrOOF. We have to prove equation
Ppby = by 1 sC(X, Ch) ® sC(C1,C,) ® -+ - @ sC(Ch—1,Y) — sQ(C|B)(X,Y)

for all n > 1. It is obvious for n = 1. Let us prove it by induction. Assume that it holds
for number of factors smaller than n. Then

n—1 a+c>0
wnbl = - Z(e?k ® wnka)karlbl = Z (6(181C ® wnka)(1®a ® bp 02y 1®C)ba+1+c
k=1 0<k<n
k+1=a+p+c
a=0,c>0
= — Z (1% @ b, ® 1" P) (2" @ 1y H)Dgpes1
0<k<n
k+1=a+p+c
a>0,p>1
+ Z (e?k®wnka)(1®a®bp)ba+l+ Z (e?a®wnfa)ba+l_ Z (ei@k®wnfkblH>bk+l-
k9r<1k<?r 0<a<n 0<k<n
=a+p

The second sum in the right hand side can be presented as

Z [e?a ® Z (e?k_a ® ¢n—a—(k—a)H)bk—a+1:| ba+1 .

O0<a<n—1 O<k—a<n—a

Thus, it nearly cancels with the third sum except for one summand, corresponding to
a = n — 1. In the fourth sum in the right hand side we replace 1, _rb; with by by
induction assumption, and we get

a0, c>0
Unbr = — Z (1% @ b, @ 19" P) (P @ thp— H )bager1 + (577" @ 1h1)by,

0<k<n
k+1=a+p+c

— Z (1% @b @ 197) (5% @ Yas 144 H b1 = b,

0<k<n
k+a+B+y=n

since (€' ® 1h1)b, = €F"b, = bper = buthy. o
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According to Theorem 5.13 for any unital A.-category A the map

restr : AL (D, A) — A% (C, A)mod B
={feAL(CA|fls=(B=—C 7, A) is contractible }

is surjective. A splitting of this surjection is defined recurrently in Propositions 5.7, 4.6,
5.9. Let us describe another splitting map which differs from the mentioned one and is
more suitable for our purposes.

7.2. PROPOSITION. Let f: C — A be a unital A -functor such that f|g is contractible.
For each pair X, Y of objects of C such that X € ObB orY € ObB choose a contracting
homotopy xxy : SAXF,Y f) — sAXf,Y ), thus, xby +byx = 1. Let f : TFsD — sA,
k > 1, be k-quiver morphisms of degree 0 which extend the components f, : TFsC — sA.

Then there exists a unique extension of fi : s€ — sA to a quiver morphism fi : sD — sA
such that (fi1, fa,...) are components of a unital Ax-functor f: D — A and

Hf~1:f~1X2S®(X,Y)—>S.A(Xf,Yf), (’55)

whenever X € ObB orY € ObB.

Warning: Extensions f : D — Aof f:€C — A constructed in Sections 4, 5 do not, in
general, satisfy condition (55).

PROOF. Let us extend f to an Ao -functor f : & — A such that f, = (sE®F —p 5Dk ELN
A) and Hf1 = f1X, whenever X € ObB or Y € ObB. Suppose that ¢y, ..., t, are trees,

n>1,and f; s€(t;) — sA is already defined for all 1 <4 < n. Then there is only one
way to extend f on E(t) for t = (t; LU ---Ut,) - t,, where t, is the corolla with n leaves.
Since

by = sl @ ... @l @ sl se(t)) @ - @ sE(t,) — sE(t), forn > 1,
H =s:5&(t)) — sE(t), forn=1

is invertible, we find that, respectively,

bot Y (fir ® - ®fi =0 17 hn (1@ ®1%P) fas 115

fi=(s&(t) == s&(t) @ - @ sE(t,)

A~ H-1

f1=(s&(t) — s&(t1) _f, sAXF,Y ) 25 sAXF,Y f)) forn = 1.

S.A) ,

Let us prove that coalgebra homomorphism f : & — A with recursively defined com-
ponents (f1, fa,...) is an As-functor. Equation

a+B>0

bfi= Y. (fu@ @fibi— Y (1% @b ®1%) fasips: T"sE — sA  (56)

114+ =n a+k+p=n
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is satisfied for all n > 1 by construction of fl So it remains to prove that fl is a chain
map. To prove by 1nduct10n on the number of vertices of ¢ that f1b1 =b f1 ( ) — sA,
it suffices to show that b f1b1 =b b1f1 for all n > 1 and that Hf1b1 = Hb1f1 due to
invertibility of b, and H. The first assertion is proven in [LO06, Proposition 2.3]. The
second follows from the computation

H(fiby — bifi) = Hfiby — Hby fy = fixbs — fr + biH fi
= fi— fibix — fi +bifix = —(flbl - blfl)X:
which vanishes by induction assumption. )
Using (55) and (56) one can prove that the ideal (Re) is mapped by f1 to 0. Therefore,

f factorizes as & — D — A for a unique A-functor f. It is unital since the unit
elements of € are also the unit elements of D. ]

7.3. LEMMA. Let f : A — B be an Ay -equivalence. Let objects X f, Y f of B be
isomorphic via inverse to each other isomorphisms r € sB(Xf,Yf), p € sB(Yf, X[)
(that is, [rs™1] € HYB(X [, Y f), [ps™'] € H'B(Y f, X f) are inverse to each other in the
ordianry category H'B). Then the objects X, Y of A are isomorphic via inverse to each
other isomorphisms q € sA(X,Y), t € sA(Y, X) such that qf; —r € ITm by, tfi —p € Imb;.
PROOF. Let chain maps gxy : sB(X[f,Yf) = sA(X,Y), gv.x : sSBY f, X [f) — sA(Y, X)
be homotopy inverse to maps f; : sA(X,Y) — sB(Xf,Yf), f1: sAY, X) — sB(Yf, X[).
Define ¢ = rgxy, t = pgy,x. Then

[(q@t)by — xig]fi = (rg @ pg)bafi — xig f1 = (rg @ pg)(fr ® f1)ba — xsiy
= [(r 4+ vby) ® (p + wby)]bs — xi i = (r®p)b — Xfiﬁf =0 (mod Imb).

Hence,
(q@t)by — xif = (@ )by — xi7 ] figxx =0 (mod Imby).
By symmetry, (t ® q)by — yit € Imb;. Other properties are easy to verify. n
We are going to apply Proposition 7.2 to the unital quotient A.-functor 7 : € —

D(C|B), constructed in [LO06]. When restricted to B the Ay-functor 7 becomes con-
tractible, therefore, there exists a unital A.-functor f : q(C|B) — D(C|B) (unique up to

an 1somorphism) such that 7 i1s isomorphic to the composition € —— — .
isomorphism) such that 7 is isomorphic to the composition € —— q(€|B) —— D(€|B)

7.4. PROPOSITION. The Ay -functor f : q(C|B) — D(C|B) (defined up to an isomor-
phism) is an equivalence.
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PrOOF. In the following diagram the top and the bottom rows compose to contractible
As-functors.

B e\ D(€|B)
Y = Y — Q(CB) Y)
B < e d D(C|B)

Here the A-functor f and an isomorphism a exist due to e being quotient A.-func-
tor. The existence of A.-functor g such that eg = 3¢ follows from Theorem 5.13. The
isomorphism

aD(Y) : eg =7°D(Y) — efD(Y) : € — D(C|B)

is equivalent by Lemma 7.3 to e for some isomorphism
B:g— fD(Y): Q(C|B) — D(C|B).

The A-functor D(Y') is an equivalence by corollary 4.9 and section 5 of [LO06]. Therefore,
if we prove that ¢ is an A -equivalence, then f is an A.-equivalence as well. So in the
following we consider only the case of strictly unital A.-category C, and we are proving
that the natural A.-functor f: Q(C|B) — D(C|B) (defined up to an isomorphism) is an
equivalence.

Let & be an arbitrary unital A.-category. Let & C & be its full contractible sub-
category, that is, complexes (s€(X, X),b;) are contractible for all objects X of F. Let
e : € — & be a unital A, -functor such that e(ObB) C ObF. Then there is a unital
A-functor D(e) : D(C|B) — D(E|F) [LO06, Corollary 5.6]. There is a unital A.-functor
¢ : D(&|F) — €, quasi-inverse to the canonical strict embedding 7¢ : & — D(€|F) and
such that 77¢ = ide [LO06, Proposition 7.4]. In particular, Ob7¢ = ide. The diagram

B C e — 7. D(eB)

e e ‘D(e)

I S
Fc g D(E|F) —— ¢

is commutative due to [ibid, Corollary 3.2]. Thus the composition h = D(e)7® : D(C|B) —
€ is a unital A-functor such that Obh = Obe and j°h = 7°D(e)7¢ = 77 = e.

Now we apply these considerations to the quotient functor e: ¢ — € = D = Q(C|B).
Define F C Q(C|B) as a full A,-subcategory with ObF = ObB. It is contractible. In
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the commutative diagram

B < . D(C|B)

Fc D(D|F) 3D

the composition h = D(e)n? : D(C|B) — D satisfies equation 7°h = e.
The restriction of the strict A-functor 7¢ : € — D(€|B) to B is contractible by [LO06,
Example 6.6]. Choose the maps

Y= —xil @1 =[S ®iS) @ 1]b, : sD(C|B)(X,Y) — sD(C|B)(X,Y)

as contracting homotopies if X € ObB. Indeed, (i§ ® i$)b; = i$ and

(1§ @ 1) @ 1]boby + b1 [(i§ @ i) @ 1]by = —[(i$ @ i5)by @ 1]by = —(i§ @ 1)by = 1,

because i$ is the strict unit of A = D(C|B). If X ¢ ObB, but Y € ObB we choose the
contracting homotopies

X =1®yi$: sD(CB)(X,Y) — sD(C|B)(X,Y).

Using Proposition 7.2 we extend 7© to a unique unital strict A.-functor f : D — A =
D(C|B) which satisfies the equation

(sD 5 sD s sD(CB)) = (sD —L sD(€|B) —- sD(C|B))

whenever the left hand side is defined. In particular, ef = 7¢ and Ob f = idgpe. The
composition fh : D — D satisfies equation efh = 7°h = e = eidp : € — D. According
to Theorem 1.3 the strict A,-functor given by composition with e

(eX1)M : AL (D, D) — AL(C, D)moan, [ ef,

is an A-equivalence. Therefore, fh ~ idp due to Lemma 7.3. We conclude that fih; is
homotopy invertible, and f; is homotopy invertible on the right.

We claim that (sA(X,Y) v, sA(X,Y) o, sA(X,Y)) = id, where ¢ is constructed
in Lemma 7.1. Indeed, consider this equation on the summand sC(X, C;) ® sC(Cy, Cs) ®
- ® SC(Ch_g, Chq) @ sC(C,—1,Y) of sA(X,Y). For n = 1 the equation e;f; = 1 is
obvious. Let us prove it by induction on n. If n > 1, then

n—1 n—1
Ynf1 = — Z(e?k @ Yk H )by fr = — Z(1®k ® X)bir1 = —(1 ® x)bo
k=1 k=1

=[1® 3G @1 Dby, = (1®iS)by @ 181 = 1.

Since f; is homotopy invertible on the right and on the left, it is homotopy invertible.
Since Ob f = idope, the Ao-functor f: Q(C|B) — D(C|B) is an equivalence. =
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8. The example of complexes

Let A be a k-linear Abelian category, let € = C(A) be the differential graded category of
complexes in A, and let B be its full subcategory of acyclic complexes. Let D = Q(C|B)
be the quotient unital A.,-category. The embedding e : € < D induces a k-linear functor
of homotopy categories

H% :HoC = H°(C,m;) — H°(D,m;) = HoD,

where m; = sb;s~'. Morphisms of Ho € are homotopy equivalence classes [g] of chain

morphisms ¢ : X — Y.

8.1. PROPOSITION. For a quasi-isomorphism q its image [ge] € HoD(X,Y') is invert-
wble.

Proor. If ¢ : X — Y is a quasi-isomorphism, then C' = Cone q is acyclic. The complex
C' is the graded object Y @ X[1] with the differential given by the matrix

o (4 0N _ (& 0
T \slg M) T \slg —s7ldXs )

There is a semisplit exact sequence of chain morphisms 0 — Y Lot x 1] — 0,
where n = in" = (1,0), &k = pr®l) = (9). Thus n € €(Y,C)% k € €(C, X[1])° are
cycles, nmy = 0, kmy; = 0. The morphisms s € C(X, X[1])7}, s7' € €(X][1], X)! are also
cycles, because in our conventions smq = sdX! 4+ d¥s = 0, similarly s~'m; = 0. Hence,
ks~ € C(C, X)! is also a cycle, (ks™')m; = 0.

Since C' € Ob B, we have a map

H=sHs"':C(C,C)— D(t)(C,C) — D(C,C), fr fsHs™ ' = fH.

It satisfies the equation Hmy +miH = e : C(C,C) — D(C, ). In particular, there is an
element 1cH € D(C, ). Define an element

p=Mn®1cH ®ks ") (1®my)my € D(Y, X),
where my = (s ® s)bys~. More generally, m,, = s"b,s7'. We have degp = 0 and
pmy = —(n®1lc®@ks™ ) (1 ®mg)my =nks™' = 0.

Let us show that [p] € H°D(Y,X) is inverse to [q] € H'D(X,Y). Define h =
s inX 1
(X — X[1] — C), then h € €(X,C)™!, and

d 0
hmy = hd® +d*h = (0, s) (s‘lq _S—IdXS) +d*(0,5) = (¢,0) = gn.
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One can check that

(h®1cH @ ks (1 @ma)maem; — (@n @ 1cH @ ks ) (1 ® 1 ® my)msm,y
= —hks '+ (N @ 1cH ks H(1®1®@ms)(1®@my)my = —1x + (¢ @ p)ma,

because hk = s.
Denote by 2z the morphism z = pr¥ : C' — Y, then z € €(C,Y)? and

1 0 1 0
_ LY g0, Y _ _ -1
xmy =zd —d z= (O)d — (slq dX[1]> (O) = _<81q) =—ks q.

One can check that
(n®1cH @ 2)(1 @ mo)mam; — (n @ 1cH @ ks @ q)(1 ® ms)mym,
—(n®1cH @ ks™' ®q)(1 ®@my ® 1)mam,
=nz—NRIcHRks ' @¢)(1@me®1)(my ® 1)my = 1y — (p @ q)ma,

because nz = ly. Therefore, the cycles p € D(Y, X)? and ¢ € D(X,Y)? are inverse to
each other modulo boundaries. [

8.2. COROLLARY. The functor H factors as H°C Qerdicy H°C/H'B —— HO(Q(C|B)),
where the Verdier quotient H°C/HB = D(A) is the derived category of A, and the functor
g: D(A) — H"D is identity on objects.

8.3. (CONSEQUENCES OF FURTHER RESEARCH. We shall use the results of the forth-
coming book [BLMO07] to draw more conclusions for the example of complexes. The above
differential graded categories of complexes C, B are pretriangulated, see [BK90]. There-
fore, Q(C|B) is a pretriangulated A..-category by results of [BLMO07, Chapters 15, 16].
The As-equivalent to it (see Section 7) differential graded category D(C|B) is pretrian-
gulated as well by [loc. cit.]. The differential graded category D(C|B) is precisely the
Drinfeld’s quotient €/B introduced in [Dri04, Section 3.1].

The isomorphism of A..-functors from Section 7 yields an isomorphism of triangulated
functors

19 ~ [H9¢ 2% HoQ(elB)) 2L HO(D(C|B))] (57)

by [BLM07, Chapter 18]. Notice that H% and H"J take objects of H°B to zero objects.
Hence, (57) can be presented as the pasting

—— H(Q(€|B))

Ny

HO% H°C/H"B cquiv | HO f (58)

V \
Oe H°

H°(D(€|B))

12

H
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for a unique triangulated functor W by the properties of the Verdier quotient /localization
QVerdier [Ver9g6, Section 2.2].

Denote by €' the pretriangulated envelope of an A.-category & [BLMO07, Chapter 18|.
The A -functor uy : € — EY is the natural embedding. The commutative square

e —-D(CB)

utrj/ j/utr

Str
etr J D (G‘B)tr
whose vertical arrows are A.-equivalences implies the commutative diagram

HOG QvVerdier HOG/HO‘B 4\1]) HO(D(€|B))

Ho(utr)j/ — HO(Utr)J/ — j{HO(utr)
HO(€") ——, {0(e)/H(BY) ——— HO(D(C[B)")

whose rows compose to H°7 and H°(7%), and columns are equivalences.

When k is a field, the functor @ is an equivalence by Theorem 3.4 of Drinfeld [Dri04].
In this case ¥ is an equivalence, as well as H° f from diagram (58). Hence, the triangulated
functor g : D(A) = HC/H’B — H°(Q(C|B)) from Corollary 8.2 is also an equivalence.

A. The Yoneda Lemma for unital A.,.-categories

A.1. BASIC IDENTITIES IN SYMMETRIC CLOSED MONOIDAL CATEGORY OF COMPLEXES.
We want to work out in detail a system of notations suitable for computations in symmet-
ric closed monoidal categories. Actually we need only the category of Z-graded k-modules
with a differential of degree 1. The corresponding system of notations was already used
in [Lyu03, LOO0G].

There exists a %'-small set S of % -small k-modules such that any % -small k-module
M is isomorphic to some k-module N € S (due to presentations k") — k(@ — M — 0).
We turn S into a category of k-modules k-mod with Obk-mod = S. Thus k-mod
is an Abelian k-linear symmetric closed monoidal %'-small % -category. The category
Cx = C(k-mod) of complexes in k-mod inherits all these properties from k-mod, except
that the symmetry becomes ¢: X @Y - Y @ X, 1@y — (—)¥y@z = (—)devdeyy @ 1.
Therefore, we may consider the category of complexes enriched in Cy (a differential graded
category), and it is denoted by C, in this case. The (inner) hom-object between complexes
X and Y is the complex

C(X, V)" = [[Homu (X\,Y™), (f)iczd = (fdH8) — ()% /d [+ e
i€Z
The product X = [],.; X, in the category of complexes of k-modules of the family of

objects (X,),es coincides with the product in the category of Z-graded k-modules (and
differs from the product in the category of k-modules). It is given by X™ =[], X;™
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Given a complex Z and an element a € C (X,Y), we assign to it elements 1 ®
a € Ck(Z®X,Z®Y), zR2z)(1®a) = 2@ za, and a®1 € G (X ® Z,Y ® Z),
(r®2)(a®1) = (—)*za® 2. Clearly, (1®a)c =cla®1) € ((Z® X,Y ® Z) and
(a@l)c=c(l®a) c G(X®Z,Z®Y). If g€ C(Z,W), then we have (1 ®a)(g® 1) =
(—)¥(ge1)(1®a) € G(Z0 X, W Y) (Koszul’s rule).

For any pair of complexes X, Y € Ob Cy denote by

evxy X @G (X,Y) =Y, coevyy 1Y — G (X, X ®Y)

the canonical evaluation and coevaluation maps respectively. Then the adjunction iso-
morphisms are explicitly given as follows:

GV, G(X, 2)) e G(X @Y, 2),
fr—(1x® f)evxz,
coevxy G (X, g) — g. (59)

Given a complex Z and an element a € G, (X,Y), we assign to it the element C,(1,a) =
C.(Z,a) =a¢ of C(Cu(Z,X),C(Z,Y)) obtained from the equation

ms* = (Gu(Z,X) ® C(X,Y) 2% C(Z,X) © C(C(Z, X),C(2,Y)) == C(2,Y)),

which holds for a unique chain map ¢. Despite that the map a is not a chain map we
write this element as a : X — Y, and we write a¢ as

G(1,a): G(Z, X) — C(Z,Y), (fi)iez = (fia”degf)z’ez-

Similarly, given a complex X and an element g € C (W, Z), we assign to it the element
Culg,1) =Cp(g9,X) = g¢ € G (Cp(Z, X), C. (W, X)) obtained from the diagram

G (Z, X))o G (W, Z) S —— CW, Z2)®C(Z,X)

3{1@1}1 lmgk

C(Z,X)® C(Cu(Z,X), G (W, X)) ——— C (W, X)

commutative for a unique chain map . Although the map C,(g,1) is not a chain map
we write it as

Qk(97 1) : glk(Z7 X) N Qk(W, )()7 (fi)ieZ s ((_)degf-degggifieregg)iEZ'
For each pair of homogeneous elements a € C,(X,Y), g € G (W, Z) we have

Cy(Z,a) Gy (9,Y)

(Cu(2.x) 2% ¢ (2.v) S ¢ (wy))

= (-)"(G(Z, X)

Qk(Q:X) Qk(an)
- RN

C(W, X) G(WY)).
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This equation follows from one of the standard identities in symmetric closed monoidal
categories [EK66], and can be verified directly. We also have C,(1,a)C,(1,h) = C, (1, ah)
and C,(g,1)C,(e, 1) = (—)¢Cy(eg, 1), whenever these maps are defined.

One easily sees that m%“ =d: CG(X,)Y) = C(X,Y) coincides with C (1,dy) —
Cy(dx,1).

Let f:A® X — B,g: B®Y — C be two homogeneous k-linear maps of arbitrary
degrees. Then the following holds:

coevy x ®coevpy C

(Xev C(A, AR X)®C(B,BRY)
SNEGB9, ¢, (4, B) & C,(B.C) 2 G(A.C))

g]k(Ahf@]‘ Qk(Ahg)
}o

LG (A, BeY) =1 C(4,0)). (60)

=(Xey T C(AARX QY

Indeed, (coeva x ®coevpy)(Ci (A, f)RCL (B, g)) = (coeva x G (4, f)®coevpy Ci (B, g)),
for coev has degree 0. Denote f = coevax C.(4, f), g = coevpy C(B,g). The mor-
phisms f and ¢ correspond to f and g by adjunction. Further, the morphism ms comes
by adjunction from the following map:

eva g ®l1
—

A®C (A B)®Cy(B,0) B®C,(B,C) =25 ¢,

in particular the following diagram commutes:

eva B ®1

A®C(A B)@C(B,C) —— B L(B,C)

om] e

A® C(A,C) ac C

Thus we have a commutative diagram

10f®1 eva,p ®l1

ARX®Y B®Y

ARC (A B)®Y

10189 1®g

eva g ®l1

A® G (A B)®G(B, ) —— B G(B, ()
1®ma evB,C

A®C (A, C) e C

The top row composite coincides with f ® 1 and the right-hand side vertical composite
coincides with g (by adjunction). Thus (1® f® 1)(1® 1 ® g)(1 ® ms)evac coincides
with (f ® 1)g. But the mentioned morphism comes from (f ® g)my by adjunction, so
that (f ® g)ma = coeva xey Cu(A, (f ®1)g) (the latter morphism is the image of (f ®1)g
under the adjunction), and we are done.
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One verifies similarly the following assertion [EK66]: given f € C,(A, B), then the
diagram

coevy, x

X G (A AR X)
coevB,X‘{ lgk(l&f@l) (61)
C(B,Box) =20 ¢, (4, B o X)

comimutes.

If P is a Z-graded k-module, then sP = P[1] denotes the same k-module with the
grading (sP)? = P!, The “identity” map P — sP of degree —1 is also denoted s. The
map s commutes with the components of the differential b in an A-category (A-algebra)
in the following sense: s®"b, = m,s. The main identity b*> = 0 written in components
takes the form

> (1 @by @ 1%y = 0: THsA — sA. (62)
r+n+t==k

A.2. A,-FUNCTOR h¥. Let A be an A, -category. Following Fukaya [Fuk02, Defini-
tion 7.28] for any object X of A we define a cocategory homomorphism h* : T'sA — T'sC,

as follows. It maps an object Z to the complex h*Z = (sA(X,Z),—b;). The mi-

nus sign is explained by the fact that HXZ & (hXZ)[=1] = (A(X,Z),m1). Actu-

ally, hXZ is some fixed complex of k-modules from Ob Cy, with a fixed isomorphism
hXZ —— (sA(X, Z), —b;). These isomorphisms enter implicitly into the structure maps
of h*, however, we shall pretend that they are identity morphisms. The closed monoidal
structure of Cy gives us the right to omit these isomorphisms in all the formulae.

We require 2~ to be pointed, that is, (T°sA)h* C T°sC,. Therefore, h* is completely
specified by its components h;* for k > 1:

coev

hy = [SA(ZO, Z1) ® @ SA(Zi_1, Zi) — Cu(WX Zo, WX Zy @ WP 21 @ - - - @ W71 Z3,)

Qk(17b1+k
_—

L CU(sA(X, Zo), sA(X, Z1)) —— sC,(h*X Zo, hXZk)] . (63)

The composition H¥ = h*-[—1] is described in [LM07, eq. (A.1)]. It is proven in this work
that HX : A — C, is an A, -functor. Therefore, h* = H* -[1] : A — C, is an A,-functor
as well. A similar statement is known from Fukaya’s work [Fuk02, Proposition 7.18] under
slightly more restrictive general assumptions.

Let A be a unital A,-category. Then for each object X of A the A, -functor H* :
A — C, is unital by [LMO07, Remark 5.19]. Hence, the A,-functor h* : A — C, is unital
as well.

A.3. THE OPPOSITE A,-CATEGORY. Let A be a graded k-quiver. Then its opposite
quiver A°P is defined as the quiver with the same class of objects ObA°® = ObA, and
with graded k-modules of morphisms A°P(X,Y) = A(Y, X).
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Let v : T'sA°® — T'sA denote the following cocategory anti-isomorphism:

7= (=1)"? : sAP(Xg, X)) ® - @ sAP(Xp_1, Xi) — sA(Xp, Xp1) ® -+ @ sA(X1, Xo),

(64)
where the permutation w® = (,1€ W R ’f) is the longest element of &y, and w! is
the corresponding signed permutation, the action of w® in tensor products via standard
symmetry. Clearly, YA = A(y®7)c = Ac(y®7), which is the anti-isomorphism property.
Notice also that (A°P)°? = A and 7* = id.

When A is an A,-category with the codifferential b : TsA — TsA, then by :
TsA® — TsA°P is also a codifferential. Indeed,

YoyA = YDAc(y @) =YA1Rb+ bR 1)c(y@7) = A(y®@7)c(1@b+ bR 1)c(y @)
=A(ye7)0e1+1@b)(y®y) =AMby®@1+1 by).

A.4. DEFINITION. [cf. Fukaya [Fuk02] Definition 7.8] The opposite A,-category A°P
to an A -category A is the opposite quiver, equipped with the codifferential b°® = ~by :
TsA® — TsAP.

The components of b°P are computed as follows:

b = (=)' [sAP(Xo, X1) @ - - - ® SAP(Xj_1, Xp)
W_Q) S-A(Xk,Xk71> ® e ® S.A(Xl,Xo) L S.A(Xk,Xo) = S.AOP(X(], Xk>:| .

The sign (—1)* in (64) ensures that the above definition agrees with the definition of the
opposite usual category.

A.5. THE YONEDA A, -FUNCTOR. Since the considered A..-category A is % -small,
and Cy is a %’-small % -category, Ay (A, C,) is a % ’-small differential graded % -category.
Indeed, every its set of morphisms sA (A, C,)(f, g) is isomorphic to the product of graded
k-modules

H H Cu(TFsA(X,Y),sC (X f,Yg)),
k=0 X,YeObA

that is % -small.

The Yoneda A.-functor exists in two versions: Y and % : A® — A (A, C,) which
differ by a shift: Y = #- A (1,[1]). The pointed cocategory homomorphism Y : TsAP —
TsAw(A,C,) is given as follows: on objects X +— h*X, the components

Yy, 0 sAP (X0, X1) @ - @ SAP (X1, X)) — sAx(A, C) (X0, h¥) (65)
are determined by the following formulas. The composition of Y,, with

pry ¢ 8As(A, Co) (KX hX) — C (W7 @ - @ W1 7, sC (WX Zo, k¥ Z),))
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(that is, the k-th component of the coderivation (z1®---®x,)Y,) is given by the formula

coev

Yor = (=)" [S.A(Xl, Xo)® @ sA(Xp, Xp1) —
Cu(hX Zy@h* 2@ - - @1 Zy, W Zy@h P 2y @ - - 01 2y @ WM X ®- -0 h Y X, )
Sllmebrinit) ¢ (X070 @ W20 Z, @ - - @ W21 Zy, B0 7))
= G2 @ @ W1 7y, G (B Zo, K Zy))
Sl C (W2 @ - @ W1 2y, sCy (W50 Zo, 5 Z4))],
where the permutation 7 € Gyyppq is 780 = (0L o KoK BEn)
In other words, the coderivation (x; ® - -+ ® z,)Y,, has components sA(Zy, Z1) @ - -+ ®

S.A(Zkfl, Zk) — Sgk(hXOZQ, hX"Zk), (21 R R Zk) — (21 XX 2k & T X xn)Yék,
where

Yrgk - (_)Tl [S‘A(Z()7 Zl) ® A ® S-A(Zk:—lu Zk‘) ® S-A(Xla XO) ® A ® S-A(Xna X?’L—l)

=5 C(h 20, W Zy @ W 2 @ @ W Z @ W Xg @ -+ @ WY X, q)
Sttt ¢ (h%0 7y WX Z) —s sC, (KX Zo, B Z4)]. (66)

The pointed cocategory homomorphism Y : A®? — A (A, C,) is an A,-functor. An
equivalent statement is already proved by Fukaya [Fuk02, Lemma 9.8] and by the authors
in [LMO7, Section 5.5].

A.6. THE YONEDA EMBEDDING. We claim that the Yoneda A, -functor Y is an equiva-
lence of A°P with its image. This is already proven by Fukaya in the case of strictly unital
A-category A [Fuk02, Theorem 9.1]. This result extends to arbitrary unital A..-cate-
gories as follows.

Let us define a full subcategory RepAY (A, C,) of the %’-small differential graded
U -category A (A,C,) as follows. Its objects are all A, -functors h* : A — C, for
X € ObA. As we know, they are unital. The differential graded category RepA% (A, C,)
is % -small. Thus, the Yoneda A, -functor Y : A® — A (A,C,) takes values in the
% -small subcategory RepAY (A, C,).

A.7. THEOREM. Let A be a unital A -category. Then the restricted Yoneda Ao -functor
Y : A® — RepAY (A, C,) is an equivalence.

The theorem follows immediately from Corollary A.9 of [LMO07] which states that
%Y . A® — RepAY (A, C,) is an A,-equivalence. This is a corollary to a much stronger
result, the A-version of the Yoneda Lemma [LMO07, Theorem A.1].

A.8. COROLLARY. Each 7 -small unital Ay -category A is A -equivalent to a % -small
differential graded category RepAY (A, C, ).
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A.9. REMARK. We may use the surjective map ObY : ObA — ObRepA% (A, C,) to
transfer the differential graded category structure of RepAY (A, C,) to ObA. This new
% -small differential graded category is denoted RepAY (A, Cy). Thus, its set of objects
is Ob A, the sets of morphisms are

RepAl (4, C) (X,Y) = Ax(A, C) (W, 7).

and the operations are those of A (A,C,). It is equivalent to RepAY% (A, C,) by sur-
jectivity of ObY. The Yoneda A.-functor can be presented as an A.-equivalence
Y : AP — RepA“ (A, C,), 1dent1ty on obJects whose components Y,, = Y, are given

by (65). A quasi-inverse to Y equivalence RepA“ (A, C,) — A°P can be chosen so that it
induces the identity map on objects as well by Corollary 1.9.

B. Strict A% -2-functor

The goal of this section is to show that the problem of representing the AY -2-functor
A — A (C, A)moas for a pair (€, B) of a unital A,-category C and its full subcategory
B reduces to the case of differential graded C.

B.1. AN A, -FUNCTOR. For arbitrary A..-categories X, Y, Z the left hand side of the
equation
[T5A0(Y,2) B T5As(X,Y) —— TsAs(X,Y) KB Ts A (Y, Z) —— TsAx(X, 2)]
= [T5Ax(Y,2) B Ts A (X, Y) 22202 Pg A (Y, 2) B Ts A (Ao (Y, 2), Ane(X, 2))
—— TsAx(X,2)] (67)

is an A.-functor. Therefore, by Proposition 5.5 of [Lyu03] there exists a unique A-func-
tor

Ao(2) + A (6,Y) — Auo(Ae(Y, 2), Ao (X, 2))

in the right hand side, which makes equation (67) hold true. The proof of Proposition 3.4
of [Lyu03] contains a recipe for finding the components of A, (_, Z). Namely, the equation

(pR1)M = [p.Au(,2)]6 (63)
has to hold for all p € T'sA,(X,Y). In particular,
fA(LZ)=(fRI)M = (fR1zy)M : An(Y,2) — A(X,Z) for f € Ob A (X,Y),
rAe(5,2)1 = XR1O)M=(rX1)M : (fR1)M — (¢ R 1)M for r € sA(X,Y)(f,9)-
Other components of A, (_,Z) are obtained from the recurrent relation, which is equa-

tion (68) written for p=p' @ --- @ p™:
(P @ @p) A L) = (' @ @p"K1)M

>1

= Y 0 ® @) (A Vi © A )i, @ - ® A (L 2)3)]0- (69)

i1t =n
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In particular, for r @ t € T?s A, (X, Y) we get
(ret)As(5,2)=re@tR1)M —[(r®1)M @ (t X 1) M]6.

1 2 n
Given ¢° 2= ¢! L= ... ¢" ' £ ¢" we find from (69) the components of the A.-trans-

formation
(P @ @ P") Ao (0 2)n € 5Ax(Ae(Y,2), Ase(X, 2))((¢° K1) M, (¢" K 1) M)

in the form
(P @ @) AL ) = ' @ -+ @ p" K 1) M.

So they vanish for m > 1.
If Z is unital, then the A -functor A, (-, Z) takes values in the subcategory

because the A-functors (f X 12)M commute with (1 X i%*)M, so they are unital.

B.2. PROPOSITION. For arbitrary A -categories X, Y and unital Aso-categories C, D
we have

Ao (4,Q)NAL(X,2)

[TsA% (€, D) B Ts Ay (X, Y) —— TsAs(X,Y) K TsA%(C, D)
TsA™ (As(Y, €), A (X, €)) K TsA™ (A (X, C), Ano (X, D))

L T A (A (Y, €), A (X, D))]

Aoo (¥,-) WA (D)

= [TsA%(C, D) K TsAx(X,Y)
TsA" (Aw(Y,C), A (Y, D)) ® Ts A" (A (Y, D), A (X, D))

L TSAY (As(Y, ©), A (X, D))]. (70)

The same statement holds true if one removes the unitality superscript w, and do not
assume C, D unital. The same equation holds true if all four Ay -categories X, Y, C, D
are unital and all Ay -categories As(,) are replaced with their subcategories A% (,).

PROOF. Due to Proposition 3.4 of [Lyu03] equation (70) is equivalent to the following
one:

[T'sAn (Y, ©)RTsA™ (€, DYRT 5 Ang (X, Y) oo T's Ao (Y, Q) KT s Ao (X, Y)RTs A% (€, D)

PO oA (Y, @YRTSAY (A (Y, €), Ao (X, €))RTSAY (A (X, €), A (X, D))

M TS5 A (Y, €) R TsA™ (Aso(Y, €), Ao (X, D)) —2 T's Ao (X, D)]

— [T5Ax (Y, C) R TsA" (€, D) K TsA(X, Y) 18 A o0 (Y,.) KA (D)

TsAw(Y, ©) B TsA™ (As(Y, €), A (Y, D)) K TSA™ (Ase(Y, D), A (X, D))

Y T5A0(Y, €) R TsA™ (Aso(Y, €), Ano (X, D)) —2 Tis Ao (X, D)].
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Using the definition of M [Lyu03, diagram (4.0.1)] we transform this equation into

[T Ans(Y, ©)RTsA™ (€, D)RT 5 Ang (X, Y) o T's Aso (Y, ©)RT's Ao (X, Y)RT s A% (€, D)

PO oA (Y, @YRTSAY (A (Y, €), Ao (X, C))RTSAY (A (X, €), A (X, D))

B T A (3, €) B TS A™ (A (X, €), Aso (X, D)) —2 Ts Ang (X, D)]

= [TsAx(Y,C) K TsAL (€, D) K Ts A (X, Y) 18400 (¥, )R Ao (D)

TsAw(Y, ©) B TSA™ (As(Y, €), A (Y, D)) K TSA™ (Ase(Y, D), Ao (X, D))

B Ts A (Y, D) B TS A™ (Ass(Y, D), Aso(X, D)) —2 Ts Ao (X, D)].

Using the definitions of Ao (-, €) and A (Y,-) [Lyu03, (6.1.2)] we rewrite this equation
as follows:

[T5As(Y, Q)RTsA™ (€, D)RT s A (X, Y) "2 T'5 Ay (X, Y)RT s Ang (Y, Q) KT s AL (€, D)
A P15 400 (X, €) B TSAY (Aso (X, €), Ag(X, D)) —2 T's Aso (X, D)]
= [TsAw(Y, @) R TsA™ (€, D) K TsAmy (X, Y) o=t
TsAw(Y, D) R TsAL (A (Y, D), As(X, D)) —— T's A (X, D)].

Now we use definitions of A (X, _) and A (_, D) to get an equivalent form of the required
equation:

[TsAx(Y, Q) XTsAL (C, D)RT'sAse (X, Y) ), TsAw(X,Y)NRTsA (Y, C)XRTsAL (C, D)

MX1

A TsA(X, €) R TsAY (€, D) — Ts A (X, D)]

MX1

— [TsAx(Y,€) R TsA (€, D) R T's A (X, Y) b Ts A (Y, D) K Ts Aso (X, Y)
e TsA(X, Y) K TsAw (Y, D) — Ts A (X, D)].

This equation holds true due to associativity of M, since M has degree 0.
Other statements are similar or follow from the already proven one. [

B.3. AN AY-2-FUNCTOR. Let A-category A be unital. The A.-category € is pseu-
dounital with distinguished elements equal to the unit elements of C.

Strict AY -2-functors are defined in [LMO06, Definition 3.1]. There is a strict A% -2-
functor F', given by the following data:

1. the mapping of objects F': Ob A% — Ob A%, A+ FA = As(C,A)moan (FA is a
full subcategory of the unital A..-category A, (€, A), hence it is unital as well);

2. the strict unital Ao -functor F' = Fy, 4, : A% (A1, Ag) — A% (F Ay, FA,) for each
pair of unital A.-categories A, Ay given as follows:

ObF :g+— gF = (1 X g)M|pa,,
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where (1 X g)M : A(C,A1) — Ax(C,Az). Indeed, if B~——C A isa

contractible A..-functor, then so is B —— C AN As. Actually, if xigfi = wxb;
for some wy € (sA1) (X f,Xf), X € ObB, then xigfig1 = wxbigi = (wxg1)bi,
where wxg; € (sA2) %(X fg, X fg). Furthermore,

F1 : Azo(.Al,.Ag)(g,h) - A&(F.Al,F.AQ)(gF, hF),
(r:g—h: A —A)—rFy=1Xr)M|pa,,

or more precisely,

[rFi]n

[SFPA(fo, f1) @ -+ @ SPA far, fu) S0 sFA(fog, fub)|

= (34 (€A (o, £1) @ -+ © 54 (@A) (Famr, o) T 5 A (€ A2) (fog. fu)]

The necessary equations for F are consequences of those for A, (C, -) [Lyu03, Propo-
sition 6.2]. Clearly, F' is a unital A,-functor. Let us check that the following diagram
commutes:

TsA™ (Ag, Ay) B TSA™ (A1, As) ——— TsA" (Ao, As)

FAO,A1®FA1,A2\X = lFﬂoﬁg

TSAZ;O(F.A(), F.Al) & TSAZ;O(F.Al, F.AQ) —]\L TSAZO(F.A(), F.AQ)

It follows from a similar diagram for A (C,_) in place of F' (equation (3.3.1) of [LMOG6]).
The commutativity is clear on objects; since both sides of the required identity are cocat-
egory homomorphisms it suffices to show that

(Faga, X Fay )M pry = MFp, 4, 1y
TsAY (Ag, A1) RTsAY (A1, Ag) — sAY (FAg, FA,).

Since F_ _ are strict A,-functors, we must show that for any non-negative integers n, m

((Fag,a,)T" B (Fa,,a,)F™) Mo = My (Fag,a,)1 -
TnSAgo(.Ao, .Al) X TmSAZO(.Al, .AQ) — SAZ;O(F.A(), F.AQ)

Since M,,, vanishes whenever m > 1, we restrict our attention to m = 0 and m = 1.
These cases are similar and we will give verification in the case m = 1. Given diagrams
of A-functors and A..-transformations

’I”l rn 1
f° f! friAg — A, go—tﬁgliﬂl—w%,
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we must show that (1X (r' @ -+ @ r" KtYM)M|pa, = (1R rYMpg, @ - @ (1K
r"YM |pa, ®R(1X )M |pa,)M. This is a particular case of equation (3.3.1) of [LM06] since
it coincides with a similar equation for A, (C, ) in place of F.

Let D be the A-category defined in Section 5.2. We claim that restr : A (D, A) —
FAis an A% -2-transformation as defined in [LMO06, Definition 3.2]. The strict A.-functor
restr is induced by the inclusion ¢ : € —— D:

f|—>(€C—>'D—f—>.A)=f|e,
restry : As(D, A)(f, 9) = FA(fle gle) = Asc(C, A)(fle, gle)-

The restriction f|s is a contractible A,.-functor, for xigf1 = exbi f1 = (ex f1)b for X € B.
Let us check that the following diagram of A..-functors commutes:

Aoo(i)v_

A (A, As) L A% (A (D, A1), Ano(D, As))

Fl = l(llgrestrﬂg)M
restry . X
AV (FAy, FAy) S BM u (4 (D, A, FA,)

All functors in the diagram above are strict (the proof is given in [LMO06, Section 3.4]).
We must verify the equation

Ao(D, —)(1 R restrg,) M = F(restrs, X1)M.
On objects: given a unital A,-functor g : A; — As, we are going to check that
[(1X g)M], - restry = restr$™ -[(1 X g) M],

for any n > 1. Indeed, for any n-tuple of composable A -transformations

1 rn

f1:D— A
we have

{(r'®-—-@rm[(IRgMu}k|e=[(r'® - @r" K g) My,
= {Z(Tl & .- ®7nn)9klgl}}e

z
= (FMe®---@1"e)bugle

{rfle® - @r"e)[(1 X gle) M]n}s-

The coincidence of A-transformations ((1X¢)M) - restrp = restre-((1X¢) M) follows
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similarly from the computation:
{r' - @r[IR)M] e = [(r' © - @r" R t) Ml
= {Z(Tl K& r")@kltl}}e

l
= (Me®- - @r"e)futile

={(r'le® - @r"|e)[(1 R t]e) M] }.

We are more interested in the following A% -2-subfunctor of F', denoted G : Ob A% —
ObAY, A GA = A% (C,A)moas C FA. All the structure data of G are restrictions
of those of F. Hence, the conclusion that restr : A%(D,A) — GA is an A% -2-natural
transformation remains valid. We prove in Theorem 5.13 that this A-functor is an
equivalence. Therefore, this restriction A, -functor is a 2-natural A..-equivalence. If C is
strictly unital, then D = Q(€|B) is unital by Theorem 6.5. Whenever D is unital, we say
that D unitally represents G.

We are going to discuss how an A" -2-functor represented by an A.-category X de-
pends on X.

B.4. PROPOSITION. Let f: X — Y be an A -functor. Then

15 a strict A% -2-transformation between two AY -2-functors of A € Ob AL . If f: X —Y
s a unital Ao -functor, then

(fR1M : Ay (Y, A) — AL (X, A)

is also a strict A% -2-transformation.

PROOF. The A, -functor (f X 1)M strictly commutes with the unit transformations (1 X
iYM in A (Y, A) and A (X, A):

(fRIOM - (1xRiYHM = 1y RiMYM - (f R 14)M

due to associativity of M. Therefore, (f X 1)M is unital.
We have to prove that the diagram of A, -functors

A" (€, D) A, A% (A (Y, €), Ans(Y, D))

AOO(JC,_)J j(l&AD)M (71)
AR M
AZO(AOO(DC, 8)7 AOO(xv 'D)) — AZO(AOO(H, e)v AOO(xv 'D))

commutes. All four A,-functors in this diagram are strict. So it suffices to check com-
mutativity on objects and for the first components.
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If h: € — D is a unital A-functor, then
hAw(Y, )OI RA)M = (IR R)M - (fR1M = (fR1IRA) (1K M)M
equals to
hAs(X, JAe R DM = (FRDM - (1K )M = (f R 1R h)(M R 1)M

due to associativity of M.
If t € sA% (C,D)(g,h), then it is mapped by the first components of A, -functors in
diagram (71) to

t.Ax(Y, )1(ARAp) Mg = (1ROM - (fR 1M = (fR1XK¢)(1 X M)M
and
tA(X, ) 1(Ae® 1) My = (fR)M - (1XKE)M = (fR 1K ¢)(M K 1)M.

These expressions are equal due to associativity of M.
The case of unital f and AY%-2-subfunctors A% (Y, A), A% (X, A) follows from the
general case. [

With two strict A% -2-transformations A, p in F AN i AL — AL s
associated the third AY -2-transformation Ay : F' — H : A% — A% — their composition,
specified by the family of unital A..-functors

()\,u)e:)\e,ue:FeHHe, GEObAZO

In order to verify that Au is indeed a strict A% -2-transformation, we have to check equa-
tion (3.2.1) of [LMO06]:

F-(1EOw)p)M = H- (M)e®1)M : A% (€, D) — A (F€, HD).

We do it as follows:

(AR-Ap pp )M
(1RAp ) M- (1Kpp ) M
OB M-(18un )M
(1Xpp ) M- (Ae K1) M

(ne®1)M-(Ae K1) M

(Aepe®1)M

(A% (€, D) —— A" (F€, FD)

A% (FC, HD)]

= [4% (e, D) —%5 A" (Ge,GD) AL (Fe, HD)]

— [A% (€, D) —— A" (HC, HD)

A% (Fe, HD)].

B.5. DEFINITION. A strict modification m : A — p: FF — G : AL — A% of strict
AY -2-transformations A, u is

1. a family of Ax-transformations me : A\e — pe: F'€ — GC for € € Ob A%
such that

2. for any pair of unital A -categories C, D the A -transformations
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(meXGe p)-M
A AN

(F@J)&)\D) -M = (A@&G@y@) -M

(Fe,p®mqp)-M
RN

(M@@GQ@)M : AZO(G, (D) - ATSO(FG, G'D),
(F@y@&/\@)-M

are equal, in short,

(Fep®pup) M = (nelGeop) M : A% (C,D) — AL (F'C,GD)

GQD(me & 1)M = F&D(l & mD)M . Fe,p(l & )\D)M — GG’D(ILLG & 1)M
A modification m is natural if all Ay -transformations me are natural.

B.6. EXAMPLE OF STRICT MODIFICATION. We claim that for an arbitrary A..-trans-
formation r : f — g : X — Y the family of A,-transformations

me=FEM: e=(FRUM — pe=(gR1)M: FC = A_(Y,C) — GC = A(X,€)

is a strict modification. In order to prove it, we notice first of all that (rX1)M is a ((f K
1)M, (g X 1) M)-coderivation for an arbitrary C, since M is a cocategory homomorphism.

When we want to indicate the category €, we write this coderivation as (r X 1e)M €
sAY (Ax(Y,C), A (X, C))((f R 1e) M, (¢ K 1) M). The equation to verify is

SAY (A (Y, C), Auo(X, €))RTSA™ (Ase (X, €), Ao (X, D))
L Ts A" (Ax (Y, ©), Ao (X, D))]
AU MHDIM g qu (4 (Y, @), A (Y, D))RT s A (A (Y, D), Ao (X, D))
L TsAY (Ax(Y, €), Ax(X, D))].

— [TsA%(C, D)

It is an immediate consequence of equation (70) restricted to the element r € T s A (X, Y).

B.7. LEMMA.Ifm: A —pu: F — G: A% — A% is a strict modification, then so is
mBy:A— u: F—G:AY — A%, where (mB1)e = meB; : Ae — pe: FC — GC for all
C e ObAYL. The k-linear map

sA4x(X,Y)(f,9) 37— (rR1M € sAL (A (Y, €), Ao (X, €))((f B 1) M, (¢ W 1) M)

18 a chain map.

PROOF. Let us prove that the family meB; constitutes a strict modification. The identity
(1X B+ BX1)M = M B implies that

(F&D X mD.Bl)M = (F&D X mD)MB — (—)mB(FQD X mD)M = [(FG’D X mD)M]Bl
= [(meﬁG@m)M].Bl = (meﬁG@@)MB—(—)mB(m@@GQD)M = (m@.Bl &GQ@)M.

Here we use the fact that mp.B = mp.B; due to mp € T'sA(FD, GD)(Ap, pip), and,
similarly, me.B = me.B;. The equation

(rR1)M].B, = (r R 1)MB — (=) B(rB®1)M = (rBR1)M = (nB, R 1)M  (72)

proves that r — (r X 1)M is a chain map. "



QUOTIENTS OF UNITAL A.-CATEGORIES 475

B.8. LEMMA. Letm, n in A\ —— p —— v : F — G : A% — A% be strict modifications.
Then

F&D[l @ (mD ® nD)Bg]M = GQD[(m@ ® n@)Bg @ 1]M
+ GQD[(me X ne)(l QKB +B1® 1)Aoo(_, G@)Q] — Ge,p[(me & TLe)AOO(_, G@)gBl]
PROOF. Since Ay (-, GD) is an A,.-functor we have
[(me X 1)M X (n@ X 1)]\/[]32 + (me X n@).AOO(_, G®)231
= [m@.Aoo(_, G(D)l (%9 n@.Aoo(_, G(D)l]Bg + (m@ (%9 n@).AOO(_, G'D)gBl

= (me X ne)Bg.Aoo(_, G®)1 -+ (m@ X ne)(l X Bl + Bl X 1)1400(_, G@)Q
— [(me ® ne)Bs R 1IM + (me @ ne)(1® Br + By @ 1) A (-, GD)s. (73)

Using this identity we find

F&D[l X (mD X nD)BQ]M = F&D[(l X mD)M X (1 X nD)M]BQ
== [F&D(l X m@)M X F@J)(l X n@)M]Bg = [GQD(WL@ X 1)M X GQD(HQ X 1)M]Bg
= GQ,D[(me X 1)M X (n@ X 1)M]Bg = GQ,D[(me X TL@)BQ X 1]M
+ GQD[(me & ne)(l QB +B1® 1)1400(_, G@)Q] — G@,@[(me & ne)Aoo(_, G@)gBl],
so the lemma is proven. [

B.9. PROPOSITION. If unital A-categories X, Y are equivalent, then AY -2-functors
A AL (X, A) and A — A% (Y, A) are naturally A% -2-equivalent.

PROOF. Let ¢ : X — Y, ¢ : Y — X be A -equivalences, quasi-inverse to each other. Then
there are natural A.-transformations

r:o —idy : X — X, p:idy — ¢ : X — X,
inverse to each other, that is,
(r ® p)By = ¢hi™, (p®r)By = i*.
The A.-transformations

(rXOM: (v RI)M(PR 1M —id : AL (X, A) — A% (X, A), (74)
(PRIM :id - (W R1)M(PKR 1M : AL (X,A) — AL (X, A) (75)
are also natural by (72). We are going to prove that these A.-transformations are inverse

to each other.
The natural A-transformation

(IXiMM :id — id : A% (X, A) — A" (X, A)
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is a unit transformation of A.-category A% (X, .A) by Proposition 7.7 of [Lyu03]. Another
unit transformation is given by

(*XR1)M :id — id : A% (X, A) — A% (X, A). (76)

Indeed, values of 0-th components of the both natural transformations on an object f of
Al (X, A) differ by a boundary since

AR D)M] = (R )My =i*f = fi't = (f Ri*") My = f[(1 Ki*)M]p.

Therefore, [1 ® (i* X 1) M) By and [(i* X 1) M;q ® 1] By are homotopy invertible.
Furthermore, by (73)

("R 1)M @ ((*R1OM|B, = [(*®iY)B,R1M = (YK 1)M

due to Lemma B.7. Therefore, homotopy idempotent (76) is a unit transformation of
At (X, A) by [Lyu03, Definition 7.6]. Since unit transformation is unique up to equivalence
by [Lyu03, Corollary 7.10] we have

(*ROM = (1RIMM :id — id : A% (X, A) — A% (X, A).

Composing natural A,-transformations (r X 1)M and (p X 1)M given by (74) and (75)
we get

(rR 1M @ (pR1)M|By = [(r @ p) By K 1]M = (popi* K1) M
=[{opR1)M = (R 1M(pR1)MGE* X 1)M,

(PR M@ (rR1)M|By=[(p@7r)ByR1M = (¥R 1)M

by (73) and Lemma B.7. Since (i*X1)M is a unit transformation, the A, -transformations
(r®¥1)M and (pX 1)M are inverse to each other.

The obtained statement together with one more statement in which ¢ and 1 exchange
their places implies that A..-functors

AL (¢, A) = (0RI1)M = AL (Y, A) — AL (X, A),
AL (W, A) = (WM : AL (X, A) — AL (Y, A)
are quasi-inverse to each other.

They form strict A% -2-transformations by Proposition B.4. Therefore, A% (¢, A) and
Al (¢, A) are natural A% -2-equivalences. "
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Given a pair (€, B) consisting of a unital A-category € and its full subcategory B, we
shall construct another pair (é, %) consisting of a differential graded category € and its
full subcategory B as follows. Set € to be the differential graded category ff{a)A“ (eor. C,)
of As-functors, represented by objects of €, see Remark A.9. Thus, Ob € = ObC. The
category Cis equivalent to €, the Yoneda A..-equivalence Y C— € and its quasi-inverse

: € — € are identity on objects by Remark A.9. We take B to be the full 1 subcategory

of € with the set of objects ObB = ObB. Therefore, the A, -functors Y and ¥ can
be restricted to quasi-inverse to each other A..-equivalences Y’ = Y} g B — B and

= \I/}% B — B.
B.10. COROLLARY. Let A be a unital Ay -category. The A -functors
(WR1)M : A% (C,A) — A" (C,A), [+ Uf,
(YR1)M : A% (C,A) — A%(C,A), g~ Yy,

are quasi-inverse to each other A -equivalences. The first maps objects of A% (C, A)mod B

to objects of Ago(é,ﬂ)mod%, the second does vice versa. Therefore, their restrictions de-
termine quasi-inverse to each other A.-equivalences

(U R1)M : A% (C, A)moas — A (C,A). 5,

(Y R1)M : A% (C,A), 5 — A" (€, A)mod 5.
PROOF. Let f : € — A be a unital A,-functor such that f}g is contractible. Then for
each object X of B the complex (sA(X f, X f),b) is contractible [LO06, Proposition 6.1].

Equivalently we may say that for each object Z of B the complex (sA(ZV f, ZWf), by) is
contractible, as the following commutative diagram shows:

B c e—Y .4
A
B c e T A

This implies contractibility of the A,.-functor U f ’ - Similarly, if g € A% (é, A) 1 oqF then
Yg S A&(G,A)modg. ]

B.11. COROLLARY. The A“ -2-functors A — A" (C, A)moas and A — Ago(é,ﬂ)mod%
are naturally A% -2-equivalent. Therefore, if one of them is representable, then so is the
other.

C. The Yoneda Lemma for 2-categories and bicategories

In this article we deal with bicategories of a particular kind — strict 2-categories. However,
2-functors and their transformations need to be weak for our purposes.
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C.1. 2-CcATEGORIES. We recall the definitions of strict 2-categories and associated weak
notions originating in [Bén67|. We use the form and the notation of [Lyu99].

C.2. DEFINITION. A (strict) 2-category A consists of
1. a set of objects Ob%A;
2. for any pair of objects X, Y € Ob®Q a category A(X,Y);
3. (a) for any object X € Ob2l an object 1x of A(X, X);
(b) for any triple of objects X,Y,Z € Ob2l a functor

CAXVY) xAY, Z) - AX, 2), (F,G)— FG =F.G=GoF,

such that the following functors are equal
J. Ful=F =1.F, F(GH) = (FG)H.
The 2-category of (% -small) categories is denoted Cat.

C.3. DEFINITION. A weak 2-functor (a homomorphism in [Bén67]) between 2-categories
A and € consists of

1. a function F': ObA — Ob ¢;
2. a functor F = Fxy : A(X,Y) — C(FX, FY) for each pair of objects X,Y € Ob;
3. (a) an isomorphism ¢¢ : 1px — Flx;

(b) an invertible (natural) transformation

AX,Y) x A, Z) —— A(X, Z)
| = |
FX,YXFY,Z FX,Z
C(FX,FY)x C(FY,FZ) = C(FX,FZ)

for each triple X,Y,Z € Ob%;
such that

4. (a) for any object M € A(X,Y") the composites

FM = FM.dpy 22 pALFLy —2 F(Muly) = FM (77)
FM = Lpyo FM 2% PLv M~ F(1yoM) = FM (78)

are identity morphisms in €(FM, FM);
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(b) For any objects W, XY, Z € Ob2l and any object
(K, L, M) € AW, X) x A(X,Y) x A(Y, Z)
there is an equation

FKepo

(FKJ(FLFM) 2% PROF(LM) —2 F(KW(LM)))

B2eF M

— (FK.FL).FM 225 P(K.L) FM —2 F((K.L).M)).

If o and ¢g are identity isomorphisms, F' s called a strict 2-functor.

C.4. DEFINITION. A weak 2-transformation (pseudo-natural transformation [Gra7/])
A (F, g2, 00) = (G, h2,100) : A — € is

1. a family of 1-morphisms Ax : FX — GX, X € Ob%;
2. for any 1-morphism f: X — Y in A a 2-isomorphism in €
Ar i Ffody — \x.Gf: FX — GY,
which s an isomorphism of functors
A F =y = AxoG—:A(X,)Y) = C€(FX,GY),

that 1s, for any 2-morphism & : f —g: X =Y

Y B SN
FX ——FY FX |re FY
Fg

GX e GY GX P GY
Gg
such that
3. (a) for any object X € Ob2A
1rx
_—
FX ¢ FX Lox
T Fiy FX ——FX
>\X >\X
>\1X - >\X ng )\X 3
GX vy GX
GX GX T aix

Glx
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(b) for any pair of composable 1-morphisms f,g € Ay
FY Y
2 Ay
FzZ = FX Y/ QY e——Z"Fz

FX F(fg) )
,\XJ J,\Z ,\Xj /H 2 y\z
Arg Gf Gy

Gx G(f9) Gz GX G(f9) Gz

If Xy are identity isomorphisms, X is called a strict 2-transformation. A weak 2-transfor-
mation A = (Ax) for which Ax are equivalences is called a 2-natural equivalence.

C.5. DEFINITION. A modification m: A — p: F —- G: A — € is

1. a family of 2-morphisms mx : Ax — ux, X € Ob2
such that

2. for any 1-morphism f: X —Y in A

Fx — " py rx " py
ijng Ax g j)\y = MXX g wy ngj)\y
Gf Gf
GX ——— GY GX — 5 GY

C.6. PROPOSITION. [Invertibility of 2-natural equivalences] Let A : F' — G : A — € be a
2-natural equivalence. Then there exist a weak 2-transformation p: G — F : A — € and
wnwvertible modificationse : Ay — 1lp : F = F: A —-Candn:1lg —pur: G —- G : A — C.
Thus, p s quasi-inverse to \.

PROOF. Since A\x : FX — GX is an equivalence for every X € Ob®2l, we obtain: for
every X € Ob% there exist a 1-morphism ux : GX — FX and invertible 2-morphisms
Ex - )\X,U/X — 1FX : FX—>FX, ﬁX : 1GX _>,U/X)\X :GX — GX.

C.7. LEMMA. There exist such invertible 2-morphisms nx : lax — puxAx : GX - GX
that the following equations hold true:

(MX MR HXAX X e MX) = Ly, (79)

Axe Ex e
(Ax P Axpix Ay Ax) =Ly, (80)
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ProoOF. Consider the following functors:

¢(GX,GX) — ¢(GX,FX), ¢(GX,GX) — ¢(FX,GX), (81)
fr— fux, fr—Ax/f,
¢ f — g depix : flx — gpx, ¢ f— g Axed: Axf — Axg,  (82)
C(GX,FX) — ¢(GX,GX), C(FX,GX) — ¢(GX,GX),
h —— hAx, h — uxh,
X:h—kr— xedx : hAx — k)y, X:h—kv+— puxex : uxh — uxk.

These functors are faithful. Let us prove it for the first one. Indeed, if gepux = Yepx :
fux — gux, then gepixedx = Yopixedx @ fuxAx — guxAx and (fefx)(gepixerx) =
(foBx)(epxeAx) o f — guxAx, ie., ¢o(gBx) = ¥e(96x) : f — guxAx, hence ¢ = 1),
because (x is invertible. Similarly or by symmetry the other 3 functors are also faithful.

Functors (81) are full. Let us prove it for the first one. Given ¢ : fux — gux, we set
6 = (f-B)(WA)g:05)) 1 f — 9. Then (f-Bx)(Gopix-dx)(g-05") = (fBx)(Fo0x1)6 =
¢ = (fofx)(WeAx)(geB%"). This yields gepixeAx = 1heAx. Since multiplication with Ay
is a faithful functor, we obtain ¢.ux = 1. Notice that if v is a 2-isomorphism, then the
composition of 2-isomorphisms ¢ is a 2-isomorphism as well. Similarly we prove that the
second functor of (81) is full.

Now let us take f = lgx, ¢ = pxAx. By the first bijection of (82) we find a 2-iso-
morphism 7y : lgx — pxAx corresponding to the 2-isomorphism 9 = pyeex’ : ix —
pxAxpix. Then nyepy = pxeey', thatis, (nxepx)(uxeex) = 1,,. By the second bijection
of (82) we find a 2-isomorphism vy : lgx — uxAx corresponding to the 2-isomorphism
f = 8;(1.)\)( . )\X — )\X,UX)\X- Then )\Xo")/X = 5;(1.)\)(, that iS, ()\Xo’yx)(&“xo)\x) = 1)\X'
We have

V= (1GX _'Y_>M/\ﬁ>‘_>,u)\) — (1GX v D) nUA AL LEX ,u)\)
= (1GX L>,u,)\ ﬂ)u)\lu)\ LA),U/)\) — (1GX U ,LL)\ puly Iu/)\) —

Therefore, the 2-isomorphism 7 fulfills both equations (79) and (80). n
For any 1-morphism f: X — Y in 2 we define a 2-isomorphism s as the pasting of

ax " . px M py

/ lpy
lax ! j)\%yj E%
GX GY

Gf My

Since Ay determine an isomorphism of functors

At F — Dy — AxoG— A(X,Y) — €(FX,GY),
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for any 2-morphism ¢ : f — g : X — Y equation 2 of Definition C.4 holds. It implies

Fg
GX — L FX qre FY GX " L px 9 L py

1rx
A A
lax A Yl 7 lox g { o
GY FY GX Afe GY —— FY
Gf By T pwy

/7))(( j)\x Ff 1rx B /7))(( j)\ )\g—l
GX

This shows that the collection of 2-isomorphisms p ¢ determines an isomorphism of functors
po G —epiy = puxF—: AX,Y) = E(GX, FY).

Let us check conditions 3(a),(b) of Definition C.4 for u. For 3(a) we have

Flyx
Gx " L px X px GX " S FX 44 FX

—1 ?

AL 1rx 1rx 1rx
X Ax Ax | oy = X 1Ax = Ax

1x / lax

lex 6%(
GX fuw GX ——FX GX — GX — S FX
: R X lax nx
GX

and the required equation follows from (79).
Equation (80) and the corresponding property for A imply

GY
b
2
¥4
GX a0 GZ
tox % X [\
Nf X Al z \rg
GX . FX 9] FZ
lay

\1/ [ J;%

ux F(fg)

and the assertion 3(b) for u follows.
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Let us verify that collections € = (ex) and n = (nx) determine modifications. Equa-
tion (80) implies that

FX Ff FY rx ey

)\X )\Y )\y
A - A
b'e
EX Gf 5%

lrx :GX lox GX lrx = lry :GY

GY =
wx A7t //luy
Ax ey 1%
— FY

FX Yy FX —— FY
Ff 1 Ef

This means that € : Ay — 1p : F' — F : 2 — € is a modification.
Also equation (80) implies that

ax L ay GX —X ., GX 7 GY

Ax U 5% ry

nx ny

FX<——— lax = lay — FX FY FY<: lax
Ff lpy

_ VY

k‘ X M Ay _\
GX <5 GY GX T, GY

This means that n: 1g — puA : G — G : A — € is a modification.
Therefore, 1 is a weak 2-transformation quasi-inverse to . [

C.8. REMARK. Clearly, if A\ : F - G : A - Cand p : G — F : A — € are weak
2-transformations, quasi-inverse to each other, then both are 2-natural equivalences.

We shall use the generalization of the classical Yoneda Lemma to 2-categories. If we
were using strict 2-functors and strict 2-transformations, we would view 2-categories as
cat-categories, where cat is the category of categories. This would allow to use one of the
Yoneda structures on 2-categories defined by Street and Walters [SW78, Example 7(1)],
as well as weak Yoneda Lemma for enriched categories by Eilenberg and Kelly [EK66,
Theorem 1.8.6], Kelly [Kel82, Section 1.9] and strong Yoneda Lemma for enriched cat-
egories by Kelly [Kel82, Section 2.4]. However, we need weak 2-transformations (and
modifications), so we use the Yoneda Lemma for bicategories obtained by Street [Str80,
(1.9)]. Let us recall the latter statement.

C.9. THE 2-FUNCTOR (A, ). Let 2 be a strict 2-category. An arbitrary object A €
Ob 2l gives rise to a strict 2-functor A(A, ) : A — Cat. It is specified by the following
data:

1. the function Ob2A — Ob Cat, X — A(A, X);
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2. the functor A(A, ) xy : A(X,Y) — Cat(A(A, X),A(A,Y)) for each pair of objects
X, Y € Obl.

The functor A(A, ) xy is given as follows. For any 1-morphism f : X — Y the functor
AA, ) A(A, X) — A(A,Y) is given by the following formulas:

(p: A= X)—(of :A—=Y),
(m:p—Y: A—- X)) (nef 1 0f = f : A=Y).

For any 2-morphism a : f — g: X — Y the natural transformation (A, «) : A(A4, ) —
A(A g) : A(A, X) — A(A,Y) is given explicitly by its components:

(@)A(A, ) = gecr : (P)A(A, f) = &f — ¢g = (9)AU(A,9), ¢ € U4 X).

Let [, Cat] denote the strict 2-category of weak 2-functors A — Cat, their weak
2-transformations and their modifications, see e.g. [Lyu99, Appendix A.1.5].

C.10. LEMMA. [Yoneda Lemma for bicategories, Street [Str80, (1.9)]] For a homomor-
phism G : A — Cat of bicategories, evaluation at the identity for each object A of A
provides the components [, Cat](A(A4, ), G) — GA of an equivalence in [2, Cat].

We have not found a detailed published proof of the above result in the existing
literature, since it has to be quite lengthy. Curiously, part of the required statements
were formalized and verified by a computer proof-checker [Moh97]. On the other hand,
in the case of strict 2-categories one can write down a complete proof in several pages.
For convenience of the reader we decompose it into several detailed statements, written
for a strict 2-category 2, fixed till the end of this section.

A weak 2-transformation A : 2(A,_) — G : 2 — Cat involves, in particular, a functor
Aa : A(A,A) — GA. Evaluating it on the object 14 € Ob2((A, A) we get an object
(14)Aa € ObGA. A modification m : A — p : A(A,.) — G : A — Cat involves, in
particular, a natural transformation my : Ag — pa : A(A4, A) — GA. Evaluating it on
the object 14 € Ob2((A, A) we get a morphism (14)ma : (14)Aa — (14)ua of GA.

C.11. PROPOSITION. Let G : A — Cat be a weak 2-functor. Let A be an object of .
Then the functor

evy, : [, Cat](A(A, ), G) — GA,
A (1A))\A,
m: A= p— (La)ma: (1a)Aa — (1a)pa,

18 full and faithful.
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PROOF. Clearly, the assignment evy, gives a functor. Let us show that it is faithful.
Let two modifications m,n : X — p : A(A,.) — G : A — Cat be given such that
(1a)ma = (1a)na. The modification m is a family of natural transformations (m¢)ceoba
satisfying the equation

A(A, B) 2 4, 0) A(A, B) 24D 4, 0)
NBl@:Bl)\B g JAC = HBl %l@:c[)\c (83)
GB “ . qc G —% o

for an arbitrary 1-morphism f : B — C of 2. In particular, it holds for B = A. Restrict
this equation to the object 14 of (A, A). Then it gives for an arbitrary 1-morphism
f A — C the equation

[(FHAe 225 (L)aa) (G ) L2ED (1 (G F)]
= [(Hre L% (Fpe B2 (1La)ua)(GS)].

Therefore, the value of m¢ on an arbitrary object f of (A, C') is completely determined
by the morphism (14)m4:

(La)uy!

(Fyme = [(Hre S22 (LA (GF) L2 0CD (1) (G f) 5 (f)pe).

Thus, m = n and ev, , is faithful.

Let us prove that evy, is full. Let A\, u : A(A4,.) — G : A — Cat be weak 2-trans-
formations. Let ¢ : (14)Aa — (1a)ua be a morphism of GA. We claim that there is
a modification m : A — pu such that (14)ma = ¢. The value of mg on an arbitrary
l-morphism f: A — C can be only

e

(Fme = [(FHre Z25 (LA (@) 2% (L)pa) (G ) =25 (Ppc],  (84)

as we have seen. Let us verify that, indeed, this formula determines a modification.
First of all, each m¢ is a natural transformation. Indeed, for each 2-morphism ¢ : f —
g: A — C of A the following diagram commutes:

(De 2% (LA LD (1)) (@) HE (Fpc
(§)>\cl ((u)M)(G&)l l((umxcs) l(smc (85)

(D 2225 ((1)A)(Gg) L (1)) (Gg) L2 () e

The central square commutes because G¢ : Gf — (g is a natural transformation. Con-
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dition 2 for A from Definition C.4 implies, in particular, equation

AA,)
A(A, A) AA,C) WA A) Jaay A(AC)

_—
2(A,g)
A _
f = Y

2A(A,F)

AA Gf Ac Aa Ac
GA llae GC GA P GC
Gg

Restricting this equation to the object 14 of 2A(A, A) we get an equation, which expresses
precisely commutativity of the left square of diagram (85). The right square of (85)
commutes by the same reasoning applied to p instead of A\. Thus, m¢ is a natural
transformation.

Secondly, we have to prove equation (83) for the family (m¢) and for an arbitrary
l-morphism f: B — C of 2. On an arbitrary object g : A — B of (A, B) this equation
reads:

(9)Af

(95 225 (9)Ap)(Gf) 2D, () ) (G )]
= [(9H)re 222 (g F)ne 2% (g)ps) (GF)).

Substituting definition (84) of m¢ we get an equation, which expresses commutativity of
the exterior of the following diagram:

LA (GS #)(Gg)(G ((La)ug NG
(@rayan LARNED s ocacn LE2ED, (e L G e
(Q)Af[ ((1A)>\A)(9:f)w2j/ j{((lA)NA)(gvf)d)Q (9)s
(La)A 0)(G (Ta)u}
@hre ——229 oaacen —2C e o (o)uc 50

The middle square commutes, because (g, f)1s : (Gg)(Gf) — G(gf) is a morphism of
functors. Property 3(b) of Definition C.4 for A implies, in particular, the equation

A(A, B) A(A, B)
2A(A,9) H 2A(A,f)

2A(A, A) — AA,C) =
AAJ{ / l)\c
af
GA R GC

Restricting this equation to the object 14 of (A, A), we will get precisely the left square
of diagram (86), therefore, it commutes. The right square of (86) commutes by the same
reasoning applied to p instead of A. Therefore, m is a modification, and evy, is full. =
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C.12. PROPOSITION. For each object x of GA there is a weak 2-transformation
A= AT = QAT (A, ) — (G4, 10) : A — Cat,
specified by the family of functors ¢, C € Ob%2L:
A UA(A, C) — GC,
fiA—=Cr— (2)(Gf),
§:f—=9: A= Cr— (2)(GE) : (z)(Gf) — (2)(Gy),
and by the family of invertible natural transformations
A RU(A, f)eAG — MGG f 1 U(A, B) — GC,
f € ObA(B,C), which map an object g € ObA(A, B) to the isomorphism of GC':

(9N = @)(g. " = (9/)Ne = @)(G(g)) = @)(GG) = (@AH(GS).  (87)
For each morphism v : x — y of GA there is a modification
A= A= G A AT W A(A, D) — (G by, 1) - A — Cat,
specified by the family of natural transformations \¢,, C' € Ob%2:
Aot AG = AL (A C) — GO,
M (fr A= O) e (NG = W)(GS) : (NHAE = (@)(Gf) = W)(Gf) = (/)NE). (88)
The correspondence
A:GA — [, Cat](A(A, ), G),
xr— A",
urxr —yr— AN = A\,
s a functor.

PROOF. As G : A(A, C) — Cat(GA,GC) is a functor, G1¢ = 1 for the unit 2-morphism

ly: f—= f:A— C of 2, and for each pair of composable 2-morphisms f N g—>h:
A — C of 2 we have
G(&x) = (Gf N Gg Gh)

Evaluating these equations on x we get (17)A\¢ = (2)lgy = luyep and (EX)AE =
(EAE)(XAL), thus, AE is a functor.

We claim that A7 given by (87) is a natural transformation. Indeed, naturality of s,
expressed by

Glof) &£ (ag)(Gf)
G(¢ -f)J = JGf-Gf
G(hf) &L @nyay)
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implies commutativity of

(2)(Glo) PP (2)(Go)(G)
(J:)(G(E-f))l = l(l’)(GE)(Gf)
(@G0 L2 @)Gh)(Gr)
which is nothing else, but naturality of A7:

(924, /A 25 () (Gf)

(é)%(Aﬁf)A”él = l(&)A%(Gf)
(WA(A, NG — (W)NL(GF)

We claim that
AT D A(A NG — MG —:A(A, B) — GC

is a morphism of functors. That is, for each 2-morphism ¢ : f — g : B — C of 2 the
following equation holds:

AAF) A |
A(A, B) A(A, C) A(A, B) Jang AAC)
A(A,g)
v - y . (89)
X, - e X, e
Gg I

Indeed, for each 1-morphism h : A — B of 2 we have

(@)@ ) L 2y Gmy (G
(:v)(G(h-E))‘l = ‘l(x)(Gh)(GE)
(2)(G(hg)) 22 (2)(Gh) (Gy)

by naturality of 1. Rewriting this equation in the form

(hf)Ae — (W)AB(GS)
(h-é)A%l = l((h)kﬁ)(Gi)
(h)AZ

(hg) A& — () AB(Gy)

we deduce that (89) holds on h. Therefore, condition 2 of Definition C.4 is satisfied.
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Let us verify condition 3(a) of Definition C.4, that is, equation

A(A, B) —222, (A, B) A(A, B) —22, oA, B)
A(A,1p)
A E e e
X7, las
Glpg

On an object f: A — B of A(A, B) it reads:
(FIAT, = ((HAB)Yo = (/)N — (f)AB(GLp). (90)
It follows from condition (77) for G,
[Gf S () (Glp) 2 Gf] = 16, : Gf — Gf : GA — GB,
which, evaluated on z € Ob G A, can be written as
(@)(f,18)05 " = () (G = (2)(Gf) = (2)(Gf)(G1p).

This is precisely (90).
Let us verify condition 3(b) of Definition C.4, that is, equation

A(A,C) A(A, C)
A(A,f) [ A(4,9) y J A(4,9)
= AL,
A.Z‘
A(A, B) N A(A,D) = 2AA B GC —==A(A,D) (91)
Aﬂél l)\p )\xBl M 2 JAJLP)
Afg Gy
GB G(f9) ¢p GB G(f9) GD

for arbitrary pair of composable 1-morphisms B L, C —2— D of 2. We have to check
this equation on an arbitrary 1-morphism h : A — B. Condition 4(b) of Definition C.3
for GG is the equation

(Gh)(GF)(Gg) Z2% ()G fq)
(h,f)wzoGgl = l(h,fg)wz
G(hf).Gg — 1D G(htg)

Evaluating it on z we get the equation

(2)(h, fa)y" = [(@)(G(hfg)) U2 oy anf))(Gy)
(D®D0 JED () (Gh) (G F)(Gg) LD @ G)(Go£9)]
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which can be rewritten as

xT xT (hf))\; T
(h)Nf, = [(hf9)A, —2 (hf)NE(Gy)
((MA%)(Gg)

(W)X5(G)(Gg) LERD (h)3e (G £g))).

And this is precisely (91), evaluated on h: A — B.

Therefore, all conditions of Definition C.4 are satisfied, and \* is a weak 2-transfor-
mation.

Let us show that correspondence (88) defines a natural transformation. Indeed, for
each 2-morphism ¢ : f — g: A — C of A the diagram

(NI

(NN = (@G ey WG = (NN
(E)A%=J(w)(G£) (y)(Gé)}(é)/\%
(9)3 = (2)(Gg) 115 (4)(Gg) = (9) A

commutes due to G¢ : Gf — Gg : GA — GC being a natural transformation.
We claim that property 2 of Definition C.5 holds for A“. For an arbitrary 1-morphism
f: B — C of 2 we have to prove the equation

A(A, B) 2 4, o) A(A, B) 2, 4, 0)
)\%F\EJ% J,\g = /\yBJ A ,\%Féy\g
GB—Y .o G . qGc

On the object g : A — B of (A, B) this equation reads

. (9)AF .
(9 = (@)(G(9f)) == (@)(G9)(Gf) = (9X5(G)
(gf)A%J(U)(G(gf)) = (w)(G9)(G) J(Q)A%(Gf)

(91N = W)(Ga) L= (G CI) = (N(G)

It holds due to (g, f)vy ' : G(gf) — (Gg)(Gf) : GA — GC being a natural transforma-
tion. Therefore, \* is a modification.
The unit morphism 1, : x — x of GA goes to the identity transformation

A (fr A= C)— ((L)(GS) = Lwyan : (@)(Gf) = (2)(Gf)),

because G f is a functor. For a pair of composable morphisms # —— y —— z of GA we
have A2 = (A&, —C XY, 204 A2 since (uw)(Gf) = (u)(Gf) - (v)(Gf) due to Gf being

a functor. Therefore, A is a functor. n
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The result of Yoneda Lemma C.10 for a strict 2-category 2 can be made more precise
as follows.

C.13. PROPOSITION. Functors
evy, : [ Cat](A(A,)),G) = GA and A:GA — [ Cat](A(A, ), G)

are equivalences, quasi-inverse to each other.

PRrROOF. We have
[GA—25 [, Cat] (A(A, ), G) 24 GA] = Gl,.
Indeed, for any object x of GA
(T)Aevi, = (A7) evi, = (1a)AS = (2)(Gla),
for any morphism v : x — y of GA
(w)hevi, = (A) evi, = (1a)A% = (u)(Gla).

An isomorphism of functors v : 14 — G1,4 implies that an arbitrary object x of GA is
isomorphic to (z)(G14) = ((x)A)evy,. Thus, evy, is essentially surjective on objects. By
Proposition C.11 evy, is an equivalence. Therefore, A is isomorphic to a functor quasi-
inverse to evy,. Hence, A itself is an equivalence quasi-inverse to evy,. [

C.14. EXAMPLE OF STRICT 2-FUNCTOR G = (B, ). Applying Proposition C.12 to
the strict 2-functor G = (B, ) : A — Cat, we get the following. An arbitrary 1-morphism
f: B — A gives tise to the strict 2-transformation f* = BN\AS - A(A, ) — A(B, ).
It is specified by the family of functors f5, C'€ Ob:

f& = A(F.0) - A(A,C) — AB.C)
(64— C)— (NAB.¢) = fo: B — C,
(m:¢— 1A= C)r— (HUB.7) = for: fo— f1o: B — C.

An arbitrary 2-morphism o : f — g : B — A gives rise to the modification o* =
AB )N s g* s A(A, L) — A(B, ) given by the family of natural transformations
ab o fé— g6 AA,C) = AB,C), C € ObA. The transformation af, is specified by its
components:

ag =AU, C): (¢: A= C)— ()AUB,9) = asg : (9)f& = o — 9o = (D) g0

By Proposition C.12 the correspondence f — f*, «a +— o* determines a functor Y,p :
AP(A, B) =A(B,A) — [, Cat](A(A, -),A(B, -)). One easily verifies that in fact we have
a strict 2-functor Y : AP — [, Cat].
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C.15. COROLLARY. Y is a local equivalence, i.e., for each pair of objects A, B € Ob2(°P
the functor Y p is an equivalence.

Let us recall also the notion of a birepresentable homomorphism G : 2 — Cat following
Street [Str80, (1.11)]. He formulates the following statement for an arbitrary bicategory
2, but we assume that 2 is a strict 2-category as usual.

C.16. PROPOSITION. Let G : A — Cat be a weak 2-functor. Then the following condi-
tions are equivalent:

1. there exists an object A of A and a 2-natural equivalence A : A(A, ) — G;

2. there exists an object A of A and an object x of GA such that the weak 2-transfor-
mation \* : A(A, -) — G is a 2-natural equivalence.

PROOF. Clearly, the second property implies the first one. Assume that condition 1)
holds. By Proposition C.13 the weak 2-transformation A is isomorphic to A\* for some
x € ObGA. By Proposition C.6 A is a quasi-invertible 1-morphism of [2(, Cat], hence, so
is A*. By Remark C.8 condition 2) holds. =

C.17. DEFINITION. A weak 2-functor G : 2 — Cat is representable (‘birepresentable
in terminology of Street [Str80, (1.11)]) if it satisfies equivalent conditions of Proposi-
tion C.16. A pair (A, x) consisting of an object A of A and an object x of GA is said to
represent (birepresent) G, if \* = A% = CA\AT (A, ) — G is a 2-natural equivalence.

C.18. UNIQUENESS OF THE REPRESENTING PAIR. It is shown by Street that a repre-
senting pair is unique up to an equivalence in a certain bicategory [Str80, (1.10)-(1.11)].
Let us provide the details in our setting.

Let two pairs (A, z) and (B,y) represent GG. Then there is a quasi-inverse to AP¥ :
2(B,_) — G weak 2-transformation A?¥~ : G — 2(B, ). Define a 2-natural equivalence
po= AT ABYT (A, ) — A(B, ). Tt is isomorphic to the 2-transformation (5= \4f
for some f € Ob®((B, A). There is an invertible modification m:

G)\A,a:

A(A, ) G
ﬁ(Bm ﬂmﬁ
A(B, )

Then (14)ma : (2)(G1la) — (y)(Gf) is an isomorphism of GA. Therefore,

2= (@)(1ga) © () (GLa) 25 () (GF)
is an isomorphism of GA. By symmetry we get a 1-morphism g : A — B of 2 and an
isomorphism y —— (2)(Gg) of GB. By construction the strict 2-transformations
ABINAT L A(A, ) — AUB, ),
WADNBI . A(B, ) — A(A, )
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are quasi-inverse to each other. In particular,

g = (L) 2BNANHADNEI — ((1)A(B, 1)) M4 \B9
= (NN = (9A(A, f) = g,

and by symmetry 1g >~ fg. Therefore, 1-morphisms f and g are quasi-inverse to each
other.

Summing up, a pair (A € Ob®2,z € ObGA) representing a weak 2-functor G : A —
Cat is unique up to equivalence f of the first objects, such that Gf preserves the second
object up to an isomorphism.
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