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DOUBLE CATEGORIES, 2-CATEGORIES, THIN STRUCTURES
AND CONNECTIONS

RONALD BROWN AND GHAFAR H. MOSA
Transmitted by Robert Paré

ABSTRACT. The main result is that two possible structures which may be imposed
on an edge symmetric double category, namely a connection pair and a thin structure,
are equivalent. A full proof is also given of the theorem of Spencer, that the category
of small 2-categories is equivalent to the category of edge symmetric double categories
with thin structure.

1. Introduction

The main result is the equivalence of two structures which may be available on edge
symmetric double categories, i.e. those in which the horizontal and vertical edge categories
coincide. The structures are a connection pair, and a thin structure. The first notion was
introduced in [10] and the second in [16]. Thin structures are important for applications,
particularly in relation to the notion of ‘commutative cube’, while a connection pair is
easy to generalise to higher dimensions and to related structures.

We also note that an edge symmetric double category with connection pair satisfies
the general associativity and commutativity conditions of Dawson and Paré [11]. This
allows for the computation of arbitrary compositions in such a double category and in
particular justifies a number of our calculations.

It is stated in [16] that the categories of these double categories with thin structure
and of 2-categories are equivalent, but for the proof he refers only to similar results in
the literature, since his main aim is the homotopy applications. We give a full proof here
(section 5) since it fits nicely with our earlier results, the techniques will be used in other
situations elsewhere, and it should be useful to workers in higher dimensional algebra.

There is an equivalence between ‘cubical ∞-groupoids’ with connections and ‘globular
∞-groupoids’ – this follows from the main results of [6, 7], which give equivalences with
crossed complexes. In the category case, the above equivalence for 2-categories has been
extended to 3-categories in the thesis of Al-Agl [1]. It is conjectured that there is an
equivalence of categories between globular ∞-categories and cubical ∞-categories with
connections, but the proof presents difficulties. There is an analogous result in [2], but it
uses a much broader structure for the description of the cubical ∞-categories.

An advantage of double categories with connection is the relatively easy description of
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a monoidal closed structure yielding lax natural transformations. Indeed, this is given for
what are called ω-categories in [8], which includes the general version of all the structure we
have given for double categories with connection, except for the connection Γ′. However,
this lack is easily remedied, and this gives the rules stated in [1] for what are there called
ω-categories. Of course, under the equivalence given above, the tensor product of double
categories with connection corresponds to the Gray tensor product of 2-categories, except
that, from the point of view of ω-categories, the tensor product of double categories with
connections is more naturally a quadruple category with connections – this has to be
quotiented to give a double category. It is hoped to pursue these matters elsewhere.

We will develop in [9] the equivalence given in [15] between edge symmetric double
algebroids with thin structure and certain crossed modules of algebroids – this is an
analogue of the equivalence between edge symmetric double groupoids with connection
and crossed modules [10, 6].

For more discussion on matters of higher dimensional group theory see the web article
[4]. We would like to thank Rafael Sivera for help with the layout of section 4 and the
referee for helpful comments.

2. Double categories

A double category is a category object internal to the category of small categories. It
may also be represented as consisting of four category structures

(D2, D
V
1 , ∂

0
1 , ∂

1
1 , ◦1, ε1) (D2, D

H
1 , ∂

0
2 , ∂

1
2 , ◦2, ε2)

(DV
1 , D0, ∂

0
2 , ∂

1
2 , ., ε) (DH

1 , D0, ∂
0
1 , ∂

1
1 , ., ε)

as partially shown in the diagram

D2
����

����

DV
1

����
DH

1
���� D0

.

Here DH
1 , D

V
1 are called the horizontal and vertical edge categories. The functions written

∂ are the source and target maps of the categories, and the ε denote the functions giving
the identity elements.

In the final section we shall use 2-categories, which may be defined as double categories
in which the vertical edge category is discrete. We shall initially be interested in edge
symmetric double categories, i.e. those in which the horizontal and vertical edge categories
coincide – these were called special double categories in [10]. In this case we write D1 for
DH

1 = DV
1 .
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The horizontal composition is written ◦2 and the vertical composition as ◦1, in accor-
dance with matrix conventions. It is convenient to use matrix notation for composition
of squares. Thus if u, v satisfy ∂1

2u = ∂0
2v, we write[

u v
]

for u ◦2 v

and if ∂1
1u = ∂0

1w, we write [
u
w

]
for u ◦1 w

The interchange law for double categories thus gives a unique composition for the matrix(
u v
w z

)

namely [
u v
w z

]
= (u ◦2 v) ◦1 (w ◦2 z) = (u ◦1 w) ◦2 (v ◦1 z),

whenever the compositions are all defined.
Two standard examples of edge symmetric double categories are the double categories
C, C of squares and of commuting squares in a category C, with the obvious double

category structures. It is convenient to write a square in C in the form(
c a

d
b

)

where a, b, c, d are arrows in C such that ab, cd are defined and have the same source and
target.

In fact is right adjoint to the forgetful functor assigning to every (small) edge
symmetric double category its edge category. The unit of this adjunction gives D → D1

which assigns to each element of D2 its shell, namely its square of boundary edges.

3. Thin structure on a double category

The edge symmetric double categories we study will have another structure which we call
a thin structure. This is defined to be a morphism of double categories

Θ : D1 → D

which is the identity on D1 and D0. The elements of D2 lying in Θ( D1) are called thin
elements. The definition implies immediately that:

T1) any commutative shell has a unique thin filler,

T2) any composition of thin squares is thin.
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There are some special thin squares for which we use a special notation, introduced
in [16]. These have boundaries as follows and the notation is given underneath:(

1 1
1

1

) (
a 1

1
a

) (
1 b

b
1

) (
a a

1
1

) (
1 1

a
a
)

The last two thin squares are called connections and are written also Γa,Γ′a respectively.
We will develop this structure further. The second and third squares are of course ε2a, ε1b,
while the first square is ε1ε2x for some x ∈ D0.

The rules T1),T2) now have some surprising consequences – for example we have the
following equations, which we give in both notations:

3.1. Proposition.

(i) [ ] = , [ Γ′a Γa ] = ε1a;

(ii)

[ ]
= ,

[
Γ′a
Γa

]
= ε2a ;

(iii)

[ ]
= ,

[
Γ′a ε2a
ε1a Γ′b

]
= Γ′(ab) ;

(iv)

[ ]
= ,

[
Γa ε1b
ε2b Γb

]
= Γ(ab).

Proof. Note that for example the left hand and right hand sides of the third equation are
abbreviations for

1

1

1

a a

a

1

1

1 b

a b

1

1 ab

ab

and similarly for the others. The arguments for the proofs are that any composite of thin
element is thin, and so is determined by its shell.

Finally in this section we note that the thin structure can be recovered from the
connection pair Γ,Γ′ as follows:

3.2. Proposition. A thin structure Θ on D can be recovered from the associated con-
nection pair by

Θ

(
ca db

)
= (ε2a ◦1 Γ

′b) ◦2 (Γc ◦1 ε2d) = (ε1c ◦2 Γ
′d) ◦1 (Γa ◦2 ε1b). (∗)

Proof. The proof is immediate from the fact that a thin square is determined by its shell,
as long as that commutes.
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4. Connections on a double category

We now reverse the previous procedure and start with the connection pair, which we call
simply a connection. The rules we impose are those given mainly by proposition 3.1.

A connection on an edge symmetric double category D is given by a pair of maps

Γ,Γ′ : D1 → D2

whose edges are given by the following diagrams for a ∈ D1:

Γ(a) =

a

a 1

1

= =

Γ′(a) =

1

1 a

a

= = .

Their boundary conditions are those indicated by the graphical representation, i.e.

∂0
2Γ(a) = ∂0

1Γ(a) = a and ∂1
2Γ(a) = ∂1

1Γ(a) = ε∂1a (CON 1.)

∂1
2Γ

′(a) = ∂1
1Γ

′(a) = a and ∂0
2Γ

′(a) = ∂0
1Γ

′(a) = ε∂0a. (CON′ 1.)

We also require
Γε(x) = 1x (CON 2.)

Γ′ε(x) = 1x. (CON′ 2.)

The connections of the composition of two elements are given by the “transport laws”:

Γ(ab) =

[
Γa ε1b
ε2b Γb

]
(CON 3.)

Γ′(ab) =
[
Γ′a ε2a
ε1a Γ′b

]
. (CON′ 3.)

The last condition is that they are “inverse” to each other in both directions, i.e.

Γ′(a) ◦2 Γ(a) = ε1(a) (CON 4.)

Γ′(a) ◦1 Γ(a) = ε2(a). (CON′ 4.)

The above laws should be compared with the results of proposition 3.1.
One immediate application of this notion uses a result of Dawson and Paré [11]. They

are concerned with all possible computations of compositions in a double category. They
show that there is a unique composition if a basic decomposition result holds:
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4.1. Assumption. [Dawson-Paré] Suppose a square α has a decomposition of an edge a
as a = a1a2. Then α has a compatible decomposition α = α1 ◦i α2, i.e. such that αj has
edge aj, j = 1, 2.

As an example we give:

α = α1 α2

a1
• a2 a1 a2

4.2. Proposition. The assumption 4.1 holds in a double category with connection.

Proof. The required decomposition can be obtained in the presence of a connection for

example as shown below, in which we take α1 =

[ ]
:

α

a1 a2

a1 1 a2

Similar decompositions may be obtained for the other possibilities.

The result of Dawson and Paré justifies the calculations we will carry out below.
We now show the more difficult result that a connection defines a thin structure. For

double groupoids the proof may be traced back to work of Brown and Higgins [5]. Here
we adopt a different approach.

4.3. Theorem. If there is given a connection pair (Γ,Γ′) on D, then the functions
Θ1,Θ2 : D1 → D2 given by

Θ1

(
c

a d
b

)
= (ε1c ◦2 Γ

′d) ◦1 (Γa ◦2 ε1d), (1)

Θ2

(
c

a d
b

)
= (ε2a ◦1 Γ

′b) ◦2 (Γc ◦1 ε2b) (2)

satisfy

(i) Θ1 = Θ2;

(ii) Θ2(u ◦1 w) = Θ2(u) ◦1 Θ2(w);

(iii) Θ1(u ◦2 v) = Θ1(u) ◦2 Θ1(v);
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(iv) Θ1

(
b

1 1
b

)
= ε1(b),Θ1

(
1

a a
1

)
= ε2(a),

Θ1

(
a

a 1
1

)
= Γ(a),Θ1

(
1

1 b
b

)
= Γ′(b)

for all u, v, w ∈ D1 such that u ◦1 w, u ◦2 v are defined, and a, b ∈ D1.

Proof. Let us first prove that Θ1 = Θ2. We can write

Θ1

(
c

a d
b

)
=

c d

a b

Θ2

(
c

a d
b

)
=

a c

b d

To prove Θ1 = Θ2 we construct a common subdivision. One that is appropriate for this
case is

c

d

a c

b d

a

b
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From this diagram, we may compose the second and third row using the transport law
and then rearrange things, getting Θ1 as indicated

c

d

ab
c

cd
d

a

a

b

b

=

c

d

c d

a

a

b

b

= Θ1

(
c

a d
b

)
.

Similarly, operating in the bottom left and the top right corner, we get

c

a a c

b d d

b

=

c

a a c

b d d

b

and this last diagram is clearly Θ2.

We next prove (ii), that Θ2 commutes with the vertical composition. So we want to
prove

Θ2

(
ca db

)
◦1 Θ2

(
ba′ d′e

)
= Θ2

(
caa′ dd′e

)
.

As before we compute a common subdivision in two ways. The common subdivision we
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choose is

a a

c

c

b d d

a′ a′
b

b

e d′ d′

e

If we compose the first two rows, they produce Θ2

(
ca db

)
. Similarly, the two last rows

give Θ2

(
ba′ d′e

)
.

On the other hand, making some easy adjusts on the three middle rows, we get

a a

c

c

a′ a′ b b d d

e d′ d′

e

=

aa′ aa′

c

c

e dd′ dd′

e

which clearly is Θ2

(
caa′ dd′e

)
.

The proof of (iii), that Θ1 commute with the horizontal composition is similar to the
above and is left to the reader, as is the much simpler proof of (iv).

4.4. Corollary. A thin structure and connection pair on an edge symmetric double
category determine each other.

For other applications of thin structures we refer to [16, 17, 3].

5. The equivalence of 2-categories and edge symmetric double categories
with connection

It was observed by C. Ehresmann [12] that a 2-category gives rise in two ways to a double
category. Following the lead given in [10] for double groupoids and crossed modules, it
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was observed in [16] that double categories with thin structure yield connections, and
that the Ehresmann construction gives an equivalence between 2-categories and double
categories with thin structure. This work has not been much exploited, perhaps because
Spencer left the detailed proof to the reader, and so we give a proof here.

Recall that a 2-category may be defined as a double category D = (D,H, V,X) in
which the vertical edge category V is discrete, i.e. consists only of identities. It follows
that any double category D as above contains a 2-category γD = (γD,H,X,X) where
γD consists of the squares of D whose vertical edges are identities.

In order to reconstruct an edge symmetric double category with connection from the
2-category it contains, we introduce the important folding map

Φ : D → γD

given by Φ(u) = [ u ]. The description of the behaviour of Φ with respect to
compositions requires the ‘whiskering’ operations of the category H on γD given as usual
by

au = a ◦2 u, u
b = u ◦2 b.

5.1. Proposition. If u, v, w ∈ D and u ◦1 v, u ◦2 w are defined then

Φ(u ◦1 v) = (Φu)∂
1
2v ◦1

∂0
2u(Φv), (3)

Φ(u ◦2 w) =
∂0
1u(Φw) ◦1 (Φu)∂

1
1w, (4)

Proof. This consists of composing in two ways each of the diagrams:(
u
v

) (
w

u

)

We also require:

5.2. Proposition. If an element u ∈ D is thin then Φu = .

Proof. If u is thin, then so also is Φu, since it is a composition of thin elements. Since
its vertical edges are constant, it follows that Φu = .

The converse of this proposition will be proved later.
Now suppose C is a 2-category with set of i-cells denoted Ci for i = 0, 1, 2. We

construct an edge symmetric double category with thin structure λC whose objects and
edge category are C0 and C1 respectively, and whose set of squares is given by quintuples(

u : c ad b
)

(5)

such that a, b, c, d ∈ C1, u ∈ C2 and u : ab ⇒ cd in C. The boundary maps on squares
are defined in the obvious way, and the thin squares are those of the form(

1 : c ad b
)
.
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The compositions are defined by(
u : c ad b

)
◦1

(
v : f dg e

)
=

(
ue ◦1

cv : cf ag be
)
, (6)(

u : c ad b
)
◦2

(
w : b kh l

)
=

(
aw ◦1 u

h : c akdh l
)
. (7)

It is straightforward to check that these rules give a double category with thin struc-
ture. The hardest part is the interchange law, and that follows from the interchange law
for the 2-category C. We leave further details to the reader.

It is clear that if C is a 2-category, then there is a natural isomorphism of 2-categories

γλC ∼= C, in which the map on 2-cells is
(
u : 1 ab 1

)
�→ u. The difficult part of the proof

is the isomorphism φ : D → λγD.
This is to be the identity on objects and edges and on squares is given by

u �→
(
Φu : ∂0

2u
∂0

1u
∂1

1u
∂1

2u

)
. (8)

The composition rules for Φ imply immediately that φ is a morphism for the two compo-
sitions.

We now construct an inverse ψ to φ. Let
(
v : c ad b

)
be an element of λγD, so that

v : ab⇒ cd. Let t, t′ be the thin elements
(
1 a
ab b

)
,
(
c cdd 1

)
respectively. We define

ψ
(
v : c ad b

)
=


 t
v
t′


 . (9)

The proofs that ψφ(u) = u, φψ(v) = v are given in essence by the following diagrams:
 u





 t

v
t′




where t, t′ are as defined above, and since we can also write

t = ( ) = ( ) ,

t′ = ( ) = ( ) .

We also note that if v = then the right hand side of (9) is thin. This proves that if Φu
is thin, then so also is u. It follows that φ determines an isomorphism of double categories
with thin structure D → λγD.

The above maps φ, ψ are clearly natural. So we have proved the theorem of Spencer
[16]:
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5.3. Theorem. The functor γ gives an equivalence of categories from edge symmetric
double categories with thin structure to 2-categories.

5.4. Remark. A generalisation of the folding map Φ is given in all dimensions in [1],
following leads given in [15]. The problems not solved in dimensions greater than 3 are
the formulation and proof of properties corresponding to those of proposition 5.1, and the
definitions of and relations with thin structures.

5.5. Remark. Andrée Ehresmann has pointed out that the paper [14, Proposition 9,
p.103] proves that any double category is a subdouble category of the double category
associated in the above equivalence to a well defined 2-category. See also the comments
in [13], II-1, comment 105.1, and IV-2, p.798-800.
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