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ABSTRACT. This note applies techniques we have developed to study coherence
in monoidal categories with two tensors, corresponding to the tensor{par fragment of
linear logic, to several new situations, including Hyland and de Paiva's Full Intuitionistic
Linear Logic (FILL), and Lambek's Bilinear Logic (BILL). Note that the latter is a non-
commutative logic; we also consider the noncommutative version of FILL. The essential
di�erence between FILL and BILL lies in requiring that a certain tensorial strength be an
isomorphism. In any FILL category, it is possible to isolate a full subcategory of objects
(the \nucleus") for which this transformation is an isomorphism. In addition, we de�ne
and study the appropriate categorical structure underlying the MIX rule. For all these
structures, we do not restrict consideration to the \pure" logic as we allow non-logical
axioms. We de�ne the appropriate notion of proof nets for these logics, and use them
to describe coherence results for the corresponding categorical structures.

0. Introduction

In [CS91] we introduced the notion of \weakly distributive category", now renamed \lin-
early distributive category", in order to study the pure proof theory of the cut rule for the
sequent calculus with �nite sequences of formulas on both sides of the turnstile. This is
generally thought of as the \classical" sequent calculus, but in fact this proof theory is not
truly \classical" in any real sense, and may be thought of as the tensor{par fragment
of linear logic with no negation. We wished to show how features could be added in a
modular fashion to this basic categorical setting, in order to model the more expressive
fragments of linear logic: this program is now largely complete, see [CS91, BCST, BCS92],
and includes the subject matter of this paper.

Crucial to this program was the provision of an intrinsic characterization of the par.
In classical linear logic the negation was an obstruction, for it allowed the par to be
viewed as merely the de Morgan dual of the usual tensor product, and so for its special
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properties to be swept under the rug of \duality". Foremost here is the role played by
tensorial strength. The central feature of \linear distributivity", which amounts to the
property that each tensor is linearly strong relative to the other, had not been stressed
before [CS91], largely we believe, because its role is not apparent in the fully dual context
of classical linear logic.

At about the same time as [CS91], a system which lacked the full duality of classical
linear logic was being studied by de Paiva and Hyland. The logic was linear and had, in-
stead of negation, a linear implication [HP93]. They named the logic, appropriately, \full
intuitionistic linear logic" or FILL for short. Interestingly|and quite independently|they
noticed the crucial role played by the \weak distributivities" linking the tensor and par
in their system [HP91]. These were exactly the linear strengths, or \linear distributiv-
ities", we had been studying. (They even used the same term|weak distributivity|as
we then used.)

Since the 1950's Lambek has studied a number of logics without structural rules; a
summary of many of these may be found in [L93]. We shall consider two such noncom-
mutative linear logics here: the main feature that distinguishes these from FILL, apart
from their being noncommutative, is that the par{tensorial strength for the internal hom
arising from the linear distributivity should be an isomorphism. The �rst such logic has
the minimal closed structure that is natural in this setting, having left and right impli-
cations for the tensor; we shall refer to this logic as \Grishin Implicative Linear Logic"
or GILL for short, re
ecting the fact that Grishin was the �rst to note the importance of
the isomorphism mentioned above [Gr83]. In addition we consider Lambek's system BL2,
which we shall refer to as BILL. This logic has not only GILL's left and right implications
but also left and right dual implications for the par. We shall show that the categorical
semantics of GILL and BILL are in fact equivalent, and correspond to an appropriate notion
of noncommutative �-autonomous category. In [L93] Lambek shows that in the posetal
case, adding the Grishin isomorphism to (noncommutative) FILL gives full multiplicative
linear logic; we extend this in the obvious way to full categorical generality.

We shall also show how our approach to coherence via proof nets can be applied
to these variants of linear logic: in particular we shall discuss the proof nets for both
(commutative and noncommutative)FILL and BILL. The principle addition to our previous
work is to show how the autonomous (or monoidal closed) structure may be handled. Our
approach is somewhat di�erent from the related work of Trimble's [T94], in that we use
proof \boxes" to handle \scoping" for this structure. We shall brie
y discuss a suggestive
box-free notation which is closer to Trimble's approach. However, we also discuss the
shortcomings of this notation. If one wishes to express, for example, the proof theory
of FILL, what is allowed in the scope of an implication (introduction) and what is not
becomes quite crucial: in a box-free notation it is much more di�cult to recover these
precise scopes.

A further related point of some interest is worth mentioning: Schellinx [Sc91] showed
that cut elimination fails for FILL. It may, therefore, seem quite paradoxical to claim
coherence results (normalization theorems) for this proof theory, since cut elimination
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and normalization for logical systems are regarded as being intimately related|even syn-
onymous. However, FILL is a curious witness to the fact that this relationship need not
necessarily be very straightforward.

Hyland and de Paiva in [HP93] take the view that that cut elimination must not
fail. In order to obtain cut elimination in this setting, however, they had to modify the
sequent calculus by attaching proof annotations. These annotations are essentially the
natural deduction style proofs which we present here.

Here we wish to promote the virtues of natural deduction per se, and so the temptation
to adopt a contrary view has been impossible to resist. In the unannotated sequent
calculus for FILL not only can normal FILL derivations contain \essential cuts" but also it
is possible for two distinct FILL derivations to be equivalent as proofs and yet be impossible
to reduce to each other under the usual cut elimination procedure. However, when one
presents these proofs in the natural deduction style we are advocating, these obstructions
untangle in a rather natural way.

After developing the theory for FILL and BILL, we show that there are several con-
nections between these doctrines. The most interesting uses the notion of the nucleus
of a FILL category: this is a generalization of the notion of the nucleus of a symmetric
monoidal category. The nucleus of a (commutative) FILL category is a �-autonomous full
subcategory with the same tensor, par and implication.

In addition, we �ll a gap in the literature by de�ning what it means for a linearly
distributive category to satisfy the MIX rule. There are some subtleties here concerning
the appropriate coherence conditions that are necessary for a good �t with the logic. While
the MIX rule has been studied before [FR94], the connection with categorical structures
had not been completely worked out. One point of interest is that a linearly distributive
category satis�es the MIX rule if and only if its nucleus does. This has an interesting
consequence: all linearly distributive categories which have either the tensor cartesian
or par cartesian, necessarily satisfy theMIX rule. This gives a plentiful source of examples
of MIX categories.

This paper is part of a series of papers on the structure of linearly distributive cat-
egories; more complete details, at least on the basic context, can be found in the other
papers [CS91, BCST, BCS92]|the reader should also see [T94] for its treatment of au-
tonomous categories.

Work such as this focuses on the structure of proofs of a theory in a manner still not
quite standard in logic. There are two questions coherence theory deals with: the existence
of proofs of particular logical sequents, and the equality of proofs of a particular sequent,
or equivalently, whether or not particular homsets in the appropriate free category are
inhabited, and whether or not two morphisms with the same domain and codomain are
equal. The �rst is indeed part of standard proof theory, but the second is still frequently
seen (wrongly we contend) as merely part of category theory. In particular, in the many
complexity studies of the proof theory of linear logic, few have addressed the complexity
of equality of proofs: this is a pity as there are many interesting open questions here.

There are a few features of our presentation we would like to emphasize. Foremost
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is the role of tensorial strength (or linear distributivity), which captures the essence of
the implicit duality between the tensors, even|or perhaps especially|in the context
where a real duality is absent. We have seen this extends to the modalities ! and ? as
well [BCS92].

Next, the reader should note the manipulations on our circuit diagrams (our version
of proof nets)|while in all essentials these are of course equivalent to the usual Girard-
Danos-Regnier proof nets, the lack of the de Morgan duality forces these nets to \open up"
into a two-sided form with premises and conclusions, which we believe makes them more
natural to work with. The calculus of thinning links for the tensor units was introduced
in [BCST] and is the main novelty of our presentation. A similar calculus is applicable
for any operators that introduce thinning, such as the exponentials. We must point out
that most of the complications of this work come from the presence of the tensor units.
Corresponding results for unit-free systems are quite trivial, and simple complete decision
procedures for equality of maps are available. Just as has been found with the study of
the complexity of existence of proofs in fragments of linear logic, we have found much of
the structural richness lies with the units when analyzing equality of proofs: as mentioned
above, complexity results here would be of interest.

Finally, to express the fact that the extension from FILL to �-autonomous categories
is not conservative requires care in choosing the proof nets for FILL and BILL. Crucial in
making this tractable is our use of scope boxes to represent the linear implications for
the tensor (and the dual implications for the par). We show how these can be used
to extend the term calculus for proof nets introduced in [BCST] and recall the subtle
problem of correctly capturing the planarity condition in the noncommutative case which
is accommodated by this formulation.

A reminder, and �nally, a disclaimer: First, the reader will have already noticed that
we have adopted the term \linearly distributive category" for what previously we have
called \weakly distributive category". This we view as a minor matter, but we have come
to agree with some critics that this term is somewhat more appropriate, especially in
view of the realization that distributive categories are not \weakly distributive" [CS91j].
(Well, they are not \linearly distributive" either, but that fact seems not to disturb one's
soul quite as much!) We thank Mike Barr for the suggestion of this (better) terminology.
More controversial, perhaps, is our use of the symbol � for the dual tensor par, which
con
icts with the notation used by Girard, but more appropriately �ts the context here,
where implicit duality is key. In particular, � is a multiplicative connective, and not the
additive connective corresponding to a categorical coproduct nor the biproduct of linear
algebra.

Finally, the key technical points introduced here are fairly straightforward, and follow
the methods of [BCST] as closely as possible. Some parts of this paper consist of technical
matters that arise in extending [BCST] to the present context, and may be omitted
without interrupting the 
ow of the present paper; these have been put in the appendices.
In particular, where details seem sketchy here, the reason is generally because they follow
closely the details of [BCST] and can be reconstructed easily using that paper as a guide.
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This paper ought to be considered as an incentive to read [BCST]. We intended that
paper to be a general model of how to treat monoidal categories more general than just
linearly distributive categories; this paper is an illustration of how to do that.

1. Links and circuits

We start by identifying the various links we shall allow in the graphs we use to represent
deductions in the logical systems we wish to study. The reader already familiar with proof
nets should �nd this quite straightforward. We base our presentation on the notion of
typed circuit as introduced in [BCST]. In this paper we shall generally use the graphical
presentation of circuits, but the reader can easily make this more rigorous by adapting
the syntax of [BCST]. In Appendix A we shall show how to extend that syntax to include
the new operators introduced here. There are some simple points to keep in mind:

� Our graphs are quite similar to the usual proof nets|edges represent formulas and
vertices represent logical rules (introduction and elimination steps). We shall usually
not label the edges (\wires") for clarity; one can generally �ll in the labels without
di�culty.

� Since the logical systems we consider have no notion of negation, our graphs must
correspond to two-sided sequents; they have premises and conclusions, unlike the
one-sided proof nets of Girard. These nets more closely resemble traditional natural
deduction than the usual proof nets; for instance, cut is replaced by grafting of trees,
and the cut elimination process by reduction.

� To handle thinning (from units or from exponentials, for instance), we introduce
a new kind of link (\thinning links"), which witness the folkloric condition that
whenever a thinning occurs, the formula introduced must \connect" to the existing
net in some way. Keeping track of how these thinning links may move about without
essentially changing the net is the essence of our coherence theorem [BCST].

� We adopt a notation of Y. Lafont, indicating the principal port with a black dot.
On some of the implication links this will make �nding the principal port simpler.
For other links we shall sometimes omit this principal port indicator.

� In order to make it easier to spot switchable links, we shall often identify them with
a small arc joining the two (auxiliary) edges that may be cut in setting the switch.
This arc is of course a meta-notation, and forms no part of the net.

� The \implication" links (�� I); (�� I); (4 E); (5 E) all involve \scope boxes"; that
is they are applicable only to the situation where one has a subnet C to attach the
link to, as with the \storage boxes" for ! and ? [BCS92].
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For the bilinear logic we call BILL, we use circuits generated by a set A of atomic types
and a set C of components, corresponding to non-logical axioms. Types are generated
from atomic types by including the units >, ? for the two tensors and closing under the
operations �, �, ��, ��, 4, 5. There are introduction and elimination links for each of
these operations and for the constants ?;>; circuits are then generated by these links
from C. We shall treat GILL and FILL as fragments of BILL at present: GILL lacks the
dual tensors 4 and 5; FILL, as fragment of GILL has a further crucial di�erence which is
emphasized below in Remark 1.1.

The introduction and elimination links are listed in Table 1. Each will be identi�ed
by a label (� I), (� E), where � is the operator involved, and the I, E indicates the
link that introduces (a wire leaves the link at the principal port) or eliminates (a wire
enters the link at the principal port) a compound formula created with that operator.
A mnemonic: one obtains the cycle A;B;A�B going clockwise around an introduction
link, and going counterclockwise around an elimination link.

Note that the links for �� (and similarly ��; 4; 5) are in fact based on the traditional
natural deduction rules for implication. The (�� I) rule is a binding rule (i.e. involving
a \box") that replaces a derivation A;� ` B;� with a derivation � ` A �� B;�, and
the (�� E) rule is just \evaluation" or modus ponens. In the box rules we have just
drawn a \half-box"; generally the full scope can be deduced from the context, but if
necessary one might want to indicate the rest of the scope box, say, with a dotted line.
In valid (or sequential) nets C will have to be valid as well; this will be checked using the
sequentialization process of Appendix B, or, equivalently, by showing that the circuit can
be built inductively.

Since some of these connectives will not be familiar (and because we use a di�erent
notation from just about anyone else!|Lambek uses n ; = for ��; ��, and :�� ; ��: for 5; 4),
the sequent rules that correspond to these links are given in Table 2. In commutative
logics the reader can add the exchange rule for himself. We shall just mention a few points
here:

� The two linear implication (or internal hom) operators ��; �� (\then" and \if") are
both used only in the noncommutative case (where proof circuits must be planar).
Using the notation of [CS91], in the full classical (i.e. with negation) noncommuta-
tive logic they correspond to A��B = A?

�B and A ��B = A� ?B.

� The operators 4; 5 (\less" and \from") are dual linear implications (internal homs):
they are the corresponding right adjoints to the par � (recall the implications are
in the same sense left adjoints to the tensor �). In full classical noncommutative
linear logic they may be de�ned as A 4 B = A � B? and A 5 B = ?A � B. We
shall often abuse terminology and refer to all four connectives as \implications" or
\homs": the context should make the usage clear.
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C is an arbitrary subcircuit with appropriate in/outputs

Table 1: Links for proof circuits

� The following adjunctions summarize these points:

A�B �! C C �! A�B
B �! A�� C A5 C �! B

A�B �! C C �! A�B
A �! C ��B C 4B �! A
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� ` �; A;�0 �0; A;�00 ` �00

�0;�;�00 ` �;�00;�0 (cut)

if �0 or � = � and �00 or �0 = �

�; A;B;�0 ` �

�; A�B;�0 ` �
(� L)

� ` �; A;�0 �0 ` �00; B;�000

�;�0 ` �00;�; A�B;�000;�0 (� R)

if �0 = �00 = � or � = �0 = � or �0 = �00 = �

�; A;�0 ` � �00; B;�000 ` �0

�00;�; A�B;�000;�0 ` �;�0 (� L)
� ` �; A;B;�0

� ` �; A�B;�0 (� R)

if �0 = �00 = � or �00 = �0 = � or �0 = � = �

�;�0 ` �

�;>;�0 ` �
(> L)

` >
(> R)

? `
(? L)

� ` �;�0

� ` �;?;�0 (? R)

� ` �; A �0; B;�00 ` �0

�0;�; A��B;�00 ` �;�0 (�� L)
A;� ` B;�

� ` A��B;�
(�� R)

if � or �0 = �

� ` B;� �0; A;�00 ` �0

�0; A ��B;�;�00 ` �0;�
(�� L)

�; B ` �; A

� ` �; A ��B
(�� R)

if � or �00 = �

B;� ` A;�

A5B;� ` �
(5 L)

�; A ` � �0 ` �0; B;�00

�;�0 ` �0;�; A5B;�00 (5 R)

if � or �0 = �

�; A ` �; B
�; A4B ` �

(4 L)
B;� ` � �0 ` �0; A;�00

�0;� ` �0; A4B;�;�00 (4 R)

if � or �00 = �

Table 2: Sequent rules corresponding to circuit links
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1.1. Remark. (FILL and bilinear logic) There is a restriction that must be placed on the
(�� I) rule for the system FILL: � must be empty. As originally presented by de Paiva and
Hyland, FILL does not include dual implications but one could add similar restrictions to
the other \boxed" rules. This restriction will be discussed further in Section 2, where we
shall discuss its semantics, and in Appendix B, where we impose the restriction as part of
the sequentialization process. The bilinear logics BILL and GILL have no such restriction.

In Table 3, we show a number of rewrites associated with these graphical links: re-
ductions, which allow one to eliminate a \redundant" wire joining principal ports for the
same operator, and expansions, which allow one to identify a wire carrying a compound
formula by \splitting" the wire into \simpler" wires, ultimately into atomic wires. This
introduces two nodes for the same operator joined along auxiliary ports. We have only
given some of the reductions and expansions in Table 3; the rewrites for � are like those
for �, and the rewrites for ��; 4; 5 are suitable duals to those for ��. The expansions
for the units must have appropriate thinning links, as in [BCST]. The proof that this
forms a con
uent and strongly normalizing system is beyond the scope of this note (see
Remark 1.3).

In addition to the usual reductions and expansions, there are eight equations necessary
for handling the boxes in the rules (�� I); (�� I); (5 E); (4 E). These we shall regard
as permutation rules in the spirit of natural deduction (or as equalities in the terminology
of rewriting). The ones for (�� I) are given in Table 4; the others are the evident duals.
In Table 4, the wires may be multiple or null, as appropriate, and the rectangles represent
subgraphs; they need not be valid subcircuits (i.e. sequential subcircuits). For instance,
the rectangle G outside the �rst scope box might be a (� E) link both of whose output
wires enter the rectangle C inside the scope box, and dually, the rectangle G outside the
third scope box might be a (� I) link. In enlarging or contracting the scope of a box,
the only restriction is that the result is a valid circuit. Note how we have indicated the
extent of the boxes with dotted lines, as suggested before.

1.2. Remark. (Orienting scope rules) It may seem attractive to orient the scope rules,
say in the direction of enlarging scope (left to right) and to use these scope enlargements
as reductions. Without the FILL restriction this leads immediately to unresolvable critical
pairs between scope enlargements (and in fact, even with the FILL restriction, when there
are dual implications, we obtain similar unresolvable critical pairs).

However, there is another source of critical pairs to consider: these arise between
scope changes for the linear implications and the reduction rule for the par and, similarly,
between the scope changes for the dual implications and the reduction rule for the tensor.
These are problematic in all the settings which we consider and prevent the orientation
of scope changes in either the enlarging or shrinking direction.

As these critical pairs have a crucial role in determining the coherence results for FILL
we shall document them here. In Figure 1 we see an example of a critical pair that cannot
be resolved if we treat scope expansion as a reduction rewrite. Notice here there is a �
reduction just above the scope box. However, one can enlarge the scope box so that the
scope cuts the wire on which this reduction occurs. Now one can no longer perform the
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Table 3: Reductions and expansions for proof circuits

reduction nor can we further enlarge the scope: thus, the pair cannot be resolved.

For the orientation in the direction of shrinking scope we have the analogous critical
pair in Figure 2. Here reducing the scope prevents the � reduction. However the scope
cannot be further reduced so as to enable the rule again.

In the commutative logics, as with traditional proof nets, those graphs that correspond
to sequent proofs are those that satisfy the \net criterion" of Danos-Regnier: for any
setting of the switches, the graph, considered as an undirected graph, must be acyclic
and connected. Recall a switch is set by cutting one of the two switchable edges at a
switchable link. We shall refer to such graphs as \circuits" (redundantly \valid circuits")
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Table 4: Box scope equivalences

or \proof nets". We refer to graphs which may or may not satisfy the net criterion as
\graphs" or (occasionally abusing terminology) simply as \invalid circuits".

The net criterion for the noncommutative logics is in fact a bit trickier than it �rst
might seem. Traditionally it has been assumed that it su�ces to add the criterion that
the net be planar, by which we mean that there are no crossings in the graph. In [BCST]
we noted that this is not quite right. However, it is still the case that any sequential nets
must be planar and satisfy this criterion and, thus, this is a useful and intuitive heuristic
in the noncommutative logic. In Appendix B we present a valid sequentialization process.
An example of a planar non-sequential circuit which satis�es the net criterion is given
in Figure 16. The sequent rules given in Table 2 are all valid in the noncommutative
logics; for the commutative logics, where the circuits need not be planar, one must add
the exchange rules in the obvious way.

In Figure 3 are some (valid) circuits. The �rst corresponds to the \evaluation map"
A� (A��B) �! B in an autonomous (monoidal closed) category, the second to the linear
distributivity A � (B � C) �! (A � B) � C in a linearly distributive category, and the
third to the triple dual composite map

(((A�� I)�� I)�� I) �! (A�� I) �! (((A�� I)�� I)�� I)

in a symmetric autonomous category. Switchable links are indicated to help verify the
net criterion. Note that the third net is not planar, and indeed the existence of this
map depends on symmetry. We leave it as an exercise for the reader to construct the
corresponding planar endomorphism on the object (I �� (A �� I)) �� I; we shall see this
net again later.

In Figure 4 we show an example of circuit rewrites. In particular, we illustrate the
veri�cation that the composite (A��B)�C �! A�� (B � C) �! (A��B)� C reduces
to the expanded normal form of the identity wire on (A �� B) � C. We shall see that
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Figure 3: Some examples of proof circuits

this is one half of the exercise of checking that we have an isomorphism (A �� B) � C
�! A�� (B � C) in the circuit category; the other direction is left as an exercise.

1.3. Remark. (Rewrites in terms of directed circuits) The reductions and expansions
for the nets for FILL and BILL may be made to look like those for linearly distributive
categories, by making the scoping for ��; ��; 4; 5 implicit, rather than explicit as given
by the boxes in the rules for these connectives. This can be done by treating the \half-
box" as a wire, read in a contravariant sense, and so amounts to introducing \directed
circuits". In this approach, the (��) rules would look like this

j��r
?

I
	

A B

A ��B

j��
r
?

�
R

A��B

A B
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Figure 4: An example of circuit rewrites

and the �� reduction then may be given as
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which is essentially the reduction in Table 3. There is a similar expansion rule, which
expands a �� wire into a \loop", one side of which is contravariant, the other side being
covariant. The other implications are handled similarly.

This version of the nets and particularly of the rewrites is very intuitive, especially
as it seems just like the familiar context of circuits from [BCST], and so makes circuit
manipulations quite simple. There is a problem with losing the boxes, however, for the
scoping they provide is quite vital for FILL. In particular, the sequentialization process does
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not to work without some way to keep track of the scope of the implication connectives,
which the sequent calculus does automatically. The main symptom that sequentiality
is a problem with these directed nets is their implicit \�-autonomous" structure. This
is harmless in the bilinear context, as these settings are (as we shall shortly see) �-
autonomous, however, for FILL, this is quite disastrous as in general there is not even a
faithful (structure preserving) functor into a �-autonomous category. Thus, even though
these directed circuits do provide an adequate notation for bilinear categories, we shall
continue to use the scope boxes as they can also express correctly the semantics of FILL.

2. Logical theories and categorical doctrines

We shall deal with several logical theories (and the corresponding categorical structures)
in this paper. The full system using all the binary connectives �; �; ��; ��; 4; 5 and
the constants >; ? and using the sequent rules of Table 2 (or equivalently the circuit links
of Table 1) is Lambek's bilinear logic BILL. We also consider the fragment of bilinear logic
which omits the connectives 4; 5; we call this noncommutative logic GILL.1 If we add
the permutation rule to GILL (and so may omit ��, which is then equivalent to �� in the
evident way), we have commutative GILL. If we add the restriction \� must be empty" to
the (�� I) link (or equivalently, the (�� R) sequent rule) in commutative GILL we obtain
de Paiva and Hyland's system FILL. If we add this restriction and the corresponding
restriction to the (�� R) rule to noncommutative GILL, we get noncommutative FILL.

2.1. Remark. (Cut elimination and FILL) Neither the commutative nor noncommuta-
tive versions of FILL, if presented as a sequent calculus (as in Table 2, with the restriction
of Remark 1.1) satis�es cut elimination. Schellinx [Sc91] provides an example2 of how cut
elimination fails in FILL. In [HP93] Hyland and de Paiva argue that if one wants a com-
putationally signi�cant sequent calculus, then cut elimination is important. To recapture
the result, they introduce a more general (�� R) rule in which the � need not be empty
(�.e. the sequent rule (��R) from Figure 11 in their paper). Their new rule, however, has
an important side condition involving the term calculus with which they annotate their
proofs. Using this rule they prove a cut elimination theorem and show that any derivation
using the more general rule can be transformed, at the cost of introducing cuts, into one
which uses the restricted rule in which � must be empty.

While neither the sequent calculus nor its cut elimination process are primary con-
cerns of this paper, it is of some interest to understand these di�erent perspectives, and
in particular how the resolution in [HP93] is achieved. In this paper we also claim a nor-
malization result, but it is based in the natural deduction style. We would argue that the

1\Grishin Implicative Linear Logic": The distinguishing feature of GILL as opposed to FILL is the
sequent axiom corresponding to the costrength ��1 de�ned below, whose importance, as Lambek [L93]
has pointed out, was �rst noticed by Grishin [Gr83], who in addition anticipated linear and bilinear logic
by several years.

2In fact in [Sc91] the example given uses additives: however, the author, in a private communication,
showed us that essentially the same example worked for FILL without additives.
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term calculus used to annotate the proofs in [HP93] consists essentially of representations
of these natural deduction proofs. The reason they can be used to recapture cut elimi-
nation is precisely because the underlying representation can be normalized. Of course,
this does not mean that [HP93] lacks interest: the cut elimination procedure they devel-
oped translates into an algorithm for reducing natural deduction proofs which is more
detailed than our speci�cation of reduction in terms of rewrite rules. In particular, it
provides information about how the permuting conversions introduced by scope should
be manipulated during reduction.

In this remark we shall refer to the system proposed in [HP93] as the annotated sequent
calculus, and the system described in this paper as unannotated. An example where the
normal form has a cut which cannot be removed in our unannotated sequent calculus for
FILL is as follows:

j�

j�

j��

r

r

r

B �C ` B;C

A;B ` A�B

B ` A�� (A�B)

B �C ` A�� (A�B); C

(In this discussion we shall abbreviate sequent derivations by omitting sub-derivations of
sequents of the form A�B ` A;B and A;B ` A�B.)

To eliminate this cut we would want to move it up the right branch of the derivation.
However, the FILL restriction inhibits us from performing the desired cut elimination step.
In the annotated calculus this problem is avoided by keeping track of the fact that C is
\independent" of the proposition to be bound by the implication so that the appropriate
implication can still be formed. In the natural deduction system represented by the
circuits of this paper, this circuit is in normal form, even though it seems to contain a
\cut"; no reduction may be performed on this circuit.

The cut elimination process on the unannotated sequent calculus tends to enlarge
scopes. Thus, it is worth looking again at the critical pair of Figure 1, which illustrated
why scope enlargement is not a viable rewrite rule. The circuits in that Figure have the
following sequentializations.

The \vertex" of the critical pair corresponds to the following deduction.

X `f A;B;C

X ` A�B;C

Y;A ` Y �A B ` B
Y;A�B ` Y �A;B

Y;X ` Y �A;B;C

Y;X ` (Y �A)�B;C

Z; (Y �A)�B ` Z � ((Y �A)�B)

(Y �A)�B ` Z �� (Z � ((Y �A)�B))

Y;X ` Z �� (Z � ((Y �A)�B)); C

First, in the left fork in the critical pair, the scope is enlarged. The corresponding
cut elimination step moves the (�� R) step, producing the following deduction. (We
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abbreviate this somewhat, removing the subderivation of the linear distributivity Z; Y;A�
B ` Z � ((Y �A)�B).) Note the cut cannot be moved further after this step.

X `f A;B;C

X ` A�B;C

Z; Y;A�B ` Z � ((Y �A)�B)

Y;A�B ` Z �� (Z � ((Y �A)�B))

Y;X ` Z �� (Z � ((Y �A)�B)); C

Second, in the right fork in the critical pair, the scope is not enlarged but instead a
� reduction is performed. The corresponding cut elimination step produces the following
deduction. Note again that no further movement of the cut is possible without violating
the FILL restriction. It is also worth noting that the circuit corresponding to this derivation
is the normal form of the original derivation; that is, there is no possible further reduction
that can be done, even if one rearranges the scope boxes. Once again, we see that normal
forms may contain \essential cuts".

Y ` Y X `f A;B;C

Y;X ` Y �A;B;C

Y;X ` (Y �A)�B;C

Z; (Y �A)�B ` Z � ((Y �A)�B)

(Y �A)�B ` Z �� (Z � ((Y �A)�B))

Y;X ` Z �� (Z � ((Y �A)�B)); C

The point is that these unannotated derivations give rise to equivalent proofs yet
the unannotated cut elimination process cannot transform them into the same derivation
without \backwards" steps. Of course, the annotated system will.

From our perspective, the system GILL (in either commutative or noncommutative
guise) is more natural than FILL. The point about GILL is that we have a connection
between the implication, or internal hom, �� and the par �, given by tensorial strength.
In FILL on the other hand, the connection between the autonomous structure and the
linearly distributive structure is not as strong (pun intended), as we shall see below.
However, GILL is undoubtedly not at all \intuitionistic", unlike FILL. In symmetric GILL
(A��?)��? is isomorphic to A for any A, so that GILL is \classical", in that we have an
involutive negation. In fact, GILL is precisely full classical multiplicative linear logic: the
logical doctrine corresponding to GILL is just �-autonomous categories, again, in either
commutative or noncommutative guise. This may perhaps be expected, as strength and
costrength have generally been seen to be the mediators of implicit duality in this series
of papers.

The distinction between FILL and GILL in fact represents the tip of an interesting
digression, which is not discussed in [HP93], but some of which may be found in [L93]. If
a linearly distributive category has as well closed monoidal structure (with respect to the
tensor �), then the tensorial strength represented by the linear distributivitiesA�(B�C)
�! (A � B) � C automatically extends via the adjunction de�ning the closed monoidal
structure to a strength or \distributivity": (A �� B) � C �! A �� (B � C). In fact,
this latter natural family provides an equivalent presentation of the linear distributive
structure. The general (�� I) rule we give in Table 1 (or equivalently the (�� R) rule
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in Table 2) corresponds categorically to having an inverse (costrength) to this family of
maps: A �� (B � C) �! (A �� B) � C. We can check that in the category of circuits
with the more general \boxed" links we do indeed have such an isomorphism; half of this
exercise is illustrated in Figure 4. This strength isomorphism characterizes the logical
systems of bilinear logic BILL and its fragment GILL.

We shall formalize this discussion in the following de�nitions. First, we shall construct
the following canonical morphism in a linearly distributive autonomous category:

(A��B)� C
�

�! A�� (B �C)

= (A��B)� C
�1
��! A�� [(A� (A��B))� C]
�2
��! A�� (B � C)

where �1 corresponds under the \internal hom" adjunction to the linear distribution A�
[(A��B)�C]�! [A�(A��B)]�C and �2 is the evident map induced by the \evaluation"
morphism A � (A �� B) �! B. The map � is in fact a strength morphism, in that the
following two diagrams commute:

((A��B)�C)�D � �D- (A�� (B � C))�D � - A�� ((B � C)�D)

a
?

A�� a
?

(A��B)� (C �D) � - A�� (B � (C �D))

(A��B)�? � - A�� (B �?)

@
@@Ru

�
��	 A�� u

A��B

It is a pleasant exercise to show that these diagrams follow from the adjointness and the
linear distributivity|the simplest proof is to write the corresponding circuits and reduce
them to expanded normal form. The ease of such calculations is after all the point of these
papers, but the determined traditionalist might want to do a diagram chase instead.

Note that if � has an inverse ��1, then ��1 is a costrength morphism A �� (B � C)
�! (A��B)� C, in that the corresponding dual diagrams must commute.

This construction extends in the obvious way to the other internal homs ��; 4; 5,
if they exist in the category, so we have a strength A � (B �� C) �! (A� B) �� C, and
costrengths A5 (B � C) �! (A5B)� C and (A�B)4 C �! A� (B 4 C). It is these
canonical morphisms that we shall require to be isomorphisms in the next de�nition.
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2.2. Definition. A bilinear category, or BILL category, is a (possibly nonsymmetric)
linearly distributive category whose tensor has left adjoints in both coordinates, and whose
cotensor has right adjoints in both coordinates, in the sense indicated:

A�B �! C C �! A�B
B �! A�� C A5 C �! B

A�B �! C C �! A�B
A �! C ��B C 4B �! A

Furthermore, the canonical morphisms discussed above, corresponding to the linear dis-
tributivities, are required to have inverses:

A�� (B �C) �! (A��B)� C

(A�B) ��C �! A� (B �� C)

(A5B)�C �! A5 (B � C)

A� (B 4C) �! (A�B)4 C

A symmetric bilinear category is a bilinear category whose tensor and cotensor are sym-
metric.

2.3. Definition. A Grishin category, or GILL category, is a linearly distributive cat-
egory with internal homs ��; �� as above, with inverses to the relevant canonical mor-
phisms as in De�nition 2.2. A symmetric Grishin category is a Grishin category whose
tensor and cotensor are symmetric.

2.4. Definition. A full multiplicative category, or FILL category, is a linearly dis-
tributive category which is left and right monoidal closed (i.e. having both internal homs
��; ��). A symmetric full multiplicative category is a symmetric linearly distributive
monoidal closed category.

In the de�nitions above, we shall frequently let the context determine whether we
mean the commutative (symmetric) or noncommutative variants. Generally the noncom-
mutative case is our default.

We shall show below in Proposition 4.1 that GILL is equivalent to classical multiplica-
tive linear logic. This means that the doctrines of GILL, BILL, and (noncommutative)
�-autonomy are all equivalent. Notice, of course, that this collapse of notions does not
include FILL.

3. Coherence

Our main concern in considering circuits for linearly distributive categories (and similarly
for the other notions of monoidal categories we are considering here) was to obtain coher-
ence theorems. If we exclude consideration of the units for the tensors �; �, the matter is
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fairly straightforward, even trivial. The notion of expanded normal form corresponds pre-
cisely to the notion of Kelly-MacLane graph, and so two morphisms are equal if and only
if they correspond to circuits with the same expanded normal form. See [B92, BCST] for
a general exposition of the ideas here, and for some speci�c applications to various sorts
of monoidal categories. This approach also settles the other standard coherence question:
given two objects, is there a morphism between them? For given a Kelly-MacLane graph,
one can construct a canonical circuit structure in expanded normal form (essentially the
subformula tree) and then check if it satis�es the criterion for net validity.

The coherence question (equality of maps) becomes considerably less trivial if one
includes the units in the structure. It has recently been shown that the addition of the
units to the multiplicative system of linear logic greatly adds to the complexity of the
system [LW92]. This is re
ected in the more complicated coherence result. Indeed, the
classical treatments of coherence tend to avoid or restrict the units|one may consult [J90]
for a rare exception. It is precisely to solve the coherence question that we introduce
thinning links. Without thinning links the unit expansion rules lead to the situation
that inequivalent circuits (i.e. circuits corresponding to unequal morphisms in the free
category) can have the same expanded normal form. However, with thinning links, we no
longer have a unique expanded normal form representative of each equivalence class; there
may be several expanded normal forms in an equivalence class that di�er in the wiring
of their thinning links. In the present context we have in addition the scope equivalences
to consider. A moment's thought will convince the reader that these equivalences and
rewirings give the only kinds of di�erences equivalent expanded normal forms can display.

So we have to account for these \permuting conversions". In [BCST] we developed a
set of \surgery" rules on nets, which in addition to the reductions and expansions above
involved a number of rewiring rules for thinning links, and showed that these allowed
a subnet with a thinning link attached to an input or output wire to be replaced with
the same subnet with the thinning link reattached to some other input or output wire.
Planarity must be respected in the noncommutative case. As a corollary, we obtain
Trimble's Rewiring Theorem [T94]: one can rewire the thinning links without altering the
identity of the morphism precisely when the rewiring does not leave the empire of the unit
involved. It is straightforward to apply this to the situations at hand, say for instance,
for bilinear categories, and so also for full multiplicative categories.

In Table 5 we present a representative sample of the rewiring rules for the tensor unit
> in graphical notation. A complete set of rewiring rules may be obtained by generating
rules for all non-switching links corresponding to rules for the non-switching links shown,
and similarly for switching links, and by applying the obvious dualities. There is a dual
set of rewirings for the cotensor unit ?. Note that most of these rules respect planarity
of graphs; only the rules speci�cally required for the commutative case are non-planar:
these are the two rewirings in the last row of Table 5. In the noncommutative case we
drop the rules in the last row of the table. A full set of rules for the linearly distributive
case is in [BCST]; a full set of rules for the present context may be obtained from those
by analogy.
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There is one further important restriction we must place on the rewirings of Table 5:
a rewiring can only be applied to a proof net if it preserves net validity; that is, if after
the rewiring, one still has a proof net. The same restriction is also placed on the scope
equivalences. Therefore, there is a hidden cost in applying these rules: namely one must
check that the alteration yields a sequential net. In fact for most of our rules this is
automatic and only those rules which involve rewiring past a switching link do not in
general preserve net validity and so require this extra checking.

The key component in arriving at the coherence results of [BCST] is a pair of propo-
sitions (3.1, 3.2) that state that the rewirings on components (represented by boxes in
Table 5) apply as well to arbitrary subnets, in both the commutative and noncommuta-
tive cases. In the noncommutative case we only need the planar rewrites from Table 5,
but in addition it is necessary treat the unit reductions from Table 3 as equalities. This,
as discussed below in Remark 3.4, complicates the determination of equality (indeed es-
tablishing a decision procedure is still an open problem). In the commutative case we
do not need the unit reductions as equalities (they remain as rewrites), but we must add
the non-planar rewrites in the last row of the Figure 5. These results easily generalize
to the present context; in particular, for noncommutative bilinear logic we can state the
following proposition. Note that by \box rewiring rules" we mean the rewirings involving
arbitrary components. Proofs of the following results may be found in [BCST]:

3.1. Proposition. (Rewiring Theorem) The box rewiring rules apply to any subnet of
a planar net, using only the planar rewirings and the unit reductions (as equations). For
non-planar nets, the box rewiring rules apply to any subnet of a net, using only the unit
rewirings.

As an immediate corollary we can derive the Empire Rewiring Theorem, which char-
acterizes the unit rewirings in terms of the notion of empire [Gi87]. The extension of the
de�nition of empire in the present context|at least in the commutative case|is straight-
forward, and is left to the reader. In the noncommutative case, the main problem is in
de�ning the notion of empire. We shall not address this question here for two reasons:
primarily because the essence of the result we want in this case is already carried by
Proposition 3.1, and secondly because this would be a digression beyond the intended
scope of this paper.

3.2. Proposition. (Empire rewiring) In a non-planar net a thinning link can be moved
to any wire in its empire.

So in essence this says that for symmetric bilinear logic, the empire of a thinning link
is the largest set of wires to which the thinning link can be moved while preserving the
Lambek equivalence of proofs. We should mention the e�ect of the boxes: in BILL and
GILL units and counits can be moved freely inside boxes (when the box is in the empire).
However, in FILL there is an important restriction, introduced by the requirement to
remain sequential: counit thinnings cannot be moved in or out of boxes.

These rewirings are the key to characterizing equality of morphisms in free bilinear
categories (and FILL categories), since these free structures are given by circuits. More
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Table 5: Some unit rewirings
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precisely, given a set C of components and a set E of equivalences, the induced set of
proof nets with one input and one output, quotiented by the equivalences generated by
E and the reductions, expansions, and rewirings described above are the morphisms of
a category NetE (C) whose objects are the formulas of the theory. If we restrict to the
planar nets and equivalences, we get a category PNetE (C). This may be done for either
bilinear logic, GILL, or FILL, starting with the appropriate formulas for generating the
objects, and using the appropriate links for generating the circuits (morphisms). It is
then a straightforward veri�cation that the resulting categories are indeed categories of
the appropriate doctrine.

For example, in the case of noncommutative bilinear logic, PNetE (C) is a bilinear
category, as de�ned in De�nition 2.2. More importantly, however, these categories of
circuits are the free categories with appropriate structure generated by the components
C and equivalences E . We shall state this for the bilinear case, but this restricts to the
fragments FILL and GILL of bilinear logic as well.

3.3. Theorem. NetE (C) is the free symmetric bilinear category generated by the poly-
graph C and the equations E . Similarly, PNetE (C) is the free (nonsymmetric) bilinear
category generated by this data.

3.4. Remark. (Decision procedures) So to establish the equality of morphisms in (say)
the free bilinear category generated by a polygraph C, we need only use the equivalence
of proofs in Net;(C) or PNet;(C), as appropriate. To provide a decision procedure for
these nets we show that the basic net equivalences form an expansion/reduction system
modulo equations, as de�ned in Appendix A of [BCST]. That proof can be extended
to the present context; the main technical point is that the scope equivalences must be
added to the equations. The proof from [BCST] must be modi�ed to account for that;
this essentially amounts to showing that with this enlarged E , X [ R is X -reducing and
locally E -con
uent. The key step in the proof in [BCST] involved de�ning an equivalence
sk[�](e�) induced by an equivalence e� and a reduction or expansion �. In most cases this
is immediate, and if e� involves any scope equivalences, they may be mimicked in de�ning
sk[�](e�).

We can then show as in [BCST] that this implies uniqueness of expanded normal forms
modulo the equivalences given by the rewirings, and in the noncommutative case modulo
the equivalences given by the rewirings and the unit reductions. From this we can arrive
at a decision procedure in the commutative case; in the noncommutative case the matter
is still open and complicated by the form of the rewiring allowed in this situation. The
decision procedure for the commutative case is this: we de�ne the skeleton of a net as the
graph obtained from the net by removing all thinning links. Any net can be reduced to a
net whose skeleton is completely reduced. This may involve scope equivalences. Two nets
then are equivalent if when so reduced they have the same skeleton, and if the thinning
links of one such reduced net can be rewired to the con�guration of the other. When
scope boxes are present changes of scope are also allowed. As there are only a �nite
number of possible con�gurations of the thinning links and scopes on a skeleton, a search
of equivalent con�gurations is possible. Of course, this decision procedure as sketched
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would not be computationally feasible and, as mentioned earlier, there are open questions
about its complexity.

In the noncommutative case, the presence of the unit reductions as rewirings allows
for the introduction of \barbells" via \reverse unit reduction", which make it possible to
have an in�nite number of possible rewirings on a skeleton. Thus, the above algorithm
cannot be applied directly. While it seems likely that determining the equivalence of two
con�gurations of thinning links on a skeleton in the noncommutative logic is decidable this
is still an open problem. Notice that these complications arise entirely from the presence
of thinning|for unit-free nets coherence is trivial, as one might expect from past results
in this �eld.

3.5. Example. In [BCST] we illustrated a famous test case of coherence for autonomous
categories; here we will present this example in a version that is valid in the noncommu-
tative case (and so for instance in the free bilinear category generated by a set of objects).
When does the following \triple-dual" diagram commute?

(I �� (A�� I))�� I kA �� id- (A�� I)

@
@
@
@
@R

id

?

k0A��I

(I �� (A�� I))�� I

where k; k0 are the evident canonical maps (adjoints to the evaluation maps).
We leave it as an exercise to show that in the case when I = > (but A arbitrary) each

discharged unit has a trivial (singleton) empire, and so no rewiring is possible; hence the
diagram does not commute. It is also an easy exercise to show that the diagram does
commute if I = ?. But now consider the case where A = I = >; in this case it is possible
to rewire the thinning link that comes from A = > �rst, which allows the other units to
be rewired, whereupon we rewire this �rst back to its original position. Figure 5 shows
the expanded normal form of the circuit representing the composite map. The reader
might like to try to rewire this to obtain the expanded normal form of the identity map:
a similar calculation is carried out in [BCST].

4. From GILL to BILL

Next we use the circuits to show that GILL is multiplicative linear logic. That is, we show
that the standard de�nition of negation is in fact involutive, so that a Grishin category is
a linearly distributive category with negation, and so �-autonomous [CS91]. This is valid
in both commutative and noncommutative cases; we shall present the noncommutative
case as an illustration.
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j��r

j��
r

j��r

j��
r

j��
r

j��r

j
>

j>

j>

j>

j>

j>
�� ��

�� ��

�� ��

j
>

j
>

�� ��

Figure 5: A valid circuit for the triple dual map
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4.1. Proposition. A Grishin category is a linearly distributive category with negation.

Proof. We de�ne the two negation operators in the standard manner:

?A = ? ��A A? = A�� ?

We must have maps

?A�A

L
A

��! ? A�A?

R
A

��! ?

>
�L
A

��! A?
�A >

�R
A

��! A� ?A

As circuits this amounts to having derived links with these shapes:

j:

j

j

j:

A? A

?A A A A?

A ?A

These are given as follows:

j��

j

j

j��

��

��

A? A

?A A A A?

A ?A

j? j?

rr

j? j?
�� �� �� ��

r

rr

r

Next we must verify certain coherence conditions, which are equivalent to the following
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circuit equivalences:

j:

j

j

j: A

A A

A?

A

?A

j

?A j

A

?A

j:

A?

A

j:

A?

( )

()

A

A??A

These are consequences of the circuit rewrites already de�ned. For example, in Figure 6
we show how the rewrites for A? are derived, the ones for ?A being dual.

It is worth pointing out why this proof fails for FILL. First note that the � nets are
not sequential for FILL, because the \� is empty" criterion is violated. Furthermore, in
Figure 6, for the expansion rewrite note the use of the rewiring of the thinning link and
of the box-rewrite, to pull the (�� E) link outside the scope box. This step is impossible
in FILL, as it introduces a circuit for which the \� is empty" criterion is violated, even
though one started with circuit which did not violate the criterion.

To derive the obvious corollary, note that in the symmetric case this implies a Gr-
ishin category is �-autonomous [CS91], and in the nonsymmetric case this implies that
a Grishin category is bilinear. In other words, in either the symmetric or nonsymmetric
case the following notions, interpreted appropriately vis �a vis symmetry, coincide: Gr-
ishin category, bilinear category, �-autonomous category, linearly distributive category
with negation. The standard de�nitions, i.e. those that we mentioned in introducing the
operators 4 and 5, do in fact work, and it is easy to verify that these de�ned operators
have appropriate induced introduction and elimination links, and appropriate reduction
and expansion rewrites. To illustrate this, in Figures 7 and 8 we show the derived rules
and rewrites for 5, where A5B is de�ned as (?��A)�B, viz. ?A�B. Of course, 4 is
dual.

In addition, in a bilinear category, although one might be tempted to de�ne two other
negation operators, these turn out to be isomorphic to the ones already de�ned. More
precisely, if we de�ne >A = >4A and A> = A5>, then, as Lambek [L93] showed in the
posetal case, in any bilinear category we have isomorphisms >A �= A? and A> �= ?A. The
circuits corresponding to >A �! � A? are shown in Figure 9; checking these are inverses is
an easy exercise in circuit rewriting.

There are a number of other isomorphisms that hold in any bilinear category; here is
a sample that ought to help �x the relationships between the connectives. We shall leave
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j��

j��

A?
A

A

A?

j?

r

j?
�� ��

r

r

j��

A

j?
�� ��

r

r

=)
j?

j?
�� ��

r

=)

A A

j��

A?

j?

rj��

A?

A

j?

�� ��

r

r

j��

A?

j?

r

==

j��

A?

A

r

j��

A?

r
=)=)

A?

Figure 6: A? rewrites

the veri�cations to the reader.

(A�B)? �= B?
�A? ?(A�B) �= ?B � ?A

(A�B)? �= B?
�A? ?(A�B) �= ?B � ?A

(A5B)? �= B ��A �= B? ��A?

?(A4B) �= B ��A �= ?B �� ?A

?(A?) �= A (?A)? �= A

In the commutative case, of course, the two negations are the same, and much of this
variety collapses.
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5 links:

?A

j��

j?

r

j�
r

j��

A5B

r

j?

�� ��

j�r

A

B

C

�

�

A 5B

B

A

(5 I) (5 E)

Figure 7: 5 derived links

5. From FILL to GILL; nuclearity

In [BCST] we proved that the extension from linearly distributive categories to �-autono-
mous categories is conservative in the sense that the unit of the appropriate adjunction
is fully faithful. So in the present context we can conclude that this conservativity will
also apply. In the case of FILL, this extension cannot in general preserve the \internal
homs" (��, ��, 5, 4) as, for example, in FILL there may be no map A?? �! A or, for
the noncommutative case, no map from any of A??, ?(A?), or (?A)? to A.

However, there are two other ways of getting �-autonomous categories from FILL.3 We
can keep the same objects but allow the GILL morphisms that come from dropping the
FILL restriction on the box rules; this is the free Grishin category generated by the full
multiplicative category. Of course, this extension is not full because of the possible lack of
a map from A?? �! A in FILL. It is also not faithful, as the extension requires that A??

and A are isomorphic; thus it su�ces to exhibit a FILL category in which forcing such an
isomorphism will cause a signi�cant identi�cation of maps. A simple example of a FILL
category is Sets (or indeed any cartesian closed category), where we take � = � = �:
here A?? is the �nal object and clearly forcing this to be isomorphic to A must collapse
the whole category.

Of more interest, therefore, is the following construction of the full �-autonomous
subcategory of a FILL category given by isolating \negated" objects. It is technically
simpler to approach this subcategory through the nuclear maps:

5.1. Definition. A morphism f :A �! B of a FILL category is nuclear if the \name" of
f , dfe:> �! A �� B, factors through the canonical morphism �AB:A?

� B �! A�� B.

3We shall only deal with the symmetric case in this section, although these comments can be extended
to the nonsymmetric case with suitable modi�cations. See [CS96] for details concerning nuclearity in the
noncommutative case.
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5 reduction:

?A

j��

j?

r

j�
r

j��r

j?

�� ��

j�r

A

B

C

�

�

A 5B

B

A

=)

?A j��

j?

r

C

�

B

A

j��r

j?

�� ��

A

�

=)

j?

j?

�� ��

C

B �

A �

=)

B �

A �

C

5 expansion:

j��

j?

r

j�
r

j��

A5B

r

j?

�� ��

j�r

A5B

j��

j?

r

j�
r

j��r

j?

�� ��

j�r

A5 B

A 5B

=)

A5B

=)

Figure 8: 5 derived rewrites
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A j��

j?

rj��

A?

r

j?

�� ��
j4

>A

r

j>
�� ��

j4

j>

r

A?

>A

A

Figure 9: Isomorphisms between two negations

We shall call the factoring morphism nf :> �! A?
� B. An object A is nuclear if 1A is

nuclear.

>
dfe- A��B

@
@
@
@R

nf

6
�AB

A?
�B

This de�nition generalizes the de�nition of nuclear given by Higgs and Rowe [HR89]
in the symmetric monoidal closed case.

5.2. Remark. In fact, it is possible to generalize this de�nition to be applicable in any
linearly distributive category. In a linearly distributive category, we shall call a morphism
f :A �! B nuclear if and only if there are morphisms �f :> �! C �B and 
f :A�C �! ?
such that the following commutes.

A
f - B

�
�
���uR

�

@
@

@@I uL
�

A�> ?�B
@
@
@@R

1� �f
�
�
���

f � 1

A� (C �A) �LL-(A�C)�B
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j��r

j�
r

r

A? � B

A��B

�AB =
A

A �� A

A

d1Ae =
j��
r

j��r

j?

j�
r

r

A? � A

A��A

nA;�AA =

A

nA
>

Figure 10: Circuits for nuclear objects

It is an easy exercise to prove that this de�nition in a FILL category is equivalent to the
de�nition given above, see [CS96].

It is easy to show that A nuclear is equivalent to A \negated", meaning that there
are morphisms 
; � satisfying two simple commuting diagrams, as in [CS91]. This is
equivalent to requiring of A that it have negation links and rewrites, as described in the
proof of Proposition 4.1. In Figure 10 we illustrate the circuits for �AB, d1Ae and the
composite circuit nA;�AA. This latter is assumed to be equivalent to d1Ae, according
to the commutative triangle above. It is a simple exercise that this is equivalent to the
circuit reduction to the identity wire on A described in the proof of Proposition 4.1. It
is also easy to check that in the present context this implies the equivalence given by the
circuit expansion from the identity wire on A?, showing that nuclear objects are the same
as negated objects. It is perhaps worth mentioning that in the noncommutative case, this
analysis becomes somewhat more subtle, involving the splitting of \nuclear idempotents",
for further details see [CS96].

The set of nuclear maps forms a two-sided ideal that includes (the identity map of)
> and ?, and is closed under �;� and (�)?. We shall spare the reader the numerous
circuit rewrites involved in proving this, pointing out that they are available in [CS96]; to
give the 
avour, in Figure 11 we illustrate the key steps in showing that f? is nuclear if
f is nuclear. In the Figure, the equivalence marked with a � is a consequence of f being
nuclear; the rewrite marked with a z depends on the expansion of the wire marked A?

using the �� and ? expansions; the rewrite marked y depends on a scope expansion and
a rewiring of the ? thinning link.

Thus the full subcategory of nuclear objects, the nucleus, is a linearly distributive
category with negation, and so is �-autonomous, with ? as the dualising object. The
inclusion preserves the internal hom, since we can show that if B is nuclear, A �� B �=
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>
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A?
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B? �� A?

>

�� ��
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�� ��
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B
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Figure 11: Circuits for nuclear objects
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(A�B?)
?
, so the inclusion preserves all the FILL structure.

5.3. Proposition. The nucleus of a (commutative) FILL category is �-autonomous full
subcategory whose inclusion is (FILL) structure preserving.

A special case of interest occurs when the tensor is cartesian (i.e. � = �). In this
case the nucleus has its tensor and cotensor cartesian (recall the involution ensures that
if one tensor is cartesian the other must be). As the only �-autonomous categories with
cartesian tensors are Boolean algebras we may conclude that the nucleus is a Boolean
algebra. For each object A in this Boolean algebra, the projections A�A �! A are equal
which says A is a subterminal object in the larger category. Thus, the nuclear objects are
all subobjects of 1 (this includes ?).

Recall that any cartesian closed category can be viewed as a FILL category by the
identi�cation � = � = �. Thus, it is of some interest to wonder what the nucleus of
a cartesian closed category might be. By the above remarks the nucleus must consist of
subobjects of 1. However, the fact that they are negated forces them to be the whole of
1. Thus, these nuclei are trivial.

The nucleus of a FILL category does not always collapse. For example the category
of vector spaces (over some �eld) is a full multiplicative category with the cotensor and
tensor coinciding as the usual tensor on vector spaces. The nucleus is the full subcategory
of �nite dimensional vector spaces.

5.4. Remark. To anticipate the next section of this paper, we point out that this means
that the nucleus of any (�{)cartesian linearly distributive category is a MIX category.
Of course, this does require the generalization of the argument that the nucleus is �-
autonomous to the linearly distributive case [CS96]. However, as we shall shortly see, a
linearly distributive category is MIX if and only if its nucleus is MIX. Thus, this allows
the sweeping observation that all (�{)cartesian linearly distributive categories are MIX
categories.

6. MIX categories

In this section we �ll a gap in the literature, by de�ning what it means for a category
to satisfy the MIX rule. There are some variants here: we shall tend to assume that the
tensors are symmetric in this section, although all these results do in fact extend to the
nonsymmetric case as well. We shall deal not only with the usual MIX rule

� ` � �0 ` �0

�;�0 ` �;�0

which is equivalent to the \binary" MIX axiom A;B ` A;B or simply A � B ` A � B;
we also consider adding the \nullary" MIX axiom ` or equivalently > ` ?. As the
binary axiom is equivalent to the axiom ? ` > (see below), this stronger MIX rule can be
given equivalently by � ` � for any �, including � empty, or by ? a` >.
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6.1. Lemma. In the presence of the cut rule and the standard sequent rules for the units,
the MIX rule

� ` � �0 ` �0

�;�0 ` �;�0

is equivalent to the axiom ? ` >.

Proof. To obtain the axiom, consider the derivation

` > ? `
? ` >

For the converse, consider

� ` �
� ` �;? ? ` >

� ` �;>
�0 ` �0

>;�0 ` �0

�;�0 ` �;�0

We shall call a linearly distributive category an isoMIX category if there is an isomor-
phism between the two tensor units. We shall refer to the binary axiom (or its equivalents)
alone as (ordinary) MIX. There is an additional coherence condition needed, however. To
motivate that condition, consider the following two derivations of A;B ` A;B from? ` >,
which clearly ought to be equivalent.

A ` A
A ` A;? ? ` >

A ` A;>
B ` B
>; B ` B

A;B ` A;B
==

B ` B
B ` ?; B ? ` >

B ` >; B
A ` A

A;> ` A
A;B ` A;B

Using the evident component box (labelled m) to represent the (iso)morphism m:?
�! >, these two derivations are represented by the circuits in Figure 12: notice that the
equivalence of these circuits amounts to introducing a \switch" rewrite that interchanges
the ? and > thinning links. This then gives us the following de�nition.

6.2. Definition. A MIX category is a linearly distributive category with a morphism
m:? �! >, making the following diagram commutative.

A�B
1 � (uL

�
)�1- A� (?�B) 1� (m� 1)- A� (>�B)

?

(uR
�
)�1 � 1

?

�LL

(A�?)�B (A�>)�B

?

(1 �m)� 1

?

uR
�
� 1

(A�>)�B
�RR - A� (>�B)

1� uL
� - A�B
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j�

j�

j>

j?

m

j�

j�

j>

j?

m==

�� ��

�� ��

�� ��

�� ��

Figure 12: Two circuits for binary MIX

In the above de�nition we have insisted the mix diagram holds for all objects. In fact,
it su�ces to demand that the diagram commutes for either the unit or counit:

6.3. Lemma. A linearly distributive category is MIX if and only if the above diagram
holds for any one of the following cases: A = B = >, A = B = ?, A = ? and B = >,
or A = > and B = ?.

Proof. This can be seen immediately from the circuits as we may introduce thinnings
to \
oat" the MIX-barbell onto the unit (and/or counit) wires, then perform the switch
rewrite on the unit/counit wires, and 
oat the barbell back o�. We illustrate this in the
case where the switch rewrite is moved onto two unit wires:

j?

j>

m �

�� ��

�� ��

j?

j>

m

�� ��

� �

j j? ?

j j> >

m m

�� ��

�� ��

j>

j>

�� ��

j>

j>
�� ��

�� ��

�� ��

j>

j>

�� ��
j>

j>
�� ��

�� ��

Notice that this proof holds for nonsymmetric linearly distributive categories.
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6.4. Remark. An immediate corollary of this is that a linearly distributive category is
MIX if and only if its nucleus is. This, as has been noted in Remark 5.4, implies that all
(�{)cartesian linearly distributive categories are MIX categories.

We can now strengthen the MIX structure to give the stronger notion, by adding the
nullary case. It turns out that this doesn't alter the de�nition in any other way; in
particular the coherence condition for the categorical de�nition remains the same.

6.5. Definition. An isoMIX category is a MIX category whose \mix" morphism m:?
�
��! > is an isomorphism.

Note that there is nothing \degenerate" or inconsistent in this monoidal context about
the axiom > ` ?; indeed many models of linear logic have these two units coincide, and
so model this situation. Indeed, the structure of isoMIX that we have de�ned specializes
to the case of a linearly distributive category for which there is a single constant I (a
\biunit") which is simultaneously a unit for the tensor and for the cotensor.

In the next section we shall show that isoMIX categories satisfy the expected coherence
theorem. As one essentially has a biunit we expect to be able to drop the thinning links
from the circuits. The net criterion would have to be adjusted by dropping the \connect-
edness" part of the Danos-Regnier criterion. However, this still misses the signi�cance
of the coherence diagram of De�nition 6.2, and so misses an essential part of the story.
Moreover, the presentation in this paper is better than a presentation of isoMIX in terms
of \biunits" for a number of reasons. It is more general as it uses an isomorphism instead
of the identity. More signi�cantly, it captures the right coherence requirements, and it
generalizes to the nonsymmetric and general MIX cases.

However, isoMIX is rather close to having a biunit, and so one might suspect that by
forcing the units to be essentially the same, one will also force the MIX condition. We
now show that this is indeed the case.

6.6. Lemma. A linearly distributive category in which > is isomorphic to ? is an isoMIX
category.

Proof. The idea is this: we consider the map>�> �! ?�? as illustrated by the circuit
in Figure 13. By breaking the unit wires above the MIX-barbell and the counit wires below
the barbell we can introduce the composite m�1;m;m�1 in two di�erent ways, di�ering
only in having (mirror-image) wirings. These both reduce to the same form, resulting in
the desired coherence diagram.
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Expansions:

j>

j?

m
=)

j>

j?

m-1

�� �� �� ��

�� �� j?

j>

m

=)

j?

j>

m-1

�� �� �� ��

�� ��

\Switch":

j?

j>

m =)

�� ��

�� ��

j?

j>

m

�� ��

�� ��

Reductions:

m-1
=)

m m-1

=)
m

j>

j?

m
=)

j?

m-1

�� ��

�� ��

j>

=)

j?

j>

m

j>

m-1

�� ��

�� ��

j?

Table 6: Rewrites for isoMIX circuits
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Figure 13: Isomorphic units imply MIX

7. Coherence for MIX

We shall concentrate on isoMIX, as the assumption that m is an isomorphism simpli�es
some details. To extend the coherence theorems of [BCST] we must extend the circuit
diagrams for linearly distributive categories to this context. Of course we add the compo-
nent m as already illustrated in Figure 12, as well as a component m�1 for its inverse in
the iso case. In addition we need some new reductions and expansions; the rewrite rules
in the isoMIX case are shown in Table 6.

j?

j>

m

�� ��

�� �� It is clear from the expansions that any circuit (representing a sequent
derivation in the isoMIX calculus) can be replaced by an equivalent cir-
cuit all of whose thinning links are attached to \MIX-barbells" (like the one
at left). We can regard these barbells as a \glue" that connects discon-
nected subcircuits. In the traditional approach to nets satisfying the MIX
rule [FR94] the usual net criterion (\acyclic and connected for any setting
of the switches") is relaxed so as not to require connectedness; we have

retained connectedness by the presence of the MIX-barbells. Now, one might then expect
that the barbells are not really necessary, and the next proposition shows this is indeed
the case. We shall suppose that all circuits under consideration for the moment are in the
form of a \skeleton", viz. a circuit without thinning links, made up of m�1 components,
non-thinning unit links, (? E) and (> I), and the four tensor and cotensor links, together
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with a number of MIX-barbells \gluing" parts of the underlying graph together (that is
just to say that the thinning links of the barbells are attached to wires in the circuit).

7.1. Proposition. In a symmetric isoMIX category, any two nets with the same skeleton
(and so di�ering only in their \gluings") are equivalent, that is, they represent the same
morphism.

Proof. We prove this by an induction on the size of the graph of the skeleton. Circuits
consisting of a single component present no problem, and it is simple to see that the
induction step consisting of adjoining a binary link to a single subgraph is also straight-
forward. The only cases that need special consideration involve linking two subgraphs
with a binary (tensor or cotensor) link.

b

b

h�






J
JJ

Consider for example a skeleton consisting of two disconnected
subgraphs joined by a (� E) (switching) link, and consider two cir-
cuits with this skeleton (but some arbitrary arrangement of barbells),
and each having just one barbell joining the two given subgraphs. We
want to show these are equivalent. First note that in either circuit,
the given subgraphs must each be a subcircuit (i.e. must be sequen-
tial). To see this, consider a switch setting that cuts the left wire of
the (� E) link: for any setting of the switches in the left subgraph that subgraph must
be acyclic (obviously) and connected (since any disconnection in this subgraph could not
be connected in the whole graph as there is just the one link out of the subgraph, namely
through the barbell). Similarly the right subgraph is a subcircuit. But in this case, the
Rewiring Theorem [BCST] tells us that we can rewire each thinning link attached to the
barbell linking these subcircuits to any other wire in the subcircuit, in particular, we can
take the wiring of one circuit and rewire to produce the second circuit, which then must
be equivalent to the �rst.

Next we consider the case where there are two barbells joining the subgraphs: suppose
we have two circuits with the same skeleton as above, and with two barbells linking the
given subgraphs. We shall refer to these barbells as b1 and b2, to the locations in the left
subgraph where the thinning links from b1; b2 are attached as l1; l2, and to the locations in
the right subgraph where the thinning links from b1; b2 are attached as r1; r2. Note that
in this case it is no longer necessary that the left and right subgraphs need be sequential.
However, it is the case that either r1; r2 or l1; l2 are connected for any setting of the
switches, for if both pairs of attachment points were disconnected for all settings, then
indeed the complete graph could not be a circuit. Suppose without loss of generality
that l1; l2 are connected: then by the Rewiring Theorem we can rewire the thinning
link attached at l1, say, to the location r2, thus causing this barbell to lie inside the right
subgraph, and so reducing the case to the �rst case with one barbell linking the subgraphs.
In this manner, we can always reduce to this one-barbell case where the problem is done.

The case where there are n barbells joining the subgraphs is handled similarly.

Finally, the case when two (or in general n) subgraphs are linked by a (� E) (non-
switching) link is handled by an argument similar to the two-barbell case above. In e�ect
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Figure 14: Two derivations

the non-switching link plays the role of one barbell. Here we cannot suppose that each
subgraph is sequential, but we can rewire the barbells so that all are located within one
subgraph or the other, at which point the subgraphs must be sequential, so reducing the
problem to the smaller case.

From this we can see how coherence works in the isoMIX context. Given two circuits,
we can reduce them to an expanded normal form in which all thinning links come from
MIX-barbells. We can eliminate all such barbells from the nets, and then the circuits are
equivalent if and only if the expanded normal forms are identical. In e�ect then, we
could present nets in this case without thinning links, and use the \acyclic for any switch
setting" criterion for sequentiality (in the commutative case).

7.2. Remark. The preceding argument is actually valid not only for commutative but
also for noncommutative tensors. We assumed the tensor and cotensor are symmetric so
as to be able to use the (Empire) Rewiring Theorem which simpli�es the proof. However,
the more general Rewiring Theorem from [BCST] may be used to obtain the same e�ect
in the noncommutative case.

The argument can also be extended to cover the (ordinary) MIX case. In this case
a skeleton can contain thinning links, but the proof still goes through to show that all
ways of adding MIX-barbells are equivalent for a given skeleton. However, there is the
added complication that two skeletons can be equivalent through rewirings that involve
the added MIX-barbells.

For example, two equivalent derivations of ? � ? �! ? are shown in Figure 14. To
determine this equivalence however one must add in the missing barbells, and then use
the Rewiring Theorem, as shown in Figure 15.
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Appendices

A. Circuit expressions

In [BCST] we pointed out that proof circuits were not mere \pretty pictures", but rather
that there was a rigorous term calculus underpinning them. To accommodate the proof
systems discussed in this paper we shall have to extend the term calculus for proof circuits
(i.e. circuit expressions) introduced in [BCST]. This appendix is not intended to be self-
contained and relies on the notation introduced in [BCST]. The extension involves adding
new components to the set listed in [BCST] corresponding to the new links for the new
connectives. So for example, for (�� E) there is no need for any new notation; we just
treat this as a new given component, and so have the expression

A;A��B : ha; zj[a; z]�� E[b]jbi : B

There are similar expressions for (�� E); (5 I); (4 I).
The trick is to adapt this calculus to handle the scope boxes we are using. For this we

shall introduce new binding operators: for example, for (�� I) we need a binding operator
which abstracts variables a:A; b:B from an expression for C, and introduces a new output
variable z : A��B. So, given a circuit expression A;� : ha;wj[a;w]C[b;v]jb;vi : B;�, we
have a new term introduced by (�� I) given by

� : hwj(aj[a;w]C[b;v]jb>[z]jz;vi : A��B;�

Similarly for the other \hom" terms|using notation based on the sequent rules of Table 2
this gives these circuit expressions for (�� I); (5 E); (4 E).

� : hwj(bj[w; b]C[v; a]ja>[z]jv; zi : �; A ��B

A5B;� : hz;wj[z]<bj[b;w]C[a;v]ja)jvi : �

�; A4B : hw; zj[z]<aj[w; a]C[v; b]jb)jvi : �

The reductions and expansions corresponding to these rewrites (we leave the typing
to the reader) are:

(ajCjb>[z]; [a; z]�� E[b] ) C

(bjCja>[z]; [z; b] �� E[a] ) C

[b]5 I[a; z]; [z]<bjCja) ) C

[a]4 I[z; b]; [z]<ajCjb) ) C

[z] ) (aj[a; z]�� E[b]jb>[z]

[z] ) (bj[z; b] �� E[a]ja>[z]

[z] ) [z]<bj[b]5 I[a; z]ja)

[z] ) [z]<aj[a]4 I[z; b]jb)
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In addition, there are equations corresponding to the box (or scope) equivalences of
Table 4:

C 0; (ajCjb>[z] = (ajC0; Cjb>[z]

(ajCjb>[z]; C0 = (ajC; C0jb>[z]

C 0; (bjCja>[z] = (bjC0; Cja>[z]

(bjCja>[z]; C0 = (bjC; C0ja>[z]

C0; [z]<bjCja) = [z]<bjC0; Cja)

[z]<bjCja); C0 = [z]<bjC; C0ja)

C0; [z]<ajCjb) = [z]<ajC0; Cjb)

[z]<ajCjb); C0 = [z]<ajC; C 0jb)

where C; C0 are circuit expressions, a; b =2 free variables of C0. These equations will only
be of interest, of course, when both sides are sequential, in the sense of the next appendix.

B. Sequentialization

One rather crucial aspect of circuits is the matter of determining whether a circuit is a
representation of a valid sequent derivation or not. The circuits which represent sequent
derivations are called sequential; the process of verifying such validity is called sequen-
tialization.

In [BCST] sequentialization for the tensor{par fragment of noncommutative linear
logic was studied in some detail, using essentially the same approach as that given inde-
pendently by Lafont [Laf95]. It is now straightforward to adapt that approach for bilinear
logic. Note that the original proof of Girard's [Gi87] will not work in the present context,
where we allow non-logical axioms (the components C) in the logic [BCST]. However,
since our proof of sequentialization for linearly distributive categories allowed non-logical
components, we get more-or-less immediately sequentialization for bilinear logic, and for
GILL and FILL therefore as well.

Again, this appendix is not intended to be self-contained, but rather just gives the
necessary pointers to carry out the appropriate modi�cations to [BCST]. In Table 7 we
show some of the sequentialization steps for these natural deduction links for bilinear logic
and GILL; the reader may �ll in the rest by duality. For FILL there is an important change
to these rules, as pointed out in Remark 1.1. That is, the restriction that � be empty in
the left hand rewrite in Table 7 means that we ought to redraw this rewrite without �.

We shall leave it to the reader to verify that the proof of sequentiality from [BCST]
applies to the present context. As we have merely added some new components and some
new sequentialization steps for these components, we just have to check that the con
uence
of the new system still holds. The only technical problems in the proof in [BCST] involved
the cut rule; with the natural deduction presentation of bilinear logic the cut rule is
unchanged, and the [BCST] proof applies here.

In [BCST] we made some comments about this sequentialization process and the
traditional net criterion in the noncommutative case. These apply equally to FILL and
to bilinear logic. In particular, it is possible for a non-sequential (in the noncommutative
sense) planar circuit to satisfy the traditional net criterion. The example in Figure 16
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Figure 16: A non-sequential net, and its sequential normal form

illustrates this in a simple case, where we only use the linearly distributive structure
of �; � and their units. With this example, we can actually see the problem: if we
reduce this circuit, as shown in Figure 16, the resulting net is sequential. An attempt
to sequentialize the original example quickly shows that the problem occurs because of
the cut using the formula > � >; this cut is not present in the reduced circuit. Similar
problems can occur with non-logical axioms (extra components, that is) and with nets
with multiple input or output wires.
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