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KAN EXTENSIONS ALONG PROMONOIDAL FUNCTORS

BRIAN DAY AND ROSS STREET
Transmitted by R� J� Wood

ABSTRACT� Strong promonoidal functors are de	ned� Left Kan extension 
also
called �existential quanti	cation�
 along a strong promonoidal functor is shown to be a
strong monoidal functor� A construction for the free monoidal category on a promonoidal
category is provided� A Fourier�like transform of presheaves is de	ned and shown to take
convolution product to cartesian product�

Let V be a complete� cocomplete� symmetric� closed� monoidal category� We intend
that all categorical concepts throughout this paper should be V�enriched unless explicitly
declared to be �ordinary�� A reference for enriched category theory is ����� however� the
reader unfamiliar with that theory can read this paper as written with V the category
of sets and � for V as cartesian product	 another special case is obtained by taking all
categories and functors to be additive and V to be the category of abelian groups� The
reader will need to be familiar with the notion of promonoidal category 
used in ���� ���� �
��
and ����� such a category A is equipped with functors P � Aop�Aop�A��V� J � A��V�
together with appropriate associativity and unit constraints subject to some axioms� Let
C be a cocomplete monoidal category whose tensor product preserves colimits in each
variable� If A is a small promonoidal category then the functor category �A� C� has the
convolution monoidal structure given by

F�G �
Z A�A�

P 
A�A�����
FA�GA��


see ���� Example �����
Suppose A and B are promonoidal categories� A promonoidal functor is a functor

� � A��B together with natural transformations

�AA�A�� � P 
A�A�� A�����P 
�A��A���A���� �A � JA��J�A

satisfying two axioms	 see ���� ��� for details� When A� B are small it means that the
functor

��� �� � �B�V����A�V�

is canonically 
via the natural transformations �� a monoidal functor in the sense of ���� In
particular� if A� B are monoidal categories� promonoidal functors � � A��B are precisely
monoidal functors�
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Our purpose here is to de�ne and discuss �existential quanti�cation� along promon�
oidal functors� For any promonoidal functor � � A��B� the natural transformations

P 
A�A�� A����B
�A��� B�
���

�� P 
�A��A���A����B
�A��� B�
�
�� P 
�A��A�� B�

JA�B
�A�B�
���

�� J�A�B
�A�B�
�
�� JB


where the arrows � are part of the functoriality of P � J� induce natural transformations

Z A��

P 
A�A�� A����B
�A��� B�
�
�� P 
�A��A�� B�

Z A

JA�B
�A�B�
�
�� JB�

We call � � A��B strong when these arrows � are all invertible� In particular� when
A� B are monoidal� strong promonoidal amounts to strong monoidal 
� tensor�and�unit�
preserving up to coherent natural isomorphism��

It may appear that� in the above de�nitions� we need A to be small and V or C to
be cocomplete� We have written this way for ease of reading� Sometimes the necessary
weighted 
� �indexed�� colimits exist for other reasons�

� Proposition� If � � A��B is a strong promonoidal functor then �existential quan�

ti�cation�

�� � �A� C����B� C��

given by

��
F �
B� �
Z A

B
�A�B��FA�

has the structure of a strong monoidal functor�

Proof� Starting with the de�nitions of �� and �� we have the calculation

��
F �G�
B� �
Z A

B
�A�B��
Z A��A��

P 
A�� A��� A��
FA��GA���

��
Z A��A�� Z A

B
�A�B��P 
A�� A��� A��
FA��GA���

by commuting colimits�

��
Z A��A��

P 
�A���A��� B��
FA��GA���

since � is strong�

��
Z A��A�� Z B��B��

B
�A�� B���B
�A��� B����P 
B�� B ��� B��
FA��GA���

by the Yoneda Lemma�
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��
Z B��B��

P 
B�� B��� B��
Z A�

B
�A�� B���FA��
Z A��

B
�A��� B����GA��

by commuting colimits�

�� 
��
F � � ��
G�
B� by de�nitions�

Similarly� we have

��
J�
B� �
Z A

B
�A�B��J
A� �� J
B��

The cartesian monoidal structure on a category with �nite products has binary prod�
uct as tensor product and the terminal object as unit� Dually� a category with �nite
coproducts has a cocartesian monoidal structure� If A is cocartesian monoidal and C
is cartesian monoidal� then convolution on �A� C� is cartesian� Proposition � has the
corollary that existential quanti�cation �� along a �nite�coproduct�preserving functor �
preserves �nite products	 compare ����� Proposition ����

For any promonoidal category A� the Yoneda embedding Y � A���A�V�op is a pro�
monoidal functor 
just use the de�nition and the Yoneda Lemma�� The closure in �A�V�op

of the representables Y 
A� � A
A��� under tensor products and unit 
as in ���� gives a
full monoidal subcategory A� of �A�V�op� and Y factors through the inclusion via a pro�
monoidal functor N � A��A�� This construction has a universal property� to describe it
we introduce the ordinary category PMon
A�B� whose objects are promonoidal functors
� � A��B and whose arrows are promonoidal natural transformations 
��� and ����	 if
A� B are both monoidal� we write Mon
A�B� for this same ordinary category� 
Later we
shall use the ordinary category SPMon
A�B� of strong promonoidal functors��

� Proposition� For each promonoidal category A and each monoidal category B� re�
striction along N � A��A� provides an equivalence of ordinary categories

Mon
A��B�
�

�� PMon
A�B��

Proof� To see that restriction along N is essentially surjective� take a promonoidal
functor � � A��B� We obtain the following diagram where regions commute up to
canonical natural isomorphisms�

A B

�A�V�op �B�V�op

�

�

A� B�

NN

� � � �

�
�
��

J
J
JJ�

�
�
��

J
J
JJ�� �

�

��

�op
�

Y Y
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The functor �op
�
is monoidal� Thus� so is its restriction �� � A���B�� Since B is monoidal�

the functor N � B��B� is an equivalence of monoidal categories� So we obtain a promon�
oidal functor � � A���B with �N �� �� The remaining details are left to the reader	 they
will require the reader to know the de�nition of promonoidal natural transformation�

SupposeA is a small promonoidal category� Observe that a strong promonoidal functor
� � A��Cop satis�es the following conditions�

Z A��

P 
A�A�� A����C
B��A���
��
�� C
B��A��A��

Z A

JA�C
B��A�
��
�� C
B� I��

On tensoring both sides with B and using the Yoneda lemma� we obtain the conditions�

Z A��

P 
A�A�� A�����A��
��
�� �A��A�

Z A

JA��A
��
�� I�

Let M � SPMon
A� Cop�op� There is a forgetful functor M���Aop� C�� The trans�
form of a functor F � A��V is the functor T 
F � �M��C given by the coend

T 
F �
�� �
Z A

FA��A �� 
��F �
I��

Notice that this is the colimit of � weighted 
or indexed� by F � We have de�ned a
functor T � �A�V����M� C�� As usual� we regard �A�V� as monoidal via convolution� but
we regard �M� C� as monoidal via pointwise tensor product in C�

� PropositionThe transform enriches to a strong monoidal functor

T � �A�V����M� C��

That is� the transform takes convolution to pointwise tensor product�

Proof� For all F�G � A��V� we have the calculations

T 
F �G�
�� �
Z A


F �G�
A���
A�

��
Z AA�A��

P 
A�� A��� A��F 
A���G
A�����
A�

��
Z A��A��

F 
A���G
A�����
A����
A���

�� T 
F �
���T 
G�
��
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�� 
T 
F ��T 
G��
��

T 
J�
�� �
Z A

J
A���
A� �� I�

In particular� if C is cartesian closed� the transform takes convolution into cartesian
product�

Remark One can also trace through the steps in ��� and obtain a generalisation to
promonoidal structures using promonoidal functors�
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this paper in LaTEX�
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