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COMPONENTS, COMPLEMENTS
AND THE REFLECTION FORMULA

CLAUDIO PISANI

Abstract. We illustrate the formula (↓p)x = Γ!(x/p), which gives the reflection ↓p
of a category p : P → X over X in discrete fibrations. One of its proofs is based on
a “complement operator” which takes a discrete fibration A to the functor ¬A, right
adjoint to Γ!(A×−) : Cat/X → Set and valued in discrete opfibrations.

Some consequences and applications are presented.

1. Introduction

The “classical” formulas (see [Lawvere, 1973] and [Paré, 1973])

(↓p)x = Γ!(x/p) ; (↑p)x = Γ!(p/x) (1)

or better
↓p = Γ!(−/p) ; ↑p = Γ!(p/−) (2)

which display the presheaves corresponding to the reflections of a category p : P → X
over a base category X in discrete fibrations and in discrete opfibrations as components of
“comma” categories, do not appear at a first sight particularly pregnant or self-explicatory.
However, noting that x/p is the product x/X×p in Cat/X (and similarly p/x = X/x×p)
and that x/X and X/x (corresponding to the representable presheaves) are the reflections
↑x and ↓x of the object x : 1 → X, we get

(↓p)x = Γ!(↑x× p) ; (↑p)x = Γ!(↓x× p) (3)

These are exactly the set-valued version of the formulas

x ∈↓p ⇐⇒ Γ!(↑x ∩ p) ; x ∈↑p ⇐⇒ Γ!(↓x ∩ p) (4)

which clearly give the reflections of a subset p of a poset in lower and upper subsets.
(Here Γ! is the two-valued correspective of the components functor, and gives false on
the empty set and true elsewhere). Remarkably, also the most natural proof of (4),
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based on the classical complement operator which takes lower sets into upper sets (and
conversely) and on the consequent law

Γ!(↓p ∩ q) ⇐⇒ Γ!(p∩↑q) (5)

generalizes almost straightforwardly to the set-valued context. (See [Pisani, 2007] for a
detailed discussion of the poset case, which provides useful insight and motivations.)

Recall that the fundamental adjunctions

Γ! a Γ∗ a Γ∗ : Cat → Set (6)

between the components, discrete and points functors, can be generalized to

Γ! a Γ∗ a Γ∗ : Cat/X → Set (7)

where for p : P → X, Γ!p is given by the components of the total (or domain) category
P , while for S ∈ Set, Γ∗S is the first projection of the product of X and the discrete
category on S. In the present context, the (partially defined) “complement operator” is
parametrized by sets:

¬ : Set× (Cat/X)op → Cat/X

It takes a discrete fibration A into the “exponential” functor ¬A := (Γ∗−)A : Set →
Cat/X which is valued in discrete opfibrations (and vice versa) and allows to prove the
law

Γ!(↓p× q) ⇐⇒ Γ!(p×↑q) (8)

from which the reflection formula is easily drawn. (A related definition of “negation” is
proposed in [Lawvere, 1996]).

After presenting some basic facts about categories over a base in Section 2, we develop
this and other proofs of the reflection formula in Section 3. In Section 4 we treat colimits
in X as given by the (partially defined) reflection of Cat/X in principal (or representable)
discrete fibrations. Thus ↓(−) is an intermediate step of this reflection, and we can easily
derive important properties of (co)limits following [Paré, 1973]. In Section 5 we consider
those categories t : T → X over X such that

hom(t, A) ∼= ten(t, A) := Γ!(t× A) (9)

for any discrete fibration or discrete opfibration A. Again motivated by the two-valued
case, we call them “atoms”. Any idempotent arrow in X is an atom, and the reflections
of atoms are, as presheaves on X, the retracts of representable functors; so they generate
the Cauchy completion of X, displaying it as the Karoubi envelope of X. Finally, in
Section 6 we show how the reflection formula can be used to obtain in a very direct way
the reflection of graphs in (idempotent, bijective or n-periodic) evolutive sets.

Some of these topics have been presented at the International Conference on Category
Theory (CT06) held at White Point in June 2006, and under a slightly different perspec-
tive, also in the preprint [Pisani, 2005]. The preprint [Pisani, 2007], to which we will often
refer, contains more details and has a more didactical style.

Acknowledgements. The author is grateful to the referee for his helpful remarks.
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2. Categories over a base

We review some facts about categories over a base that will be used in the sequel. Though
most of them are standard, others seem not to be widely known.

2.1. Discrete fibrations and strong dinaturality. Let X be a fixed category
and y : X → SetXop

be the Yoneda embedding. Let us denote by i the functor

i := y/− : SetXop → Cat/X (10)

which takes a presheaf A : Xop → Set into the category of elements y/A with its pro-
jection over X. The categories over X isomorphic to some iA are the discrete fibrations.
The functor i is full and faithful:

SetXop

(A, B) ∼= Cat/X(iA, iB) (11)

Note that the right hand side is discrete even when the 2-structure of Cat/X is acknowl-
edged. We denote by

↓(−) : Cat/X → SetXop

(12)

a left adjoint of i; thus i ↓(−) gives the reflection of Cat/X in the full subcategory of
discrete fibrations. Similarly, we define i : SetX → Cat/X and ↑(−) a i.

2.2. Remark. For any object x : 1 → X, there are bijections

Cat/X(x, iA) ∼= Ax ∼= SetXop

(X(−, x), A)

natural in A ∈ SetXop

. So we get ↓x ∼= X(−, x). Since furthermore iX(−, x) ∼= X/x, the
reflection i↓x of an object in discrete fibrations is the slice category X/x. Similarly, given
an arrow λ : 2 → X of the base category, with domain x and codomain y, ↓λ ∼= X(−, y);
and the inclusions of the domain and the codomain become X(−, λ) and the identity
respectively.

The construction of the category of elements admits the following generalization. Let
Din∗X the category that has the functors Xop × X → Set as objects and the strong
dinatural transformations (also known as “Barr dinatural”, see [Paré & Roman, 1998]
and [Ghani, Uustalu & Vene, 2004]) as arrows. Given a functor H ∈ Din∗X , we define a
category iH over X as follows:

• the objects over x ∈ X are the elements of H(x, x);

• given λ : x → y in X, there is at most one arrow from a ∈ H(x, x) to b ∈ H(y, y)
over λ, and this is the case iff H(x, λ)a = H(λ, y)b ∈ H(x, y).

Then one easily verifies (see [Pisani, 2007]) that this constructions is the object map of a
full and faithful functor

i : Din∗X → Cat/X (13)
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that extends both i : SetXop → Cat/X and i : SetX → Cat/X (which come up when
H is dummy in one variable). We are particularly interested in the following case: given
A : Xop → Set and D : X → Set, let H(x, y) = Ax×Dy, that is H is the composite

Xop ×X
A×D //Set× Set

× //Set

Then iH over X is the product iA× iD in Cat/X. Furthermore, in this case

DinX(H, K) ∼= Din∗X(H, K) ∼= Cat/X(iH, iK) (14)

that is, the dinatural transformations with domain H are also strongly dinatural, for any
K.

2.3. Change of base and components. Let f : X → Y be a functor. As in any
category with pullbacks, it gives rise to a pair of adjoint functors

f! a f ∗ : Cat/Y → Cat/X (15)

where f! is given by composition with f , while f ∗ is obtained by pulling back in Cat. The
pair f! a f ∗ satisfies the Frobenius law, that is the morphism

f!π1 ∧ (ε ◦ f!π2) : f!(p× f ∗q) → f!p× q (16)

is an isomorphism for any p ∈ Cat/X and q ∈ Cat/Y , ε being the counit of the adjunction.
In particular, we get the fibers over objects or arrows of X of a category over X:

Px //

x∗p

��

P

p

��
1

x // X

Pλ //

λ∗p

��

P

p

��
2

λ // X

(17)

The pullback of a discrete fibration is a discrete fibration; more precisely, the left hand
diagram below commutes (up to isomorphisms), and so also the right hand square of left
adjoints commutes:

SetXop

i

��

SetY opSetf
oo

i

��
Cat/X Cat/Y

f∗oo

SetXop ∃f // SetY op

Cat/X

↓(−)

OO

f! // Cat/Y

↓(−)

OO (18)

(In particular, the fiber (iA)x of the discrete fibration iA is the discrete category on the
set Ax.) We then obtain that in the diagram below

SetXop

i

��
Cat/X

↓(−)◦f! // SetY op

Setf

ffLLLLLLLLLLLLLLLLL

(19)
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↓(−) ◦ f! a i ◦Setf , and since i is full and faithful also ↓(−) ◦ f! ◦ i a Setf , that is the left
Kan extension of A : Xop → Set along f op can be computed by:

∃fA ∼= ↓(f!(iA)) (20)

In the special case Y = 1, the diagrams (18) above become

SetXop

i

��

Set

Γ∗

||xxxxxxxxxxxxxxxx

∆oo

i

��
Cat/X Cat

X×−oo

SetXop Colim // Set

Cat/X

Γ!

<<xxxxxxxxxxxxxxxx

↓(−)

OO

tot // Cat

π0

OO (21)

In particular, we have the functors

Γ! a Γ∗ : Set → Cat/X (22)

Given p : P → X in Cat/X, Γ!p is the set of components of the total category P while for
a set S, Γ∗S is the projection X × S → X of the product of X and the discrete category
on S. Furthermore, the discrete functor Γ∗ has a right adjoint Γ∗, giving the set of points
of p, that is its sections.

The formula (20) now becomes

ColimA ∼= π0(tot(iA)) ∼= Γ!(iA) (23)

which expresses the colimit of a presheaf by the components of its category of elements.
(Similarly, LimA = Γ∗(iA).) This can be generalized as follows. Let us denote by

Coend∗ : Din∗X → Set

a left adjoint to the functor ∆ : Set → Din∗X , defined in the usual way. Then

Din∗X

i

��
Cat/X Set

Γ∗oo

∆

eeJJJJJJJJJJJJJJJJJ

(24)

commutes, and as above we get

Coend∗H ∼= Γ!(iH) (25)

While in general Coend∗H and the usual CoendH are different (see [Pisani, 2007]), by
the remark at the end of section 2.1, they coincide for H(x, y) = Ax×Dy:

A⊗D ∼= Γ!(iH) ∼= Γ!(iA× iD) (26)

Thus we are led to consider Γ!(iA× iD) as a generalized tensor product, and we pose

ten := Γ!(−×−) : Cat/X ×Cat/X → Set (27)

calling it the “tensor functor”.
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2.4. Exponentials and complements. The category Cat is not locally cartesian
closed, that is exponentials in Cat/X may not exist. When they do, the objects of pq over
x are the functors Px → Qx, while the arrows of pq over λ are the functors Pλ → Qλ
over 2 (see diagram 17).

Discrete fibrations and opfibrations are exponentiable. The following particular case
will be needed in the sequel (see [Pisani, 2007]):

2.5. Proposition. If iA is a discrete fibration and iD a discrete opfibration over X, then
the exponential (iD)iA in Cat/X is a discrete opfibration (and dually (iA)iD is a discrete
fibration).

Explicitly, as a covariant presheaf (iD)iA is the composite

X
∆ //X ×X

A×D //Setop × Set hom //Set (28)

that is, (iD)iAx = DxAx and

(iD)iAf = DfAf : DxAx → DyAy

h 7→ Df ◦ h ◦ Af

2.6. Definition. Given p : P → X in Cat/X, a right adjoint to ten(p,−) = Γ!(p×−) :
Cat/X → Set is called “the complement of p” and is denoted by ¬p:

ten(p,−) a ¬p : Set → Cat/X (29)

It is easy to see that p has a complement iff the exponential (Γ∗S)p exists for any set
S. In this case we have

¬p ∼= (Γ∗−)p (30)

In particular, since Γ∗S is both a discrete fibration and a discrete opfibration for any set S,
Proposition 2.5 gives the following correspective of the fact that classical complementation
on the subsets of a poset takes lower sets into upper sets (and conversely):

2.7. Corollary. Any discrete fibration iA has a complement valued in discrete op-
fibrations (and conversely). Explicitly, as a covariant presheaf (¬ iA)S = (Γ∗S)iA =
Set(A−, S) , that is:

(¬ iA)Sx = SAx

(¬ iA)Sf = SAf : SAx → SAy

h 7→ h ◦ Af
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2.8. Remark. The adjunction ten(iA,−) a ¬ iA : Set → Cat/X restricts to

A⊗− a Set(A−, ) : Set → SetX

a particular case of the closed structure of the bicategory of distributors.

We now prove an “adjunction-like” property of the tensor functor on Cat/X which
will allow us to derive directly the reflection formula.

2.9. Proposition. Let X be a category, iA a discrete fibration and iD a discrete opfi-
bration on X. Then for any p : P → X in Cat/X there are natural bijections

ten(p, iA) ∼= ten(i↑p, iA) ; ten(p, iD) ∼= ten(i↓p, iD)

Proof. We prove the first one, the other being symmetrical. For any set S

ten(p, iA) → S

p → (¬ iA)S

i↑p → (¬ iA)S

ten(i↑p, iA) → S

where we have used Proposition 2.7. The result follows by Yoneda.

The following proposition can be interpreted as the fact that complementation in
Cat/X is classical, when restricted to discrete fibrations and discrete opfibrations; in
particular, it is possible to “recover” a discrete fibration (or presheaf) from its complement
(see [Pisani, 2007]):

2.10. Proposition. If iA and iB are both discrete fibrations (or both discrete opfibra-
tions), then there is a natural bijection

hom(iA, iB) ∼= hom(¬ iB,¬ iA)

3. The reflection formula

The values of the “slice functors”

X/− : X → Cat/X ; −/X : X → Cat/X (31)

used in the following propositions are understood with their canonical projection X/x →
X and x/X → X.
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3.1. Proposition. The left adjoint ↓(−) a i is given on a p : P → X by

↓p ∼= ten(−/X, p)

or equivalently ↓p ∼= Γ!(−/p).

3.2. Proposition. The right adjoint i a (−)◦ is given on a p : P → X by

p◦ ∼= hom(X/−, p)

We begin with a proof of Proposition 3.1, by means of the complement operator, which
has a striking similarity with that (straightforward) of Proposition 3.2.

In [Pisani, 2007] it is checked directly that the above formulas actually give the desired
adjoints. For the left adjoint, this check is here superseded by reviewing other proofs of
Proposition 3.2, that rest on standard completeness properties; namely on Kan extensions
of set functors and on colimits of presheaves respectively.

3.3. The reflection formula via complementation. We begin by noticing that
for any discrete fibration iA

Ax ∼= ten(x, iA) ∼= hom(x, iA) (32)

Indeed, in general for any p : P → X, ten(x, p) = Γ!(Px) and hom(x, p) = Γ∗(Px) are
the components and the objects of the fiber category over x; since iA has discrete fibers
the result follows.

3.4. Proposition. Given a category p : P → X over X, the presheaf ↓p : Xop → Set
acts on objects as follows

(↓p)x = ten(x/X, p)

Proof.

(↓p)x

ten(x, i↓p)

ten(i↑x, i↓p)

ten(i↑x, p)

where we used twice the adjunction-like properties of Proposition 2.9. The result now
follows from the fact that i↑x ∼= iX(x,−) ∼= x/X (see Remark 2.2).
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It is worth stressing the strong similarity between the above derivation of the reflection
formula and the following derivation of the coreflection formula:

3.5. Proposition. Given a category p : P → X over X, the presheaf p◦ : Xop → Set
acts on objects as follows

(p◦)x = hom(X/x, p)

Proof.

(p◦)x

hom(x, ip◦)

hom(i↓x, ip◦)

hom(i↓x, p)

where only the adjunction laws have been used.

To complete the proofs of propositions 3.1 and 3.2, note that the action of the arrows
λ in X on the fibers follows from the form of the reflection ↓λ (see Remark 2.2).

3.6. The reflection formula via Kan extension. We begin by noting that the
usual coend formula for the left Kan extension of a presheaf A : Xop → Set along a
functor f : X → Y

(∃fA)y ∼= A⊗ Y (y, f−) (33)

may be rewritten as
∃fA ∼= ten(iA,−/f) (34)

Indeed, by (26), A⊗ Y (y, f−) ∼= ten(iA, i(Y (y, f−))) and i(Y (y, f−)) ∼= y/f .
By the second of diagrams (18)

∃f ↓p ∼= ↓(f!p) (35)

for any p : P → X. In particular

↓p ∼= ↓(p!1P ) ∼= ∃p ↓1P
∼= ∃p∆1 (36)

where 1P is the terminal discrete fibration idP : P → P over P . So by the (34) above we
conclude

↓p ∼= ∃p∆1 ∼= ten(i∆1,−/p) ∼= Γ!(1P ×−/p) ∼= Γ!(−/p) (37)

as desired. (Conversely, the reflection formula can be used to derive the coend formula (33)
or (34), as shown in [Pisani, 2007].)
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3.7. The reflection formula via colimits of presheaves. We begin by observing
that for any p : P → X there is a bijection

Cone(p, x) ∼= Cone(1, X(p−, x)) = Cone(1,Setp ↓x) (38)

natural in x, and that by Yoneda

A ∼= Sety ↓A (39)

for any presheaf A : Xop → Set (on the right hand side, A is considered as an object of
SetXop

). Then we have the following chain of bijections, natural in A:

Cat/X(p, iA)

Cat/X(p!1P , iA)

Cat/P (1P , p∗(iA))

Cat/P (i∆1, i(SetpA))

SetP op

(∆1,SetpA)

SetP op

(∆1,Setp(Sety ↓A))

SetP op

(∆1,Sety◦p ↓A)

Cone(1,Sety◦p ↓A)

Cone(y ◦ p, A)

SetXop

(Colim(y ◦ p), A)

Thus,
↓p ∼= Colim(y ◦ p) (40)

and since colimits in SetXop

are computed pointwise, we get

(↓p)x ∼= (Colim(y ◦ p))x ∼= Colim((y ◦ p)x) ∼= ColimX(x, p−) ∼= Γ!(x/p) (41)

as desired.
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4. Colimits as reflections

For any fixed p : P → X, we have the following bijections, natural in x:

Cat/X(p, X/x)

Cat/X(p!1P , X/x)

Cat/P (1P , p∗(X/x))

Cat/P (1P , p/x)

Cat/P (i∆1, iX(p−, x))

SetP op

(∆1, X(p−, x))

Cone(1, X(p−, x))

Cone(p, x)

(where (38) is used again). That is,

Cat/X(p, X/−) ∼= Cone(p,−) (42)

4.1. Remark. Of course, this can be seen directly: a morphism p → X/x over X takes
an object a ∈ P (over pa) to an object λa : pa → x (over pa) of X/x; and an arrow
u : a → b in P (over pu) to a commutative triangle

pa
λa

UUUU

**UUUU
pu

��
x

pb
λbjjjj

55jjjj

(Composition is preserved automatically.)

So p : P → X has a colimit iff there is a universal arrow from p to X/−. If this is
the case, the universal arrow is a limiting cone p → X/Colim p. Letting p vary, we in fact
have two different modules “cone”

Cone : XP → X ; Cone : Cat/X → X

both representable on the right, and so also two different operative definitions of the
colimit functor: either as the partially defined left adjoint

Colim : XP → X

to the functor ∆ : X → XP , or as the partially defined left adjoint

Colim : Cat/X → X

to the functor X/− : X → Cat/X . Dually, we have two limit functors

Lim : XP → X ; Lim : (Cat/X)op → X

respectively right adjoint to ∆ : X → XP and to −/X : X → (Cat/X)op.
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4.2. Remark. The two colimit functors (which agree on each single p : P → X as an
object of two different categories) can be merged in a single

Colim : Cat/X∗ → X

(see [Mac Lane, 1971], [Paré, 1973] and [Kan, 1958]) where Cat/X∗ is the Grothen-
dieck category associated to the 2-representable functor Cat(−, X) : Cat → Cat (which
includes both Cat/X and all the XP as subcategories). Indeed, we have the further
module “cone” (which includes the other ones)

Cone(p, x) := Cat/X∗(p, δx)

where δ : X → Cat/X∗ is the full and faithful functor which sends an object x ∈ X to
the corresponding category over X.

The isomorphisms

Cone(p,−) ∼= Cat/X(p, X/−) ∼= Cat/X(i↓p, X/−) ∼= Cone(i↓p,−)

show that the colimits of a functor are determined by its reflection: Colim p exists iff
Colim(i↓p) exists, and if this is the case they are isomorphic. Thus, if p and q in Cat/X
have isomorphic reflections then

Colim p ∼= Colim q (43)

either existing if the other one does. More than that, the same remains true after com-
posing with any functor f : X → Y :

4.3. Proposition. Two categories p : P → X and q : Q → X over X have isomorphic
reflections i↓p ∼= i↓q if and only if for any f : X → Y

Colim(f ◦ p) ∼= Colim(f ◦ q)

either side existing if the other one does.

Proof. One direction is a direct consequence of equation (40). The other follows from
the isomorphisms

Cone(f ◦ p,−) ∼= Cat/Y (f!p, Y/−) ∼= Cat/X(p, f ∗(Y/−)) ∼= Cat/X(i↓p, f/−)
∼= Cat/Y (f!(i ↓p), Y/−) ∼= Cone(f ◦ (i↓p),−)

Alternatively, one could use (35) and (43).

Following [Paré, 1973], by applying Proposition 4.3 to the special cases q = idX and
q = x : 1 → X we obtain:

4.4. Corollary.

1. The functor p : P → X is final iff i↓p ∼= idX (that is, ↓p ∼= ∆1 ).

2. The object x ∈ X is the absolute colimit of p : P → X iff i ↓p ∼= X/x (that is,
↓p ∼= X(−, x) ).
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So a functor has an absolute colimit iff the “intermediate step” i↓(−) of the reflection
of a category over X in principal discrete fibrations, is in fact already the final step.

4.5. Remark. Since Colim a X/− ∼= i ◦ y and i is full and faithful

SetXop

i

��
Cat/X Colim // X

y

ddJJJJJJJJJJJJJJJJJ

(44)

also Colim ◦ i a y, so that the left adjoint to the Yoneda embedding has the well-known
form: it takes a presheaf A to the colimit ColimiA of its category of elements over X.

By composing the adjunctions f! a f ∗ and Colim a Y/−

Cat/X
f!

⊥
//

Colim(f◦−)

&&
Cat/Y

f∗
oo

Colim

⊥
//
Y

Y/−
oo

f/−
gg

(45)

we get
Colim(f ◦ −) a f/− : Y → Cat/X (46)

And since f/− ∼= i ◦ Setf ◦ y

SetXop

i

��
Cat/X

Colim(f◦−) // Y

Setf◦y

ddJJJJJJJJJJJJJJJJJ

(47)

as above we get
Colim(f ◦ i−) a Setf ◦ y (48)

where the left adjoint takes a presheaf A to the weighted colimit A ∗ f ∼= Colim(f ◦ iA),
displaying it as a colimit.

In the particular case Y = Set, the adjunction (46) is the (dual of) ten(A,−) a ¬A
of section 2.4, while the adjunction (48) becomes the (dual of) A⊗− a Set(A−, ).

5. Atoms and their reflections

We say that a category t : T → X over X is a “left atom” if there are bijections

ten(t, iA) ∼= hom(t, iA)
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natural in A ∈ SetXop

. Dually, t is a “right atom” if

ten(t, iD) ∼= hom(t, iD)

natural in D ∈ SetX . We say that t is an atom if it is both a left and a right atom. We
shall see that the distinction between left and right atoms is illusory. Observe that any
object x : 1 → X of the base category X is an atom (see (32)).

5.1. Proposition. For any functor f : X → Y there are bijections

tenX(p, f ∗q) ∼= tenY (f!p, q)

natural in p ∈ Cat/X and q ∈ Cat/Y .

Proof. Using the Frobenius law (16), we have:

tenX(p, f ∗q) = Γ!(p× f ∗q) ∼= Γ!(f!(p× f ∗q)) ∼= Γ!(f!p× q) = tenY (f!p, q) (49)

5.2. Corollary. Let f : X → Y any functor. Then for any atom t : T → X in Cat/X,
f!t : T → Y is an atom in Cat/Y .

Proof. We have the following chain of natural bijections:

tenY (f!x, D) ∼= tenX(x, f ∗D) ∼= homX(x, f ∗D) ∼= homY (f!x, D)

We now show that idempotent arrows of the base category are atoms. This is essen-
tially the fact that in the graph corresponding to an idempotent endomapping, the fixed
points (or loops) correspond to the components. Let e be the monoid which represents
the idempotent arrows of categories, that is the one whose unique non-identity arrow is
idempotent.

5.3. Proposition. Any idempotent e : e → X in X is an atom. For any discrete
fibration or discrete opfibration D on X, ten(e, iD) ∼= hom(e, iD) is the set fixDe of the
elements of Dx fixed by De : Dx → Dx.

Proof. For any discrete fibration or discrete opfibration iD,

ten(e, iD) ∼= Γ!(e× iD) ∼= Γ!(e
∗(iD)) ∼= Γ! i(SeteD) ∼= Colim(SeteD)

hom(e, iD) ∼= hom(1e, e
∗(iD)) ∼= Γ∗(e

∗(iD)) ∼= Γ∗ i(SeteD) ∼= Lim(SeteD)

But for any functor e : e → C, the limit and the colimit of e, when they exist, are
canonically isomorphic (see [Borceux, 1994]). If C = Set these are given by the fixed
points of the idempotent mapping.
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Note that in this context it is important to distinguish between idempotent arrows as
defined above, and arrows e : 2 → X which happen to be idempotent endomorphisms; an
arrow λ : 2 → X is an atom iff it is an isomorphism.

5.4. Proposition. For any t : T → X, t is a right atom iff

↓t⊗− ∼= Nat(↑t,−) : SetX → Set

Dually, t is a left atom iff

−⊗↑t ∼= Nat(↓t,−) : SetXop → Set

In particular, for any idempotent atom e : e → X,

↓e⊗D ∼= Nat(↑e,D) ∼= fixDe ; A⊗ ↑e ∼= Nat(↓e, A) ∼= fixAe

Proof. Recalling Proposition 2.9, one has the following bijections, natural in D ∈ SetX :

Nat(↑t,D) ∼= hom(i ↑t, iD) ∼= hom(t, iD)

↓t⊗D ∼= ten(i ↓t, iD) ∼= ten(t, iD)

5.5. Corollary. For any idempotent e : x0 → x0 in X,

↓e ∼= fixX(−, e)

that is ↓e the subfunctor of ↓x0 = X(−, x0) given by the arrows fixed by composition with
e:

λ : x → x0 ∈ (↓e)x ⇐⇒ e ◦ λ = λ

For any idempotents e : x → x and e′ : y → y in X, Nat(↓e, ↓e′) is the set of arrows
λ : x → y such that λ ◦ e = λ = e′ ◦ λ.

Proof. For the first part, we have

(↓e)x ∼= ↓e⊗↑x ∼= Nat(↑e, ↑x) ∼= fix((↑x)e) ∼= fixX(x, e)

The second part follows from the first, since Nat(↓e, ↓e′) ∼= fix(↓e′)e.
By Yoneda, any idempotent in SetXop

on a representable X(−, x0) has the form

X(−, e) : X(−, x0) → X(−, x0)

for a unique idempotent e : x0 → x0 in X.

5.6. Corollary. Let A : Xop → Set be a presheaf on X. Then A is a retract in SetXop

of the representable functor X(−, x0), associated to the idempotent X(−, e) : X(−, x0) →
X(−, x0), if and only if A ∼= ↓e.
Proof. The retract A is the limit of X(−, e) : e → SetXop

, and thus is given pointwise
by Ax ∼= fixX(x, e). The result then follows by Corollary 5.5.
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5.7. Proposition. Let A : Xop → Set and D : X → Set be such that

−⊗D ∼= Nat(A,−) : SetXop → Set

Then A is a retract in SetXop

of a representable functor.

Proof. Let u ∈ A ⊗D ∼= Γ!(iA × iD) be a universal element of − ⊗D. Then u is the
component of a pair 〈a, d〉 over, say, x0 ∈ X:

u = [〈a, d〉], a ∈ Ax0, d ∈ Dx0

Let ι : A → X(−, x0) be the unique morphism in SetXop

such that (ι⊗D)u = [〈idx0 , d〉]:

[〈idx0 , d〉] = (ι⊗D)u ∼= Γ!(ι× iD)[〈a, d〉] = [〈ιa, d〉]

and let ρ : X(−, x0) → A be the unique morphism in SetXop

such that ρ idx0 = a. Then

(ρ ◦ ι)⊗D ∼= Γ!((ρ ◦ ι)× iD) : [〈a, d〉] 7→ [〈a, d〉]

so that ρ ◦ ι = idA, as required.

5.8. Proposition. Let A : Xop → Set and D : X → Set. The following are equivalent:

1. A⊗− ∼= Nat(D,−) : SetX → Set.

2. −⊗D ∼= Nat(A,−) : SetXop → Set.

3. A ∼= ↓e and D ∼= ↑e, for an idempotent atom e.

4. A ∼= ↓t and D ∼= ↑t, for an atom t.

Proof. Trivially 3 implies 4, and 4 implies 1 and 2 by Proposition 5.4. From Proposi-
tion 5.7 and Corollary 5.6 it follows that 2 implies that A ∼= ↓e. Furthermore,

D ∼= ↓− ⊗D ∼= Nat(A, ↓−) ∼= Nat(↓e, ↓−) ∼= ↓−⊗ ↑e ∼= ↑e

where Proposition 5.4 have been used again. Thus 2 implies 3. Since 1 and 2 are dual
and 3 is autodual, also 1 implies 3.

5.9. Remark. In [Kelly & Schmitt, 2005] it is shown, in an enriched context, the equiv-
alence between 1 and 2 and the fact that A and D are adjoint modules.

By Proposition 5.4 and the equivalence between 1 and 2 in Proposition 5.8, it follows

5.10. Corollary. Any right atom is also a left atom, and vice versa.
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By Proposition 5.8, for any atom t : T → X there exists an idempotent e : x → x in
X such that ↑t ∼= ↑e and ↓t ∼= ↓e. This idempotent is not unique, since for example if e

splits as x
r→ y

i→x, then ↓e ∼= ↓y.

5.11. Corollary. For an atom T
t→X the following are equivalent:

1. t has a limit.

2. t has a colimit.

3. t has an absolute limit.

4. t has an absolute colimit.

Proof. Indeed, all the above are equivalent for any e : e → X (see [Borceux, 1994]), and
so by propositions 4.3 and 4.4 they are equivalent also for t.

5.12. Remark. If the conditions of the above proposition are satisfied, that is if ↓t ∼= ↓x
for an object x ∈ X, we could say that t “converges” to its (co)limit x. In particular, any
split idempotent in X converges to its retracts, and a category is Cauchy complete iff any
atom converges. Furthermore, any functor f : X → Y is “continuous”: if t converges to
x, then f!t converges to fx (see Corollary 5.2 and Proposition 4.3).

Recall that the Cauchy completion of a category can be obtained as the full subcategory
of SetXop

generated by the retracts of representable functors (see for example [Borceux,
1994]). But we have seen that the latter have the form ↓t or ↓e, and so we get the first
part of the following proposition. The second part is in Corollary 5.5.

5.13. Proposition. The reflections of atoms (or of idempotent atoms) in discrete fibra-
tions generate the Cauchy completion of X. Furthermore, given two idempotent arrows
e : x → x and e′ : y → y in X, hom(↓e, ↓e′) is the set of arrows f : x → y such that
f ◦ e = f = e′ ◦ f . So the Cauchy completion is the same thing as the “Karoubi envelope”
of X (see [La Palme, Reyes & Zolfaghari, 2004], [Lambek & Scott, 1986] and [Lawvere,
1989]).

6. Graphs and evolutive sets

As a particular case of the reflection formula, consider X = N , the monoid of natural
numbers, as the base category. Then we have the adjunction

↑(−) a i : SetN → Cat/N (50)

with the usual formula: for any p : P → N ,

(↑p)? ∼= ten(N /?, p) (51)
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where ? is the only object of N , so that N /? is (opposite of) the poset of natural numbers,
with its projection on N . The action is given by the right shift:

k : [n, a] 7→ [n + k, a] (a ∈ P )

Among the categories over N there are the unique factorization lifting (UFL) functors
(see [Bunge & Niefield, 2000]), which include discrete fibrations and discrete opfibration,
and which can be identified with (irreflexive) graphs as follows. For any G ∈ Gph we
have the UFL functor F ! : FG → FL ∼= N , where L is the terminal graph (the loop),
and F : Gph → Cat is the free category functor; slightly improperly, we denote by F also
the resulting functor F : Gph → Cat/N . Conversely, for any UFL functor p : P → N
we get a graph G by the pullback below (in Gph):

G //

η∗|p|

��

|P |

|p|

��
L

η // |N |

(52)

that is, the arrows of G are those of |P | which are over 1 ∈ N . It is easy to see that we so
obtain an equivalence between Gph and the full subcategory of Cat/N of UFL functors.
Furthermore, since UFL functors are closed under pullbacks, the functor F : Gph →
Cat/N preserves products: F(G × H) ∼= FG × FH. And since a graph and the free
category on it have the same components, F : Gph → Cat/N also preserves components:
Γ!G ∼= Γ!FG. Thus in the particular case that p : P → N is an UFL functor FG → N ,
the reflection formula (51) takes the following form:

(↑FG)? ∼= ten(N /?,FG) ∼= ten(FA,FG) ∼= Γ!(FA×FG)
∼= Γ!(F(A×G)) ∼= Γ!(A×G) (53)

where A ∈ Gph is the infinite anti-chain:

• •oo •oo •oo •oo oo

Thus the formula (53) gives a left adjoint to SetN → Gph, or equivalently the reflection
(−)− of graphs in those with a bijective domain mapping: given G ∈ Gph, the nodes of
G− are the components of A×G, while the only arrow out of the node [n, x] ∈ Γ!(A×G),
is

[n, x] → [n + 1, x]

that is, the evolution of G− is given by the shift of the anti-chain A.

6.1. Remark. “Dually”, the coreflection G◦ is given by the set of its chains Gph(Aop, G),
with the evolution given by the shift of the generic chain Aop:

• //• //• //• //• //
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6.2. Remark. Similarly, one gets the reflection formula for graphs over a base graph G in
graph (op)fibrations over G (see [Boldi & Vigna, 2002]); or equivalently, the left adjoint
to the inclusion SetFG → Gph/G (see [Pisani, 2007] and [Pisani, 2005]).

6.3. Examples.

1. Let G be the graph • //• which is not an evolutive set because there are no
arrows out of the second node. Applying the reflection formula, we multiply G by
the anti-chain A, getting the graph

• • • • •

• •

__@@@@@@@
•

__@@@@@@@
•

__@@@@@@@
•

__@@@@@@@

^^

with an infinite number of components, which are the nodes of the reflection of G.
Furthermore, the action on it is given by translation, which sends any component in
the one on its right. So G− is the chain • //• //• //• //• // , wherein
the missing codomains in G have been added. On the other hand, there are no
chains in G, so that the coreflection G◦ is void: the nodes with no codomains have
been deleted.

2. Let G be the graph •;; •oo //• cc which is not an evolutive set because
there are two arrows out of one node. Applying the reflection formula, we multiply
G by the anti-chain A, getting the two-components graph

• •oo •oo •oo •oo oo

• •oo •oo •oo •oo oo

• •

__@@@@@@@

WW//////////////
•

__@@@@@@@

WW//////////////
•

__@@@@@@@

WW//////////////
•

__@@@@@@@

WW//////////////

^^

VV

So the reflection of G has two nodes. Furthermore, the action on it is given again
by right translation, so that the second component is a fixed point and we get

G− = • //• cc

wherein the multiple codomains in G have been identified. On the other hand, there
are four chains in G so that G◦ has four nodes:

G◦ = •;; •oo • //• cc

that is, the nodes with multiple codomains have been split.
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3. If G = • %%•oo //• , A×G is the graph

• • • • •

• •

__@@@@@@@
•

__@@@@@@@
•

__@@@@@@@
•

__@@@@@@@

^^

• •

__@@@@@@@

WW//////////////
•

__@@@@@@@

WW//////////////
•

__@@@@@@@

WW//////////////
•

__@@@@@@@

WW//////////////

^^

VV

so that G− = • //• cc again. One should compare this example with the tech-
nique used in [La Palme, Reyes & Zolfaghari, 2004] to compute the same reflection.

4. An example where both the phenomena of adding and identifying codomains, are
present is given by the graph • •oo //• , whose reflection is again the chain.

5. If G1 = •;; //• , G2 = •;; //• cc and G3 = •;; cc , then G−
1 , G−

2 and G−
3

are all the loop (identification prevails in G−
1 ). As for coreflections, G◦

1 is the loop,
G◦

2 is the sum of the loop and the anti-chain with a loop added at its end, and G◦
3

is the set of sequences in a two-element set, under the action s 7→ s(1 + ).

Now, let e the “idempotent arrow” category of Section 5, and f : N → e the functor
which takes 1 ∈ N to the non-identity arrow of e. The composite

Sete Setf
//SetN

i //Cat/N

has a left adjoint
l := ∃f ◦↑(−) ∼= ↑(−) ◦ f! : Cat/N → Sete

(see diagrams 18). Then (recalling Proposition 5.1)

(lp)? ∼= tene(e/?, f!p) ∼= tenN (f ∗(e/?), p) (54)

where ? is the only object of e, so that e/? is the category • •oo cc (only non-
identity arrows drawn) with its projection on e, and f ∗(e/?) ∼= FE where E is the
graph • •oo cc . Thus, as above, the nodes of the reflection G− of the graph G in
idempotent evolutive sets are the components of the product E×G in Gph. The action
is given again by the “shift” in E. (Of course, one has also the corresponding coreflection
formula: Gph(E, G) gives the nodes of the coreflection G◦.)

Similarly, to obtain the nodes of the reflections of a graph G in bijective or n-periodic
evolutive sets, we have to take the components of the products Z×G and Zn ×G respec-
tively, with the graphs Z and Zn below

Z = //• //• //• //• //• // (55)

Zn = • // •

uu•

OO (n arrows) (56)
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6.4. Examples.

1. It is easy to see that if G is connected (that is, Γ!G = 1) then E × G has n + 1
components, where n is the number of nodes that are not codomains of any arrow.
So the reflection in idempotent evolutive sets acts on each component by maintaining
such nodes, and collapsing the rest of it to the fixed point.

2. The reflection G− of a graph G in n-periodic evolutive sets is obtained by taking
the components of Zn ×G. Since, as it is easily checked,

Zk × Zn = gcd(k, n) · Zlcm(k,n)

we deduce that Z−k has gcd(k, n) nodes and so, being connected,

Z−k = Zgcd(k,n)

Since any bijective evolutive set is a sum of cycles, G =
∑∞

k=1 Sk · Zk, its n-periodic
reflection is given by

G− =
( ∞∑

k=1

Sk · Zk

)−
=

∞∑
k=1

Sk · Z−k =
∞∑

k=1

Sk · Zgcd(k,n)

6.5. Remark. Considering Gph as a presheaf category (rather than a subcategory of
Cat/N ), all the above reflections become instances of Kan extensions. But the present
approach gives a more direct and intuitive way of computing them.
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