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ON YETTER’S INVARIANT AND AN EXTENSION OF THE
DIJKGRAAF-WITTEN INVARIANT TO CATEGORICAL GROUPS

JOÃO FARIA MARTINS AND TIMOTHY PORTER

Abstract. We give an interpretation of Yetter’s Invariant of manifolds M in terms of
the homotopy type of the function space TOP(M,B(G)), where G is a crossed module
and B(G) is its classifying space. From this formulation, there follows that Yetter’s
invariant depends only on the homotopy type of M , and the weak homotopy type of the
crossed module G. We use this interpretation to define a twisting of Yetter’s Invariant by
cohomology classes of crossed modules, defined as cohomology classes of their classifying
spaces, in the form of a state sum invariant. In particular, we obtain an extension of
the Dijkgraaf-Witten Invariant of manifolds to categorical groups. The straightforward
extension to crossed complexes is also considered.

1. Introduction

Let G be a finite group. In the context of Topological Gauge Field Theory, R. Dijkgraaf
and E. Witten defined in [24] a 3-dimensional manifold invariant for each 3-dimensional
cohomology class of G. When M is a triangulated manifold, the Dijkgraaf-Witten Invari-
ant can be expressed in terms of a state sum model, reminiscent of Lattice Gauge Field
Theory. State sum invariants of manifolds were popularised by V.G. Turaev and O.Ya.
Viro, because of their construction of a non-trivial closed 3-manifold state sum invari-
ant from quantum 6j-symbols (see [51]), regularising the divergences of the celebrated
Ponzano-Regge Model (see [41]), which is powerful enough to distinguish between mani-
folds which are homotopic but not homeomorphic. For categorically inclined introductions
to state sum invariants of manifolds we refer the reader to [50, 5, 35].

State sum models, also known as spin foam models, appear frequently in the context
of 3- and 4-dimensional Quantum Gravity, as well as Chern-Simons Theory, making them
particularly interesting. See for example [3, 1] for reviews.

Let us recall the construction of the Dijkgraaf-Witten Invariant. Let G be a finite
group. A 3-dimensional group cocycle is a map ω : G3 → U(1) verifying the cocycle
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Figure 1: Flatness condition imposed on G-colourings of a triangulated manifold M . Here
X, Y ∈ G and a < b < c are vertices of M .

condition:

ω(X,Y, Z)ω(XY,Z,W )−1ω(X,Y Z,W )ω(X, Y, ZW )−1ω(Y, Z,W ) = 1,

for any X, Y, Z,W ∈ G. These group 3-cocycles can be seen as 3-cocycles of the classifying
space B(G) of G, by considering the usual simplicial structure on B(G); see for example
[52], Example 8.1.7.

Let M be an oriented closed connected piecewise linear manifold. Choose a triangula-
tion of M , and consider a base point ∗ for M so that ∗ is a vertex of M . Suppose that we
are provided with a total order on the set of vertices of M . A G-colouring of M is given
by an assignment of an element of G to each edge of M , satisfying the flatness condition
shown in figure 1. A G-colouring of M therefore defines a morphism π1(M, ∗) → G. Let
T = (abcd), where a < b < c < d, be a tetrahedron of M . The colouring of each edge of
T is determined by the colouring of the edges (ab), (bc) and (dc), of T ; see figure 2. Let
ω : G3 → U(1) be a 3-dimensional group cocycle, representing some 3-dimensional coho-
mology class of G. The “topological action” S(T, ω) on a tetrahedron T is ω(X, Y, Z)±1,
where X, Y, Z ∈ G are as in figure 2. Here the exponent on ω(X, Y, Z) is 1 or −1 accord-
ing to whether the orientation on T induced by the total order on the set of vertices of
M coincides or not with the orientation of M . The expression of the Dijkgraaf-Witten
Invariant is the state sum:

DW (M,ω) =
1

#Gn0

∑
G-colourings

∏
tetrahedra T

S(T, ω),

where n0 is the number of vertices of the chosen triangulation of M . This state sum is
triangulation independent.

A homotopy theoretic expression for the Dijkgraaf-Witten Invariant is:

DW (M,ω) =
1

#G

∑
f∈[(M,∗),(B(G),∗)]

〈oM , f∗(ω)〉 ,

where oM ∈ H3(M) denotes the orientation class of M . The notation [(M, ∗), (B(G), ∗)] =
π0

(
TOP((M, ∗), (B(G), ∗))

)
stands for the set of based homotopy classes of maps (M, ∗) →

(B(G), ∗), where, as before, B(G) denotes the classifying space of G. The equivalence
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Figure 2: Edges of a tetrahedron of M whose colours determine the colouring of all other
edges. Here a < b < c < d are vertices of M .

between the two formulations is a consequence of the fact that there exists a one-to-one
correspondence between group morphisms π1(M, ∗) → G and pointed homotopy classes
of maps (M, ∗) → (B(G), ∗).

In [56], D.N. Yetter defined a 3-dimensional TQFT, which included the ω = 1 case of
the Dijkgraaf-Witten Invariant, though he did not incorporate group cohomology classes
into his TQFT. This construction appeared upgraded in [57], where D.N. Yetter extended
his framework to handle categorical groups. Recall that categorical groups are equivalent
to crossed modules. They are often easier to consider when handling the objects at a
theoretical level, although for calculation the crossed modules have advantages. We will
often pass from one description to the other, usually without comment. The important
fact is that they both are algebraic models of homotopy 2-types and so generalise groups,
which model homotopy 1-types.

Let M be a piecewise linear compact manifold equipped with a triangulation. The
definition of Yetter’s Invariant (which we will formulate carefully in this article) is anal-
ogous to the definition of the Dijkgraaf-Witten Invariant for the case ω = 1. However,
in Yetter’s construction, in addition to colourings of the edges of M , now by objects of
a categorical group, we also have colourings on the faces the triangulation of M by mor-
phisms of the chosen categorical group, and the flatness condition is transported to the
tetrahedrons of M .

The meaning of Yetter’s construction was elucidated by the second author in [43, 44],
where an extension of Yetter’s Invariant to handle general models of n-types appears.
The construction of M. Mackaay in [36] is related, conjecturally, with the n = 3 case of
the construction in [44], with a further twisting by cohomology classes of 3-types, in the
Dijkgraaf-Witten way.

In [26, 27], D.N. Yetter’s ideas were applied to 2-dimensional knot theory, and yielded
interesting invariants of knotted embedded surfaces in S4, with nice calculational prop-
erties. In [27, 28] the general formulation of Yetter’s Invariant for CW-complexes and
crossed complexes appeared.

One of the open problems posed by D.N. Yetter at the end of [57] was whether his
construction could, similarly to the Dijkgraaf-Witten Invariant, be twisted by cohomology
classes, and he asked for the right setting for doing this. In this article we formulate such
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a twisting of Yetter’s Invariant, thereby extending the Dijkgraaf-Witten Invariant of 3-
manifolds to categorical groups. Note that the (co)homology of a crossed module is defined
as being the (co)homology of its classifying space; see for example [25, 42].

In the course of this work, we prove a new homotopy theoretical interpretation of
Yetter’s Invariant (Theorem 2.25), therefore giving a new proof of its existence; see [43, 44]
for alternative interpretations. Another important consequence of this formulation is the
homotopy invariance of Yetter’s Invariant, as well as the fact that Yetter’s Invariant
depends only on the weak homotopy type of the chosen crossed module.

Our interpretation of Yetter’s Invariant extends in the obvious way to the homolog-
ically twisted case (Theorem 3.7), and has close similarities with the interpretation of
the Dijkgraaf-Witten Invariant shown above. The main difference is that it is set in the
unbased case, and depends on the homotopy groups of each connected component of the
function space TOP(M,B(G)). Here B(G) is the classifying space of the crossed module
G. Our construction does not depend on the dimension of the manifolds, and can also
be adapted to the general crossed complex context, which we expect to be closely related
with the invariants appearing in [44, 36]. This extension of Yetter’s invariant to crossed
complexes, as well as its homotopy invariance and geometric interpretation appears in
this article; see 2.30.1.

As we mentioned before, the category of categorical groups is equivalent to the category
of crossed modules, which are particular cases of crossed complexes. Crossed complexes
A admit classifying spaces B(A), which generalise Eilenberg-Mac Lane spaces. The clas-
sifying spaces of crossed complexes A were extensively studied by R. Brown and P.J.
Higgins. One of their main results is the total description in algebraic terms of the weak
homotopy type of the function space TOP(M,B(A)), where M is a CW-complex. This
result together with the General van Kampen Theorem (also due to R. Brown and P.J.
Higgins) are the main tools that we will use in this article.

We will make our exposition as self contained as possible, giving brief description of
the concepts of the theory of crossed complexes that we will need, constructions which
are due mainly to R. Brown and P.J. Higgins.

This article should be compared to [45, 46], where similar ideas are used to define
Formal Homotopy Quantum Field Theories with background a 2-type.

2. Crossed Modules and Yetter’s Invariant

2.1. Crossed Modules and Crossed Complexes.

2.1.1. Definition of Crossed Modules. Let G be a groupoid with object set P . We
denote the source and target maps of G by s, t : G→ P , respectively. If a groupoid E is
totally disconnected, we denote both maps (which are by definition equal) by β : E → P .

2.2. Definition. Let G and E be groupoids, over the same set P , with E totally dis-
connected. A crossed module G = (G,E, ∂, .) is given by an object preserving groupoid
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morphism ∂ : E → G and a left groupoid action . of G on E by automorphisms. The
conditions on . and ∂ are:

1. ∂(X . e) = X∂(e)X−1, if X ∈ G and e ∈ E are such that t(X) = β(e),

2. ∂(e) . f = efe−1, if e, f ∈ E verify β(e) = β(f).

See [21], section 1. Notice that for any e ∈ E we must have s(∂(e)) = t(∂(e)) = β(e).
A crossed module is called reduced if P is a singleton. This implies that both G and

E are groups. A morphism F = (φ, ψ) between the crossed modules G = (G,E, ∂, .) and
G ′ = (G′, E ′, ∂′, .′) is given by a pair of groupoid morphisms φ : G→ G′ and ψ : E → E ′,
making the diagram:

E
ψ−−−→ E ′

∂

y y∂′
G −−−→

φ
G′

commutative. In addition we must have:

t(X) = β(e) =⇒ φ(X) .′ ψ(e) = ψ(X . e),∀X ∈ G, ∀e ∈ E.

There exists an extensive literature on (reduced) crossed modules. We refer for ex-
ample to [7, 6, 20, 27]. The non-reduced case, important for this article, is considered in
[9, 12, 14, 15, 19, 21].

2.2.1. Reduced Crossed Modules and Categorical Groups. Let G = (G,E, ∂, .)
be a reduced crossed module. Here ∂ : E → G is a group morphism, and . is a left action
of G on E by automorphisms. We can define a strict monoidal category C(G) from G.
The set of objects of C(G) is given by all elements of G. Given an X ∈ G, the set of all
morphisms with source X is in bijective correspondence with E, and the target of e ∈ E is
∂(e−1)X. In other words a morphism in C(G) “looks like” X

e−→ ∂(e−1)X. Given X ∈ G
and e, f ∈ E the composition

X
e−→ ∂(e−1)X

f−→ ∂(f−1)∂(e−1)X

is:
X

ef−→ ∂(ef)−1X.

The tensor product has the form:

Xye
∂(e−1)X

⊗

Yyf
∂(f−1)Y

=

XYy(X.f)e

∂(e−1)X∂(f−1)Y

.

From the definition of a crossed module, it is easy to see that we have indeed defined
a strict monoidal category. The tensor category C(G) is a categorical group (see [4] and
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[19]). It is well known that the categories of crossed modules and of categorical groups
are equivalent (see [19, 22, 4, 2]). This construction is an old one. We skip further details
on this connection since the point we want to emphasise is that we can construct a strict
monoidal category C(G) which is moreover a categorical group from any crossed module
G. This also justifies the title of this article. Although we will define Yetter’s invariant
using the crossed module form of the data, it is, we feel, more natural to think of the
categorical group as being the coefficient object.

2.2.2. Crossed Complexes. A natural generalisation of the concept of a crossed module
is a crossed complex.

2.3. Definition. A crossed complex A is given by a complex of groupoids over the same
set A0 (in other words A0 is the object set of all groupoids), say:

...
∂n+1−−−→ An

∂n−→ An−1
∂n−1−−−→ An−2

∂n−2−−−→ ...
∂3−→ A2

∂2−→ A1,

where all boundary maps ∂n, n ∈ N are object preserving, and the groupoids An, n > 2 are
totally disconnected. The remaining conditions are:

1. For each n > 1, there exists a left groupoid action . = .n of the groupoid A1 on
An, by automorphisms, and all the boundary maps ∂n, n = 2, 3, ... are A1-module
morphisms.

2. The groupoid map A2
∂2−→ A1 together with the action . of A1 in A2 defines a crossed

module.

3. The groupoid An is abelian if n > 2.

4. ∂2(A2) acts trivially on An for n > 2.

For a positive integer L, an L-truncated crossed complex is a crossed complex such that
An = {0} if n > L. In particular crossed modules are equivalent to 2-truncated crossed
complexes. A crossed complex is called reduced if A0 is a singleton.

Morphism of crossed complexes are defined in a a similar way to morphisms of crossed
modules.

A natural example of a crossed complex is the following one, introduced by A.L. Blakers
in [8], in the reduced case, and extensively studied by J.H.C. Whitehead in [54, 55], and
H.J. Baues, see [7, 6]. The non-reduced case, important for this work, is treated in
[9, 12, 15, 16, 17, 18], which we refer to for further details.

2.4. Example. Let M be a locally path connected space, so that each connected com-
ponent of M is path connected. A filtration of M is an increasing sequence {Mk, k =
0, 1, 2, ...} of locally path-connected subspaces of M , whose union is M . In addition, we
suppose that M0 has a non-empty intersection with each connected component of Mk,
for each k ∈ N. Then the sequence of groupoids πn(Mn,Mn−1,M0), with the obvious
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boundary maps, and natural left actions of the fundamental groupoid1 π1(M1,M0), with
set of base points M0, on them is a crossed complex, which we denote by Π(M), and call
the “Fundamental Crossed Complex of the Filtered Space M”. Note that the assignment
M 7→ Π(M), is functorial.

2.5. Remark. Let M be a CW-complex. The notation Π(M) will always mean the
fundamental crossed complex of the skeletal filtration {Mk, k ∈ N} of M , for which Mk

is the k-skeleton of M . Note that it makes sense to consider the fundamental crossed
complex of this type of filtrations.

It is easy to show that crossed complexes and their morphisms form a category. We
will usually denote a crossed complex A by A = (An, ∂n, .n), or more simply by (An, ∂n),
or even (An). A morphism f : A → B of crossed complexes will normally be denoted by
f = (fn).

Let A = (An, ∂n, .n) be a crossed complex. For any a ∈ A0 and any n > 1, denote
An(a) as being {an ∈ An : s(an) = a}, which is therefore a group if n > 2. Denote also
A1(a, b) = {a1 ∈ A1 : s(a1) = a, t(a1) = b}, where a, b ∈ A0.

2.5.1. The General van Kampen Theorem. The category of crossed complexes is a
category with colimits; see [15], section 6. Under mild conditions, the functor Π from the
category of filtered spaces to the category of crossed complexes preserves colimits. This
fact is known as the “General van Kampen Theorem”, and is due to R. Brown and P.J.
Higgins; see [9, 11, 12, 14, 15, 16, 17], and also [7, 6]. A useful form of the General van
Kampen Theorem is the following:

2.6. Theorem. [R. Brown and P.J. Higgins] Let M be a CW-complex. Let also {Mλ, λ ∈
Λ} be a covering of M by subcomplexes of M . Then the following diagram:⊔

(λ1,λ2)∈Λ2

Π(Mλ1 ∩Mλ2)
−→
−→
⊔
λ∈Λ

Π(Mλ) −→ Π(M),

with arrows induced by inclusions, is a coequaliser diagram in the category of crossed
complexes.

This is corollary 5.2 of [15].

2.6.1. Homotopy of Maps from Crossed Complexes into Crossed Modules.
The main references here are [21, 17]; see also [9, 12, 54]. Note that our conventions
are slightly different. Let G and G′ be groupoids. Let also E ′ be a totally disconnected
groupoid on which G′ has a left action. Let φ : G→ G′ be a groupoid morphism. A map
d : G→ E ′ is said to be a φ-derivation if:

1. β(d(X)) = t(φ(X)),∀X ∈ G.

2. d(XY ) =
(
φ(Y )−1 . d(X)

)
d(Y ) if X, Y ∈ G are such that t(X) = s(Y ).

1This should not be confused with the relative homotopy set π1(M1,M0, ∗).
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2.7. Definition. Let A = (An) be a crossed complex and G = (G,E, ∂, .) be a crossed
module. Let also f : A → G be a morphism of crossed complexes. An f -homotopy H is
given by two maps:

H0 : A0 → G, H1 : A1 → E,

such that:

1. s(H0(a)) = f0(a),∀a ∈ A0,

2. H1 : A1 → E is an f1-derivation, here f = (fn),

in which case we put f = s(H).

2.8. Proposition. Under the conditions of the previous definition, suppose that H is an
f -homotopy. The map g = t(H) : A → G such that:

1. g0(a) = t(H0(a)),∀a ∈ A0,

2. g1(X) = H0(s(X))−1f1(X)(∂ ◦H1)(X)H0(t(X)),∀X ∈ A1,

3. g2(e) = H0(β(e))−1 . (f2(e)(H1 ◦ ∂)(e)) ,∀e ∈ A2,

is a morphism of crossed complexes. Moreover, this construction defines a groupoid
CRS1(A,G), whose objects are given by all morphisms A → G, and given two morphisms
f, g : A → G, a morphism H : f → g is an f -homotopy H with t(H) = g.

For each f ∈ CRS0(A,G) (the set of crossed complex morphisms A → G), denote the
set of all f -homotopies by CRS1(A,G)(f). Analogously, if f, g ∈ CRS0(A,G), we denote
CRS1(A,G)(f, g) as being the set of elements of the groupoid CRS1(A,G) with source f
and target g.

2.9. Definition. Let A = (An) be a crossed complex and G = (G,E, ∂, .) be a crossed
module. Let also f : A → G be a morphism. A 2-fold f -homotopy is a map I : A0 → E
such that β(I(a)) = f0(a),∀a ∈ A0. As usual f = (fn).

Denote CRS2(A,G)(f) as being the set of all 2-fold f -homotopies. It is a group with
pointwise multiplication as product. Therefore the disjoint union:

CRS2(A,G)
.
=

⊔
f∈CRS0(A,G)

CRS2(A,G)(f)

is a totally disconnected groupoid.

2.10. Proposition. Under the conditions of the previous definition, let I be a 2-fold
f -homotopy. Then ∂I = (H1, H2), where:

1. H0(c) = ∂(I(c)),∀c ∈ A0,

2. H1(X) = f1(X)−1 . [I(s(X))] I(t(X))−1,∀X ∈ A1,

is an f -homotopy.



126 JOÃO FARIA MARTINS AND TIMOTHY PORTER

�
�

�
��@

@
@

@@ c

e

a

b

∂(e−1)XY

X Y

Figure 3: A G-colouring of an ordered 2-simplex. Here X, Y ∈ G, e ∈ E and a < b < c
are vertices of M . To this G-colouring we associate the morphism XY

e−→ ∂(e)−1XY , in
the category C(G).

2.11. Proposition. (We continue to use the notation of the previous definition.) Let I
be a 2-fold f -homotopy. Let H be a homotopy with source g and target f . Then:

(H . I)(a) = H1(a) . I(a),∀a ∈ A0,

is a 2-fold g-homotopy. Moreover, this assignment defines a left groupoid action of the
groupoid CRS1(A,G) on CRS2(A,G) by automorphisms, and together with the bound-
ary map ∂ : CRS2(A,G) → CRS1(A,G), already described, defines a crossed module
CRS(A,G).

This is shown in [17] in the general case when G is a crossed complex.

2.12. Yetter’s Invariant of Manifolds.

2.12.1. G-colouring and Yetter’s Invariant. Let G = (G,E, ∂, .) be a finite re-
duced crossed module. Let M be a triangulated piecewise linear manifold or, more gen-
erally, a simplicial complex. We suppose that we have a total order on the set of vertices
of M . Each simplex K of M has a representation in the form K = {a, b, c, . . .}, where
a < b < c < . . . are vertices of M . (Later, in section 1.3.1, we will convert the ordered
simplicial complex to a simplicial set by using the total order. The original simplices are
then exactly the non-degenerate simplices of the result.)

A G-colouring of M , also referred to as a “Formal G-Map” in [45, 46], is given by an
assignment of an element of G to each edge of M and an element of E to each triangle of
M , satisfying the compatibility condition shown in figure 3. A G-colouring of a triangle
naturally determines a morphism in C(G), the monoidal category constructed from G; see
figure 3. There is still an extra condition that G-colourings must satisfy: Given a coloured
3-simplex, one can construct two morphisms φ and ψ in C(G), see figure 4. Note that
we need to use the monoidal structure of C(G) to define φ and ψ. These morphisms are
required to be equal.

Let us be specific. Given a simplex K of M , denote the colouring of it by c(K). Then
the conditions that a G-colouring c must satisfy are:

∂(c(abc))−1c(ab)c(bc) = c(ac), (1)

whenever (abc) (where a < b < c) is a 2-simplex of M , and a cocycle condition:

c(abc)c(acd) =
(
c(ab) . c(bcd)

)
c(abd), (2)



YETTER’S INVARIANT AND EXTENSION OF THE DIJKGRAAF-WITTEN INVARIANT 127

�
�

�
�@

@
@
@
�

�
�

�@
@

@
@

�
�

�@
@

@ �
�

�@
@

@

�
�

�@
@

@�
�

�@
@

@

a

b

c

c

c

d

c b

d

e f

g h

Y Z

Y Z X ∂(g)−1Y Z

∂(e)−1XYX

∂(g)−1Y Z

ψ={XY Z
e−→∂(e)−1XY Z

f−→∂(f)−1∂(e)−1XY Z}

φ={XY Z
X.g−−→X∂(g)−1Y Z

h−→∂(h)−1X∂(g)−1Y Z}

φ=ψ is equivalent to ef=(X.g)h

∂(e)−1XY ∂(f)−1∂(e)−1XY Z

∂(h)−1X∂(g)−1Y Z

a

a

d

a

b

b d

Figure 4: A G-colouring of an ordered tetrahedron. Here a < b < c < d. Note
that the compatibility condition ef = (X . g)h ensures that ∂(f)−1∂(e)−1XY Z =
∂(h)−1X∂(g)−1Y Z.

whenever (abcd) (where a < b < c < d) is a 3-simplex of M .

2.13. Theorem. [D.N. Yetter] Let M be a compact piecewise linear manifold. Consider
a triangulation of M with n0 vertices and n1 edges. Choose a total order on the set of all
vertices of M . Let G = (G,E, ∂, .) be a finite reduced crossed module. The quantity:

IG(M) =
#En0

#Gn0#En1
# {G-colourings of M} (3)

is a piecewise linear homeomorphism invariant of M , thus, in particular, it is triangulation
independent, and does not depend on the total order chosen on the set of vertices of M .

This result is due to D.N. Yetter. Proofs are given in [57, 43, 44]. Similar constructions
were considered in [26, 27, 28], and also [45, 46]. We will refer to the invariant IG, where
G is a finite crossed module, as “Yetter’s Invariant”.

D.N. Yetter’s proof of Theorem 2.25 relied on Alexander Moves on simplicial com-
plexes, thereby staying in the piecewise linear category. In particular it does not make
clear whether IG is a homotopy invariant. On the other hand Yetter’s argument extends
IG to being a TQFT.
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In this article we will give a geometric interpretation of Yetter’s Invariant IG, from
which will follow a new proof of its existence. The expected fact that IG is a homotopy
invariant is also implied by it; see [43, 44] for alternative points of view, with a broad
intersection with this one. As a consequence, we also have that IG(M) is well defined, as
a homotopy invariant, for any simplicial complex M .

In the closed piecewise linear manifold case, we will also consider an additional twisting
of IG(M) by cohomology classes of G, similar to the Dijkgraaf-Witten Invariant of 3-
dimensional manifolds, see [24], thereby giving a solution to one of the open problems
posed by D.N. Yetter in [57]. Together with the homotopy invariance and geometric
interpretation of Yetter’s Invariant, this will be one of the main aims of this article.

2.14. Classifying Spaces of Crossed Modules.

2.14.1. The Homotopy Addition Lemma. Let M be a piecewise linear manifold with
a triangulation T , or, more generally, a simplicial complex. Suppose that we have a total
order on the set of all vertices of T . Simplicial complexes like this will be called ordered.

Recall that we can define a simplicial set DT out of any ordered simplicial complex
T . The set of n-simplices of DT is given by all non decreasing sequences (a0, a1, ..., an) of
vertices of T , such that {a0, a1, ..., an} is a (non-degenerate) simplex of T . The face and
degeneracy maps are defined as:

∂i(a0, ..., an) = (a0, ..., ai−1, ai+1, ..., an), i = 0, ..., n,

and
si(a0, ..., an) = (a0, ..., ai, ai, ..., an), i = 0, ..., n,

respectively. Notice that if T is a piecewise linear triangulation of a piecewise linear
manifold M then the geometric realisation |DT | of DT is (piecewise linear) homeomorphic
to M .

There exist several references on simplicial sets. We refer for example, [23, 29, 30, 38,
31, 52].

Working with simplicial sets, let ∆(n) be the n-simplex, then its geometric realisation
|∆(n)| is the usual standard geometric n-simplex. This simplicial set is obtained from
the simplicial complex (012...n), the n-simplex, by applying the construction above. Each
non-degenerate k-face s = (a0a1a2...ak) of ∆(n) (thus a0 < a1 < ... < ak) determines,
in the obvious way, an element h(s) ∈ πk(|∆(n)|k, |∆(n)|k−1, a0). Recall that if M is a
CW-complex then Mk denotes the k-skeleton of it.

By the General van Kampen Theorem, stated in 2.5.1, the crossed complex Π(|∆(n)|)
is free on the set of non-degenerate faces of ∆(n); see [9, 12, 54, 18]. The definition
of free crossed complexes appears for example in [12]. In particular, if A = (An) is a
crossed complex, a morphism Π(|∆(n)|) → A is specified, uniquely, by an assignment of
an element of Ak to each non-degenerate k-face of ∆(n), with the obvious compatibility
relations with the boundary maps. To determine these relations, we need to use the
Homotopy Addition Lemma. This lemma explicitly describes the boundary maps of the
crossed complex Π(|∆(n)|); see [53], page 175. Let us be explicit in the low dimensional
case. We follow the conventions of [18, 9].
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2.15. Lemma. [Homotopy Addition Lemma for n = 2, 3] We have:

∂(h(0123)) =
(
h(01) . h(123)

)
h(013)h(023)−1h(012)−1, (4)

∂(h(012)) = h(12)h(23)h(13)−1. (5)

These equations are analogues of equations (1) and (2). By the General van Kampen
Theorem there follows:

2.16. Proposition. Let M be a triangulated piecewise linear manifold with a total order
on its set of vertices. Let also G be a reduced crossed module. There exists a one-to-
one correspondence between G-colourings of M and maps Π(M) → G, where M has the
natural CW-decomposition given by its triangulation.

This result appears in [43] (Proposition 2.1). Note that any map f : Π(M) → G yields
a G-colouring cf of M , where cf (K) = f(h(K)). Here K is a non-degenerate simplex of
M . To prove this we need to use the Homotopy Addition Lemma.

Proposition 2.16 still holds for general simplicial complexes, and has obvious analogues
if we merely specify a CW-decomposition of M rather than a triangulation.

More discussion of G-colourings can be found in [43, 44, 45, 46].

2.16.1. The Definition of B(G) and Some Properties. We follow [18, 9, 12]. An-
other introduction to this subject appears in [45]. Let A be a crossed complex. The nerve
N(A) of A is, by definition, the simplicial set whose set of n-simplices is given by all
crossed complex morphisms Π(|∆(n)|) → A, with the obvious face and degeneracy maps.
It is a Kan simplicial set; see [18]. The classifying space B(A) of A is the geometric
realisation |N(A)| of the nerve of A. This construction appeared first in [8].

Let us unpack this definition in the reduced crossed module case; see [9], 3.1. Let
G = (G,E, ∂, .) be a reduced crossed module. The CW-complex B(G) has a unique 0-cell
∗, since N(G) only has one 0-simplex, because G is reduced. For any n ∈ N, the set of
n-simplices of N(G) is, by Proposition 2.16, in bijective correspondence with the set of
all G-colourings of |∆(n)|, and has the obvious faces and degeneracies motivated by this
identification.

Consequently, there exists a 1-simplex σ(X) of B(G) for any X ∈ G. The 2-simplices
of M are given by triples σ(X, Y, e), where X, Y ∈ G and e ∈ E. Here X = c(01), Y =
c(12), ∂(e)−1XY = c(02) and e = c(012), corresponding to the G-colouring of |∆(2)|
shown in figure 3. Similarly, the 3-simplex ofN(G) determined by the G-colouring of |∆(3)|
shown in figure 4 will be denoted by σ(X, Y, Z, e, f, g, h), where the relation ef = (X.g)h
must hold. We will describe the set of G-colourings of the 4-simplex |∆(4)| in the following
section.

The following result is due to R. Brown and P.J. Higgins; see [18], Theorem 2.4,
together with its proof.

Let C be a simplicial set. In particular the geometric realisation |C| of C is a CW-
complex.
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2.17. Theorem. Let G be a crossed module. There exists a one-to-one correspondence F
between crossed complex morphisms Π(|C|) → G and simplicial maps C → N(G).

2.18. Remark. In fact, let g : Π(|C|) → G be a morphism of crossed complexes. Consider
the projection map:

p :
⊔
n∈N

Cn × |∆(n)| → |C|,

according to the usual construction of the geometric realisation of simplicial sets, see for
example [39, 38, 29, 30]. Note that p is a cellular map, therefore it induces a morphism
p∗ of crossed complexes. Let c ∈ Cn be an n-simplex of C, then F (g)(c) : Π(|∆(n)|) → G
is the composition:

Π(|∆(n)|)
∼=−→ Π(c× |∆(n)|) p∗−→ Π(|C|) g−→ G.

These results are a consequence of the version of the General van Kampen Theorem
stated in 2.5.1; see [18] for details. Remark 2.18 shows how to go from a crossed complex
morphism to a simplicial morphism. The reverse direction needs a comparison of Π(B(G))
and G and is more complicated. However, we can prove directly that F is a bijection by
using the General van Kampen Theorem.

2.19. Remark. In particular (from Proposition 2.16), it follows that if M is a piecewise
linear manifold with an ordered triangulation T , and CT is the simplicial set associated
with T (see the beginning of 2.14.1), then there exists a one-to-one correspondence between
G-colourings of M and simplicial maps CT → N(G). This result is due to the second
author; see [43, 44].

The statement of Theorem 2.17 can be substantially expanded. We follow [18]. The
assignment G 7→ N(G) if G is a crossed module is functorial. Similarly, the assignment
C 7→ Π(|C|), where C is a simplicial set is also functorial. The second functor is left
adjoint to the first one: the Nerve Functor, see [18], Theorem 2.4. In fact, the adjunction
F of Theorem 2.17 extends to a simplicial map (which we also call F ):

N(CRS(Π(|C|),G))
F−→ SIMP(C,N(G)),

which, moreover, is a homotopy equivalence; see [18], proof of Corollary 3.5 and of Theo-
rem A. Here if C and D are simplicial sets, then SIMP(C,D) is the simplicial set whose
set of n-simplices is given by all simplicial maps C ×∆(n) → D; see [38, 30], for exam-
ple. Note that the set of vertices of N(CRS(Π(|C|),G)) is the set CRS0(Π(|C|),G) of all
crossed complex morphisms Π(|C|) → G. Similarly, there exists a bijective correspondence
between vertices of SIMP(C,N(G)) and simplicial maps C → N(G).

The existence of the simplicial homotopy equivalence F is a non trivial fact, due to R.
Brown and P.J. Higgins. The proof which appears in [18] makes great use of the monoidal
closed structure of the category of crossed complexes constructed in [17]. A version of
the Eilenberg-Zilber Theorem for crossed complexes, representing Π(|C ×D|) as a strong
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deformation retract of Π(|C|) ⊗ Π(|D|), if C and D are simplicial sets, is also required.
An approach to this is sketched in [18]. A direct proof appears in [48, 49].

Let C and D be simplicial sets. It is well known that if D is Kan then there exists a
weak homotopy equivalence:

j : |SIMP(C,D)| → TOP(|C|, |D|),

where the later is given the k-ification of the Compact-Open Topology on the set of all
continuous maps |C| → |D|; see [10], for example. This weak homotopy equivalence is
the composition:

|SIMP(C,D)| j1−→ |SIMP(C, S|D|)| j2−→ |S(TOP(|C|, |D|))| j3−→ TOP(|C|, |D|).

Here if M is a topological space, then S(M) is the singular complex of M . Since D is
a Kan simplicial set, it follows that D is a strong deformation retract of S(|D|), a fact
usually known as Milnor’s Theorem, see [29], 4.5, and [39]. The map j1 is the geometric
realisation of the inclusion SIMP(C,D) → SIMP(C, S|D|), and is therefore a homotopy
equivalence.

There exists a one-to-one correspondence between simplicial maps C×∆(n) → S(|D|)
and continuous maps |C| × |∆(n)| ∼= |C × ∆(n)| → |D|. This fact together with the
natural homeomorphism TOP(|C|×|∆(n)|, |D|) → TOP(|∆(n)|,TOP(|C|, |D|)) provides
an isomorphism SIMP(C, S(|D|)) → S(TOP(|C|, |D|)); see [30], page 132. The map j2 is
the geometric realisation of it, which consequently is a homeomorphism.

The map j3 is the obvious map j3 : |S(TOP(|C|, |D|))| → TOP(|C|, |D|). It is well
known that the natural map |S(M)| →M is a weak homotopy equivalence, for any space
M ; see [38, 30, 29].

From this discussion, it is obvious that if f : C → D is a simplicial map then j(|f |) =
|f |. Here |f | : |C| → |D| is the geometric realisation of f : C → D. Therefore:

2.20. Theorem. Let C be a simplicial set and G a reduced crossed module. There exists
a weak homotopy equivalence:

η : B(CRS(Π(|C|),G)) → TOP(|C|, B(G)).

In fact, if we are given a map g : Π(C) → G, then η(g) is the geometric realisation of
F (g) : C → N(G); see Theorem 2.17.

This is contained in theorem A of [18]. Note that η = j ◦ |F |. The exact expression of
η will be needed in the last chapter.

We therefore have that η is a homotopy equivalence when C is finite, because then it
follows that TOP(|C|, B(G)) has the homotopy type of a CW-complex; see [40].

2.20.1. The Fundamental Groups of Classifying Spaces of Crossed Mod-
ules. Let G = (G,E, ∂, .) be a crossed module, not necessarily reduced. Let P be the
object set of G and E. There exists a bijective correspondence between 0-cells of B(G)
and elements of P .
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2.21. Theorem. There exists a one-to-one correspondence between connected components
of B(G) and connected components of the groupoid G. Given a ∈ P then:

π1(B(G), a) = Ga,a/im{∂ : Ea → Ga,a} (6)

and
π2(B(G), a) = ker{∂ : Ea → Ga,a}. (7)

Here Ga,b = {X ∈ G : s(X) = a, t(X) = b} and Ea = {e ∈ E : β(e) = a}, where
a, b ∈ P . In fact the groupoid π1(B(G), P ) is the quotient of G by the totally disconnected
subgroupoid ∂(E), which is normal in G. All the other homotopy groups of B(G) are
trivial.

This is shown in [18], in the general case of crossed complexes. In fact, if A = (An)
is a reduced crossed complex then πn(B(A)) = ker(∂n)/im(∂n+1), and analogously in the
non-reduced case, keeping track of base points. These results are a consequence of the
fact that the nerve N(A) of A is a Kan simplicial set if A is a crossed complex.

An immediate corollary of theorems 2.20 and 2.21 is that if C is a simplicial set then
there exists a one-to-one correspondence between homotopy classes of crossed complex
morphisms Π(|C|) → G and homotopy classes of maps |C| → B(G). More precisely,
f, g : Π(|C|) → G are homotopic if and only if η(f), η(g) : |C| → B(G) are homotopic.
R. Brown and P.J. Higgins proved this for any CW-complex, a statement contained in
Theorem A of [18].

2.21.1. n-Types, in General, and 2-Types, in Particular. Let A be a crossed
complex. The assignment A 7→ N(A), where N(A) is the nerve of A, is functorial.
Composing with the geometric realisation functor from the category of simplicial sets
to the category Top of topological spaces, proves that the geometric realisation map
A 7→ B(A) can be extended to a functor Xcomp→ Top. Here Xcomp is the category of
crossed complexes.

Recall that a continuous map f : X → Y is an n-equivalence if it induces a bijection
π0(f), on connected components and if, for all choices of base point x0 ∈ X and 1 6 i 6 n,
πi(f) : πi(X, x0) → πi(Y, f(x0)) is an isomorphism. (Intuitively an n-equivalence is a
truncated weak homotopy equivalence as it ignores all information in the πk(X) for k > n.)
Two spaces have the same n-type if there is a zig-zag of n-equivalences joining them, more
exactly one can formally invert n-equivalences to get a category Hon(Top) and then X
and Y have the same n-type if they are isomorphic in Hon(Top). Any CW-space X has
a n-equivalence to a space Yn (the n-type of X), which satisfies πk(Yn) is trivial for all
k > n. This Yn is formed by adding high dimensional cells to X to kill off the elements
of the various πk(X). Because of this, it is usual, loosely, to say that a CW-complex M
is an n-type if πi(M) = 0 for all i > n. We will adopt this usage. Note that the n-type
of a CW-complex is well defined up to homotopy.

If A = (Am) is a crossed complex such that Am is trivial for m > n then it follows that
the classifying space B(A) of A is an n-type. The reader is advised that the assignment
A 7→ B(A) where A is a crossed complex does not generate all n-types.



YETTER’S INVARIANT AND EXTENSION OF THE DIJKGRAAF-WITTEN INVARIANT 133

Working with reduced crossed modules, it is well known that any connected 2-type
can be represented as the classifying space of a reduced crossed module, a result which
is essentially due to S. Mac Lane and J.H.C Whitehead; see [34]. See for example [18]
for an alternative proof. In fact it is possible to prove that the homotopy category of
connected 2-types is equivalent to Ho(X − mod), where X − mod is the category of re-
duced crossed modules; see [7, 18, 32]. Here, a weak equivalence of reduced crossed
modules is by definition a map f : G → H whose geometric realisation induces isomor-
phisms π1(B(G), ∗) → π1(B(H), ∗) and π2(B(G), ∗) → π2(B(H), ∗). By Theorem 2.21,
this can be stated in algebraic terms. For the description of the associated model structure
on the category of crossed modules, we refer the reader to [13].

In particular, it follows that the reduced crossed modules G and H are weak equivalent
if and only if B(G) and B(H) have the same 2-type. Since these CW-complexes are 2-types
themselves, there follows that:

2.22. Theorem. Let G and H be reduced crossed modules. Then G and H are weak
homotopic if and only if B(G) and B(H) are homotopic.

Let G = (G,E, ∂, .) be a crossed module. There exists a natural action of coker(∂) on
ker(∂). The crossed module G determines a cohomology class ω ∈ H3(ker(∂), coker(∂)),
called the k-invariant of G, which coincides with the k-invariant of B(G) (also called first
Postnikov invariant); see [9]. By a theorem of Mac Lane and Whitehead (see [34]), two
spaces have the same 2-type if and only if they have the same fundamental group, the
same second homotopy group, seen as a π1-module, and the same first Postnikov invariant;
see [7, 6].

A triple (A,B, k3 ∈ H3(A,B)), where A is a group acting on the abelian group B
on the left by automorphisms is usually called an algebraic 2-type. The discussion above
implies:

2.23. Corollary. Let G and H be crossed modules. Then B(G) is homotopic to B(H)
if and only if the algebraic 2-types determined by G and H are isomorphic.

2.24. Applications to Yetter’s Invariant of Manifolds.

2.24.1. An Interpretation of Yetter’s Invariant. Let G be a finite reduced
crossed module. Recall that IG stands for Yetter’s Invariant; see 2.12.1. We freely use the
results and the notation of 2.6.1. We now prove the first main result of this article.

2.25. Theorem. Let M be a compact triangulated piecewise linear manifold or, more
generally, a finite simplicial complex. As usual, we suppose that M is provided with a
total order on its set of vertices. Let G = (G,E, ∂, .) be a reduced crossed module. We
have:

IG(M) =
∑

g∈[M,B(G)]

#π2(TOP(M,B(G)), g)

#π1(TOP(M,B(G)), g)
. (8)

Here [M,B(G)] = π0(TOP(M,B(G)) denotes the set of homotopy classes of maps M →
B(G). In particular, IG(M) does not depend on the ordered triangulation of M chosen.
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Moreover, Yetter’s Invariant is therefore a homotopy invariant of polyhedra, i.e, triangu-
lable topological spaces.

Note that equation (8) extends Theorem 12 of [57] to general crossed modules.

Proof. Theorems 2.20 and 2.21 will be used. Recall that any simplicial complex naturally
defines a simplicial set; see 2.14.1. We freely use the notation and the results of 2.6.1.
We abbreviate CRS2(Π(M),G)(f) as CRS2(f), and analogously for CRS1(Π(M),G)(f, g)
and CRS1(Π(M),G)(f).

For an f ∈ CRS0(Π(M),G), denote [f ] as being the set of elements of CRS0(Π(M),G)
which belong to the same connected component of f in the groupoid CRS1(Π(M),G).
Recall also that if f, g : Π(M) → G then η(f), η(g) : M → B(G) are homotopic if, and
only if, f and g belong to the same connected component in the groupoid CRS1(Π(M),G).

We have:∑
g∈[M,BG ]

#π2(TOP(M,B(G)), g)

#π1(TOP(M,B(G)), g)

=
∑

f∈CRS0(Π(M),G)

#π2(TOP(M,B(G)), η(f))

#π1(TOP(M,B(G)), η(f))#[f ]

=
∑

f∈CRS0(Π(M),G)

#π2(B(CRS(Π(M),G)), f)

#π1(B(CRS(Π(M),G)), f)#[f ]

=
∑

f∈CRS0(Π(M),G)

#∂(CRS2(f))# ker{∂ : CRS2(f) → CRS1(f, f)}
#CRS1(f, f)#[f ]

=
∑

f∈CRS0(Π(M),G)

#CRS2(f)

#CRS1(f, f)#[f ]
.

=
∑

f∈CRS0(Π(M),G)

#CRS2(f)

#CRS1(f)
.

The last equality follows from the fact that CRS1(Π(M),G) is a groupoid. Recall that
CRS1(f) denotes the set of homotopies with source f : Π(M) → G. The result follows
from the following lemmas.

2.26. Lemma. Let φ : H → G be a groupoid morphism, with G a group. Let also E be a
group on which G acts on the left. Suppose that H is a free groupoid. Any φ-derivation
d : H → E can be specified, uniquely, by its value on the set of free generators of H.
In other words, any map from the set of generators of H into E uniquely extends to a
derivation d : H → E.

Proof. This is shown in [54] (Lemma 3) for the case in which H is a group, and is easy
to prove. The general case can be proved directly in the same way. Alternatively, we can
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reduce it to the group case by using the free group Ĥ on the set of free generators of H.
In particular, any groupoid morphism φ : H → G factors uniquely as φ = ψ ◦p, where p is
the obvious map p : H → Ĥ, bijective on generators, and ψ : Ĥ → G is a group morphism.
Note that if d : Ĥ → E is a ψ-derivation, then d ◦ p : H → E is a φ-derivation.

2.27. Lemma. There exist exactly #En1#Gn0 f -homotopies if f : Π(M) → G is a crossed
complex morphism. Here n0 and n1 are the number of vertices and edges of M .

Proof. Follows from the previous lemma and the fact that π1(M
1,M0) is the free

groupoid on the set of edges of M , with one object for each vertex of M . The fact
that the crossed module G = (G,E, ∂, .) is reduced is being used.

2.28. Lemma. There exist exactly #En0 2-fold f -homotopies if f : Π(M) → G is a crossed
complex morphism.

Proof. This is a consequence of the fact that the crossed module G is, by assumption,
reduced.

Using the last two lemmas it follows that:∑
f∈[M,B(G)]

#π2(TOP(M,B(G)), f)

#π1(TOP(M,B(G)), f)

=
∑

f∈CRS0(Π(M),G)

#CRS2(f)

#CRS1(f)

=
∑

f∈CRS0(Π(M),G)

#En0

#Gn0#En1

=
#En0

#Gn0#En1
#{G-colourings of M}.

The last equation follows from Proposition 2.16. This finishes the proof of Theorem 2.25.

2.29. Corollary. The invariant IG where G is a finite crossed module depends only on
the homotopy type of B(G). Therefore Yetter’s invariant IG is a function of the weak
homotopy type of the crossed module G, only, or alternatively of the algebraic 2-type
determined by G.

Proof. Follows from Theorem 2.22 and Corollary 2.23.

In a future work, we will investigate the behaviour of IG under arbitrary crossed module
maps G → H, in order to generalise this result.

Yetter’s Invariant was extended to CW-complexes in [27], where an alternative proof of
its existence is given, using a totally different argument to the one just shown. Also in the
cellular category, an extension of Yetter’s Invariant to crossed complexes appeared in [28].
In [26, 27], algorithms are given for the calculation of Yetter’s Invariant of complements
of knotted embedded surfaces in S4, producing non-trivial invariants of 2knots. Different
interpretations of Yetter’s Invariant appear in [43, 44].
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Yetter’s Invariant has a very simple expression in the case of spaces homotopic to
2-dimensional complexes. In fact:

2.30. Proposition. Let G = (G,E, ∂, .) be a finite reduced crossed module. Suppose that
M is a finite simplicial complex which is homotopic to a finite 2-dimensional simplicial
complex. Then:

IG(M) =
1

#coker(∂)

(
#ker(∂)

)χ(M)
#Hom

(
π1(M), coker(∂)

)
,

wbere χ(M) denotes the Euler characteristic of M .

Proof. It suffices to prove the result for 2-dimensional simplicial complexes, since Yetter’s
Invariant is an invariant of homotopy types.

Let H be the crossed module with base group coker(∂), whose fibre group is the triv-
ial group. There exist a natural map p from the set of G-colourings of M to the set of
H-colourings of M , obtained by sending the colour of an edge of M to the image of it
in coker(∂) and the colour of each face to 1. Since there are no relations motivated by
tetrahedra, the map p is surjective, and the inverse image at each point has cardinal-
ity (#im(∂))n1(# ker(∂))n2 . Here ni is the number of non-degenerate i-simplices of M .
Therefore:

IG(M) =
#En0

#Gn0#En1
(#im(∂))n1(# ker(∂))n2#{H-colourings of M}

=
#En0

#Gn0
(# ker(∂))n2−n1#{H-colourings of M}

=
(#im(∂))n0

#Gn0
(# ker(∂))n2−n1+n0#{H-colourings of M}

=
1

(#coker(∂))n0
(# ker(∂))n2−n1+n0#{H-colourings of M}

=
1

#coker(∂)
(# ker(∂))χ(M)#Hom

(
π1(M), coker(∂)

)
.

2.30.1. An Extension of Yetter’s Invariant to Crossed Complexes. We can
extend Yetter’s Invariant of manifolds to handle crossed complexes. Let us sketch how to
do this extension. For details (in the pointed CW-complex category) we refer the reader
to [28].

As part of the information used to construct this extension, we need to know the
n > 3 cases of the Homotopy Addition Lemma, stated for n = 2 and n = 3 in 2.14.1. We
continue to follow the conventions of [18].

2.31. Lemma. [Homotopy Addition Lemma for n > 3] We have:

∂h(012...n) = h(01) . h
(
∂0(012...n)

)
+

n∑
i=1

(−1)ih
(
∂i(012...n)

)
.
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Recall the notation introduced in 2.14.1. Note that this is an identity in the relative
homotopy group πn(|∆(n)|n, |∆(n)|n−1, 0 = ∗).

2.32. Definition. Let M be a triangulated piecewise linear manifold with a total order
on its set of vertices. Let A = (Ai) be a reduced crossed complex. An A-colouring of M is
given by an assignment of an element of Ai to each i-simplex of M , which should satisfy
the obvious relations motivated by the Homotopy Addition Lemma.

As before, by the General van Kampen Theorem, it follows that there is a one-to-
one correspondence between A-colourings of M and crossed complex maps Π(M) → A;
compare with Proposition 2.16. Using the same techniques that we used in the crossed
module case we can prove:

2.33. Theorem. Let M be a triangulated compact piecewise linear manifold (or more
generally a finite simplicial complex) provided with a total order on its set of vertices,
having ni (non-degenerate) simplices of dimension i for each i ∈ N. Let also A = (An) be
a reduced crossed complex such that An is the trivial group except for a finite number of
n ∈ N for which An should be finite. The quantity:

IA(M) = #{A-colourings of M}
∞∏
i=1

(
∞∏
j=0

(#Ai+j)
nj

)(−1)i

,

does not depend on the ordered triangulation of M chosen and it is a homotopy invariant
of M , as a topological space. In fact IA(M) can be interpreted as:

IA(M) =
∑

f∈π0(TOP(M,B(A)))

∞∏
i=1

#πi
(
TOP(M,B(A)), f

)(−1)i

.

Here B(A) is the classifying space of the crossed complex A.

The proof of this theorem is analogous to the proof of Theorem 2.25. An important fact
to note is that if A and M are as in Theorem 2.25, then the function space TOP(M,B(A))
has only a finite number of connected components, each with a finite number of non-trivial
homotopy groups, all of which are finite. This follows from theorems 2.20 and 2.21, or
more precisely from their extension to the general case of crossed complexes. A proof of
Theorem 2.33 appears in [28], in the case when M is a CW-complex with a unique 0-
cell. Using the framework we exposed here in the crossed module case, the proof is easily
extended to the case when M may have any finite number of 0-cells; see the theorem
below.

This construction should be compared with the construction in [44] of a manifold
invariant from any finite n-type. It would be interesting to formulate a similar homotopy
interpretation of it.

Theorems 2.25 and 2.33 can be stated in a more general form in the CW-category. In
fact we have:
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2.34. Theorem. Let M be a finite CW-complex, having ni cells of index i for each i ∈ N.
Let also A = (An) be a reduced crossed complex, such that An is the trivial group, except
for a finite number of n ∈ N, for which An should be finite. The (necessarily finite)
quantity:

IA(M) = #{Hom(Π(M),A)}
∞∏
i=1

(
∞∏
j=0

(#Ai+j)
nj

)(−1)i

,

is a homotopy invariant of M , as a topological space. Here Π(M) is the fundamental
crossed complex of the skeletal filtration of M . Moreover IA(M) can be interpreted as:

IA(M) =
∑

f∈π0(TOP(M,B(A)))

∞∏
i=1

#πi
(
TOP(M,B(A)), f

)(−1)i

,

where B(A) is the classifying space of the crossed complex A.

This theorem is shown in [28]. The proof is set in the based case. However the
argument extends easily to the unbased case by the method shown in the crossed module
context.

A more combinatorial version of the previous theorem can always be set by using
the General van Kampen Theorem, as long as we can apply an appropriate homotopy
addition lemma, similar to the one stated in the simplicial context. This can be done for
instance for complements of knotted embedded surfaces in S4; see [27].

3. Homological Twisting of Yetter’s Invariant

3.1. Low Dimensional Cohomology of Crossed Modules. The (co)homology of
crossed modules is studied, for example, in [25, 42], by considering the (co)homology of
their classifying spaces. We do not wish to develop that further. Rather, we will only
consider the (co)homology in low dimensions, focusing on a geometric and calculational
approach. Our final aim is to define a twisting of Yetter’s Invariant by cohomology classes
of finite reduced crossed modules, thereby extending the Dijkgraaf-Witten Invariant of
manifolds to crossed modules (equivalent to categorical groups).

3.2. Definition. Let G be a reduced crossed module. The (co)homology of G is defined as
being the (co)homology of the classifying space B(G) of G, and similarly in the non-reduced
case and for crossed complexes.

3.2.1. Homology of Simplicial Sets. Let D be a simplicial set. It is well known that
the homology groups of its geometric realisation |D| can be combinatorially defined from
D itself. Let us clarify this statement.

Consider the complex C(D) = {Cn(D), ∂n} of simplicial chains ofD. Here Cn(D) is the
free abelian group on the set Dn of n-simplices of D. Furthermore ∂(c) =

∑n
i=0(−1)i∂i(c),

if c ∈ Dn; see [38, 1,2] or [52, 8.2]. Note that the assignment D 7→ C(D), where D is
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a simplicial set is functorial. The homology of a simplicial set D is defined as being the
homology of the chain complex C(D).

The chain complex C(D) has a subcomplex Cd(D), for which Cd
n(D) is the free Z-

module on the set of degenerate n-simplices of D. A classical result asserts that this
chain complex is acyclic, see for example [52, proof of Theorem 8.3.8]. Therefore, we may
equivalently consider the homology of the normalised simplicial chain complex Cr(D)

.
=

C(D)/Cd(D). This chain complex is isomorphic with the cellular chain complex of |D|,
where |D| is provided with its natural cell decomposition coming from the simplicial
structure of D. Recall that the geometric realisation |D| of a simplicial set D is a CW-
complex with one n-cell for each non-degenerate n-simplex of D. This can be used to
prove that the simplicial homology of a simplicial set coincides with the cellular homology
of its geometric realisation.

In fact a stronger result holds. Namely, there exists an inclusion map i : Cr(D)
.
=

C(D)/Cd(D) → C(D) such that p ◦ i = id, with i ◦ p being homotopic to the identity.
Here p : C(D) → Cr(D) is the projection map. This is the Normalisation Theorem; see
[33, VIII.6.].

In this article, we will consider the unnormalised simplicial chain complex.
Note that if M is an ordered simplicial complex, then the simplicial chain complex of

DM , the simplicial set made from M , coincides with its usual definition; see for example
[37, 4.3]. That book discusses both the normalised and unnormalised cases.

3.2.2. Homology of Crossed Modules. Let G be a crossed module. The classifying
space B(G) of G is the geometric realisation of the simplicial set N(G), the nerve of G.
Therefore, it is natural to consider its simplicial homology.

The simplicial structure of B(G) was described in 2.16.1. Let us unpack the structure
of the simplicial chain complex of B(G) for low dimensions. Suppose that G = (G,E, ∂, .)
is a reduced crossed module. For any n ∈ N, the simplicial chain group Cn(G)

.
= Cn(N(G))

is the free abelian group on the set of all G-colourings of |∆(n)|, with the obvious boundary
maps. In particular:

1. C0(G) = Z,

2. C1(G) is the free Z-module on the symbols σ(X), X ∈ G,

3. C2(G) the free Z-module on the symbols σ(X, Y, e), where X, Y ∈ G and e ∈ E,

4. C3(G) is the free Z-module on the symbols σ(X, Y, Z, e, f, g, h), where X, Y, Z ∈ G
and e, f, g, h ∈ E must verify ef = (X . g)h.

Moreover we have:

∂(σ(X)) = 0,

∂(σ(X, Y, e)) = σ(X) + σ(Y )− σ
(
∂(e)−1XY

)
,
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Figure 5: The most general G-colouring of (01234): restriction to (0123).

where X, Y ∈ G and e ∈ E; and also:

∂(σ(X, Y, Z, e, f, g, h)) = σ(Y, Z, g)− σ(∂(e)−1XY,Z, f)

+ σ(X, ∂(g)−1Y Z, h)− σ(X, Y, e),

where X, Y, Z ∈ G and e, f, g, h ∈ E are such that ef = (X . g)h.
The determination of C4(G) is a bit more complicated. In figures 5 to 9, we dis-

play the most general G-colouring of the 4-simplex (01234). It depends on the vari-
ables X, Y, Z,W ∈ G and e, f, g, h, i, j, k,m, n, p ∈ E, which must satisfy the conditions
shown in figures 5 to 9. Namely: ef = (X . g)h, gi = (Y . j)k, fm = e−1(XY . j)en,
hm = (X . i)p and en = (X . k)p. Note that the last relation follows from all the
others. From these relations, it is not difficult to conclude that the colourings of all
1-simplices of figures 5 to 9 are coherent. The associated simplicial 4-chains are de-
noted by σ(X, Y, Z,W, e, f, g, h, i, j, k,m, n, p). The determination of the boundary map
∂ : C4(G) → C3(G) is an easy task.

3.2.3. Explicit Description of the Low Dimensional Coboundary Maps. Let
G = (G,E, ∂, .) be a reduced crossed module. We consider the U(1)-cohomology of G.
This is a very particular case of the construction in [42]. There was considered the general
case of cohomology with coefficients in any π1(B(G))-module. From the discussion above,
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Figure 6: The most general G-colouring of (01234): restriction to (1234).

the group C3(G) of 3-cochains of G is given by all maps ω : G3×E4 → U(1) which verify:

ω(X,Y, Z, e, f, g, h) 6= 1 =⇒ ef = (X . g)h.

Analogously, the group C4(G) of 4-cochains is given by all maps G4 ×E10 → U(1) which
verify:

ω(X, Y, Z,W, e, f, g, h, i, j, k,m, n, p) 6= 1 =⇒



ef = (X . g)h,

gi = (Y . j)k,

fm = e−1(XY . j)en,

hm = (X . i)p,

en = (X . k)p.

Recall that the last relation is a consequence of the others. The group C2(G) of 2-cochains
is simply given by all maps ω : G2 × E → U(1). The following results follow trivially.

3.3. Proposition. Let ω ∈ C1 (G) be a 1-cochain. Then:

dω (X, Y, e) = ω (X)ω (Y )ω
(
∂ (e)−1XY

)−1
,

for all X, Y ∈ G and all e ∈ E.
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Figure 7: The most general G-colouring of (01234): restriction to (0234).

3.4. Proposition. Let ω ∈ C2 (G) be a 2-cochain. Then

dω (X, Y, Z, e, f, g, h)

= ω (Y, Z, g)ω
(
∂ (e)−1XY,Z, f

)−1
ω
(
X, ∂ (g)−1 Y Z, h

)
ω (X,Y, e)−1 ,

whenever ef = (X . g)h and equals 1 ∈ C otherwise.

3.5. Proposition. Let ω ∈ C3 (G) be a 3-cochain. We have:

dω (X, Y, Z,W, e, f, g, h, i, j, k,m, n, p) =

ω (X,Y, Z, e, f, g, h)ω (Y, Z,W, g, i, j, k)ω
(
X, ∂ (g)−1 Y Z,W, h,m, i, p

)
ω
(
∂ (e)−1XY,Z,W, f,m, j, n

)−1
ω
(
X, Y, ∂ (j)−1 ZW, e, n, k, p

)−1
,

whenever ef = (X . g)h, gi = (Y . j)k, fm = e−1(XY . j)en, hm = (X . i)p and
en = (X . k)p, and equals 1 ∈ C otherwise.

3.6. A Homotopy Invariant of 3-Manifolds. We will restrict our discussion to the
3-dimensional case. However, it is clear that the results that we obtain will still hold,
with the obvious adaptations, for any dimension n ∈ N, and can be extended to handle
crossed complexes in the same way. The n-dimensional analogues of propositions 3.3 to
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Figure 8: The most general G-colouring of (01234): restriction to (0134).

3.5, as well as their extension to crossed complexes, important for calculational purposes,
require, however, more laborious calculations.

Let M be a 3-dimensional oriented triangulated closed piecewise linear manifold. The
orientation class oM ∈ H3(M) of M chosen can be specified by an assignment of a total
order to each non-degenerate tetrahedron of M . These total orders are defined up to
even permutations. They define an orientation on each tetrahedron of M . Therefore it
is required that if two non-degenerate tetrahedra share a non-degenerate face then the
orientations induced on their common face should be opposite.

As usual, we suppose that we are provided with a total order on the set of all vertices
of M . Consequently, each non-degenerate 3-simplex K of M can be uniquely represented
as K = (abcd) where a < b < c < d. If K is a non-degenerate tetrahedron, we say that
r(K) is −1 or 1 according to whether the total order induced on the vertices of K differs
from the one determined by the orientation of M by an odd or an even permutation. In
other words, r(K) is 1 or −1 depending on whether the orientation on K induced by
the total order on the set of vertices of M coincides or not with the orientation of K
determined by the orientation of M .

The orientation class oM of M , living in the (normalised or unnormalised) simplicial
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Figure 9: The most general G-colouring of (01234): restriction to (0124).

homology group H3(M) of M is therefore:

oM =
∑

3-simplices (abcd)

r(abcd)(abcd),

where the sum is extended to the non-degenerate 3-simplices, only.
Let G = (G,E, ∂, .) be a finite reduced crossed module. Choose a 3-dimensional

cocycle ω representing some cohomology class in H3(G). For any G-colouring c of M
define the U(1)-valued “action”:

S(c, ω)

=
∏

3-simplices (abcd)

ω
(
c(ab), c(bc), c(cd), c(abc), c(acd), c(bcd), c(abd)

)r(abcd)
, (9)

where the product is extended to the non-degenerate 3-simplices of M , only.
Recall that the set of 3-simplices of the classifying space B(G) of G is in one-to-one

correspondence with the set of G-colourings of the standard geometric 3-simplex |∆(3)|.
The group of 3-dimensional simplicial cochains of B(G) is given by all assignments of an
element of U(1) to each G-colouring c of |∆(3)|. Given a non-degenerate 3-simplex (abcd)
of M , the quantity ω

(
c(ab), c(bc), c(cd), c(abc), c(acd), c(bcd), c(abd)

)
is by definition, and

under the identification above, exactly ω(c|(abcd)), where c|(abcd) is the restriction of the
G-colouring c of M to the tetrahedron (abcd).
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3.7. Theorem. Let M be a 3-dimensional closed oriented triangulated piecewise linear
manifold, with a total order on its set of vertices. Let n0 and n1 be, respectively, the
number of vertices and edges of M . Let also G = (G,E, ∂, .) be a finite reduced crossed
module, and let ω ∈ H3(G) be a 3-dimensional cohomology class of G. The quantity:

IG(M,ω) =
#En0

#Gn0#En1

∑
G-colourings c

S(c, ω)

is a homotopy invariant of M , and therefore, in particular, it is independent of the ordered
triangulation of M chosen. In fact, let oM ∈ H3(M) be the orientation class of M . We
have:

IG(M,ω) =
∑

g∈[M,B(G)]

#π2(TOP(M,B(G)), g)

#π1(TOP(M,B(G)), g)
〈oM , g∗(ω)〉 .

Here [M,B(G)] = π0(TOP(M,B(G))) denotes the set of homotopy classes of maps M →
B(G).

Note that since N(G) is Kan, the Simplicial Approximation Theorem guarantees that
any map f : M → B(G) is homotopic to the geometric realisation of a simplicial map
TM → N(G), defined up to simplicial homotopy. Here TM is the simplicial set defined
from the triangulation of M . In particular f ∗(ω) is well defined in the simplicial category
for any continuous map f : M → B(G). The Simplicial Approximation Theorem (for
simplicial sets) is proved for example in [47]. Note also the Normalisation Theorem stated
in 3.2.1.

The proof of Theorem 3.7 is analogous to the proof of Theorem 2.25. The main lemma
which we will use for its proof is the following.

3.8. Lemma. Let f ∈ CRS0(Π(M),G) be a morphism Π(M) → G. Therefore, by Propo-
sition 2.16 we can associate a G-colouring cf of M to it. We have:

〈oM , η(f)∗(ω)〉 = S
(
cf , ω

)
.

Note that η(f) : M → B(G) is the realisation of a simplicial map. In fact it is the geo-
metric realisation of F (f); see theorems 2.17 and 2.20.

In particular, from theorems 2.20 and 2.21 and subsequent comments, it follows that
S
(
cf , ω

)
depends only on the homotopy class of f : Π(M) → G. This also proves that

the action S(cf , ω) does not depend on the cocycle representing the cohomology class
ω ∈ H3(G).

Proof. (Lemma 3.8) Recall the notation introduced in 2.16.1. The G-colouring cf of
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M restricts to a G-colouring cf|K of K, for each non-degenerate simplex K of M . We have:

〈oM , η(f)∗ω〉
= 〈oM , F (f)∗ω〉 , by definition (cf. Theorem 2.20)

= 〈F (f)∗oM , ω)

=

〈 ∑
3-simplices (abcd)

r(abcd)F (f)(abcd), ω

〉
=

∏
3-simplices (abcd)

〈F (f)(abcd), ω〉r(abcd)

=
∏

3-simplices (abcd)

〈
f|Π(abcd), ω

〉r(abcd)
, by Theorem 2.17 and Remark 2.18

=
∏

3-simplices (abcd)

〈
cf |(abcd), ω

〉r(abcd)
, by Proposition 2.16

=
∏

3-simplices (abcd)

ω
(
cf (ab), cf (bc), cf (cd), cf (abc), cf (acd), cf (bcd), cf (abd)

)r(abcd)
= S

(
cf , ω

)
.

The second to last step follows by definition. Note that the sum and the products are to
be extended to the non-degenerate 3-simplices of M , only.

We now prove Theorem 3.7.

Proof. (Theorem 3.7) We maintain the notation that we used in the proof of Theorem
2.25. We have:∑

g∈[M,B(G)]

#π2(TOP(M,B(G)), g)

#π1(TOP(M,B(G)), g)
〈oM , g∗(ω)〉

=
∑

f∈CRS0(Π(M),G)

#π2(TOP(M,B(G)), η(f))

#π1(TOP(M,B(G)), η(f))#[f ]
〈oM , η(f)∗ω〉

=
∑

f∈CRS0(Π(M),G)

#π2(TOP(M,B(G)), η(f))

#π1(TOP(M,B(G)), η(f))#[f ]
S
(
cf , ω

)
.

The same calculation as in the proof of Theorem 2.25 finishes the proof. Note that we
are implicitly using the fact that if f and f ′ belong to the same connected component
in the groupoid CRS1(Π(M),G) then it follows that η(f) is homotopic to η(f ′) and thus
S
(
cf , ω

)
= S

(
cf

′
, ω
)
.

As we referred to before, this theorem can be extended in the obvious way to closed n-
manifolds, with n arbitrary, and cohomology classes of crossed complexes. Compare with
Theorem 2.33. It would be interesting to relate our construction with M. Mackaay’s work
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appearing in [36]. Conjecturally, this last should be related to the 4-manifold invariant
obtained from 4-dimensional cohomology classes of crossed complexes of length 3. Finding
the precise link forces the determination of all the relations verified by 4-dimensional
crossed complex cocycles, which itself requires elaborate calculations. We will consider
these issues in a subsequent publication.
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