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ENRICHED MODEL CATEGORIES AND AN APPLICATION TO
ADDITIVE ENDOMORPHISM SPECTRA

DANIEL DUGGER AND BROOKE SHIPLEY

Abstract. We define the notion of an additive model category and prove that any
stable, additive, combinatorial model category M has a model enrichment over SpΣ(sAb)
(symmetric spectra based on simplicial abelian groups). So to any object X ∈M one can
attach an endomorphism ring object, denoted hEndad(X), in the category SpΣ(sAb).
We establish some useful properties of these endomorphism rings.

We also develop a new notion in enriched category theory which we call ‘adjoint modules’.
This is used to compare enrichments over one symmetric monoidal model category with
enrichments over a Quillen equivalent one. In particular, it is used here to compare
enrichments over SpΣ(sAb) and chain complexes.

1. Introduction

A model category is called additive if two conditions are satisfied. First, its hom-sets
must have natural structures of abelian groups with respect to which composition is
biadditive. Secondly, the abelian group structures on these hom-sets must interact well
with the notion of ‘higher homotopies’. We give a precise definition in Section 6. Examples
of additive model categories include chain complexes over a ring and differential graded
modules over a differential graded algebra, as one should expect.

Recall that a category is locally presentable if it is cocomplete and all objects
are small with respect to large enough filtered colimits; see [AR]. A model category is
called combinatorial if it is cofibrantly-generated and its underlying category is locally
presentable. Finally, a model category is stable if it is pointed and the suspension functor
is an auto-equivalence of the homotopy category.

In [D4] it was shown that any stable, combinatorial model category can be naturally
enriched over the category SpΣ of symmetric spectra. This enrichment is invariant under
Quillen equivalences in a certain sense. In the present paper we extend the results of [D4]
to the additive case. We show that any stable, combinatorial, additive model category
has a natural enrichment over SpΣ(sAb)—the category of symmetric spectra based on
simplicial abelian groups. This enrichment is not an invariant of Quillen equivalence,
however: if M and N are stable, combinatorial, additive model categories which are
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connected by a zig-zag of Quillen equivalences (with the intermediate model categories
not necessarily additive) then the additive enrichments for M and N need not be related.
We can prove that the enrichments are equivalent, however, if all the intermediate steps
in the zig-zag are additive.

1.1. Remark. The tools developed in this paper are applied in [DS2]. Two additive
model categories M and N are called additively Quillen equivalent if there is a zig-
zag of Quillen equivalences between M and N in which every intermediate model category
is additive. It is a strange fact, established in [DS2], that additive model categories can
be Quillen equivalent but not additively Quillen equivalent. The demonstration of this
fact uses the model enrichments developed in the present paper.

We should explain up front that there are really three separate things going on in
this paper. One is the development of the theory of additive model categories, taken
up in Sections 6 and 7. The second is the construction of the model enrichment over
SpΣ(sAb), which is begun in Section 8. Most of the details of the model enrichment
exactly follow the pattern in [D4]. There is one extra result we wish to consider, though,
which involves comparing model enrichments over SpΣ(sAb) to model enrichments over
the Quillen equivalent category Ch of chain complexes of abelian groups. For this last
issue we need to develop quite a bit more about enriched model categories than is available
in the literature. Since this foundational material is important in its own right, we include
it at the very beginning as Sections 2 through 5.

1.2. A closer look at the results. To describe the results in more detail we need
to recall some enriched model category theory; specifically, we need the notions of model
enrichment and quasi-equivalence from [D4]. Let M be a model category and V

be a symmetric monoidal model category. Briefly, a model enrichment is a bifunctor
τ : Mop ×M → V together with composition maps τ(Y, Z) ⊗ τ(X, Y ) → τ(X, Z) which
are associative and unital. The bifunctor must interact well with the model category
structure—see [D4] for an explicit list of the necessary axioms, or Section 2.3 for a sum-
mary.

There is a notion of when two model enrichments of M by V are ‘quasi-equivalent’,
which implies that they carry the same homotopical information. This takes longer to
describe, but the reader can again find it in Section 2.3. We let ME0(M, V) denote the
quasi-equivalence classes of model enrichments.

If L : M � N : R is a Quillen pair, there are induced functors L∗ : ME0(M, V) →
ME0(N, V) and L∗ : ME0(N, V) → ME0(M, V). When (L, R) is a Quillen equivalence
these are inverse bijections.

Using the above language, we can state the basic results. These are proved in Sections 8
and 9.

1.3. Theorem. If M is a stable, additive, combinatorial model category, then there is a
canonical element σM ∈ME0(M, SpΣ(sAb)). If L : M→ N is a Quillen equivalence then
L∗(σM) = σN and L∗(σN) = σM.
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If X ∈M, choose a cofibrant-fibrant object X̂ which is weakly equivalent to X. Also,
choose a specific model enrichment σM representing the equivalence class in the above
theorem. Then σM(X̂, X̂) gives a ring object in SpΣ(sAb). The resulting isomorphism
class in the homotopy category Ho (Ring[SpΣ(sAb)]) only depends on the homotopy type
of X, not on the choice of X̂ or the representative σM. We write hEndad(X) for any ring
object in this isomorphism class, and call it the additive homotopy endomorphism
spectrum of X.

1.4. Proposition. Let M and N be additive, stable, combinatorial model categories.
Suppose M and N are Quillen equivalent through a zig-zag of additive (but not necessarily
combinatorial) model categories. Let X ∈ M, and let Y ∈ N correspond to X under the
derived equivalence of homotopy categories. Then hEndad(X) and hEndad(Y ) are weakly
equivalent in Ring[SpΣ(sAb)].

Any ring object R in SpΣ(sAb) gives rise to a ring object in SpΣ by forgetting the
abelian group structure—this is called the Eilenberg-Mac Lane spectrum associated to
R. Recall that in [D4] it was shown how to attach to any X in a stable, combinatorial
model category an isomorphism class in Ho (Ring[SpΣ]). This was called the homotopy
endomorphism spectrum of X, and denoted hEnd(X). We have the following:

1.5. Proposition. Given X ∈ M as above, the homotopy endomorphism spectrum
hEnd(X) is the Eilenberg-MacLane spectrum associated to hEndad(X).

Finally, we have two results explaining how to compute hEndad(X) when the model
category M has some extra structure. Recall that if C is a symmetric monoidal model cat-
egory then a C-model category is a model category equipped with compatible tensors,
cotensors, and enriched hom-objects over C satisfying the analogue of SM7. See Sec-
tion 2 for more detailed information. For X, Y ∈ M we denote the enriched hom-object
by MC(X, Y ).

Note that a SpΣ(sAb)-model category is automatically additive and stable. This
follows from Corollary 6.9 below, and the appropriate analogue of [SS2, 3.5.2] or [GS,
3.2].

1.6. Proposition. Let M be a combinatorial SpΣ(sAb)-model category. Let X ∈ M

be cofibrant-fibrant. Then hEndad(X) is weakly equivalent to the enriched hom-object
MSpΣ(sAb)(X, X).

In [S] it is shown that the model categories of rings in SpΣ(sAb) and in Ch are
Quillen equivalent. This is recalled in Section 9. Note that the rings in the category
Ch are just differential graded algebras (dgas). The associated derived functors will be
denoted H ′ : DGA � RingSpΣ(sAb) : Θ′. (The reason for the ‘primes’ is that in [S]
the functors H and Θ are functors between DGA and HZ-algebras with RingSpΣ(sAb)
an intermediate category.) We then define the homotopy endomorphism dga of X
to be Θ′[hEndad(X)] and write hEnddga(X). Obviously, this carries exactly the same
information as hEndad(X). In fact, H ′[hEnddga(X)] is weakly equivalent to hEndad(X)
since H ′ and Θ′ are inverse equivalences on the homotopy category level.
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As above, we remark that a Ch-model category is automatically additive and stable,
by Corollary 6.9 and the appropriate analogue of [SS2, 3.5.2].

1.7. Proposition. Let M be a combinatorial Ch-model category. Assume M has a gen-
erating set of compact objects, as defined in (5.1) below. Let X ∈M be cofibrant-fibrant.
Then MCh(X, X) is weakly equivalent to hEnddga(X).

The assumption about the generating set in the above proposition is probably unnec-
essary, but we don’t know how to remove it. It is satisfied in most cases of interest.

1.8. Remark. The study of dg-categories seems to be of current interest—see, for
example, [Dr, T]. A dg-category is simply a category enriched over unbounded chain
complexes Chk, where k is some commutative ground ring. We remark that the homotopy
theory of dg-categories over Z is essentially the same as that of SpΣ(sAb)-categories (this
follows from results of [S] and [SS3]). So the present paper may be regarded as attaching
to any stable, combinatorial, additive model category an associated dg-category.

The proof of Proposition 1.7 is not hard, but it requires a careful comparison of
enrichments over Ch and SpΣ(sAb). This reduces to an abstract problem in enriched
model category theory, but the necessary tools do not seem to be available in the literature.
The first part of the paper is spent developing them.

We can briefly describe the main issue that arises. Suppose that C and D are symmetric
monoidal categories, and that there is an adjoint pair F : C � D : G in which the right
adjoint G is lax monoidal. Also suppose that M is a C-module category, N is a D-module
category, and that

L : M � N : R

is another adjoint pair (all the terminology is defined later in the paper).
Then for any object X ∈ N we may consider the endomorphism monoid ND(X, X).

This is a monoid in D, and applying G to it gives a monoid in C. One can also consider
the endomorphism monoid MC(RX, RX), which is another monoid in C. In order to
compare these two monoids, one needs some compatibility conditions between the adjoint
pairs (F, G) and (L, R). This leads to our definition of what we call an adjoint module.
The basic theory of such things is developed in Sections 3–4. This notion has other
applications, most notably in [GS].

1.9. Organization of the paper. Section 2 recalls the basics of enriched model cate-
gory theory as used in [D4]. The new work begins in Sections 3 and 4 where we develop
the notion of adjoint modules. This is used in Section 5 to prove a technical theorem about
transporting enrichments over one symmetric monoidal model category to a Quillen equiv-
alent one. Sections 6 through 9 contain the main results on additive model categories and
SpΣ(sAb)-enrichments. Appendix A reviews and expands on material from [SS3], which
is needed in Section 4.9.



404 DANIEL DUGGER AND BROOKE SHIPLEY

1.10. Notation and terminology. This paper is a sequel to [D4], and we will assume
the reader is familiar with the machinery developed therein. In particular, we assume
a familiarity with model enrichments and quasi-equivalences; see Section 2.3 for quick
summaries, though. If M and N are model categories then by a Quillen map L : M→ N

we mean an adjoint pair of Quillen functors L : M � N : R, where L is the left adjoint.
Also, if C is a category then we’ll write C(X, Y ) for the set of maps from X to Y in C. If C

is a symmetric monoidal category, then the monoids in C are sometimes called “monoids”
and sometimes called “rings”—we use these terms interchangeably.

2. Enriched model categories

In this section we review the notion of a model category M being enriched over a second
model category C. This situation comes in two varieties. If for every two objects X, Y ∈M

one has a ‘mapping object’ MC(X, Y ) in C together with composition maps (subject to
certain axioms), then this is called a model enrichment. If for every X ∈M and c ∈ C one
also has objects X ⊗ c and F (c, X) in M, related by adjunctions to the mapping objects
and also subject to certain axioms, then we say that M is a C-model category. Thus, a
C-model category involves a model enrichment plus extra data.

There are two main examples to keep in mind. A simplicial model category is just
another name for an sSet-model category. And if M is any model category, then the
hammock localization of Dwyer-Kan [DK] is an example of a model enrichment of M over
sSet.

2.1. Symmetric monoidal model categories. Let C be a closed symmetric monoidal
category. This says that we are given a bifunctor ⊗, a unit object 1C, together with
associativity, commutativity, and unital isomorphisms making certain diagrams commute
(see [Ho1, Defs. 4.1.1, 4.1.4] for a nice summary). The ‘closed’ condition says that there
is also a bifunctor (a, b) 7→ C(a, b) ∈ C together with a natural isomorphism

C(a, C(b, c)) ∼= C(a⊗ b, c).

Note that this gives isomorphisms C(1C, C(a, b)) ∼= C(1C ⊗ a, b) ∼= C(a, b).
A symmetric monoidal model category consists of a closed symmetric monoidal

category C, together with a model structure on C, satisfying two conditions:

(1) The analogue of SM7, as given in either [Ho1, 4.2.1] or [Ho1, 4.2.2(2)].

(2) A unit condition given in [Ho1, 4.2.6(2)].

2.2. C-model categories. Let C be a symmetric monoidal category. One defines a
closed C-module category to be a category M equipped with natural constructions
which assign to every X, Z ∈M and c ∈ C objects

X ⊗ c ∈M, F (c, Z) ∈M, and MC(X, Z) ∈ C.
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One requires, first, that there are natural isomorphisms (X ⊗ a) ⊗ b ∼= X ⊗ (a ⊗ b) and
X ⊗ 1C

∼= X making certain diagrams commute (see [Ho1, Def. 4.1.6]). One of these
diagrams is a pentagon for four-fold associativity. We also require natural isomorphisms

M(X ⊗ a, Z) ∼= M(X,F (a, Z)) ∼= C(a, MC(X, Z)) (2.2)

(see [Ho1, 4.1.12]).
Finally, suppose C is a symmetric monoidal model category. A C-model category is a

model category M which is also a closed C-module category and where the two conditions
from [Ho1, 4.2.18] hold: these are again the analogue of SM7 and a unit condition.

2.3. Model enrichments. Let M be a model category and let C be a symmetric
monoidal model category. Recall from [D4, 3.1] that a model enrichment of M by
C is a bifunctor σ : Mop×M→ C which is equipped with composition pairings σ(Y, Z)⊗
σ(X, Y )→ σ(X, Z) and unit maps 1C → σ(X, X) satisfying associativity and unital con-
ditions. There is also a compatibility condition between the functor structure and the
unit maps. Finally, one assumes that if X → X ′ is a weak equivalence between cofi-
brant objects and Y → Y ′ is a weak equivalence between fibrant objects then the maps
σ(X, Y ) → σ(X, Y ′) and σ(X ′, Y ) → σ(X, Y ) are weak equivalences. See [D4, Section
3.1].

There is a notion of quasi-equivalence encoding when two model enrichments are ‘the
same’. This is also given in [D4, Section 3.1]. To define this we need two preliminary
notions.

Let σ and τ be two model enrichments of M by C. By a σ − τ bimodule we mean a
collection of objects M(a, b) ∈ C for every a, b ∈ C, together with multiplication maps

σ(b, c)⊗M(a, b)→M(a, c) and M(b, c)⊗ τ(a, b)→M(a, c)

which are natural in a and c. Associativity and unital conditions are again assumed,
although we will not write these down. One also requires that for any a, b, c, d ∈ C the
two obvious maps

σ(c, d)⊗M(b, c)⊗ τ(a, b) ⇒ M(a, d)

are equal.
It is perhaps not quite obvious, but M becomes a bifunctor via the multiplication

maps from σ and τ and the fact that σ and τ are bifunctors. See [D4, Section 2.2].
A pointed σ − τ bimodule is a bimodule M together with a collection of maps

1C →M(c, c) for every c ∈ C, such that for any map a→ b the square

1C
//

��

M(a, a)

��
M(b, b) // M(a, b)

commutes.
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A quasi-equivalence between two model enrichments σ and τ consists of a pointed
σ − τ bimodule M such that the compositions

σ(a, b)⊗ 1C → σ(a, b)⊗M(a, a)→M(a, b) and

1C ⊗ τ(a, b)→M(b, b)⊗ τ(a, b)→M(a, b)

are weak equivalences whenever a is cofibrant and b is fibrant.
The notion of quasi-equivalence generates an equivalence relation on the class of model

enrichments of M by C. We write ME0(M, C) for the collection of equivalence classes of
model enrichments. When we say that two enrichments σ and τ are ‘quasi-equivalent’ we
mean that they are in the same equivalence class; note that this means there is a chain
of model enrichments σ = σ1, σ2, . . . , σn = τ and pointed σi − σi+1 bimodules Mi giving
quasi-equivalences between each step in the chain.

If L : M → N is a Quillen map then by [D4, Prop. 3.14] there are induced maps
L∗ : ME0(M, C)→ ME0(N, C) and L∗ : ME0(N, C)→ ME0(M, C). When L is a Quillen
equivalence these are inverse bijections.

2.4. Monoidal functors. Suppose that C and D are symmetric monoidal model cat-
egories, and that F : C � D : G is a Quillen pair.

First of all, recall that G is called lax monoidal if there is a natural transformation

G(X)⊗G(Y )→ G(X ⊗ Y )

and a map 1C → G(1D) which are compatible with the associativity and unital isomor-
phisms in C and D. A lax monoidal functor takes monoids in D to monoids in C.

A lax monoidal functor is called strong monoidal if the above maps are actually
isomorphisms.

If G is lax monoidal then the adjunction gives rise to induced maps F (1C)→ 1D and
F (A ⊗ B) → F (A) ⊗ F (B). Following [SS3, Section 3], we say that (F, G) is a weak
monoidal Quillen equivalence if G is lax monoidal and two extra conditions hold.
First, for some cofibrant replacement A→ 1C, the induced map F (A)→ F (1C)→ 1D is
a weak equivalence. Second, for any two cofibrant objects A, B ∈ C the map F (A⊗B)→
F (A)⊗ F (B) is a weak equivalence.

3. Adjoint modules

In this section and the next we deal with the general situation of one Quillen pair enriched
over another Quillen pair. Let C and D be symmetric monoidal model categories, let M

be a C-model category, and let N be a D-model category. Let

F : C � D : G and L : M � N : R

be two Quillen pairs, where we assume that G is lax monoidal (see Section 2.4). As usual,
we’ll write MC(X, Y ) and ND(X, Y ) for the enriched morphism objects over C and D,
respectively.
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Finally, let Y be a cofibrant-fibrant object in N. Then ND(Y, Y ) is a monoid in D, and
so G(ND(Y, Y )) is a monoid in C. Alternatively, we may choose a cofibrant-replacement
QRY ∼−� RY and consider the C-monoid MC(QRY, QRY ). How can we compare these
two monoids, and under what conditions will they be weakly equivalent?

This question can be answered by requiring certain compatibility conditions between
(L, R) and (F, G). The goal of the present section is to write down these conditions; this
culminates in Definition 3.8, where we define what it means for (L, R) to be an adjoint
module over (F, G). The next section uses this to tackle the problem of comparing
enrichments.

3.1. Compatibility structure. Before we can develop the definition of an adjoint
module we need the following statement. For the moment we only assume that (F, G)
and (L, R) are adjunctions. That is, we temporarily drop the assumptions that they are
Quillen pairs and that G is lax monoidal.

3.2. Proposition. There is a canonical bijection between natural transformations of the
following four types:

(i) GND(LX, Y )→MC(X, RY )

(ii) L(X ⊗ c)→ LX ⊗ Fc

(iii) RY ⊗Gd→ R(Y ⊗ d)

(iv) GND(X, Y )→MC(RX, RY ).

Proof. This is a routine exercise in adjunctions. We will only do some pieces of the
argument and leave the rest to the reader.

Suppose given a natural transformation GND(LX, Y ) → MC(X, RY ). For any c ∈ C

one therefore has the composition

C(c, GND(LX, Y ))

∼=
��

// C(c, MC(X, RY ))

∼=
��

N(LX ⊗ Fc, Y )
∼= // D(Fc, ND(LX, Y )) M(X ⊗ c, RY )

∼= // N(L(X ⊗ c), Y ).

(3.3)

By the Yoneda Lemma this gives a map L(X⊗ c)→ LX⊗Fc, and this is natural in both
X and c.

Likewise, suppose given a natural transformation L(X ⊗ c) → LX ⊗ Fc. Then for
Y ∈ N and d ∈ D we obtain

L(RY ⊗Gd)→ LRY ⊗ FGd→ Y ⊗ d

where the second map uses the units of the adjunctions. Taking the adjoint of the com-
position gives RY ⊗Gd→ R(Y ⊗ d), as desired.
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Finally, suppose again that we have a natural transformation GND(LX, Y ) →
MC(X, RY ). For X, Y ∈ N consider the composite

GND(X, Y )→ GND(LRX, Y )→MC(RX, RY )

where the first map is obtained by applying G to ND(X, Y )→ ND(LRX, Y ) induced by
the unit LRX → X. The above composite is our natural transformation of type (iv).

We have constructed maps (i) → (ii), (ii) → (iii), and (i) → (iv). We leave it to
the reader to construct maps in the other directions and verify that one obtains inverse
bijections.

3.4. Remark. Suppose we are given a natural transformation γ : GND(LX, Y ) →
MC(X, RY ). Using the bijections from the above result, we obtain natural transfor-
mations of types (ii), (iii), and (iv). We will also call each of these γ, by abuse.

The next proposition lists the key homotopical properties required for (L, R) to be a
Quillen adjoint module over (F, G).

3.5. Proposition. Assume that (F, G) and (L, R) are Quillen pairs and that we have a
natural transformation γ : GND(LX, Y )→MC(X, RY ).

(a) The following two conditions are equivalent:

• The map γ : GND(LX, Y ) → MC(X, RY ) is a weak equivalence whenever X is
cofibrant and Y is fibrant.

• The map γ : L(X ⊗ c)→ LX ⊗ Fc is a weak equivalence whenever X and c are
both cofibrant.

(b) If (L, R) is a Quillen equivalence, the conditions in (a) are also equivalent to:

• For any cofibrant replacement QRX → RX, the composite map

GND(X, Y )
γ−→MC(RX, RY )→MC(QRX, RY )

is a weak equivalence whenever X is cofibrant-fibrant and Y is fibrant.

(c) Assume that both (L, R) and (F, G) are Quillen equivalences. Then the conditions in
(a) and (b) are also equivalent to:

• For any cofibrant replacements QRY → RY and Q′Gd → Gd and any fibrant
replacement Y ⊗ d→ F(Y ⊗ d), the composite

QRY ⊗ Q′Gd→ RY ⊗Gd
γ−→ R(Y ⊗ d)→ RF(Y ⊗ d)

is a weak equivalence whenever Y and d are cofibrant and fibrant.
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Proof. This is routine and basically follows from the adjunctions in Proposition 3.2 with
the following two additions. For the equivalence in part (a), consider the maps from 3.3 in
the respective homotopy categories. For the equivalence with (b), note that the composite
in (b) agrees with the composite

GND(X, Y )→ GND(LQRX, Y )
γ−→MC(QRX, RY ).

The above homotopical properties need to be supplemented by categorical associativity
and unital properties which are listed in the next two propositions. Then, after stating
these categorical properties, we finally state the definition of a Quillen adjoint module.

3.6. Proposition. Assume G is lax monoidal. Note that this gives a lax comonoidal
structure on F , by adjointness. Let γ again denote a set of four corresponding natural
transformations of types (i)–(iv). Then the conditions in (a) and (b) below are equivalent:

(a) The diagrams

L((X ⊗ c)⊗ c′)
γ //

∼=
��

L(X ⊗ c)⊗ Fc′
γ⊗1 // (LX ⊗ Fc)⊗ Fc′

∼=
��

L(X ⊗ (c⊗ c′))
γ // LX ⊗ F (c⊗ c′) // LX ⊗ (Fc⊗ Fc′)

all commute, for any X, c, c′.

(b) The diagrams

RY ⊗ (Gd⊗Gd′) //

∼=
��

RY ⊗G(d⊗ d′)
γ // R(Y ⊗ (d⊗ d′))

∼=
��

(RY ⊗Gd)⊗Gd′
γ⊗1 // R(Y ⊗ d)⊗Gd′

γ // R((Y ⊗ d)⊗ d′)

all commute, for any Y , d, d′.

If G is lax symmetric monoidal, then the above (equivalent) conditions imply the following
one:

(c) The diagrams

GND(Y, Z)⊗GND(X, Y ) //

γ⊗γ

��

G

(
ND(Y, Z)⊗ND(X, Y )

)
// GND(X, Z)

γ

��
MC(RY, RZ)⊗MC(RX, RY ) // MC(RX, RZ)

commute for any X, Y , and Z.
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Proof. The equivalence of (a) and (b) is extremely tedious but routine; we leave it to the
reader. For (c), note that by using the adjunction C(c, MC(RX, RZ)) ∼= MC(RX⊗ c, RZ)
the two ways of going around the diagram correspond to two maps

RX ⊗ [GND(Y, Z)⊗GND(X, Y )] −→ RZ.

One of these is the composite

RX ⊗ [GND(Y, Z)⊗GND(X, Y )] // RX ⊗G[ND(Y, Z)⊗ND(X,Y )]

��
RZ R(X ⊗ND(X, Z))oo RX ⊗G[ND(X, Z)]γ

oo

The other is the composite

RX ⊗ [GND(Y, Z)⊗GND(X, Y )]
∼= // RX ⊗ [GND(X, Y )⊗GND(Y, Z)]

��
[R(X ⊗ND(X,Y ))]⊗GND(Y, Z)

��

[RX ⊗GND(X, Y )]⊗GND(Y, Z)
γ⊗1oo

RY ⊗GND(Y, Z)
γ // R(Y ⊗ND(Y, Z)) // RZ.

The commutativity isomorphism comes into the first stage of this composite because of
how the composition map MC(RY, RZ) ⊗MC(RX, RY ) → MC(RX, RZ) relates to the
evaluation maps under adjunction—see [D4, Prop. A.3], for instance.

It is now a tedious but routine exercise to prove that the above two maps

RX ⊗ [GND(Y, Z)⊗GND(X, Y )] ⇒ RZ

are indeed the same. One forms the adjoints and then writes down a huge commutative
diagram. A very similar result (in fact, a special case of the present one) is proven in [D4,
A.9].

Note that if G is lax monoidal then it comes with a prescribed map 1C → G(1D);
adjointing gives F (1C)→ 1D. The following result concerns compatibility between these
maps and γ:

3.7. Proposition. Assume again that G is lax monoidal, and let γ denote a set of four
corresponding natural transformations of types (i)–(iv). The following three conditions
are equivalent:

(a) For any X, the following square commutes:

LX
∼= //

∼=
��

LX ⊗ 1D

L(X ⊗ 1C)
γ // LX ⊗ F (1C).

OO
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(b) For any Y , the following square commutes:

RY
∼= //

∼=
��

RY ⊗ 1C

��
R(Y ⊗ 1D) RY ⊗G(1D).

γoo

(c) For any Y , the following square commutes:

1C
//

��

G(1D)

��
MC(RY, RY ) GND(Y, Y )

γoo

Proof. Left to the reader.

Finally we have the main definition:

3.8. Definition. Assume given adjoint pairs (F, G) and (L, R) where G is lax monoidal.
We will say that (L, R) is an adjoint module over (F, G) if there exists a natural trans-
formation γ : L(X ⊗ c) → LX ⊗ Fc such that the conditions of Propositions 3.6(a) and
3.7(a) are both satisfied.

If in addition (F, G) and (L, R) are both Quillen pairs and the equivalent conditions
of Proposition 3.5(a) are satisfied we will say that (L, R) is a Quillen adjoint module
over (F, G).

3.9. Basic properties. Below we give three properties satisfied by Quillen adjoint mod-
ules. Recall the notion of a C-Quillen adjunction between C-model categories, as in [D4,
A.7]. This is a Quillen pair L : M � N : R where M and N are C-model categories, to-
gether with natural isomorphisms L(X ⊗ c) ∼= L(X) ⊗ c which reduce to the canonical
isomorphism for c = 1C and which are compatible with the associativity isomorphisms in
M and N. See also [Ho1, Def. 4.1.7].

3.10. Proposition. Suppose M and N are C-model categories and L : M � N : R is a
C-Quillen adjunction. Then (L, R) is a Quillen adjoint module over the pair (idC, idC).

Proof. Since (L, R) is a C-adjunction, there are natural isomorphisms LX ⊗ c →
L(X⊗c) which satisfy the associativity and unital properties listed in Propositions 3.6(a)
and 3.7(a). This also fulfills the second condition listed in Proposition 3.5(a)

3.11. Proposition. Let F : C � D : G be a Quillen pair between symmetric monoidal
model categories, where G is lax monoidal. Let F ′ : D � E : G′ be another such pair.
Let L : M � N : R and L′ : N � P : R′ be Quillen pairs such that (L, R) is a Quillen
adjoint module over (F, G) and (L′, R′) is a Quillen adjoint module over (F ′, G′). Then
(L′L, RR′) is a Quillen adjoint module over (F ′F, GG′).
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Proof. For X ∈M and c ∈ C we have natural maps

L′L(X ⊗ c)→ L′(LX ⊗ Fc)→ L′(LX)⊗ F ′(Fc)

using the adjoint module structure on (L, R) over (F, G) first, and the module structure
on (L′, R′) over (F ′, G′) second. One just has to check the axioms to see that these maps
make (L′L, RR′) a Quillen adjoint module over (F ′F, GG′). This is a routine exercise in
categorical diagramming which we will leave to the reader.

3.12. Corollary. Suppose (L, R) is a Quillen adjoint module over (F, G), and also
suppose that P is a C-model category and J : P � M : K is a C-Quillen adjunction. Then
(LJ, KR) is a Quillen adjoint module over (F, G).

Proof. This is an immediate consequence of the above two propositions.

4. Applications of adjoint modules

Recall from the last section that C and D are symmetric monoidal model categories, M

is a C-model category, and N is a D-model category. We have Quillen pairs

F : C � D : G and L : M � N : R

in which G is lax monoidal, and we assume that (L, R) is a Quillen adjoint module over
(F, G) as defined in Definition 3.8.

Recall the notion of model enrichment from Section 2.3. The assignment X, Y 7→
ND(X,Y ) is a D-model enrichment of N, as in [D4, Example 3.2]. The induced as-
signment X, Y 7→ GND(X, Y ) is a C-model enrichment of N, by Proposition 4.6 below.

Alternatively, if QW ∼−� W is a cofibrant-replacement functor for M and W
∼
� FW

is a fibrant-replacement functor for N, then one obtains another C-model enrichment of
N via X, Y 7→ MC(QRFX, QRFY ). (This is precisely the enrichment L∗[MC], as de-
fined in [D4, Section 3.4].) If R preserves all weak equivalences, the simpler assignment
X, Y 7→MC(QRX, QRY ) is also a C-model enrichment.

4.1. Theorem. Assume the pair (L, R) is a Quillen adjoint module over (F, G). Also
assume that G is lax symmetric monoidal and that (L, R) is a Quillen equivalence.
Then the two C-model enrichments on N given by X, Y 7→ GND(X,Y ) and X, Y 7→
MC(QRFX, QRFY ) are quasi-equivalent. That is to say, L∗MC ' GND.

If R preserves all weak equivalences, then the above enrichments are also quasi-
equivalent to X, Y 7→MC(QRX, QRY ).

We also have the following corollary:
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4.2. Corollary. Under the assumptions of the theorem, the two C-model enrichments on
M given by X, Y 7→ GND(FLQX, FLQY ) and X, Y 7→ MC(X, Y ) are quasi-equivalent.

That is, L∗[GND] is quasi-equivalent to MC. Here QA ∼−� A and X
∼
� FX are now

cofibrant- and fibrant- replacement functors in M and N, respectively.

The quasi-equivalences in Theorem 4.1 and Corollary 4.2 are used in a key argument
in [GS] to translate a construction in HQ-algebras into rational dgas. The following
immediate corollary of the above theorem is what we will mainly need in the present
paper.

4.3. Corollary. Assume that C is combinatorial, satisfies the monoid axiom, and that
1C is cofibrant. Under the assumptions of the theorem, let X ∈ N be a cofibrant-fibrant
object. Let A ∈M be any cofibrant-fibrant object which is weakly equivalent to RX. Then
the C-monoids GND(X, X) and MC(A, A) are weakly equivalent.

The extra assumptions on C are necessary in order to apply a certain proposition
from [D4], saying that quasi-equivalent enrichments give weakly equivalent endomorphism
monoids.

The above theorem and corollaries compare enrichments which have been transferred
over the right adjoint G. It is more difficult to transfer enrichments over the left adjoint
F . The assignment A, B 7→ FMC(A, B) is an enrichment only if F is assumed to be
strong monoidal; and since MC(A, B) will not usually be cofibrant, it will only be a model
enrichment under very strong assumptions such as that F preserves all weak equivalences.
Finally, the construction FMC(A, B) effectively amounts to mixing a left and right adjoint
(the mapping object is a right adjoint), and so is not so well-behaved categorically.

The following result is given only for completeness; we have no applications for it at
present.

4.4. Proposition. Assume that (L, R) is a Quillen adjoint module over (F, G). Suppose
that F and G are both strong monoidal, and that F preserves all weak equivalences. Also
assume that G is symmetric monoidal, and that both (F, G) and (L, R) are Quillen equiva-
lences. Then the model enrichments A, B 7→ FMC(A, B) and A, B 7→ ND(FLQA, FLQB)
are quasi-equivalent.

4.5. Proofs of the above results.

4.6. Proposition. The assignment n, n′ 7→ GND(n, n′) is a C-model enrichment on N.

Proof. One uses the monoidal structure on G to produce the associative and unital com-
position maps. Since G preserves equivalences between all fibrant objects and ND(n, n′)
is fibrant if n is cofibrant and n′ is fibrant, we see that GND(a′, x) → GND(a, x) and
GND(a, x) → GND(a, x′) are weak equivalences whenever a → a′ is a weak equivalence
between cofibrant objects and x→ x′ is a weak equivalence between fibrant objects.
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Proof of Theorem 4.1. For X, Y ∈ N define σ(X, Y ) = GND(FX, FY ) and τ(X, Y ) =
MC(QRFX,QRFY ). These are both C-model enrichments on N, and the former is quasi-
equivalent to X, Y 7→ GND(X, Y ) by [D4, Prop. 3.9].

Define W (X,Y ) = MC(QRFX, RFY ). This is a σ − τ bimodule via the maps

GND(FY,FZ)⊗MC(QRFX, RFY )
γ⊗1 // MC(RFY,RFZ)⊗MC(QRFX,RFY )

��
MC(QRFX, RFZ)

and
MC(QRFY,RFZ)⊗MC(QRFX, QRFY ) −→MC(QRFX, RFZ).

Some routine but tedious checking is required to see that this indeed satisfies the bimod-
ule axioms of [D4, Section 2.2]. This uses the conditions from Proposition 3.6(c) and
Proposition 3.7(a).

The canonical maps QRFX → RFX give maps 1C → W (X, X) making W into
a pointed bimodule, and one checks using the condition from Proposition 3.5(b) that
this is a quasi-equivalence. This last step uses our assumption that (L, R) is a Quillen
equivalence.

If R preserves all weak equivalences, then the above proof works even if every appear-
ance of the functor F is removed.

Proof of Corollary 4.2. The result [D4, 3.14(d)] shows that since L is a Quillen
equivalence the maps L∗ and L∗ are inverse bijections. Since we have already proven
L∗MC ' GND, we must have L∗[GND] 'MC.

Proof of Corollary 4.3. Using the above theorem together with [D4, Cor. 3.6]
(which requires our assumptions on C) we find that if X ∈ N is cofibrant-fibrant then the
C-monoids GND(X, X) and MC(QRFX, QRFX) are weakly equivalent. However, note
that one has a weak equivalence A

∼−→ QRFX. By applying [D4, Cor. 3.7] (in the case
where I is the category with one object and an identity map) one finds that the C-monoids
MC(QRFX, QRFX) and MC(A, A) are weakly equivalent.

Proof of Proposition 4.4. We only sketch this, as the result is not needed in the
paper. Consider the following two model enrichments on M:

A, B 7→ ND(FLQA, FLQB) (4.7)

and
A, B 7→ FGND(FLQA, FLQB). (4.8)
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The strong monoidal assumptions on F and G show that for any map P ⊗Q→ R in
D, the induced square

FG(P )⊗ FG(Q) //

��

FG(R)

��
P ⊗Q // R

is commutative. Here the vertical maps come from the counit of the adjunction (F, G), and
the top horizontal map uses the isomorphism FG(P⊗Q) ∼= FG(P )⊗FG(Q) coming from
the strong monoidal structures on F and G. This commutative square shows that we have
a map of enrichments FGND(X,Y )→ ND(X, Y ) on N. Using this, we get a map of model
enrichments from (4.8) to (4.7), which allows us to think of A, B 7→ ND(FLQA, FLQB) as
a bimodule over (4.7) and (4.8) (in either order). Using that (F, G) is a Quillen equivalence
one readily checks that this is a quasi-equivalence.

By Corollary 4.2, the model enrichment A, B 7→ GND(FLQA, FLQB) is quasi-
equivalent to A, B 7→ MC(A, B). But the assumptions on F readily show that appyling
F to everything preserves quasi-equivalence. This shows that (4.8) is quasi-equivalent to
FMC, so (4.7) is also quasi-equivalent to FMC. This is what we wanted.

4.9. Applications to module categories. We’ll now apply the above results to
the homotopy theory of CI-categories. Readers may want to review Appendix A before
proceeding further.

Let C and D be cofibrantly-generated symmetric monoidal model categories satisfying
the monoid axiom, and assume that 1C and 1D are cofibrant. Let F : C � D : G be a
Quillen pair where G is lax monoidal. Let I be a set and consider the notion of CI-
category (a category enriched over C with object set I) from Appendix A. Note that
when I consists of one object then a CI-category is just a monoid in C.

Let R be a DI-category, and consider the category Mod- R of right R-modules.
By [SS3, 6.1] the category Mod- R has a model structure in which the weak equivalences
and fibrations are obtained by forgetting objectwise to D. This is a D-model category in
a natural way. The SM7 (or pushout product) condition follows from D using [SS1, 3.5]
since the D action is pointwise, and the unit condition follows from our assumption that
1D is cofibrant (since this implies that the cofibrant R-modules are objectwise cofibrant).

Since G is lax monoidal, GR is a CI-category and we may consider the corresponding
module category Mod- GR. This is a C-model category. If M is an R-module then GM
becomes a GR-module in a natural way, and there is an adjoint pair FR : Mod- GR �
Mod- R : G by Proposition A.6(a). The functors (FR, G) are a Quillen pair since G pre-
serves the objectwise fibrations and trivial fibrations.

We have two Quillen pairs F : C � D : G and FR : Mod- GR � Mod- R : G. The
categories Mod- GR and Mod- R are C- and D-model categories, respectively.

4.10. Proposition. Under the above assumptions on C, D, and G one has:

(a) (FR, G) is an adjoint module over (F, G).
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(b) If F is strong monoidal, then (FR, G) is a Quillen adjoint module over (F, G).

(c) Assume that C is a stable model category whose homotopy category is generated by 1C.
Assume as well that F (1C) → 1D is a weak equivalence. Then (FR, G) is a Quillen
adjoint module over (F, G).

Proof. In terms of the notation of Section 3 we have L = FR and R = G. A natural
transformation γ of the type in Proposition 3.2(iii) is therefore obtained using the lax
monoidal structure on G. This automatically satisfies the axioms of Proposition 3.6(b)
and Proposition 3.7(b), so that we have an adjoint module over (F, G). This proves (a).

To prove (b) we show that L(X⊗ c)→ LX⊗Fc is an isomorphism, and hence a weak
equivalence. Here L = FR = F (−)⊗FGR R since F is strong monoidal; see the discussion
above [SS3, 3.11]. It is then easy to verify that FR(X ⊗ c) = F (X ⊗ c) ⊗FGR R ∼=
(FX ⊗ Fc)⊗FGR R ∼= FR(X)⊗ Fc.

To prove (c), we will verify that GND(LX, Y )
γ−→ MC(X,RY ) is a weak equivalence

whenever X is cofibrant and Y is fibrant. Using our assumption about 1C generating
Ho (C), it suffices to show that

[1C, GND(LX, Y )]∗ → [1C, MC(X,RY )]∗

is an isomorphism of graded groups, where [−,−]∗ denotes the graded group of maps in
a triangulated category.

By adjointness, the problem reduces to showing that the map

[LX ⊗ F (1C), Y ]∗ → [L(X ⊗ 1C), Y ]∗

is an isomorphism—or in other words, that LX⊗F (1C)→ L(X⊗1C) is a weak equivalence.
But this follows easily from our assumption that F (1C)→ 1D is a weak equivalence.

Now assume that O is a cofibrant CI-category. By Proposition A.3 there is an ad-
junction FDI : CI − Cat � DI − Cat : G, so that we get a DI-category FDIO. By
Proposition A.6(b) there is a Quillen pair

FO : Mod- O � Mod- FDIO : GO.

4.11. Proposition. In the above setting one has:

(a) (FO, GO) is an adjoint module over (F, G).

(b) If F is strong monoidal, then (FO, GO) is a Quillen adjoint module over (F, G).

(c) Assume that C is a stable model category whose homotopy category is generated by
1C, and that F (1C) → 1D is a weak equivalence. Then (FO, GO) is a Quillen adjoint
module over (F, G).
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Proof. Write R = FDIO. The adjunction (FO, GO) is the composite of the two adjunc-
tions

Mod- O
β∗ //

Mod- GR
F R

//

β∗
oo Mod- R

G
oo

where β : O→ GR = GFDIO is the unit of the adjunction (FDI , G).
But (β∗, β

∗) is a C-Quillen adjunction and by Proposition 4.10, under either set of
conditions, we know (FR, G) is a Quillen adjoint module over (F, G). The result now
follows immediately from Corollary 3.12.

4.12. Corollary. In addition to our previous assumptions, assume that G is lax sym-
metric monoidal and O is a cofibrant CI-category. Suppose also that (FO, GO) is a Quillen
equivalence and the hypotheses in either part (b) or (c) hold from Proposition 4.11. Let
X ∈ Mod-(FDIO) be a cofibrant-fibrant object and let A ∈ Mod- O be any module weakly
equivalent to GOX. Then the C-monoids

Mod- OC(A, A) and G
[
Mod-(FDIO)

D
(X,X)

]
are weakly equivalent.

Proof. This follows from the above proposition and Corollary 4.3.

4.13. Example. The adjoint pair L : SpΣ(ch+) � SpΣ(sAb) : ν from [S, 4.3] forms one
example for (F, G). The result [S, 3.4] shows that SpΣ(ch+) and SpΣ(sAb) are cofibrantly
generated symmetric monoidal model categories which satisfy the monoid axiom. The
conditions in Proposition 4.10(c) or 4.11(c) are verified in the last paragraph of the proof
of [S, 4.3]. Note, though, that L is not strong monoidal. This failure is due to the fact
that the adjunction N : sAb � ch+ : Γ is not monoidal [SS3, 2.14].

Corollary 4.12 holds for (L, ν) in place of (F, G) because N is lax symmetric monoidal,
so its prolongation and ν are also lax symmetric monoidal. The fact that (LO, (ν)O) is a
Quillen equivalence follows from [S, 3.4, 4.3] and [SS3, 6.5(1)]. See also Proposition A.6(c).

5. Transporting enrichments

In this section we prove a technical result about transporting enrichments. This will be
needed later, in the proof of Proposition 9.4. The basic idea is as follows. Suppose M is
a C-model category, where C is a certain symmetric monoidal model category. Assume
also that D is another symmteric monoidal model category, and that one has a Quillen
equivalence C � D which is compatible with the monoidal structure. Then one might
hope to find a D-model category N which is Quillen equivalent to M, and where the
Quillen equivalence aligns the C- and D-structures. In this section we prove one theorem
along these lines, assuming several hypotheses on the given data.

We begin with the following two definitions:
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5.1. Definition. Let T be a triangulated category with infinite coproducts.

(a) An object P ∈ T is called compact if ⊕αT(P, Xα)→ T(P,⊕αXα) is an isomorphism
for every set of objects {Xα};

(b) A set of objects S ⊆ T is a generating set if the only full, triangulated subcategory
of T which contains S and is closed under arbitrary coproducts is T itself. If S is a
singleton set {P} we say that P is a generator.

When M is a stable model category we will call an object compact if it is compact
in Ho(M), and similarly for the notion of generating set. Most stable model categories
of interest have a generating set of compact objects. For example, Hovey shows in [Ho1,
7.4.4] that this is true for any finitely-generated, stable model category.

Let C and D be symmetric monoidal, stable model categories. Let M be a pointed
C-model category (so that M is also stable). We make the following assumptions:

(a) C and D are combinatorial model categories satisfying the monoid axiom, and their
units are cofibrant.

(b) There is a weak monoidal Quillen equivalence F : C � D : G, where G is lax symmetric
monoidal.

(c) C satisfies axioms (QI1-2) from Appendix A.

(d) C is a stable model category whose homotopy category is generated by 1C, and
F (1C)→ 1D is a weak equivalence.

(e) M has a generating set of compact objects.

If N is a D-model category, let GND denote the assignment X, Y 7→ GND(X, Y ). By
Proposition 4.6 this is a C-model enrichment of N.

5.2. Proposition. Under the above conditions there exists a combinatorial D-model
category N and a zig-zag of Quillen equivalences

M
L1←−M1

L2−→ N

such that the model enrichment MC is quasi-equivalent to (L1)∗(L2)
∗[GND].

If, in addition, C and D are additive model categories (see the following section for
the definition) then M1 and N may also be chosen to be additive.

By [D4, 3.6] this yields the following immediate corollary:

5.3. Corollary. If Y ∈ N and X ∈M are cofibrant-fibrant objects and Y is the image of
X under the derived functors of the above Quillen equivalence M ' N, then the C-monoids
MC(X, X) and GND(Y, Y ) are weakly equivalent.
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Proof of Proposition 5.2. Constructing the model category N will require several
steps, and we will start by just giving a sketch—then we will come back and provide
detailed justifications afterwards.

Let I denote a set of cofibrant-fibrant, compact objects which generate M. Let O

be the CI-category [Bo, 6.2] defined by O(i, j) = MC(i, j). Then there is a C-Quillen
equivalence

T : Mod- O � M : S (5.4)

where Mod- O is the model category of right O-modules (see Proposition A.2).
Let g : O→ O be a cofibrant-replacement for O in the model category of CI-categories

(Proposition A.3(a)). Then tensoring and restricting give the left and right adjoints of a
C-Quillen equivalence

g∗ : Mod- O � Mod- O : g∗ (5.5)

(see Proposition A.2(c)).
Next we use the functor LDI from Proposition A.3(b). This gives us a DI-category

LDIO and a Quillen equivalence

LO : Mod- O � Mod-(LDIO) : ν. (5.6)

Let N = Mod-(LDIO). This is a D-model category, and we have established a zig-zag of
Quillen equivalences

M
∼←− Mod- O

∼←− Mod- O
∼−→ Mod-(LDIO) = N.

We set M1 = Mod- O. Note that if C and D are additive model categories then by
Corollary 6.9 so are M1 and N (since M1 is a C-model category and N is a D-model
category).

Now we fill in the details of the above sketch. The category of right O-modules
Mod- O is defined in [SS3, Section 6], and the model structure on Mod- O is provided in
[SS3, 6.1(1)]. See Appendix A for a review. To justify the Quillen equivalence in (5.4),
define S : M → Mod- O by letting S(Z) be the functor i 7→ HomC(i, Z). This obviously
comes equipped with a structure of right O-module. The construction of the left adjoint
can be copied almost verbatim from [SS2, 3.9.3(i)], which handled the case where C was
SpΣ. The right adjoint obviously preserves fibrations and trivial fibrations, so we have a
Quillen pair. It is readily seen to be a C-Quillen pair.

Finally, that this is a Quillen equivalence follows just as in [SS2, 3.9.3(ii)]; this uses
that I was a generating set of compact objects. The proof can be summarized quickly as
follows. First, the compactness of the objects in I shows that the derived functor of S
preserves all coproducts; this is trivially true for the derived functor of T because it is a
left adjoint. One has canonical generators Fri ∈ Mod- O for each i ∈ I, and adjointness
shows that T (Fri) ∼= i. Likewise, S(i) ∼= Fri. Using that the derived functors of S and
T preserve coproducts and triangles, one now deduces that the respective composites are
naturally isomorphic to the identities. This completes step (5.4) above.
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We now turn to (5.5). The map of CI-categories g : O → O gives a Quillen map
Mod- O→ Mod- O by Proposition A.2(b). We will know this is a Quillen equivalence by
Proposition A.2(c) as long as we know that C satisfies the axioms (QI1-2) of Appendix A.

The Quillen equivalence of (5.6) is a direct application of Proposition A.6(c).

At this point we have constructed the zig-zag M
L1←−M1

L2−→ N. We must verify that
(L1)∗(L2)

∗[GND] is quasi-equivalent to MC.
It follows from Proposition 4.11 and Theorem 4.1 that (L2)

∗[GND] is quasi-equivalent
to (M1)C. This is where the theory of adjoint modules was needed. Since L1 is a C-Quillen
equivalence, it follows from [D4, 3.14(e)] that (L1)∗[(M1)C] is quasi-equivalent to MC. So
these two statements give exactly what we want.

6. Additive model categories

Now the second half of the paper begins. We change direction and start to pursue our
main results on additive enrichments. In the present section we define the notion of an
additive model category, and prove some basic results for recognizing them.

A category is preadditive if its hom-sets have natural structures of abelian groups
for which the composition pairing is biadditive. A category is additive if it is preadditive
and it has finite coproducts. This forces the existence of an initial object (the empty
coproduct), which will necessarily be a zero object. See [ML, Section VIII.2]. A functor
F : C→ D between additive categories is an additive functor if F (f +g) = F (f)+F (g)
for any two maps f, g : X → Y .

Now let M be a model category whose underlying category is additive. Write Mcof for
the full subcategory of cofibrant objects, and cM for the category of cosimplicial objects
in M. Recall from [Hi, Section 15.3] that cM has a Reedy model category structure. Also
recall that a cosimplicial resolution is a Reedy cofibrant object of cM in which every
coface and codegeneracy map is a weak equivalence.

6.1. Definition. Let I be a small, additive subcategory of Mcof . By an additive cosim-
plicial resolution on I we mean an additive functor Γ: I → cM whose image lies
in the subcategory of cosimplicial resolutions, together with a natural weak equivalence
Γ(X)0 ∼−→ X.

By [Hi, 16.1.9], any small subcategory I ⊆Mcof has a cosimplicial resolution; however,
the existence of an additive cosimplicial resolution is not at all clear.

If Γ and Γ′ are two additive cosimplicial resolutions on I, then define a map Γ → Γ′

to be a natural transformation of functors which gives commutative triangles

Γ(X)0

��

// X

Γ′(X)0

<<yyyyyyyyy
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for all X ∈ I. The map is called a weak equivalence if all the maps Γ(X) → Γ′(X) are
weak equivalences.

6.2. Definition. A model category M is additive if its underlying category is additive
and if for every small, full subcategory I of Mcof the following two statements are satisfied:

(a) I has an additive cosimplicial resolution;

(b) The category of additive cosimplicial resolutions on I, where maps are natural weak
equivalences, has a contractible nerve.

6.3. Proposition. Let M be a model category whose underlying category is additive.
Suppose that there is a functor F : Mcof → cM together with a natural isomorphism
F 0(X) ∼= X. Assume that each F (X) is a cosimplicial resolution, that F preserves
colimits, and that if X � Y is a cofibration then F (X) → F (Y ) is a Reedy cofibration.
Then M is an additive model category.

Note that the functor F will automatically be additive; since it preserves colimits, it
preserves direct sums.

Proof. The existence of additive cosimplicial resolutions is provided by F . So we must
only prove the contractibility of the category of all such resolutions.

If Γ ∈ cM is any cosimplicial object, applying F to Γ yields a bi-cosimplicial object
FΓ given by [m], [n] 7→ FmΓn. Let Γ̃ ∈ cM denote the diagonal of this bi-cosimplicial

object, and note that there is a natural map Γ̃→ Γ. We claim that if Γ is a cosimplicial
resolution then so is Γ̃.

Suppose that Γ ∈ cM is a cosimplicial resolution of some object X. Then every latching
map LnΓ→ Γn is a cofibration (see [Hi, 15.3] for a discussion of latching maps). From the
bi-cosimplicial object FΓ, we get a ‘vertical’ latching map in cM of the form L∗,n[FΓ]→
F (Γn). Here the domain is the cosimplicial object which in level m is the nth latching
object of [FΓ]m,∗. Since the latching spaces are formed as colimits, and F preserves
colimits, one has L∗,n[FΓ] ∼= F (LnΓ). So our vertical latching map is F (LnΓ) → F (Γn).
But this is the result of applying F to a cofibration in M, so it is a Reedy cofibration.

So we are in the situation of Lemma 6.5 below, in which every vertical latching map
of FΓ is a Reedy cofibration. By the lemma, this implies that the diagonal Γ̃ is Reedy
cofibrant. Since clearly every map in FΓ is a weak equivalence, it is therefore a cosimplicial
resolution of X.

If Γ is a cosimplicial resolution of X, then the weak equivalence Γ(X)0 ∼−→ X gives
a map of cosimplicial objects Γ→ cX (here cX denotes the constant cosimplicial object

with X in every dimension). Applying (̃−), we get a diagram of cosimplicial objects

Γ̃ //

��

Γ

��
(̃cX) // cX.

(6.4)
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Note that (̃cX) is just F (X), which is a cosimplicial resolution by the assumptions of
the proposition. All the maps in the above square can be checked to be levelwise weak
equivalences.

Now suppose that I is a small, full subcategory of Mcof . Let CR(I) be the category of
all additive cosimplicial resolutions on I, where the maps are natural weak equivalences.
The restriction of F to a functor I → cM is an object of CR(I), which we also denote
F by abuse. Consider the overcategory (CR(I) ↓ F ) together with the forgetful functor
U : (CR(I) ↓ F )→ CR(I) sending an object [Γ→ F ] to Γ.

We define a functor CR(I)→ (CR(I) ↓ F ) by Γ 7→ Γ̃ (we are applying the construction

(̃−) to every Γ(X), for X ∈ I). The cosimplicial resolution Γ̃ is augmented over F by the
left vertical arrow in (6.4).

Consider the two functors

CR(I) −→ (CR(I) ↓ F )
U−→ CR(I).

Then there is a natural transformation from the composite to the identity, via the natural

maps Γ̃(X)→ Γ(X). This shows that on the level of nerves, the identity map for CR(I) is
homotopic to a map which factors through a contractible space—the nerve of (CR(I) ↓ F )
is contractible because this category has a final object. So we conclude that CR(I) has
contractible nerve.

We need some notation for the following lemma. Let X∗,∗ be a bi-cosimplicial object
in a model category M. Considering this as an object of c(cM), one obtains a ‘vertical’
latching map L∗,nX → X∗,n in cM. Here L∗,nX denotes the cosimplicial object sending
[m] to the nth latching object of Xm,∗.

6.5. Lemma. Let M be any model category. Suppose that X∗,∗ is a bi-cosimplicial object
of M—that is, X ∈ c(cM). Assume that every latching map L∗,nX → X∗,n is a Reedy
cofibration in cM. Then the diagonal cosimplicial object [n] 7→ Xn,n is Reedy cofibrant.

The proof of the above lemma is a little technical. We defer it until the end of the
section.

6.6. Corollary. Let C and M be model categories, where the underlying category of M

is additive. Suppose there is a bifunctor ⊗ : M × C → M satisfying the pushout-product
axiom for cofibrations: if i : A � B is a cofibration in M and j : X � Y is a cofibration
in C, then (A⊗ Y )q(A⊗X) (B ⊗X)→ B ⊗ Y is a cofibration which is a weak equivalence
if either i of j is. Suppose also that

(i) For any X ∈ C the functor (−)⊗X preserves colimits;

(ii) For any A ∈M the functor A⊗ (−) preserves colimits;

(iii) There is a cofibrant object 1 ∈ C and natural isomorphisms A⊗ 1 ∼= A.

Then M is an additive model category.
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Proof. Let Γ ∈ cC be a cosimplicial resolution of 1 with Γ0 = 1. For any cofibrant
object A ∈ M, let F (A) be the cosimplicial object [n] 7→ A ⊗ Γn. The pushout-product
axiom, together with assumption (ii), shows that F (A) is a cosimplicial resolution of
A. Assumption (i) implies that F preserves colimits, and assumption (iii) says there are
natural isomorphisms F (A)0 ∼= A. Finally, it is an easy exercise to use assumption (ii) and
the pushout-product axiom to show that if A→ B is a cofibration then F (A)→ F (B) is
a Reedy cofibration. The result now follows by applying Proposition 6.3.

The above corollary lets one identify many examples of additive model categories. We
only take note of the few obvious ones:

6.7. Corollary. If R is a ring, consider the model category s(R−Mod) where fibrations
and weak equivalences are determined by the forgetful functor to sSet. This is an additive
model category. So is the model category Ch(R) of unbounded chain complexes, where
weak equivalences are quasi-isomorphisms and fibrations are sujections.

Proof. This results from two applications of the previous corollary. For the first state-
ment we take M = s(R−Mod), C = s(Z−Mod), and ⊗ to be the levelwise tensor product
over Z. Here we are using that if M is an R-module and A is a Z-module then M ⊗Z A
has a natural R-module structure from the left.

For the second statement we can take M = Ch(R), C = Ch≥0(Z), and ⊗ the usual
tensor product of chain complexes over Z. (One could also take C = Ch(Z), but verifying
the pushout-product axiom is a little easier for bounded below complexes).

If R is a dga, then R−Mod has a model category structure where weak equivalences
are quasi-isomorphisms and fibrations are surjections.

6.8. Corollary. If R is a dga, then the model category R−Mod is additive.

Proof. We again apply Corollary 6.6, this time with M = R −Mod and C = Ch≥0(Z).
The ⊗ functor is the tensor product M, C 7→ M ⊗Z C with the induced left R-module
structure.

We also note the following result:

6.9. Corollary. Let C be a symmetric monoidal model category in which the unit is
cofibrant, and where the underlying category is additive. Then C is an additive model
category. Any C-model category is also additive.

Proof. The first statement follows immediately from Corollary 6.6, as the bifunctor
X, Z 7→ X ⊗ Z preserves colimits in both variables.

The second statement is also a direct application of Corollary 6.6, as soon as one
notes that if M is a C-model category then the underlying category of M is additive. This
follows using the adjunctions M(X,Y ) ∼= M(X ⊗ 1C, Y ) ∼= C(1C, MC(X, Y )), as there
is a natural abelian group structure on the latter set. One checks that composition is
biadditive with respect to this structure.
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6.10. Bisimplicial machinery. The last thing we must do in this section is prove
Lemma 6.5. This requires some machinery which we briefly recall.

If K ∈ sSet and A ∈ cM, one may form the coend A⊗K ∈M. This is the coequalizer
of the two arrows ∐

[n] 7→[m]

An ⊗Km ⇒
∐
[n]

An ⊗Kn (6.11)

where An⊗Km is shorthand for a coproduct of copies of An indexed by the set Km. There
are adjunctions

M(A⊗K,X) ∼= cM(A, XK) ∼= sSet(K, M(A, X)) (6.12)

for A ∈ cM, K ∈ sSet, and X ∈ M. Here XK is the cosimplicial object [n] 7→ XKn ,
where XKn denotes a product of copies of X indexed by the set Kn. One checks—using
the above adjunctions or otherwise—that A ⊗ ∆n ∼= An, and A ⊗ ∂∆n is isomorphic to
the nth latching object of A [Hi, Def. 15.2.5]. See [D1, Section 4] for the dual situation
with sM instead of cM.

Write s2Set for the category of bisimplicial sets and c2M for the category of bi-
cosimplicial objects in M. When drawing a bisimplicial set P we will draw each Pm,∗
horizontally, and each P∗,n vertically. If K ∈ sSet and P ∈ s2Set, let vMap(K, P ) denote
the simplicial set [n] 7→ sSet(K,P∗,n). We are mapping K into the vertical simplicial sets
of P .

If K, L ∈ sSet write K � L for the bisimplicial set [m], [n] 7→ Km × Ln. Observe that
there is an adjunction formula

s2Set(K � L, P ) ∼= sSet(L, vMap(K, P )). (6.13)

Note in particular that s2Set(∆m � ∆n, P ) ∼= Pm,n.
If P ∈ s2Set and A ∈ c2M, one can form a coend A ⊗ P ∈ M similarly to what

was done in (6.11). There are adjunction formulas analogous to (6.12). One checks that
A ⊗ (∆m � ∆n) ∼= Am,n, and more generally A ⊗ (∆m � L) ∼= Am,∗ ⊗ L (use (6.13) for
both). So, for instance, A ⊗ (∆m � ∂∆n) is the nth latching object for the cosimplicial
object Am,∗.

Finally, recall from [BF, p. 125] that the diagonal functor diag : s2Set → sSet has a
left adjoint which we will call d : sSet → s2Set. It follows immediately from adjointness
that d∆n ∼= ∆n � ∆n. Since d preserves colimits and every simplicial set is a colimit of
∆n’s, this tells us what d does to any simpiclial set.

By chasing through adjunctions one finds that if X ∈ c2M and K ∈ sSet then
diag(X)⊗K ∼= X ⊗ dK.

Proof of Lemma 6.5. Consider the object X ∈ c2M given in the statement of the
lemma. Our task is to show that diag(X) ⊗ ∂∆n → diag(X) ⊗ ∆n is a cofibration, for
each n. This is the condition for diag(X) to be Reedy cofibrant. Using the isomorphisms
diag(X) ⊗ K ∼= X ⊗ dK, this is equivalent to showing that the map X ⊗ d(∂∆n) →
X ⊗ d∆n ∼= X ⊗ (∆n � ∆n) is a cofibration.
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Let S denote the set of all maps P → Q of bisimplicial sets such that X⊗P → X⊗Q
is a cofibration in M. This set is closed under composition and cobase change. Our
assumption about the latching maps of X amounts to saying that the maps

(∂∆k � ∆n)q(∂∆k�∂∆n) (∆k � ∂∆n) −→ ∆k � ∆n (6.14)

belong to S, for all n and k. Our goal is to show that this forces d(∂∆n)→ ∆n � ∆n to
also belong to S.

We have now reduced things to a problem in combinatorial homotopy theory. Namely,
we must show that d(∂∆n)→ ∆n�∆n can be obtained from the maps in (6.14) by iterated
cobase changes and compositions. But a little thought shows that every monomorphism
of bisimplicial sets can be obtained in this way from the maps in (6.14) (the point is that
every monomorphism of simplicial sets can be obtained from the maps ∂∆n → ∆n in the
same way). So we are done.

7. Universal additive model categories

Suppose C is a small category. The paper [D2] introduced the idea of a universal model cat-
egory built from C, there denoted UC. This is just the category of functors Func(Cop, sSet)
with a well-known model structure. If C is also an additive category then one can ask for
a universal additive model category built from C. This section develops this concept.

7.1. Presheaves and additive presheaves. Let C be a small, additive category.
Let Func(Cop, Ab) denote the category of all functors. Note that for every X ∈ C, the
representable functor rX : Cop → Ab defined by U 7→ C(U,X) is additive.

The Yoneda Lemma does not hold in Func(Cop, Ab): that is, if F ∈ Func(Cop, Ab) one
need not have Hom(rX, F ) ∼= F (X) for all X ∈ C. But it is easy to check that this does
hold when F is an additive functor.

Let Funcad(C
op, Ab) denote the full subcategory of additive functors. The following

lemma records several basic facts about this category.

7.2. Lemma. Let C be a small, additive category.

(a) Colimits and limits in Funcad(C
op, Ab) are the same as those in Func(Cop, Ab).

(b) Every additive functor F ∈ Func(Cop, Ab) is isomorphic to its canonical colimit
with respect to the embedding r : C ↪→ Func(Cop, Ab). That is, the natural map[
colim
rX→F

(rX)
]
→ F is an isomorphism.

(c) The additive functors in Func(Cop, Ab) are precisely those functors which are colimits
of representables.

(d) The inclusion i : Funcad(C
op, Ab) ↪→ Func(Cop, Ab) has a left adjoint Ad (for ‘addi-

tivization’), and the composite Ad ◦i is naturally isomorphic to the identity.
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(e) Suppose given a co-complete, additive category A and an additive functor γ : C→ A.
Define Sing : A → Funcad(C

op, Ab) by letting Sing(a) be the functor c 7→ A(γc, a).
Then Sing has a left adjoint Re, and there are natural isomorphisms Re(rX) ∼= γ(X).

Proof. We mostly leave this to the reader. We note, however, that the fact that C has
finite coproducts (which is part of the definition of an additive category) is needed in (b).
This ensures that the categories indexing the canonical colimits are pseudo-filtered, in the
sense that for any objects i and j there is a third object k and maps i→ k, j → k. The
proof uses the fact that if D : I → Ab, where I is pseudo-filtered, then for every element
x ∈ colimI D there exists an i ∈ I such that x is in the image of Di → colimI D.

Also, we define the additivization functor from (d). If F is any functor, then (Ad F )(X)
is the quotient of F (X) by the subgroup generated by all (f + g)∗(s)− f ∗(s)− g∗(s) for
all objects Y , all functions f, g : X → Y , and all s ∈ F (Y ).

For the proof of (e), note the following. If X ∈ A and B is an abelian group, one can
define X ⊗B as the coequalizer of two maps∐

B×B

X ⇒
∐
B

X.

Here the objects are coproducts of copies of X, indexed by the sets B × B and B,
respectively. To describe the two maps, we have to say what they do to each summand
corresponding to a pair (b1, b2). The first map is just the inclusion into the summand
indexed by b1 + b2. The second map is the sum of the two inclusion maps corresponding
to the summands b1 and b2. One checks that with this definition there is a natural
adjunction isomorphism A(X ⊗B, Y ) ∼= Ab(B, A(X, Y )).

Recall that we are given an additive functor γ : C→ A. Given a functor F : Cop → Ab,
we consider the coend

γ ⊗ F = coeq

[∐
c→d

γ(c)⊗ F (d) ⇒
∐

c

γ(c)⊗ F (c)

]
.

When F is an additive functor one defines Re(F ) = γ ⊗ F . It is routine to check that
this is a left adjoint to Sing.

By [Hi, Th. 11.6.1] the category Func(Cop, sAb) has a cofibrantly-generated model
structure in which the weak equivalences and fibrations are defined objectwise. We will
need the analogous result for the category of additive functors:

7.3. Lemma. Let C be a small, preadditive category. Then Funcad(C
op, sAb) has a

cofibrantly-generated model structure in which the weak equivalences and fibrations are
defined objectwise. This model structure is simplicial, left proper, combinatorial, and
cellular.
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Proof. The proof uses the adjoint pair (Ad, i) to create the model structure, as in [Hi, Th.
11.3.2]. Recall that the model category Func(Cop, sAb) has generating trivial cofibrations
J = {rX × Z[Λn,k] → rX × Z[∆n] | X ∈ C}. Our notation is that if K ∈ sSet then
Z[K] ∈ sAb is the levelwise free abelian group on K; and if A ∈ sAb then rX×A denotes
the presheaf U 7→ C(U,X) × A (with the product performed levelwise). Note that we
think of rX as a Set-valued functor here, so C(U,X)× A denotes a direct sum of copies
of A indexed by the set C(U,X)—this is not the same as as the direct product of the
abelian groups C(U,X) and A.

To apply [Hi, 11.3.2] we must verify that the functor i takes relative Ad(J)-cell
complexes to weak equivalences. However, note that if A is an abelian group then
Ad(rX × A) ∼= rX ⊗ A, where the latter refers to the presheaf U 7→ C(U,X) ⊗ A.
So Ad(J) is the set of maps rX ⊗ Z[Λn,k] → rX ⊗ Z[∆n]. Objectwise, these maps are
monomorphisms and weak equivalences of simplicial abelian groups.

Now, the model category sAb has the special property that a pushout of a map which
is both a monomorphism and a weak equivalence is still a monomorphism and weak
equivalence. The fact that forming pushouts in Funcad(C

op, sAb) and Func(Cop, sAb) give
the same answers (by Lemma 7.2(a)) and are done objectwise therefore shows that the
Ad(J)-cell complexes are objectwise monomorphisms and objectwise weak equivalences.
In particular, they are weak equivalences in Func(Cop, sAb).

Finally, it is routine to check that the resulting model structure is simplicial, left
proper, combinatorial, and cellular.

From now on we will write UadC for the category Funcad(C
op, sAb) with the model

structure provided by the above lemma. The reason for the notation is provided by the
next result.

Recall that if L1, L2 : M→ N are two Quillen maps then a Quillen homotopy from
L1 to L2 is a natural transformation L1 → L2 which is a weak equivalence on the cofibrant
objects.

If M is a model category and S is a set of maps in M, then we use M/S to denote
the left Bousfield localization of M at S, if it exists. See [Hi, Chapters 3–4] and [D2] for
a discussion. The localizations always exist when M = UadC, since this model category is
left proper and cellular.

7.4. Theorem. Let M be an additive model category.

(a) Let C be a small, additive category and γ : C→M an additive functor taking values in
the cofibrant objects. Then there is a Quillen pair Re: UadC � M : Sing together with
a natural weak equivalence η : Re ◦r ∼−→ γ. The category whose objects are such triples
(Re, Sing, η) and whose maps are Quillen homotopies compatible with η—defined just
as in [D2, paragraph preceding Proposition 1.1]—is contractible.

(b) If M is combinatorial then there is a Quillen equivalence UadC/S
∼−→ M for some

small, additive category C and some set of maps S in UadC.
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(c) Suppose M
∼←− M1

∼−→ · · · ∼←− Mn
∼−→ N is a zig-zag of Quillen equivalences in

which all the model categories are additive. If M is combinatorial, there is a simple
zig-zag of equivalences

M
∼←− UadC/S

∼−→ N

such that the derived equivalence Ho (M) ' Ho (N) is isomorphic to the derived equiv-
alence given by the original zig-zag.

Proof. For (a), one shows that giving a Quillen pair Re: UadC � M : Sing together with
a natural weak equivalence Re(rX)

∼−→ γ(X) is precisely the same as giving an additive
cosimplicial resolution on γ. The proof of this is exactly the same as [D2, Prop. 3.4].
Giving a Quillen homotopy between two such Quillen pairs exactly amounts to giving a
natural weak equivalence between the corresponding cosimplicial resolutions. This proves
(a), once one recalls our definition of additive model categories.

The proof for (c) now exactly follow the case for UC given in [D2, Cor. 6.5]. One uses
along the way that adjoint functors between additive categories are necessarily additive
functors.

The proof of (b) is slightly more complicated; we will return to it at the end of this
section, after some discussion.

7.5. Remark. Part of the result in (a) states that the category whose objects are triples
(Re, Sing, η) is contractible. This is what distinguishes UadC as a ‘homotopically universal’
construction. In this paper we will not need the full power of contractibility, but we
will need the connectedness of this category. This says that any two choices of such
(Re, Sing, η) can be connected by a zig-zag of Quillen homotopies.

7.6. Remark. The result in (c) is false if one does not assume that all the Mi’s are
additive. For an example, let R be the dga Z[e; de = 2]/(e4) and let T be the dga
Z/2[x; dx = 0]/(x2), where e has degree 1 and x has degree 2. Let M and N be the
categories of R- and T -modules, respectively. These turn out to be Quillen equivalent,
but they cannot be linked by a zig-zag of Quillen equivalences between additive model
categories. A verification of these claims can be found in [DS2, Section 8].

7.7. Additive presentations. We turn to the proof of Theorem 7.4(b). This will be
deduced from the work of [D3] plus some purely formal considerations.

Let M be a combinatorial model category. By [D3, Prop. 3.3], there is a small category
C and a functor C→M such that the induced map L : UC→M is homotopically surjective
(see [D3, Def. 3.1] for the definition). Then [D3, Prop. 3.2] shows that this fact implies
there is a set of maps S in UC which the derived functor of L takes to weak equivalences,
and such that the resulting map UC/S →M is a Quillen equivalence.

Now suppose that M was also an additive model category. By examining the proof
of [D3, Prop. 3.3] one sees that the C constructed there is actually an additive category
and the functor γ : C → M an additive functor taking values in the cofibrant objects
(the category C is a certain full subcategory of the cosimplicial objects over M). By
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Theorem 7.4(a) there is an induced map F : UadC → M. Again using [D3, Prop. 3.2], it
will be enough to prove that this map is homotopically surjective.

Consider now the following sequence of adjoint pairs:

Func(Cop, sSet)
Z // Func(Cop, sAb)

Ad //

U
oo Funcad(C

op, sAb)
F //

i
oo M

Sing
oo

The composite of the right adjoints is clearly the right adjoint of L, so the composite of
the left adjoints is L. We have constructed things so that this composite is homotopically
surjective, and we are trying to show that F is also homotopically surjective.

In the following lemma, note that the presheaf rX can be regarded as an object of
either Funcad(C

op, Ab) or Func(Cop, Set). It will usually be clear from context which one
we intend.

7.8. Lemma. If X ∈ C then Ad(Z(rX)) ∼= rX. Or equivalently, Ad(Z(Ui(rX))) ∼= rX.

Proof. This follows from the fact that the two functors Funcad(C
op, Ab)→ Ab given by

F 7→ Funcad(Ad(Z(rX)), F ) and F 7→ Funcad(rX, F ) are both naturally isomorphic to
F 7→ F (X).

Let G ∈ Funcad(C
op, sAb). Let QG be the simplicial presheaf whose nth level is∐

rXn→rXn−1→···→rX0→Gn

(rXn)

where the coproduct is in Func(Cop, sSet). The simplicial presheaf QG is treated in detail
in [D2, Sec. 2.6], as it is a cofibrant-replacement functor for UC. Likewise, let QadG be
the simplicial presheaf whose nth level is⊕

rXn→rXn−1→···→rX0→Gn

(rXn)

where the coproduct is now in Func(Cop, sAb). The proof of [D3, Prop. 2.8] showing that Q
is a cofibrant-replacement functor for UC adapts verbatim to show that Qad is a cofibrant-
replacement functor for UadC. Note that by Lemma 7.8 we have QadG ∼= Ad(Z(Q(UiG))),
since Ad and Z(−) are left adjoints and therefore preserve coproducts.

Finally we are in a position to conclude the

Proof of Theorem 7.4(b). We have reduced to showing that F : UadC → M is ho-
motopically surjective. Let Sing be the right adjoint of F . Then we must show that for
every fibrant object X ∈M the induced map FQad(Sing X)→ X is a weak equivalence.

However, we have seen above that

F [Qad Sing X] ∼= F [Ad Z(QUi(Sing X))] ∼= L[QUi(Sing X)].

Recall that Ui Sing is the right adjoint to L. Since L : UC→M is homotopically surjective
we know LQ(Ui Sing X)→ X is a weak equivalence in M, so we are done.
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8. Homotopy enrichments over SpΣ(sAb)

In this section and the next we prove the main results stated in Section 1. Except for
the work in the next section, the proofs are essentially the same as in [D4]—but they use
Theorem 7.4 in place of [D4, Prop. 5.5].

8.1. Background on ring objects. If M is a monoidal model category which is
combinatorial and satisfies the monoid axiom, then by [SS1, Th. 4.1(3)] the category of
monoids in M has an induced model structure where the weak equivalences and fibrations
are the same as those in M. We’ll write Ring[M] for this model category. If N is another
such monoidal model category and L : M � N : R is a Quillen pair which is weak monoidal
in the sense of [SS3, Def. 3.6], then there is an induced Quillen map Ring[M]→ Ring[N].
This is a Quillen equivalence if M→ N was a Quillen equivalence and the units in M and
N are cofibrant [SS3, Th. 3.12].

The adjunction Set∗ � Ab is strong monoidal, and therefore induces strong monoidal
Quillen functors SpΣ(sSet∗) � SpΣ(sAb). It then follows that one gets a Quillen pair
F : Ring[SpΣ] � Ring[SpΣ(sAb)] : U . By the Eilenberg-Mac Lane ring spectrum
associated to an R ∈ Ring[SpΣ(sAb)] we simply mean the ring spectrum UR.

8.2. Additive enrichments. Let M be an additive, stable, combinatorial model cat-
egory. By Theorem 7.4 there is a Quillen equivalence UadC/S → M for some small,
additive category C and some set of maps S in UadC. The category UadC/S is simplicial,
left proper, and cellular, so using [Ho2, Sections 8, 9] we may form SpΣ(UadC/S). Since
UadC/S is stable (since M was), we obtain a zig-zag of Quillen equivalences

M
∼←− UadC/S

∼−→ SpΣ(UadC/S).

Applying ME0(−, SpΣ(sAb)) to this zig-zag gives a diagram of bijections by [D4, 3.14(d)].
The category UadC is a sAb-model category, and therefore SpΣ(UadC/S) is a SpΣ(sAb)-

model category by [Ho2, 8.3]. So SpΣ(UadC/S) comes with a natural model enrichment
by SpΣ(sAb), as in [D4, Ex. 3.2]. We can transport this enrichment onto M via the
Quillen equivalences, and therefore get an element σM ∈ ME0(M, SpΣ(sAb)). Just as in
[D4, Prop. 6.1], one shows (using Theorem 7.4) that this quasi-equivalence class does not
depend on the choice of C, S, or the Quillen equivalence UadC/S

∼−→M.
We can now give the:

Proof of Theorem 1.3. We have just constructed the enrichment σM. The proof that
it is preserved by Quillen equivalences is exactly the same as in [D4, Prop. 6.2], but using
Theorem 7.4.

Let X ∈M, and let X̃ be a cofibrant-fibrant object weakly equivalent to X. We write
hEndad(X) for any object in Ring[SpΣ(sAb)] having the homotopy type of σM(X̃, X̃),
and we’ll call this the additive homotopy endomorphism object of X. By [D4,
Cors. 3.6, 3.7] this homotopy type depends only on the homotopy type of X and the
quasi-equivalence class of σM—and so it is a well-defined invariant of X and M.



ENRICHED MODEL CATEGORIES 431

Proof of Proposition 1.4. This is entirely similar to the proof of [D4, Th. 1.4], but
using Theorem 7.4(c).

Proof of Proposition 1.6. Same as the proof of [D4, Prop. 1.5].

Proof of Proposition 1.5. We know that there exists a zig-zag of Quillen equivalences
M

∼←− UadC/S
∼−→ SpΣ(UadC/S). Therefore, using [D4, Thm. 1.4] and Proposition 1.4

we may as well assume M = SpΣ(UadC/S). This is an SpΣ(sAb)-model category, and
so for any object X we have a ring object M(X, X) in SpΣ(sAb). The adjoint functors
Set∗ � Ab induce a strong monoidal adjunction F : SpΣ(sSet∗) � SpΣ(sAb) : U . The
SpΣ(sAb)-structure on M therefore yields an induced SpΣ-structure as well (see [D4, Lem.
A.5]). In this structure, the endomorphism ring spectrum of X is precisely U [M(X,X)].
Using [D4, Prop. 1.5], we know that this has the homotopy type of the ring spectrum
hEnd(X), at least when X is cofibrant-fibrant. And Proposition 1.6 says that M(X, X)
has the homotopy type of hEndad(X). This is all we needed to check.

9. Chain enrichments

Proposition 1.6 says that if M is a SpΣ(sAb)-model category then one can compute
hEndad(X) using the SpΣ(sAb)-structure. We would like to prove a similar result for
Ch-model categories, where Ch denotes the model category of unbounded chain com-
plexes of abelian groups. These are what arise most commonly in algebraic situations.

The monoidal model categories SpΣ(sAb) and Ch can be connected by a zig-zag of
weak monoidal Quillen equivalences, as described in [S]. This zig-zag can be used to
translate enrichment-type information between these two categories. However, this is not
as straightforward as one might expect; there are complications arising from the monoidal
properties of the Dold-Kan equivalence between sAb and ch+, as analyzed in [SS3]. Our
method for dealing with this requires some cumbersome machinery and gives a slightly
weaker result than one would like. However, it is the best we can do at the moment.

9.1. Statement of the result. We give Ch the projective model structure, where
weak equivalences are quasi-isomorphisms and fibrations are surjections. Recall again
that a Ch-model category is a model category with compatible tensors, cotensors, and
enrichments over Ch satisfying an analogue of SM7; see Section 2. For X,Y in M, we
denote the enriched hom-object in Ch by MCh(X, Y ).

Note that a Ch-model category is automatically additive and stable. See Corollary 6.9
for the additivity, and [SS2, 3.5.2] or [GS, 3.2] for stability.

Recall from [S] that there are two Quillen equivalences

SpΣ(ch+)
D //

Ch
R

oo and SpΣ(ch+)
L // SpΣ(sAb)
ν

oo

in which (D, R) is strong monoidal and (L, ν) is weak monoidal. These induce Quillen
equivalences between the corresponding model categories of rings:

Ring(SpΣ(ch+))
∼
� DGA Ring(SpΣ(ch+))

∼
� Ring(SpΣ(sAb)). (9.2)
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In the first equivalence of (9.2) the left and right adjoints are just the restrictions of D
and R, as these were strong monoidal. In the second, the right adjoint is just ν again,
but the left adjoint is more complicated; see [SS3, 3.3].

Let ν and D denote the derived functors of ν and D from (9.2), and write Θ′ = D ν.
So Θ′ is a functor

Ho(Ring(SpΣ(sAb)))→ Ho(DGA).

Let M be a stable, combinatorial, additive model category and let X ∈ M. We have
shown how to associate to X an object hEndad(X) ∈ Ring(SpΣ(sAb)). By applying
Θ′ we get the homotopy endomorphism dga of X. Denote this as hEnddga(X) =
Θ′[hEndad(X)

]
.

The goal for this section is to prove Proposition 1.7. We restate the result here for the
convenience of the reader.

9.3. Proposition. Suppose that M is a combinatorial Ch-model category, and that M

has a generating set of compact objects. Let X ∈ M be cofibrant and fibrant. Then the
dga MCh(X, X) is quasi-isomorphic to hEnddga(X)

Proposition 9.3 will be proven by reducing from a Ch-model category to a SpΣ(sAb)-
model category and then applying results of Section 8. The reduction from Ch to SpΣ(ch+)
will be simple because of the strong monoidal equivalence between these two categories.
The following proposition provides the reduction from SpΣ(ch+) to SpΣ(sAb). This is
where all the enriched category theory from Sections 2 through 5 is needed. Recall that
for a general D-model category N we denote the morphism object in D by ND(X, Y ).

9.4. Proposition. Let M be a combinatorial SpΣ(ch+)-model category with a generating
set of compact objects. Let X ∈M be a cofibrant-fibrant object. Then there exists

(i) a combinatorial, SpΣ(sAb)-model category N,

(ii) a zig-zag of Quillen equivalences between M and N, where the intermediate model
categories are all additive, and

(iii) a cofibrant-fibrant object Y ∈ N

such that Y is taken to X by the derived functors of the Quillen equivalences and
ν
[
NSpΣ(sAb)(Y, Y )

]
is weakly equivalent to MSpΣ(ch+)(X,X).

Proof. This is a special case of Proposition 5.2 and Corollary 5.3. We need to verify the
properties for C = SpΣ(ch+) and D = SpΣ(sAb) stated just prior to Proposition 5.2, with
(F, G) replaced by (L, ν). Axioms (QI1-2) for C follow from [S, 3.2, 3.3]. The fact that
(L, ν) is a weak monoidal Quillen equivalence is given in [S, 4.3]. All the other conditions
are easy exercises, but see also Example 4.13 for more information.
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Using the above proposition, we can complete the following:

Proof of Proposition 9.3. Let M be a combinatorial Ch-model category with a gen-
erating set of compact objects. Let C = SpΣ(ch+). Using the strong monoidal adjunction
(D, R), M becomes a C-model category via the definitions Z ⊗ c = Z ⊗D(c), Zc = ZDc,
and MC(W, Z) = R[MCh(W, Z)] where W, Z ∈M and c ∈ C. See [D4, Lem. A.5].

Now we apply Proposition 9.4 to M with this C-model structure to construct N and
Y . By Proposition 1.4, the additive homotopy endomorphism spectra corresponding to
X and Y are weakly equivalent. Let D = SpΣ(sAb). Since N is a D-model category, we
have by Proposition 1.6 that hEndad(Y ) is weakly equivalent to ND(Y, Y ). So we have

hEnddga(X) = Θ′[hEndad(X)] ' Θ′[hEndad(Y )] ' D ν
[
ND(Y, Y )

]
(recalling that Θ′ = D ν).

But N and Y were chosen in such a way that we have ν
[
ND(Y, Y )

]
'MC(X, X). So

in fact
hEnddga(X) ' D

[
MC(X,X)

]
= D R

[
MCh(X, X)

]
'MCh(X, X).

A. Homotopy theory of CI-categories

The present section reviews and expands on results from [SS3]. In particular, [SS3] often
states results in settings which are extremely general and therefore require somewhat
awkward hypotheses. Here we will specialize, replacing those hypotheses with conditions
more readily checked in practice.

We assume that C is a combinatorial, symmetric monoidal model category. Also, C is
assumed to satisfy the monoid axiom of [SS1, 3.3]. We’ll refer to those conditions as our
‘standing assumptions’. Finally, we will sometimes require the following two conditions
as well:

(QI1) For any cofibrant object A ∈ C and any weak equivalence X → Y , the map A⊗X →
A⊗ Y is also a weak equivalence.

(QI2) Suppose A � B is a cofibration, and X is any object. Then for any map A⊗X → Z,
the map from the homotopy pushout of B ⊗X ←− A ⊗X → Z to the pushout is
a weak equivalence.

The abbreviation (QI) is for ‘Quillen invariance’, as these conditions will be used to check
what [SS3, 3.11] calls Quillen invariance for modules.
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A.1. Example. The category ch+ of non-negatively graded chain complexes with tensor
product and its usual ‘projective’ model structure satisfies (QI1-2). It follows from [S,
3.2, 3.3] that SpΣ(ch+) also satisfies (QI1-2). Typically, these axioms will follow from
the existence of an ‘injective’ model structure for M in which all objects are cofibrant,
provided such a model structure is a Quillen module over the corresponding projective
version.

Let I be a set. We assume the reader is familiar with the notion of CI-category (a
category enriched over C with object set I) from [Bo, 6.2]. If O is a CI-category, then
the category of right O-modules (contravariant C-functors from O to C) is defined in [Bo,
6.2]; see also [SS3, Section 6].

A.2. Proposition. Let O be a CI-category.

(a) The category Mod- O has a model category structure in which the weak equivalences
and fibrations are defined objectwise.

(b) Let O→ R be a map of CI-categories. Then there is a Quillen map Mod- O→ Mod- R
in which the right adjoint is restriction.

(c) If O → R is a weak equivalence and C satisfies (QI1-2), then the above Quillen map
is a Quillen equivalence.

Proof. Part (a) is [SS3, 6.1(1)]. For (b) we need only construct the left adjoint, as the
restriction clearly preserves fibrations and trivial fibrations. This construction is given in
the paragraph above [SS3, 6.1]. Denote this left adjoint by X 7→ X ⊗O R.

Part (c) requires a little work. First, for any i ∈ I and A ∈ C let A ⊗ Fri(O) be the
‘free O-module generated by A at spot i’. This is defined by j 7→ A ⊗ O(j, i). It is easy
to see that we have the adjunction Mod- O(A ⊗ Fri(O), X) ∼= C(A, X(i)). From this it
immediately follows that

[A⊗ Fri(O)]⊗O R ∼= A⊗ Fri(R).

As a another consequence of the adjunction, observe that Mod- O is cofibrantly-generated
and the generating cofibrations are maps of the form A ⊗ Fri(O) → B ⊗ Fri(O) where
A � B is a generating cofibration of C.

By [SS3, 6.1(2)], to prove (c) it suffices to check that for any cofibrant O-module
N the natural map N → U [N ⊗O R] is a weak equivalence, where U is the restriction
Mod- R→ Mod- O. Let G denote the composite functor X 7→ U [X ⊗O R], so that we are
concerned with the natural transformation Id→ G. Note that when X = A⊗Fri(O) we
have G(X) = A ⊗ Fri(R). If A is cofibrant, the map X → G(X) is an objectwise weak
equivalence because O→ R is (this uses (QI1)).

Apply the small object argument to factor ∅ → N as a cofibration followed by a trivial
fibration. This gives us a (possibly transfinite) sequence of cofibrations

∅ = W0 � W1 � W2 � · · ·
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in which Wi+1 is obtained from Wi by a pushout diagram∐
j Aj ⊗ Frj(O) //

��

Wi

��∐
j Bj ⊗ Frj(O) // Wi+1,

together with a trivial fibration W∞ = colimi Wi → N . Since N is cofibrant, N is a
retract of W∞. So it will suffice to show that W∞ → G(W∞) is a weak equivalence, as
N → GN is a retract of this map.

We first prove that if Wi−1 → G(Wi−1) is a weak equivalence then the same is true of
Wi → G(Wi). To see this, note that we have the following diagram:∐

Bj ⊗ Frj(O)

∼
��

∐
Aj ⊗ Frj(O)

∼
��

oooo // Wi−1

∼
��∐

G(Bj ⊗ Frj(O))
∐

G(Aj ⊗ Frj(O))oo // G(Wi−1).

The pushout of the top row is Wi, and of the bottom row is G(Wi) (the latter follows
because G preserves colimits). Note that G(Aj⊗Frj(O))→ G(Bj⊗Frj(O)) is a cofibra-
tion, as it is just the map Aj⊗Frj(R)→ Bj⊗Frj(R). It follows that G(Wi−1)→ G(Wi)
is a cofibration.

Certainly the above diagram induces a weak equivalence of homotopy pushouts. We
claim these homotopy pushouts are weakly equivalent to the corresponding pushouts. This
is an objectwise question, since pushouts, homotopy pushouts, and weak equivalences in
the module category are all determined objectwise. The claim for the top row then follows
directly from (QI2). The claim for the bottom row is similar, but uses the identification
G(Bj ⊗ Frj(O)) = Bj ⊗ Frj(R), etc.

Thus, we have shown that Wi → G(Wi) is a weak equivalence whenever Wi−1 →
G(Wi−1) is so. It is trivial that W0 → G(W0) is a weak equivalence. The result now
follows by a transfinite induction, using [Hi, 17.9.1] to pass the weak equivalences to the
limit ordinals. One again uses that G preserves colimits.

A.3. Proposition. Let I be a fixed set, and let L : C � D : R be a weak monoidal Quillen
pair (see Section 2.4) where both C and D satisfy our standing assumptions.

(a) The category CI − Cat (and likewise DI − Cat) has a model category structure in
which weak equivalences and fibrations are defined objectwise.

(b) There is a Quillen map CI − Cat→ DI − Cat in which the right adjoint is ‘apply R
objectwise’. The left adjoint will be denoted LDI .

(c) Suppose 1C and 1D are cofibrant. If O is a cofibrant CI-category then there are weak
equivalences L[O(i, j)] → (LDIO)(i, j) for every i, j ∈ I. These are adjoint to the
maps provided by the adjunction unit O→ R(LDIO).
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(d) Suppose (L, R) is a Quillen equivalence and 1C, 1D are cofibrant. Then the induced
Quillen map CI − Cat→ DI − Cat is also a Quillen equivalence.

Proof. Part (a) is [SS3, 6.3(1)]. For part (b) we argue as follows. Recall the category
CI − Graph from [SS3, 6.1], and that this category comes equipped with a monoidal
product ⊗. A CI-category is precisely a monoid with respect to this tensor product. The
existence of the desired left adjoint follows from Lemma A.4 below. As the right adjoint
obviously preserves fibrations and trivial fibrations, we have a Quillen pair.

For part (c), note that there is a Quillen map CI−Graph→ CI−Cat in which the right
adjoint is the forgetful functor. The model structure on CI − Cat is ‘created’ by these
adjoint functors from the cofibrantly-generated model structure on CI − Graph. [SS3,
6.4(1)] proves the desired claim in the case O is a cell complex, but since any cofibrant
object is a retract of a cell complex one immediately obtains the more general statement.

Finally, we prove (d). Note that since the functor DI −Cat→ CI −Cat is just ‘apply
R objectwise’, a map of fibrant objects X → Y in DI − Cat is a weak equivalence if and
only if RX → RY is a weak equivalence in CI − Cat. So by Lemma A.5 below, we only
need to show that if O is a cofibrant CI-category and LDIO

∼−→ A is a fibrant replacement
in DI − Cat, then O→ RA is a weak equivalence.

Since weak equivalences are detected objectwise, we must check that O(i, j) →
R[A(i, j)] is a weak equivalence for every i, j ∈ I. But O is cofibrant, so each O(i, j) is
cofibrant in C (see [SS3, 6.3(2)] —this uses that 1C is cofibrant). And since A is fibrant,
each A(i, j) is fibrant. Using the Quillen equivalence (L, R), we are therefore reduced to
checking that L[O(i, j)]→ A(i, j) is a weak equivalence. But we are really looking at the
composite

L[O(i, j)]→ [LDIO](i, j)→ A(i, j).

The second map was assumed to be a weak equivalence, and the first map is a weak
equivalence by part (c). So we are done.

In this proof we used the following two lemmas.

A.4. Lemma. Let C be a monoidal category which is complete and co-complete. Assume
that for any X ∈ C the functors X ⊗ (−) and (−) ⊗ X preserve filtered colimits and
countable coproducts. Then

(a) The category of monoids in C is co-complete.

(b) If B is another monoidal category, and L : B � C : R is an adjunction where R is
weak monoidal, then R induces a functor C−Monoid→ B−Monoid and this functor
has a left adjoint.

Proof. Let T : C→ C be the ‘free algebra’ monad, where

T (X) = 1qX q (X ⊗X)q · · · .
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(The fact that this is a monad uses the assumption that tensoring preserves countable
coproducts). The monoids in C are precisely the T -algebras. Our assumptions imply that
T preserves filtered colimits, so [Bo, 4.3.6] implies that C−Monoid is co-complete.

Part (b) is an immediate consequence of (a) and [Bo, 4.5.6].

A.5. Lemma. [Ho1, 1.3.16] Let L : M � N : R be a Quillen pair. Assume the following
two conditions hold:

(i) If X and Y are fibrant objects in N, a map X → Y is a weak equivalence whenever
RX → RY is a weak equivalence.

(ii) For every cofibrant object A ∈M and every fibrant replacement LA
∼−→ Z in N, the

composite map A→ RLA→ RZ is a weak equivalence.

Then (L, R) is a Quillen equivalence.

Here is the final result we will need:

A.6. Proposition. Again assume that L : C � D : R is a weak monoidal Quillen pair,
where C and D satisfy our standing assumptions. Also assume that 1C and 1D are cofi-
brant.

(a) If A is a DI-category then there is a Quillen map Mod- RA→ Mod- A in which the
right adjoint is ‘apply R objectwise’.

(b) Let O be a CI-category. Then there is a Quillen map Mod- O→ Mod-(LDIO) in which
the right adjoint is the composition of ‘applying R objectwise, then restricting across
O→ R(LDIO)’.

(c) If L : C � D : R is a Quillen equivalence and O is a cofibrant CI-category, then
Mod- O→ Mod-(LDIO) is also a Quillen equivalence.

Proof. If X is an object in the functor category DI , let TAX ∈ DI be the functor
j 7→

∐
j X(j) ⊗ A(−, j). Note that this is a monad in an obvious way, and that the

TA-algebras are precisely the A-modules. We have the diagram of categories

CI DI
R

oo

Mod-(RA)

OO

Mod- A
R

oo

OO

where the vertical maps are forgetful functors. By [Bo, 4.5.6] the map Mod- A →
Mod-(RA) has a left adjoint, since Mod- A is cocomplete. This clearly gives a Quillen
pair.

For (b) we use the composite of the two Quillen maps

Mod- O→ Mod-(RLDIO)→ Mod-(LDIO).

The first is provided by Proposition A.2(b), induced by the map O→ RLDIO. The second
comes from (a) of the present result.

Finally, part (c) is just [SS3, 6.5(1)].
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
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