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AN EXTENDED VIEW OF THE CHU-CONSTRUCTION

JÜRGEN KOSLOWSKI

A. The cyclic Chu-construction for closed bicategories with pullbacks, which general-
izes the original Chu-construction for symmetric monoidal closed categories, turns out to have a
non-cyclic counterpart. Both use so-called Chu-spans as new 1-cells between 1-cells of the un-
derlying bicategory, which form the new objects. Chu-spans may be seen as a natural generaliza-
tion of 2-cell-spans in the base bicategory that no longer are confined to a single hom-category.
This view helps to clarify the composition of Chu-spans.

We consider various approaches of linking the underlying bicategory with the newly constructed
ones, for example, by means of two-dimensional generalizations of bifibrations. In the quest for
a better connection, we investigate, whether Chu-spans form a double category. While this turns
out not to be the case, we are led to considering a generalization of the construction to paths of
1-cells in the base, leading to two hierarchies of closed bicategories, one for linear paths and
one for loops. The possibility of moving beyond paths, respectively, loops of the same length is
indicated.

Finally, Chu-spans in rel are identified as bipartite state transition systems. Even though their
composition may fail here due to the lack of pullbacks in rel , basic game-theoretic construc-
tions can be performed on cyclic Chu-spans. These are available in all symmetric monoidal
closed categories with finite products. If pullbacks exist as well, the bicategory of cyclic Chu-
spans inherits a monoidal structure that on objects coincides with the categorical product.

1. Introduction

The Chu-construction’s original purpose was to build ∗-autonomous categories out of au-
tonomous (= symmetric monoidal closed) categories. But although successful at that, it has
long been regarded as a slightly obscure technical trick. Here we wish step back and analyze
the real core of the construction at the level of closed bicategories. A wider scope of the con-
struction then becomes discernible and the connection with ∗-autonomy turns out to hinge on
the restriction to cyclic chains of what we call Chu-spans.

In his late-1970s Master’s Thesis [Chu79], supervised by Michael Barr, Po-Hsiang Chu
constructed a new category Aa = chu〈V, a〉 from an autonomous category V and a V-object
a . Besides being autonomous, Aa contained a so-called dualizing object ⊥ (depending on
a ) that by means of its internal hom-functor [−,⊥] induced an equivalence between Aop

a and
Aa . While ∗-autonomous categories had been discovered by Barr in the realm of functional
analysis [Bar79], they also turned out to provide nice models for certain fragments of linear
logic [See87]. Hence interest for such categories grew among computer scientists and logicians
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during the 1980s. One open question concerned models for non-symmetric linear logic.
The early 1990s saw an extension of the categorical ideas to the non-symmetric but closed

setting: Dualizing objects with examples were discussed in Street’s lecture notes [Str91]. Inde-
pendently, Barr [Bar95] defined ∗-autonomy and described a Chu-construction in that setting,
provided the base category V has finite limits. In [Bar96] he restructured his original ap-
proach by first considering the Chu-construction for the terminal object t . Certain monads in
chu〈V, t〉 , which may be identified with V×Vop , then generate the (generalized) ∗-autonomous
categories chu〈V, a〉 , a ∈ ob(V) , as categories of endo-modules.

Recall that a monoidal category may be viewed as a bicategory with one object, the ten-
sor corresponding to the composition of 1-cells. Barr’s revised approach together with the
well-known construction of the bicategory of monads from a bicategory with local coequaliz-
ers prompted the author to consider the Chu-construction in closed bicategories B with local
pullbacks [Kos01]. In particular, this raised the question of formulating a 2-dimensional gen-
eralization of ∗-autonomy, which tied in with research by Robin Cockett and Robert Seely on
linearly distributive categories (loosely speaking “ ∗-autonomous categories without dualizing
objects”), ultimately resulting in the notion of a linear bicategory [CKS00]. In the inherently
non-symmetric setting of a bicategory’s 1-cell composition one should in fact expect to have
two negations, that is, two ways of reversing 1-cells. These may agree, however, and in the
presence of “dualizing 1-cells” this leads to the notion of cyclic ∗-autonomous bicategory.

The present paper concerns the other important lesson of [Kos01], not exploited at the time:
to view the Chu-construction as a genuinely bicategorical construction, independent from the
construction of the bicategory of monads. In fact, and perhaps surprisingly, the construction per
se is not even concerned with ∗-autonomy. Initially, it uses all 1-cells of a closed bicategory B

with local pullbacks as objects for a new closed bicategory Chu1(B) . This contains a non-full
cyclic ∗-autonomous sub-bicategory cChu1(B) with the endo-1-cells as objects.

Both the cyclic and the non-cyclic variant of the construction employ the same type of new
1-cells between the objects, which we call (cyclic) Chu-spans, compare Section 2. If B is (the
suspension of) a symmetric monoidal closed category V , for a ∈ V the classical Chu-category
Aa = chu〈V, a〉 appears as full subcategory of the hom-category of cChu1(V) at a , compare
[Kos01]. In general, endo-Chu-spans on a need not be constrained by symmetry (as required
in the classical case), and there also will be Chu-spans between different objects of V .

The composition of Chu-spans (Section 3) utilizes the closedness of B and the existence
of local pullbacks. Modulo exponential transposition it can actually be viewed as the composi-
tion of genuine spans (hence the terminology), which eliminates the technical obscurity often
associated with the classical Chu-construction.

In order to ascertain the actual scope of the construction, in Section 4 we first consider
two canonical (strict) functors cChu1(B) // B and Chu1(B) // B × B connecting the new
bicategories with the base B . While both may be viewed as two-dimensional generalizations
of the notion of bifibration, the resulting possibilities of embedding either B×B into Chu1(B)
or B into cChu1(B) come across as somewhat artificial. Clearly, a better way of relating B

to the Chu-bicategories is called for.
To this end, we then explore the question, whether Chu-spans admit second mode of com-
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position, orthogonal to the one discussed in Section 3, possibly giving rise to a double category.
This turns out not to be the case, but short of composing Chu spans in this fashion, we may still
“chain” them together.

This opens up the possibility of considering other domains and codomains for Chu-spans
besides single 1-cells of B , which we explore in Section 5. In particular, 1-cell paths in B

of fixed length n ∈ N in B straightforwardly induce a closed bicategory Chun(B) . In addi-
tion, infinite paths indexed either by N or by Z may be considered as objects of still further
closed bicategories based on B . This suggests using finite 1-cell loops in B of length n > 0
as objects of a cyclic ∗-autonomous bicategory cChun(B) . But the existence of non-trivial
automorphisms of such loops has to be taken into account. A similar construction produces
cChuZ(B) , into which the other cyclic ∗-autonomous bicategories cChun(B) , n > 0 may be
embedded, albeit not fully.

Finally, the notion of Chu-span may even be useful in cases where composition is not al-
ways possible. Section 6 shows that Chu-spans in the category rel (with trivial 2-cells) can
be viewed as “bipartite” labeled transition systems (LTSs) that serve as a basis for strictly al-
ternating two-party interactions and games. Three important operations on games have direct
interpretations in terms of Chu-operations. Unfortunately, rel does not have pullbacks. But the
game operations carry over to any symmetric monoidal closed category with finite products. If
pullbacks exist as well, cyclic Chu-span morphisms into R ( S provide arrows R // S for a
∗-autonomous category.

Some of these results were presented at the Workshop on Chu Spaces at the University of
California, Santa Barbara, 2000-06-25.

2. Chu-spans and Chu-morphisms, the basic building blocks

In case of a symmetric monoidal closed category V = 〈V,⊗,>〉 with pullbacks the Chu-category
chu〈V, a〉 has V-morphisms of the form f1 ⊗ f0

ϕ // a as objects.
The monoidal category chu〈V, a〉 can be viewed as a bicategory in the sense of Bénabou

[Ben67], compare also [Bor94], with just one 0-cell, which may be identified with the V-object
a . Then 〈 f0, ϕ, f1〉 specifies an endo-1-cell on a . This suggests considering all V-objects
simultaneously as 0-cells of a new bicategory, which raises the question, how to generalize the
endo-1-cells above to 1-cells between possibly different 0-cells. We can even try to use the
1-cells of an arbitrary bicategory B = 〈B,⊗,>〉 as 0-cells of a new structure (here > maps
objects to identity 1-cells).

2.1. D. A Chu-span ϕ = 〈 f0, ϕ0, f1, ϕ1, f2〉 from A0
a // A2 to B0

b // B2 in B consists
of two independent 2-cells

B0 B2

A0 A2
� �� �KSϕ0

�� ��
�� ϕ1

b
//

a //

f0 ��1
11

11
1

f1




FF

 f2

��1
11

11
1

(2-01)

We call ϕ simple, if a and b are terminal in their hom-categories, trivial, if f0 and f2 are
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isomorphisms, and cyclic, if f0 = f2 . In this case the opposite Chu-span from b to a is given
by ϕ∗ = 〈 f1, ϕ1, f0 = f2, ϕ0, f1〉 .

The new terminology (in [Kos01] we called these gadgets “Chu-cells”) was inspired by the
observation that a trivial Chu-span is just an ordinary span in the hom-category B〈A0, A2〉 .
Hence Chu-spans may be viewed as generalizations of spans with domains and codomains in
possibly different hom-categories of B .

In a symmetric monoidal category V any f1 ⊗ f0
ϕ // a specifies half of a Chu-span

• •

• •
� �� �KSϕ

�� ��
�� ϕ̂

a //

a
//

f0
��1

11
11

11

f1





FF


 f0

��1
11

11
11

where the other half is induced by symmetry. If V is not symmetric, f1 ⊗ f0
ϕ // a need not have

a canonical counterpart unless some additional structure is present (for example, a shift opera-
tion in case that V consists of graded objects). Our approach sidesteps the issue of canonical
counterpart by pairing f1 ⊗ f0

ϕ // a with every 2-cell f0 ⊗ f1
ψ // a.

If V is also closed, classically a morphism from f1 ⊗ f0
ϕ // a to f ′1 ⊗ f ′0

ϕ′ // a in chu〈V, a〉
consists of V-morphisms f0

ρ0 // f ′0 and f ′1
ρ1 // f1 such that

f0
ϕ̃ //

ρ0

��

[ f1, a]

[ρ1,a]
��

f ′0 ϕ̃′
// [ f ′1 , a]

or equivalently

f ′1 ⊗ f0
ρ1⊗ f0

��?
??

??f ′1⊗ρ0

����
��

�

f1 ⊗ f0

ϕ′����
��

��
f ′1 ⊗ f ′0

ϕ ��?
??

??
?

a

(2-02)

Here [−,−] denotes the closed structure of V and ˜ indicates exponential transposes. While the
first presentation superficially resembles a coalgebra homomorphism, the second one identifies
ρ0 and ρ1 as “formal adjoints” with respect to ϕ and ϕ′ , denoted by ρ0 a

ϕ
ϕ′ ρ1 (think of

V = set , where ⊗ is cartesian product).
Even though morphisms between Chu-spans can be defined in any bicategory B , closedness

of B (with respect to 1-cell composition) allows for a more concise formulation and will shortly
be needed to define the composition of Chu-spans.

2.2. A. We require B to be right-closed in the sense of [SW78]: every 1-cell A t // C
admits a right extension 〈ev, r . t〉 along any A r // B, and a right lifting through any B s // C

A

B

C
and

A

B

C

��
� �� �ev

KS �� �� ve

t
//

r
??�����

r.t
��?

??
??

t //

t/s ��?
??

??

s

??�����

in the sense that for the 2-cells pasting at r . t , respectively, at t / s is bijective. The transition
from s ⊗ r

χ +3 t to s
χ. +3 r . t or to r

χ/ +3 t / s is known as “(exponential) transposition” or,
alternatively, as “currying”.
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2.3. D. Given Chu-spans a ϕ // b and a ϕ′ // b, a Chu-morphism ϕ
ρ +3ϕ′ consists of

2-cells 〈 f0
ρ0 +3 f ′0 , f1

ks ρ1 f ′1 , f2
ρ2 +3 f ′2〉 subject to

f0 . a f1
ϕ.0ks

ϕ/1 +3 b / f2

f ′0 . a

ρ0.a

KS

f ′1ϕ′0
.

ks
ϕ′1

/
+3

ρ1

KS

b / f ′2

b/ρ2

KS

or, alternatively, ρ0 a
ϕ0
ϕ′0
ρ1 a

ϕ′1
ϕ1 ρ2

We call ρ cyclic, if ρ0 = ρ2 . In this case the opposite Chu-morphism (ϕ′)∗
ρ∗ +3ϕ∗ is given by

〈ρ1, ρ0 = ρ2, ρ1〉 .

Compared to the left presentation in Diagram (2-02) we have curried twice in order to dis-
play the Chu-spans as genuine spans with centers f1 and f ′1 , respectively. Compared to span
morphisms Chu-morphisms point in the opposite direction. This is necessary to obtain closed
rather than coclosed Chu-bicategories and will later enable us to recover B rather than Bco

inside those.

2.4. E. The category set of sets and functions is symmetric monoidal with respect to the
cartesian product × . Recall that a span a oo ϕ0 f1

ϕ1 // b in set may be thought of as a directed
bi-partite (multi-)graph with node-set a+b , edge-set f1 , and domains and codomains given by
ϕ0 and ϕ1 , respectively.

Now we can interpret a Chu-span ϕ = 〈 f0, ϕ0, f1, ϕ1, f2〉 from a to b in set as a family of
bipartite graphs with fixed node-set a + b and edge-set f1 , where the domain- and codomain
functions are parameterized by sets f0 and f2 , respectively. In case of a cyclic Chu-span, the
parameter sets coincide and we think of these functions as being jointly parameterized by f0

rather than being separately parameterized by f0 × f0 .
For simple Chu-spans the graphs have just two nodes, hence are completely determined by

the set of edges. The parameterization now only determines the size of the family, all members
have the same trivial “shape”.

For a endo-Chu-spans the sets a and b coincide. Instead of bipartite graphs with node set
a+a we may therefore consider graphs just on a , where paths of length , 1 become available.
In particular, this applies to classical Chu-spans, which by default are cyclic. Symmetry relating
the domain and codomain functions forces every edge in the corresponding graph to be a loop.

Dualization of cyclic Chu-spans interchanges the roles of parameter set and edge set in the
graph, besides reversing the arrows.

In Section 6 we will consider a different graph-theoretical interpretation of Chu-spans over
set in the larger context of Chu-spans over the monoidal closed category 〈rel,×, 1〉 .

3. The composition of Chu-spans

In order to use Chu-spans as 1-cells in a new bicategory with the 1-cells of B as objects, we
need to be able to compose them. Simplicity suggests composing the outer 1-cells (with even
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index) of matching Chu-spans just like 1-cells in B :

(
ϕ

γ

)
=

C0 C2

B0 B2

A0 A2
� �� �KSϕ0

�� ��
�� ϕ1

� �� �KSγ0
�� ��
�� γ1

c
//

b //

a //

f0 ��1
11

11
1

f1




FF

 f2

��1
11

11
1

g0
��1

11
11

1

g1




FF

 g2

��1
11

11
1 7→

C0 C2

A0 A2
� �� �KSε0

�� ��
�� ε1

c
//

a //

e0=g0⊗ f0 ��1
11

11
1

e1



FF

 e2=g2⊗ f2

��1
11

11
1

=: γ � ϕ (3-03)

If ϕ and γ are trivial, the construction of e1 reduces to the composition of ordinary spans in
B〈B0, B2〉 by means of a pullback of ϕ1 and γ0 , leading to

3.1. A. B locally has pullbacks.

In the general case we still need to derive a 1-cell C0
// A2 from a pullback B0

p // B2 of ϕ1

and γ0 . Let us utilize the closedness of B (compare Assumption 2.2) to solve this problem.
Recall that (g0 . p) / f2 and g0 . (p / f2) have the same universal property, hence we may drop
the parentheses. Since g0 . − and − / f2 are right-adjoint to − ⊗ g0 and f2 ⊗ − , respectively,
we obtain the pullback g0 . p / f2 as a first candidate for e1 . The difficulty with this approach
is to extract a Chu-span from a to c from this pullback. This would seem to require 2-cells
( f2 ⊗ f1) / f2

+3 f1 and g0 . (g1 ⊗ g0) +3 g1, for which there are no canonical candidates.
Instead, we could first curry and then obtain e1 ∈ B〈C0, A2〉 as a pullback:

e1
??�� ν1

�#
??

??
??

??
??

??µ1

{� ��
��

��

��
��

��

g1 / f2

γ.0/ f2{� ��
��

��

��
��

�� γ/1/ f2

�#
??

??
??

??
??

??

(c / g2) / f2

g0 . f1

g0.ϕ
/
1 �#

??
??

??

??
??

??g0.ϕ
.
0

{� ��
��

��

��
��

��

g0 . b / f2g0 . ( f0 . a)

(3-04)

This construction links the non-matching transposes of the original Chu-spans ϕ and γ

f1
ϕ/1

�#
??

??
??

??
??

??ϕ.0

{� ��
��

��

��
��

��

b / f2f0 . a

and

g1
γ/1

�#
??

??
??

?

??
??

??
?

γ.0

{� ��
��

��

��
��

��

c / g2g0 . b

Now g0 . ( f0 . a) � (g0 ⊗ f0) . a and (c / g2) / f2 � c / (g2 ⊗ f2) allow us to extract a Chu-span
from a to c from Diagram (3-04). Conceptually, e1 may be thought of as the “object of formal
adjunctions” with respect to ϕ1 and γ0 .
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3.2. D. Given Chu-spans ϕ = 〈 f0, ϕ0, f1, ϕ1, f2〉 and γ = 〈g0, γ0, g1, γ1, g2〉 from
A0

a // A2 to B0
b // B2 to C0

c // C2, define their composite γ � ϕ from a to c by

B0 B2

A0 A2

C0 C2

� �� �KSϕ0

�� ��
�� γ1

MMMM "*
ν1

MMMMbj
µ1

1111T\ev

1111
��
ve

c
//

a //

f0
��1

11
11

11
1

g0

��1
11

11
11

1

f1

22

g0. f1

77

e1










FF







 g1/ f2

PP

g1

BB

f2

��1
11

11
11

1

g2

��1
11

11
11

1 (3-05)

3.3. T. 1-cells of B as objects, Chu-spans as 1-cells and Chu morphisms as 2-cells form
a closed bicategory Chu1(B) .

P. The identity Chu-span 1a on A0
a // A2 is given by the structural unit isomorphisms

A0 A2

A0 A2
� �� �KSul �� ��

�� ur

a
//

a //

>A0 ��1
11

11
1

a




FF

 >A2

��1
11

11
1

(3-06)

The essential associativity and the functoriality of the Chu-span composition follow, since the
central 1-cell of both (η ⊗ γ) ⊗ ϕ and η ⊗ (γ ⊗ ϕ) with η = 〈h0, η0, h1, η1, h2〉 from c to
D0

d1 // D2 derives from a limit (for example, via three pullbacks) of the diagram

h0 . (g0 . f1)

h0.(g0.ϕ
/
1)

 (IIIIIIII

IIIIIIII
h0 . g1 / f2

h0.γ
/
1/ f2

 (IIIIIIII

IIIIIIII
h0.γ

.
0/ f2

v~ uuuuuuuu

uuuuuuuu
(h1 / g2) / f2

(η.0/g3)/ f2
v~ uuuuuuuu

uuuuuuuu

h0 . (g0 . b) / f2 h0 . (c . g2) / f2

Note that the different variance in the even and odd components of a Chu-morphism is necessary
for the functoriality of this composition.

Given ϕ and a Chu-span κ = 〈k0, κ0, k1, κ1, k2〉 from a to c , define γ := ϕ . κ by

A2

B0 B2

C0 C2

KS �� �� ϕ1

��
� �� �κ1

4<qqqqω0 ������ev

CK
���� ve

c
//

b //

k1





FF




f2





FF




g0

��1
11

11
11

11
11

11
11

11
11

f1/k1

��

f1 ��

k2
MMMMMMM

&&MMMMMMM

f2.k2

��1
11

11
11

11
11

11
11

11
11

where

g0
??�� ω0

�#
??

??
?

??
??

?
λ0

{� ��
��

�
��

��
�

f1 / k1

ϕ.0/k1{� ��
��

�
��

��
�

f0 . k0

f0.κ/0 �#
??

??
?

??
??

?

f0 . a / k1

(3-07)

To show that this induces a right extension of κ along ϕ , we need to construct an “evaluation”
E := γ � ϕ

Ev +3 κ. For the outer components we use

g0 ⊗ f0
λ0⊗ f0 +3 ( f0 . k0) ⊗ f0

ev +3 k0 and (k2 ⊗ f2) ⊗ f2
ev +3 k2 .
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Exponentially transposing g1 ⊗ g0 = f2 ⊗ k1 ⊗ g0
γ0 +3 b above in different ways yields

k1
ev. +3

1/f2⊗k1
��

( f1 / k1) . f1
ω0. f1 +3 g0 . f1

g0.ϕ
/
1

��
( f2 ⊗ k1) / f2

γ.0/ f2
+3 g0 . b / f2

This induces Ev1 from k1 into the pullback e1 of γ.0 / f2 and g0 . ϕ
/
1 .

Now consider a Chu-span b γ′ // c and a Chu-morphism E′ := γ′ � F
σ +3 κ. To find a

unique Chu-morphism γ′
σ. +3γ = ϕ . κ that satisfies Ev◦σ. � ϕ = σ , we set (σ.)2 = σ.

2 .
Exponentially transposing the property κ0 ◦ k1 ⊗ σ0 = ε

′
0 ◦σ1 ⊗ e′0 of σ results in

g′0
ev/ +3

σ.0
��

f1 / (g′0 . f1) f1/σ1 +3 f1 / k1

ϕ.0/k1

��
f0 . k0 f0.κ/0

+3 f0 . a / k1

The pullback g0 of f0 . κ
/
0 and ϕ.0 / k1 provides us with g′0

(σ.)0 +3 g0. Finally, transposing
k1

σ1 +3 e′1
ν′1 +3 g′1 / f2 exponentially yields the central component g1 = f2 ⊗ k1

(σ.)1 +3 g′1. A
straightforward computation establishes the desired property of σ. .

The construction of right liftings is analogous.

3.4. R.

(0) The construction of a right extension in Diagram (3-07) shows that the bicategories
spn(B〈A0, A2〉) will in general not be left-closed with respect to span-composition: in the
trivial case, for isomorphisms f0 and f2 as well as k0 and k2 , the 2-cell g0

ω0 +3 f0 .k0 �
1a need not be an isomorphism. In other words, left extensions (and liftings) of ordinary
spans will in general be proper Chu-spans.

(1) In case of two parallel Chu-spans ϕ , ϕ′ from a to b , the right extension γ := ϕ . ϕ′

and the right lifting η := ϕ′ /ϕ may jointly be used to encode Chu-morphisms from ϕ to
ϕ′ : combine 2-cells B0

β +3 g0 and A2
α +3 e2 with the corresponding pullback projections

and uncurry to obtain f0
ρ0 +3 f ′0 , f ′1

ρ1,σ1 +3 f1 and f2
σ2 +3 f ′2 with

f ′1 ⊗ f0
ρ1⊗ f0

�#
??

??
?

??
??

?f ′1⊗ρ0

{� ��
��

�
��

��
�

f1 ⊗ f0

ϕ′{� ��
��

��

��
��

��
f ′1 ⊗ f ′0

ϕ �#
??

??
??

??
??

??

a

respectively

f ′2 ⊗ f1
σ2⊗ f1

�#
??

??
?

??
??

?f ′2⊗σ1

{� ��
��

�
��

��
�

f2 ⊗ f1

ϕ′{� ��
��

��

��
��

��
f ′2 ⊗ f ′1

ϕ �#
??

??
??

??
??

??

b

(3-08)

compare Diagram (2-02). 〈β, α〉 specifies a Chu-morphism iff ρ1 = σ1
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3.5. E.

(0) Since set is cartesian closed, Chu-spans as in Example 2.4 can be composed as indi-
cated above. The composition of ordinary spans may be visualized as the composi-
tion of bipartite graphs. This does carry over to the composition of Chu-spans: given
ϕ = 〈 f0, ϕ0, f1, ϕ1, f2〉 and γ = 〈g0, γ0, g1, γ1, g2〉 from a to b to c , the arrows of the
composite Chu-span from a to c are pairs of functions 〈g0

λ // f1, f2
ρ // g1〉 such that

for all 〈i, j〉 ∈ g0 × f2 we have ϕ1〈λ(i), j〉 = γ0〈i, ρ( j)〉 , that is, λ and ρ are “formal ad-
joints” λ aϕ1

γ0
ρ . In case of g0 = 1 = f2 this reduces to the familiar notion of “matching”

or “composable” arrows.

Similarly, if κ = 〈k0, κ0, k1, κ1, k2〉 is another Chu-span from a to c , the arrow-set of the
right-extension ϕ . κ consists of the formal adjoints α aϕ0

κ0
β .

(1) The bicategory rel with sets as objects, relations as 1-cells and inclusions as 2-cells
is well-known to be closed with respect to 1-cell composition. Its hom-categories are
power-sets and hence complete lattices. If we consider diagram (3-04) or (3-05) in rel ,
the central relation C0

e1 � ,2 A2 is simply the intersection of the sets

g0 . f1 = { 〈z, x〉 ∈ C0 × A2 : ∀y ∈ B0. 〈y, z〉 ∈ g0 =⇒ 〈y, x〉 ∈ f1 }

g1 / f2 = { 〈z, x〉 ∈ C0 × A2 : ∀v ∈ B2. 〈z, v〉 ∈ g1 ⇐= 〈x, v〉 ∈ f2 }

Once we restrict attention to cyclic and hence reversible Chu-spans, we would expect the result-
ing closed bicategory to be “ ∗-autonomous” in a suitable sense. The following definition was
introduced in [Kos01]. It minimizes coherence issues and implies closedness of the bicategory
and the existence of “dualizing 1-cells” on every object.

3.6. D. A cyclic ∗-autonomous bicategory B is equipped with

(0) a “self-dual” family of equivalences

B〈A, B〉 (−)∗ // Bcoop
〈A, B〉 =

(
B〈B, A〉

)
op

for B0 -objects A, B , that is,(
B〈A, B〉 (−)∗ // Bcoop

〈A, B〉
)
a

(
B〈B, A〉 (−)∗ // Bcoop

〈B, A〉
)

op

(1) a natural family of 2-cells r∗ ⊗ r
evr +3 (>A)∗, A r // B a 1-cell in B , such that 〈evr, r∗〉 is

a right extension of (>A)∗ along r .

It is easy to see that 〈r, evr〉 is a right lifting of (>A)∗ through r∗ . Hence the “dualizing 1-cells”
are given by the images of the identity 1-cells under (−)∗ .
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3.7. R. In a cyclic ∗-autonomous bicategory we may define a second tensor composition
⊕ (“par”) by de Morgan duality, that is, g ⊕ f := ( f ∗ ⊗ g∗)∗ . This is essentially associative
and has units of the form ⊥A := (>A)∗ . In fact, we obtain a second bicategory structure on the
objects, 1-cells and 2-cells of B , which is linked with the original one via so-called “linear
distributions” (C ⊕ B) ⊗ A

δL +3 C ⊕ (B⊗A) and C ⊗ (B ⊕ A)
δR +3 (C ⊗ B)⊕A subject to certain

coherence requirements. “Linear bicategories” were introduced [CKS00] to study such related
bicategory structures that do not necessarily arise via de Morgan duality.

3.8. T. Endo-1-cells of B as objects, cyclic Chu-spans as 1-cells and cyclic Chu-mor-
phisms as 2-cells form a cyclic ∗-autonomous bicategory cChu1(B) .

P. The dualization operation (−)∗ on cyclic Chu-spans and cyclic Chu-span morphisms
provides the required family of equivalences.

If ϕ is cyclic from A a // A to B b // B, the central component of ϕ∗ � ϕ is given by a
pullback e1 of the cospan f1 . f1

ks f1.ϕ/1 f1 . b / f0
ϕ.1/ f0 +3 f0 / f0. Exponential transposes of

the identities on f0 and f1 now yield the central component >A
+3 e1 of a Chu-morphism

ϕ∗ � ϕ
evϕ +3 (1a)∗ with outer component ϕ0 . The right extension property and the naturality of

the right extensions are routine verifications.

3.9. R. While the tensor-compositions in cChu1(B) and Chu1(B) coincide, right ex-
tensions in Chu1(B) of cyclic Chu-spans a ϕ // b and a κ // c will in general not be cyclic.
Instead, in cChu1(B) the right extension of κ along ϕ is given by

A0

B0 B0

C0 C0

KS �� �� ϕ1

��
� �� �κ1

4<qqqqω0

������
ev

CK
���� ve

t| qqqq
λ0

b //

c
//

k1





FF




f0





FF




g0

��1
11

11
11

11
11

11
11

11
11

f1/k1

��

f1 ��

k0

,,

g0

��1
11

11
11

11
11

11
11

11
11

f0.k0

''

where

g0
??�� ω0

�#
??

??
?

??
??

?
λ0

{� ��
��

�
��

��
�

f1 / k1

ϕ.0/k1{� ��
��

�
��

��
�

f0 . k0

f0.κ/0 �#
??

??
?

??
??

?

f0 . a / k1

(3-09)

Just as in ordinary ∗-autonomous categories, this may be expressed in terms of ⊗ and (−)∗ as
(ϕ ⊗ κ∗)∗ . Right liftings behave dually.

Recall that for a monoidal closed category V with finite limits the Chu-category chu〈V, t〉
coincides with Vop × V . Hence the following result for Chu-bicategories, which extends the
one for Chu-categories, is not surprising.

3.10. P. If B locally has J-limits and J-colimits, so do Chu1(B) and cChu1(B) .

P. For a functor J
P // (Chu1(B))〈a, b〉 we obtain induced functors Pi , i < 3 , from D

into B〈A0, B0〉 , B〈B0, A2〉 and B〈A2, B2〉 , respectively. Consider limits 〈`0, λ0〉 and 〈`2, λ2〉

of P0 and P2 , respectively, and a colimit 〈µ1,m1〉 of P1 . For j ∈ J transposes of the 2-cell-
components P1( j) ⊗ P0( j) +3 a and P2( j) ⊗ P1( j) +3 b of P( j) induce cocones

P1( j) +3 P0( j) . a
λ0 j.a +3 `0 . a and P1( j) +3 b / P2( j)

b/λ2 j +3 b / `2
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that both factor through µ1 j . Combination with the appropriate right extension ev and right
lifting ve then yields a Chu-span

B0 B2

A0 A2
� �� �KSξ0

�� ��
�� ξ1

b
//

a //

`0 ��1
11

11
1

m1




FF

 `2

��1
11

11
1

with projections 〈λ0d, µ1d, λ2d〉 into P(d) that clearly form a limit of P . To obtain a colimit,
start with a limit of P1 and proceed dually, utilizing colimits of P0 and P2 .

3.11. R. Since Chu1(B) encompasses all bicategories (spn(B〈A0, A2〉)) co , all their maps
(= right-adjoint spans) are preserved. In particular, every 2-cell b

ξ +3 a in B〈X,Y〉 induces a
pair of adjoint Chu-spans

ξ+ =

X Y

X Y
� �� �KSul

MMMMbj
ξ �� ��
�� ur

a //

b
//

a

;;

b

NN

>X

��1
11

11
11

1

>Y

��1
11

11
11

1

a ξ+ =

X Y

X Y
� �� �KSul

MMMM "*
ξ

�� ��
�� ur

b //

a
//

b

;;

a

NN

>X

��1
11

11
11

1

>Y

��1
11

11
11

1

(3-10)

These admit particularly simple compositions with other Chu-spans that have domain, respec-
tively, codomain b : just compose the appropriate 2-cell component with ξ .

4. Relating B directly with the Chu-bicategories

In order to analyze how a closed bicategory B is related to Chu1(B) and cChu1(B) , we first
investigate, whether the latter form extensions of B .

Then each object A of B ought to be mapped to a 1-cell of B . The only canonical ones
would seem to be >A , and perhaps the terminal 1-cell tA , provided finite limits exist locally. In
both cases cChu1(B) appears to be a more natural candidate for an embedding of B .

Chu(B) , on the other hand, may be better suited as an extension of B × B . Again the
question arises, which canonical 1-cell A0

// A2 to choose. Unless the hom-categories of B

have terminal objects, it is not clear which other suitable candidates to choose.
Turning the problem around, the (strict) domain/codomain functors cChu1(B) // B and

Chu1(B) // B×B map a Chu-span ϕ = 〈 f0, ϕ0, f1, ϕ1, f2〉 to f0 and 〈 f0, f2〉 , respectively. For
closed B with local pullbacks, we suspect that diagrams of the form

C0 C2

B0 B2

c
//

g0
��1

11
11

1
g2

��1
11

11
1

and

B0 B2

A0 A2
a //

f0 ��1
11

11
1

f2

��1
11

11
1

can be completed to Chu-spans into c , respectively, from a in some optimal fashion, where
in the cyclic case we require g0 = g2 , respectively f0 = f2 . Technically this means that
the above functors should be either lax or oplax counterparts of bifibrations, that is, admit the
appropriately weakened form of “initial” and “terminal” lifts.
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4.1. D. Given a lax functor X
〈L,λ〉 // Y and a 1-cell B g // L(W) in Y , we call a 1-cell

V ḡ // W in X a lax initial lift of g , provided that

• L(ḡ) = g , and

• for any 2-cell g ⊗ f
α +3 L(k) in Y , there exists a 2-cell ḡ ⊗ f̄

ᾱ +3 k in X such that

- L( f̄ ) = f ;

- α = (L(ᾱ)) ◦ λ f̄ ,ḡ ;

- any other 2-cell ḡ ⊗ f̂
α̂ +3 k in X with L( f̂ ) = f and α = (L(α̂)) ◦ λ f̂ ,ḡ factors

through ᾱ by means of a unique 2-cell f̂
ξ +3 f̄ in X .

In form of pasting diagrams (starting in a zig-zag pattern at the lower left):

B L(W)

L(U)

B L(W)

L(U)

B L(W)

L(U)

V W

U

V W

U

V W

U

= =

=

∀

∃ ∀
∃!

4<qqqqα

4<qqqq
4<qqqqλ f̄ ,ḡ

4<qqqq
4<qqqqλ f̂ ,ḡ

4<qqqq
ᾱ

4<qqqq
α̂

4<qqqq
ᾱ

"*MMMM
ξ

L(ᾱ) L(α̂)

g
//

f

��

L(k)

��

g
//

L(ḡ⊗ f̄ )

##

L( f̄ )= f

��

L(k)

��

g
//

L(ḡ⊗ f̂ )

##

L( f̂ )= f

��

L(k)

��

ḡ
//

f̄

��

k

��

ḡ
//

f̂

��

k

��

ḡ
//

f̂

��

f̄

xx

k

��

q L
��1

11 q L
��1

11

〈L, λ〉 is a lax fibration, if each B g // L(W) in Y has a lax initial lift. Lax terminal lifts and lax
opfibrations are defined dually. A lax bifibration is both a lax fibration and a lax opfibration.

4.2. T. If B is closed and has local pullbacks, both functors cChu1(B) // B and
Chu1(B) // B ×B are lax bifibrations.

P. In case of Chu1(B) // B × B we need to construct a lax initial lift of C0
c // C2 along

〈B0
g0 // C0, B2

g2 // C2〉. Define a Chu-span into c by

b

c C0 C2

B0 B2� �� �KSγ0

�� ��
�� ve

c
//

b:=(c⊗g0)/g2 //

g0

��1
11

11
11

1

g1:=c/g2qqqqqq

88qqqqqq g2

��1
11

11
11

1

γ

��1
11

11
11

1

:=

where γ0 is a transpose of ve ⊗ g0 . For any Chu-span κ = 〈k0, κ0, k1, κ1, k2〉 from A0
a // A2

to c , and all 2-cells gi ⊗ fi
αi +3 ki, i ∈ {0, 2} , in B , we need to find an essentially unique Chu-

morphism γ � ϕ
α +3 κ with outer components α0 and α2 such that every other Chu-morphism
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γ � ϕ̂
α′ +3 κ with the same outer components factors as α′ = α ◦ (γ � ξ) by means of a unique

Chu-morphism ϕ̂
ξ +3ϕ. Concretely, with β := (κ1 ◦ (α2 ⊗ k1))/ we set

a

b B0 B2

C0

A0 A2KS �� �� κ0
BJ





 α0 �





β

��
� �� �γ0

(c⊗g0)/g2

//

a //

f0
��1

11
11

11

g0qq
88qq

k0
TTTT

))TTTT

c/g2
TTTT

))TTTT

k1qq
88qq

f2

��1
11

11
11

ϕ

��1
11

11
11

1

:=

For ϕ1 = γ0 ◦ (β ⊗ g0) we then compute (ϕ.1)/ = (ϕ/1). from k1 to g0 . b / f2 :

k1

β/

�#
??

??
??

??
??

??1.k1⊗g0
{� ��

��
��

��
��

��

g1 / f2 � c / (g2 ⊗ f2)

γ.0/ f2�1.c⊗g0
/(g2⊗ f2)

{� ��
��

��

��
��

��
g0 . (k1 ⊗ g0)

g0.ϕ
/
1 �#

??
??

??

??
??

??

g0 . b / f2 � g0 . (c ⊗ g0) / (g2 ⊗ f2)

Here we utilized (x / g2) / f2 � x / (g2 ⊗ f2) for x = c and for x = c ⊗ g0 . The central 1-cell
e1 of ε := γ�ϕ being a pullback of the lower cospan induces the required 2-cell k1

α1 +3 e1. A
straightforward calculation establishes α = 〈α0, α1, α2〉 as a Chu-morphism from γ � ϕ to κ .

Notice that the transpose ϕ
α. +3 κ . γ has the identity on k1 ⊗ g0 as central 1-cell. Hence

if γ � ϕ̂
α̂ +3 κ also has the outer components α0 and α2 , the central 1-cell of its transpose

ϕ̂
α̂. +3 κ . γ provides us with a candidate for the central 1-cell of the desired ϕ

ξ +3ϕ, the outer
1-cells being fixed as identities. A simple calculation then shows α̂ = α ◦ (γ � ξ) .

If f0 = f2 , the Chu-span γ is cyclic, hence the same construction applies.
“Lax terminal lifts” for both Chu1(B) // B ×B and cChu1(B) // B are computed dually

with the help of right extensions.

In order to embed B into cChu1(B) we need to choose endo-1-cells for each B-object
and Chu-spans for each 1-cell of B . With identities and terminals, respectively, we can build
Chu-spans that are closed under composition:

B B

A A
� �� �KSπ0 ⊗ f0; ev

�� ��
�� f0 ⊗ π1; ve

>B
//

>A //

f0

11
1

��1
11

f0.>A×>B/ f0qqqqqq

88qqqqqq
f0

11
1

��1
11

respectively

B B

A A
� �� �KS!

�� ��
�� !

tB
//

tA //

f0

11
1

��1
11

tB,Aqqqqqqq

88qqqqqqq
f0

11
1

��1
11

(4-11)

In fact, tB,A = f0 . ta × tB / f0 , so both constructions follow the pattern of forming limits in
cChu1(B) , see Proposition 3.10. However, the second choice is both “lax initial” and “lax ter-
minal”, while the first one has neither of these properties. This partially explains the usefulness
of simple Chu-spans in [Bar96]. The second type of Chu-span also generalizes to the non-cyclic
case. This yields an embedding of B ×B into Chu1(B) , provided local terminals exist.

However, the cyclic Chu-spans of Diagram (4-11) are not closed under dualization (−)∗ .
So in case that B happens to be cyclic ∗-autonomous in the sense of Definition 3.6, these



116 JÜRGEN KOSLOWSKI

embeddings are not very useful. As Example 5.2 below will show, additional structure on B

provides other possibilities for embeddings.
In view of these shortcomings a more conceptual comparison of B with the Chu-categories

is needed.
A right-closed bicategory B may be specified by its hom-categories B〈X,Y〉 (where 2-cells

are composed “vertically”), the composition functors B〈X,Y〉 × B〈Y,Z〉 ⊗ // B〈X,Z〉 (responsi-
ble for the “horizontal” composition of 1- and 2-cells), and the adjunctions − ⊗ r a r . − ,
respectively, s ⊗ − a − / s between appropriate hom-categories (expressing closedness).

Provided B locally has pullbacks, we replacing its hom-categories by their bicategories of
spans (with 2-cells reversed) yields a 3-dimensional structure. Since 1-cell composition in B is
left rather than right adjoint, local limits need not be preserved. Hence the composition functors
of B only extend to normal lax functors, and instead of an interchange law for vertical and
horizontal span compositions, we only have a 3-cell in one direction.

Generalizing from ordinary spans to Chu-spans further reduces the possibilities of mean-
ingful horizontal composition, but instead provides us with an extended vertical composition
that even admits right extensions and right liftings – which could be seen as a trade-off. This
justifies drawing Chu-spans vertically rather than horizontally: the composition of Chu-spans
generalizes the vertical composition of B , not the horizontal one. Schematically we have

A0 A2 A4

B :

�� ��
�� �� ��
��

�� ��
�� �� ��
��

��
//
CC

��
//
CC A0 A2 A4

Bspn :

� �� �KS

�� ��
��
� �� �KS

�� ��
��

� �� �KS

�� ��
��
� �� �KS

�� ��
��

����
//
CC JJ

����
//
CC JJ

C0 C2 C4

B0 B2 B4

A0 A2 A4

Chu1(B) :

� �� �KS �� ��
��

� �� �KS �� ��
��

� �� �KS �� ��
��

� �� �KS �� ��
��

// //

// //
��1

11
1 FF



 ��1

11
1 FF



 ��1

11
1

// //

// //
��1

11
1 FF



 ��1

11
1 FF



 ��1

11
1 (4-12)

To see concretely, why horizontal composition of Chu-spans is unlikely to work, consider

〈ϕ1,ϕ3〉 =

B0 B2 B4

A0 A2 A4� �� �KSϕ0

�� ��
�� ϕ1

� �� �KSϕ2

�� ��
�� ϕ3

a1 // a3 //

b1

//
b3

//

f0

111

��1
11 f1






FF



f2

111

��1
11 f3






FF



f4

111

��1
11 7→

B0 B4

A0 A4� �� �KSϕ2⊗ϕ0

�� ��
�� ϕ3⊗ϕ1

b3⊗b1

//

a3⊗a1 //

f0

111

��1
11 f3⊗ f2⊗ f1qqqqq

88qqqqq
f4

111

��1
11 = ϕ3 ⊗ ϕ1 (4-13)

While for another pair of Chu-spans 〈b1, b3〉
〈γ1,γ3〉 // 〈c1, c3〉 we can always construct a Chu-

morphism (γ3 � ϕ3) ⊗ (γ1 � ϕ1) +3 (γ3 ⊗ γ1) � (ϕ3 ⊗ ϕ1) with trivial outer components, there
are serious problems with this approach.

• In general, there are no identities for this operation. In fact, f2 admits a horizontal right
or left identity iff f2 is an isomorphism.

• This proposed horizontal composition of Chu-spans does not extend to Chu-morphisms;
the different variance in the even and odd 1-cell components prevents us from finding a
2-cell from f ′3 ⊗ f ′2 ⊗ f ′1 to f3 ⊗ f2 ⊗ f1 , as required. In fact, it appears impossible to
combine f1 , f2 and f3 into a 1-cell B0

// A4 that avoids this problem.
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5. Bicategories of Chu-chains

While the idea of composing Chu-spans horizontally seems to hold little promise, the left side
of Diagram (4-13) indicates the possibility of extending the notion of Chu-span to link typed
paths of 1-cells in B by chaining matching Chu-spans together horizontally.

Since paths of length 0 are just objects, we expect to find B at the bottom of a hierarchy of
right-closed bicategories Chun(B) , n ∈ N . Moreover, infinite paths can be considered as well.

Our indexing scheme for the 1-cell-paths is intended to avoid the need for index-tuples or
double indices, which would clutter up the notation even further.

5.1. T. Let B be right-closed with local pullbacks, and n ∈ N . Typed 1-cell-paths
a = 〈A2i

a2i+1 // A2i+2 : i < n〉 of length n as objects, typed Chu-span paths as 1-cells and
the evident (2n + 1)-sequences of 2-cells in B of alternating variance as new 2-cells form a
right-closed bicategory Chun(B) .

Similarly we obtain closed bicategories ChuN(B) , ChuZ(B) and ChuZ\N(B) , where the
1-cells A2i

a2i+1 // A2i+2 in the objects are indexed by N , Z and Z \ N , respectively.

P. For n ∈ {0, 1} we recover B and Chu1(B) , respectively. For n > 1 the operations
in Chun(B) work component-wise, except the formation of right extensions and right liftings.
These take the neighboring component into account, and only the rightmost component of a
right extension has the shape of Diagram (3-07), while the other components have the shape of
Diagram (3-09). For example, 〈a1, a3〉

〈ϕ1,ϕ3〉 // 〈b1, b3〉 and 〈a1, a3〉
〈κ1,κ3〉 // 〈c1, c3〉 have a right

extension 〈ϕ1,ϕ3〉 . 〈κ1, κ3〉 given by

A2 A4

B0 B2 B4

C0 C2 C4

KS �� �� ϕ1

��
� �� �κ1

4<qqqqω0

������
ev

CK
���� ve

KS �� �� ϕ3

��
� �� �κ3

4<qqqq
ω2t| qqqqλ2

������ev

CK
���� ve

b1 // b3 //

c1
//

c3
//

k1





FF




f2





FF




k3





FF




f4
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(5-14)

The same phenomenon occurs for Z \ N-indexed paths. For left extensions, the leftmost com-
ponent of finite or N-indexed paths for lack of a left neighbor will display an exceptional shape,
whereas in the Z-indexed case no exceptional shapes occur.

5.2. E. We call a linear bicategory B in the sense of Remark 3.7 right-closed, if any
A f // B has so-called left and right “linear adjoints” f � := f .⊥A and � f =: ⊥B / f , where ⊥
picks out the units for the second tensor ⊕ . With Ai = A and Bi = B for all i ∈ 2Z we may
consider a Z-path of left and right “linear adjoints” of f

B B0 B

A A0 A
� �� �KSve

�� ��
�� ve

� �� �KSev

�� ��
�� ev

⊥A // ⊥A // ⊥A //

⊥B
//

⊥B
//

⊥B
//

�� f
11
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��1
11

� f
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f

11
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��1
11 f �






FF



f ��
11

1

��1
11
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The 2-cell f � ⊗ f
ev +3⊥A should be viewed as the counit of the linear adjunction f � a f ; its

unit is given by ( f �� ⊗ f �
ev +3⊥B)� = (>B

ev� +3 f ⊕ f �).
If B happens to be cyclic ∗-autonomous (compare Definition 3.6), � f and f � are coher-

ently isomorphic to f ∗ . Then Z-paths may be “curled up” into cyclic paths of lengths 1 . Thus
we obtain a (−)∗ -preserving embedding of B into cChu1(B) .

Let us now turn to the general cyclic case. What is cChun(B) supposed to be for n , 1 ?
Recall that the cyclic ∗-autonomous bicategory cChu1(B) sits inside Chu1(B) as a non-1-
full sub-bicategory containing all cyclic and hence reversible 1-cells. For n > 1 one can
consider the corresponding sub-bicategory of Chun(B) . However, cyclicity of Chu-span-paths
in general will no longer insure unique reversibility as for n = 1 .

5.3. E. For n = 2 a cyclic pair of Chu-spans 〈a1, a3〉
〈ϕ1,ϕ3〉 // 〈b1, b3〉 has two different

possibilities for reversal

A0 A2 A0

B2 B0 B2
� �� �KSϕ3
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� �� �KSϕ1
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�� ϕ2

b3 // b1 //
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//

a3
//
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B0 B2 B0
� �� �KSϕ1
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� �� �KSϕ3
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�� ϕ0

b1 // b3 //
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//

a1
//

f1
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11 f2
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11 f4






FF



f1
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��1
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which might be denoted by �〈ϕ1,ϕ3〉 and 〈ϕ1,ϕ3〉
� , respectively. The operations �(−) and

(−)� are clearly inverses, cyclically shifting the rightmost, respectively, leftmost 2-cell to the
other side, which after four iterations reproduces 〈ϕ1,ϕ3〉 . In general, ��〈ϕ1,ϕ3〉 = 〈ϕ3,ϕ1〉 =

〈ϕ1,ϕ3〉
�� differs from 〈ϕ1,ϕ3〉 .

We now obtain an analogon of a linear adjunction, compare Example 5.2: The same com-
putation we utilized in the proof of Theorem 3.8 generates canonical 2-cells

〈ϕ1,ϕ3〉 ⊗
�〈ϕ1,ϕ3〉 +3 �〈1b1 , 1b3〉 and 〈ϕ1,ϕ3〉

� ⊗ 〈ϕ1,ϕ3〉 +3 〈1a1 , 1a3〉
�

However, for n > 1 it does not seem possible to combine ⊗ , �(−) and (−)� into a sensible
⊕-operation, and thus to obtain a linear structure, on the sub-bicategory of Chun(B) generated
by the cyclic Chu-spans.

Turning to infinite paths, every 1-cell a ϕ // b of ChuZ(B) is cyclic, but unless ϕ is peri-
odic, all the 1-cells �

2n
ϕ and ϕ�

2n
, n ∈ N , will be distinct. Again, we obtain the counterpart

to a linear adjunction, namely canonical 2-cells ϕ ⊗ �ϕ +3 �(1b) and ϕ� ⊗ ϕ +3 (1a)�, but no
⊕-operation.

Finally, even though none of the 1-cells in ChuN(B) is cyclic, we can still define an op-
eration (−)� on all 1-cells a ϕ // b, which simply removes the leftmost 2-cell f1 ⊗ f0

ϕ0 +3 a1.
Now there is only one canonical 2-cell ϕ� ⊗ ϕ +3 (1a)� without a counterpart: the absence of
rightmost 2-cells in N-indexed Chu-span paths prevents us from defining a �(−)-operation.

While the sub-bicategories of Chun(B) , n > 1 , described in the preceding example may
be of some independent interest, they, as well as ChuZ(B) , fail to be cyclic ∗-autonomous,
apparently due to a shortage of 1-cells. To fix this, we propose a slight shift in perspective.
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5.4. D. We write n− and n◦ for the graphs with node-set n + 1 = { i ∈ N : i ≤ n } and
the successor relation, respectively, node-set n and the successor relation modulo n . Similarly,
the graphs N− and Z◦ have node-sets N , respectively, Z and the successor relation.

For simplicity, we will refer to graph morphisms from n◦ or from Z◦ into B as B-loops
and to 1-cells between these as Chu-loops.

An object a of Chun(B) can be viewed as a graph morphism from n− into B , mapping
i to A2i and 〈i, i + 1〉 to ai+1 . If the endpoints A0 and A2n accidentally coincide, a may be
used as domain or codomain for cyclic Chu-span paths as well as non-cyclic ones. In Example
5.3 the paths

A0
a1 // A2

a3 // A0 and A2
a3 // A0

a1 // A2

are different images of the graph 2− = (0 // 1 // 2), whereas they can be viewed as different
presentations of a single image of 2◦ = (0 //oo 1). Clearly, it is preferable to consider graph-
morphisms from n◦ as objects, when we are interested just in cyclic B-loops. Then Chu-loops
take the shape of “triangulated cylinders”, which can readily be turned upside down. This
operation ought to be an involution.

Observe that the graphs n◦ and Z◦ admit non-trivial endomorphisms, which are in fact
automorphisms, in contrast to the “rigid” graphs n− and N− . While any linear Chu-span path
a ϕ // b has to start with a 1-cell A0

f0 // B0, in case of a Chu-loop we can relax this requirement
of matching base points and allow the codomain of the 1-cell originating at A0 , say f0 , to be
B2k for some k ∈ Z ; in case of loops of length n all subscripts are to be understood modulo 2n .
The value k identifies an automorphism to be performed on the target B-loop before building
a Chu-loop. The latter will also contain 1-cells A−2k

// B0 and B0
// A2−2k. By making k part

of the 1-cells, we obtain 〈k : ϕ〉∗ = 〈1 − k : ϕ∗〉 .

5.5. D. For n > 0 the bicategory cChun(B) has graph-morphisms n◦ // B as ob-
jects. Its 1-cells a 〈k:ϕ〉 // b consist of an automorphism n◦

k // n◦ and a Chu-loop a ϕ // b ◦ k,
while 2-cells 〈k : ϕ〉

ρ +3 〈k′ : ϕ′〉 only exist for k = k′ and consist of 2-cells f2i
ρi +3 f ′2i and

f ′2i+1
ρ2i+1 +3 f2i+1, i < n , subject to the evident axioms. cChuZ(B) is defined analogously.

5.6. P. The bicategories cChun(B) , n > 0 , and cChuZ(B) are cyclic ∗-auto-
nomous, and the canonical functors into the subcategories of graphs with single object n◦ ,
respectively, Z◦ are bifibrations.

P. Cyclic ∗-autonomy is an immediate consequence of our considerations above. For
example, the right extension of a 〈p:κ〉 // c along a 〈i:ϕ〉 // b is given by b 〈p−i:ϕ.κ〉 // c. All mor-
phisms in the base being automorphisms, the existence of initial and terminal lifts is trivial.

Each of these rather simple bifibrations has a single fibre corresponding to the subcategory
of Chun(B) described in Example 5.3, respectively, ChuZ(B) .

For n > 0 the bicategories cChun(B) clearly can be recovered within cChuZ(B) as non-
1-full sub-bicategories of n-periodic B-loops and n-periodic Chu-loops; this embedding pre-
serves right extensions and right liftings. Thus in a sense cChuZ(B) addresses most aspects
of cyclic ∗-autonomy related to B . Of course, this rather satisfactory situation does not carry
over to non-cyclic paths.
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Our observations in the cyclic case so far raise at least two issues beyond the scope of the
current paper: what is cChu0(B) supposed to be, and how can we combine all these single
fibers into a more meaningful bifibration over some subcategory of grph , such that the total
bicategory remains cyclic ∗-autonomous?

Clearly, the objects of a hypothetical bicategory cChu0(B) ought to be just B-objects,
respectively identity 1-cells. In order to guarantee uniquely reversible 1-cells, we may either
consider isomorphisms, which yields a non-1-full sub-bicategory of Chu0(B) = B , or adjoint
equivalences, which yields a non-1-full sub-bicategory of cChu1(B) . We tend to prefer the
second choice, but both allow us to at least partially address the second question.

Recall the geometric interpretation of 1-cells in the Chu-bicategories between B-loops of
the same size as triangulated cylinders. Those triangles, which carry an identity 2-cell, or at
least the counit of an adjoint equivalence, should essentially be collapsible. In other words, if we
extend two B-loops a and b of potentially different size by inserting identity 1-cells until the
resulting B-loops a′ and b′ have the same length, then any Chu-loop a′ ϕ // b′ ◦ k whose 2-
cell components into the newly inserted 1-cells are identities, or counits of adjoint equivalences,
ought to qualify as a Chu-loop from a to b . This suggests some form of bisimulation between
graphs as a candidate for the morphisms in the base of our hypothetical bifibration.

Of course, this also works for non-cyclic B-paths, hence the bicategories Chun(B) , n ∈ N ,
should form the fibers of a larger entity as well.

Taking the speculation a bit further, we might even hope to mimic some form of cobordism
in this context. For example, two disjoint B-loops a and b could be linked to a single B-loop
c in the following fashion

Q
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6. Symmetry and the game product

Interactions and games have lately been studied to find models for certain fragments of linear
logic. They have mostly been represented in terms of trees (compare for example, [Bla92]
[Abr97], [AJ94], [HO93], and [Hyl97]), but here we wish to use labeled transition systems
(LTSs) instead. These can be viewed as graph morphisms from a small graph into rel , or even
into spn , if one wants to allow repetition of labels along parallel arrows.

In order to model interaction, we wish to use bipartite graphs with two nodes, 0 and 1 ,
for Opponent and Player, respectively. If the interaction is to be strictly alternating, the hom-
sets [0, 0] and [1, 1] will be empty, that is, there are no internal transitions. Call the other
hom-sets a := [0, 1] and b := [1, 0] . A graph morphism into rel now specifies state sets
f0 (for Opponent) and f1 (for Player) together with a function a // rel〈 f0, f1〉 = P( f0 × f1)
assigning to each element x ∈ a the set of x-labeled moves from states in f0 to states in f1 ,
and a similar function b // rel〈 f1, f0〉 = P( f1 × f0). Of course, these functions are equivalent
to relations f0 × f1

ϕ0 � ,2a and f1 × f0
ϕ1 � ,2b.

Observe that rel is monoidal closed with respect to the cartesian product × : exponentiation
is also given by × , but now interpreted as a functor relop × rel // rel. Consequently, the
evaluation relations a × (a × b) ev � ,2b and (a × b) × b ve � ,2a as transposes of the diagonal on
a × b satisfy 〈w, 〈x, y〉, z〉 ∈ ev , respectively, 〈〈x, y〉, z,w〉 ∈ ve iff x = w and y = z . Hence
a bipartite LST may be identified with a cyclic Chu-span in the symmetric monoidal closed
category 〈rel,×, 1〉 , compare Diagram (2-01).

Similarly, non-cyclic Chu-spans may be thought of as “tripartite” LTSs. If in the cyclic case
a set f 0

0 ⊆ f0 of initial states for Opponent is specified, we can define the subsets f 2k+1
1 ⊆ f1

and f 2k+2
0 ⊆ f0 reachable after 2k + 1 and 2k + 2 steps, respectively. The corresponding finite

or N-indexed path of Chu-spans can be thought of as the unfolding or trellis of the interaction.
If γ = 〈g0, γ0, g1, γ1, g0〉 is another bipartite LTS with move sets c for Opponent and d for

Player, a standard game-theoretic operation is to interleave γ with ϕ . Of particular interest are
those cases, where only one participant is allowed to switch games. We distinguish ω := ϕ � γ
(only Opponent can switch) and π := ϕ ( γ (only Player can switch). The moves keep one
state-component fixed, as indicated in the following schematic state transition diagram with
x ∈ a , y ∈ b , z ∈ c and t ∈ d :

g0 g1

f0

f1

a + c ϕ�γ // b + d

f0 f1

g0

g1

c + b ϕ(γ // a + d

x

OO

y

�� z //
t

oo

t

��

z

OO x
//

yoo w0 = g0 × f0

w1 = g0 × f1 + g1 × f0

p0 = f0 × g0 + f1 × g1

p1 = f0 × g1

Switching between games is indicated by a change of the transition’s direction. In case of
unrestricted interleaving, Opponent’s state set is f0 × g0 + f1 × g1 , while Player’s state set is
g0 × f1 + g1 × f0 . Hence allowing only Opponent or Player to switch games effectively renders
parts of their state sets unreachable.
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Clearly, the operation � is symmetric and we have

ϕ( γ = (ϕ � γ∗)∗ and (γ � ϕ)( δ = γ( (ϕ( δ)

We emphasize again that the domains and codomains of the cyclic Chu-spans do not need to
match for these operations to make sense.

Recall that disjoint union + in rel provides the categorical product, in particular ∅ is the
terminal object. Since the constructions above do not use 2-cells of rel , they must be available
in any symmetric monoidal closed category V with finite products. We denote the identity for
⊗ by >, the terminal object by t , and write τ for the terminal projections. While two arbitrary
cyclic Chu-spans

ϕ =

• •

• •
� �� �KSϕ0

�� ��
�� ϕ1

a //

b
//

f0
��1

11
11

11

f1
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 f0

��1
11

11
11

and γ =

• •

• •
� �� �KSγ0

�� ��
�� γ1

c //

d
//

g0
��1

11
11

11

g1





FF


 g0

��1
11

11
11

in general cannot be composed, we can compose appropriate partial “simplifications”:

• •

• •

• •
� �� �KSϕ0 �� ��

��ϕ1

�� ��
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� �� �KS

� �� �KS γ0 �� ��
�� γ1

d
//

b
��

t //

c
AA

a //

f0
��1

11
11

11
1

f1

99

f0

��1
11

11
11

1
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��1
11

11
11

1
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NN
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��1
11
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1 7→ γt � ϕt and

• •

• •

• •
� �� �KSγ0 �� ��

��γ1
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� �� �KS ϕ0 �� ��
�� ϕ1

b
//

d
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t //

a
AA

c //
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��1
11

11
11

1
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99
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��1
11

11
11

1
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��1

11
11

11
1

f1

NN

f0

��1
11
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11

1 7→ ϕt � γt

where ϕt := τ+ �ϕ and ϕt := ϕ� τ+ , compare Remark 3.11. By the symmetry of ⊗ , not only
do the outer 1-cells z0 := g0 ⊗ f0 and f0 ⊗ g0 agree, but also both central pullbacks coincide,
which because of the terminal t reduce to products:

z1 := g0 . f1 × g1 / f0 � f0 . g1 × f1 / g0

6.1. D. If γt � ϕt = 〈z0, ζ
a, z1, ζd, z0〉 and ϕt � γt = 〈z0, ζ

c, z1, ζb, z0〉 , combining both
composites yields

γ � ϕ :=

• •

• •
� �� �KS〈ζa,ζc〉

�� ��
�� 〈ζd ,ζb〉

a×c //

d×b
//

z0
��1

11
11

11

z1qqqqqq

88qqqqqq z0

��1
11

11
11

Even though the motivating example 〈rel,×, 1〉 fails to have all pullbacks and hence does
not allow the formation of a Chu-bicategory, let us collect the results above.
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6.2. P. For any symmetric monoidal closed category 〈V,⊗,>〉 with finite products,
up to natural isomorphism the operation � on cyclic Chu-spans is symmetric, associative and
has the identity Chu-span 1t as a unit. Moreover, it extends to cyclic Chu-morphisms. Defining
ϕ( γ := (γ∗ � ϕ)∗ from b × c to d × a yields an operation ( that satisfies

(γ � ϕ)( δ = (γ � ϕ � δ∗)∗ = γ( (ϕ � δ∗)∗ = γ( (ϕ( δ)

and extends to cyclic Chu-morphisms as well.

In the presence of pullbacks in V we obtain

6.3. T. If 〈V,⊗,>〉 is symmetric monoidal closed and has finite limits, then the cyclic ∗-
autonomous bicategory cChu1(V) is symmetric monoidal with respect to � , which on objects
coincides with × .

6.4. R. Even though the operation � of cChu1(V) coincides with the categorical product
on objects, which thus trivially carry a cocommutative comonoid structure, in general cChu1(V)
will not be a cartesian bicategory in the sense of Carboni and Walters [CW87]. They in addition
required every 1-cell to be a lax comonoid homomorphism. In our context for a Chu-span
a ϕ // b this amounts to requiring Chu-morphisms between (ι(b))+�ϕ and (ι(a))+ , respectively,
between (δ(b))+ � ϕ and (ϕ � ϕ) � (δ(a))+ , subject to certain axioms (where a

ι(a) +3>and
a

δ(a) +3 a × a constitute the product-induced comonoid structure on a in V ). But without
canonical V-morphisms between > and f , respectively, f ⊗ f and f for every V-object f ,
such Chu-morphisms need not exist.

Now the obvious question arises, how to interpret cyclic Chu-spans in V as objects of a
symmetric ∗-autonomous category with � as tensor, (−)∗ as dualization and ( as internal
hom. First we formulate the copy-cat strategy in terms of a Chu-morphism.

6.5. D. Given a cyclic Chu-span c γ // d, let ηd and ηd be the 2-cell components of
γt � γ∗t , and let ηc and ηc be the 2-cell components of (γ∗)t � γt . Setting (χγ)0 = 〈id.g0

, id/g1
〉

and (χγ)1 = 〈γ0, γ1〉 specifies a cyclic Chu-morphism

1d×c =

• •

• •
� �� �KSul

�� ��
�� ur

d×c
//

d×c //

>

111

��1
11 d×c






FF



>

111

��1
11

χγ +3 γ( γ =

• •

• •
� �� �KS〈ηd ,ηc〉

�� ��
�� 〈ηd ,ηc〉

d×c //

d×c
//

g0.g0×g1/g1

11
1

��1
11

g1⊗g0qqqqqq

88qqqqqq
g0.g0×g1/g1

11
1

��1
11

This suggests the possibility of encoding arrows (that is, strategies for games) from a ϕ // b
to c γ // d by means of cyclic Chu-morphisms into ϕ ( γ . Hence given another cyclic Chu-
span e δ // f , we wish to combine cyclic Chu-morphisms

b × c
ξ

++

ϕ(γ
33

�� ��
�� ρ a × d and d × e

ϑ ++

γ(δ
33

�� ��
�� σ c × f (6-15)
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in such a way that allows us to obtain a Chu-span morphism into b × e ϕ(δ // a × f . But rather
than simply forming

d × e × b × c
ϑ� ξ --

(δ(γ)� (ϕ(δ)
11

�� ��
�� σ� ρ c × f × a × d

and projecting out the required domain and codomain, we wish to take the partial matches
between the domains and codomains into account, in other words, we wish to form a trace.
So far the existence of finite products was sufficient to perform the Chu-span compositions we
needed. However, we now will be concerned with non-trivial composites, which depend on the
existence of pullbacks. Although rel in general lacks pullbacks, the following construction is
of course inspired by the idea of hiding appropriate pairs of moves as indicated above.

6.6. D. In the spirit of Definition 6.1 we compose cyclic Chu-spans

ξ =
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//
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and υ =
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to υ �d×c ξ =

• •

• •
� �� �KSζ0

�� ��
�� ζ1

b×e //

a× f
//

y0⊗x0

��1
11

11
11

1

z1





FF


 y0⊗x0

��1
11

11
11

1

by combining

• •

• •

• •

� �� �KS

� �� �KSξ0 �� ��
��ξ1

�� ��
��
� �� �KS

� �� �KS γ0 �� ��
�� γ1

�� ��
��

b

��

f

AAc× f //

a×d
��

d //

d×e
AA

b×c //

x0

��1
11

11
11

1

x1

99

x0

��1
11

11
11

1

y0

��1
11

11
11

1

y1

NN

y0

��1
11

11
11

1 7→ υd
f � ξ

b
d and

• •

• •

• •
� �� �KSγ0 �� ��

��γ1

� �� �KS

�� ��
��
� �� �KS

�� ��
��

� �� �KS ξ0 �� ��
�� ξ1

a×d //

a

AA

c× f
��

c //

b×c

AA

d×e //

e

��

y0

��1
11

11
11

1

y1

99

y0

��1
11

11
11

1

x0

��1
11

11
11

1

x1

NN

x0

��1
11

11
11

1 7→ ξc
a � υ

e
c

where the unlabeled 2-cells denote projections compare Proposition 3.11. In this case z1 is
obtained by pulling back a transpose yo . x1

+3 y0 . (c × d) / x0
ks y1 / x0 of the induced cospan

x1 ⊗ x0
〈ξ0;πc,ξ1;πd〉 +3 c × d ks

〈υ1;πc,υ0;πd〉 y0 ⊗ y1

6.7. T. For every symmetric monoidal closed category V , cyclic Chu-spans as objects
and cyclic Chu-span morphisms into ϕ ( γ as morphisms from ϕ to γ form a symmetric
∗-autonomous category [cChu1(B)]� with tensor � .

P. Setting λ := ϕ ( γ and µ := γ ( δ and, we only need to construct a Chu-span
morphism from ω := λ �d×c µ to ν := ϕ( δ .
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Although ⊗ need not preserve products, we certainly obtain 2-cells from

w0 = m0 ⊗ `0 = (g0 . d0 × g1 / d1) ⊗ ( f0 . g0 × f1 / g1)

into ( f0 . g0 ⊗ g0 . d0)× ( f1 / g1 ⊗ g1 / d1) and from there into ( f0 . d0)× ( f1 / d1) = n0 . On the
other hand, transposing

f0 ⊗ d1 ⊗ (g1 / d1) id⊗ve +3 f0 ⊗ g1 and ( f0 . g0) ⊗ f0 ⊗ d1
ev⊗id +3 g0 ⊗ d1

induces 2-cells from n1 = f0 ⊗ d1 to (g1 / d1) . (g1 ⊗ f0) and to (d1 ⊗ g0) / ( f0 . g0) , and from
there via symmetry and projections in the exponent to m0 . `1 and m1 / `0 . The universal
property of the pullback w1 now yields the desired 2-cell n1

+3 w1.
The functoriality of �d×c is obvious. Given cyclic Chu-span morphisms as in Diagram (6-

15), we define the composition of σ �d×c ρ with the Chu-span morphism constructed above
to be the composite arrow σ ◦ ρ from ϕ to δ . The remaining verifications of the associativ-
ity and of the fact that the copy-cat Chu-spans are units for this composition are lengthy but
straightforward.
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