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CATEGORICAL REPRESENTATIONS
OF CATEGORICAL GROUPS

JOHN W. BARRETT AND MARCO MACKAAY

Abstract. A representation theory for (strict) categorical groups is constructed. Each
categorical group determines a monoidal bicategory of representations. Typically, these
bicategories contain representations which are indecomposable but not irreducible. A
simple example is computed in explicit detail.

1. Introduction

In three-dimensional topology there is a very successful interaction between category
theory, topology, algebra and mathematical physics which is reasonably well understood.
Namely, monoidal categories play a central role in the construction of invariants of three-
manifolds (and knots, links and graphs in three-manifolds), which can be understood using
quantum groups and, from a physics perspective, the Chern-Simons functional integral.
The monoidal categories determined by the quantum groups are all generalisations of the
idea that the representations of a group form a monoidal category.

The corresponding situation for four-manifold topology is less coherently understood
and one has the feeling that the current state of knowledge is very far from complete. The
complexity of the algebra increases dramatically in increasing dimension (though it might
eventually stabilise). Formalisms exist for the application of categorical algebra to four-
dimensional topology, for example using Hopf categories [CF], categorical groups [Y-HT]
or monoidal 2-categories [CS, BL, M-S]. Since braided monoidal categories are a special
type of monoidal 2-category (ones with only one object), then there are examples of the
latter construction given by the representation theory of quasi-triangular Hopf algebras.
This leads to the construction of the four-manifolds invariants by Crane, Yetter, Broda and
Roberts which give information on the homotopy type of the four-manifold [CKY, R, R-
EX]. At present it seems that categorical invariants which delve further into the smooth
or combinatorial structure of four-manifolds will require different types of examples of
monoidal 2-categories.

In this paper we determine a new set of examples of monoidal 2-categories. We show
that the categorical representations of a categorical group form a monoidal 2-category,
by direct analogy with the way in which the representations of a group form a monoidal
category. The categorical definitions are given in section 2 and 3. In section 4, an abstract
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definition of categorical representations, and their morphisms, is given and then unpacked
for the case of strict representations. An extended example is calculated in section 4
with explicit matrices, illustrating many of the complexities of more general examples.
In section 5 we give a fairly complete characterisation of the one-dimensional categorical
representations, outlining a number of examples. Finally in section 6 we make a number of
remarks about the structure of the N-dimensional categorical representations, in particular
the phenomenon of representations which are indecomposable but not irreducible. These
remarks generalise some of the features of the example in section 4.

One particular example of a monoidal category leads to a state-sum model for quan-
tum gravity in three-dimensional space-time [TV, B-O]. The motivation for this work
grew out of enquiring whether there is a corresponding model in the more realistic four-
dimensional space-time. The first attempts at doing this [BC, DFKR] used a braided
monoidal category and suffer from several problems, one of which is that there is no
‘data’ on the edges of a triangulation of the manifold, which is where one might expect to
find the combinatorial version of the metric tensor [REG]. Thus we arrived at the idea of
constructing the monoidal 2-category of representations for the example of the categori-
cal Lie group determined by the Lorentz group and its action on the translation group of
Minkowski space, generalising the construction of [M-FG]. An early draft of this paper is
the reference cited by Crane and Yetter [CY-2G, CY-MC, Y-MC, CSH] who developed
the particular example, and the machinery of measurable categories to handle the Lie
aspect, much further.

2. Categorical groups

By the term ‘categorical group’ we mean what some authors call a ‘strict categorical
group’.

2.1. Definition. A categorical group is by definition a group-object in the category of
groupoids.

This means that a categorical group is a groupoid G, with a set of objects G0 ⊂ G,
together with functors which implement the group product, ◦ : G×G → G, and the inverse
−1 : G → G, together with an identity object 1 ∈ G0. These satisfy the usual group laws:

a ◦ (b ◦ c) = (a ◦ b) ◦ c

a ◦ 1 = 1 ◦ a = a

a ◦ a−1 = a−1 ◦ a = 1

for all a, b, c in G. In particular, G is a strict monoidal category.

2.2. Definition. A functorial homomorphism between two categorical groups is a strict
monoidal functor.
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Categorical groups are equivalent to crossed modules of groups. This equivalence,
and the basic properties of categorical groups, are explained in [BS]. Here we give a brief
outline.

In a categorical group G with hom-sets G(X,Y ), the categorical composition f · g and
the group product ◦ are related by the interchange law

(f ◦ g) · (h ◦ k) = (f · h) ◦ (g · k).

For all categories in this paper the diagrammatic order of composition is used. This means
that f · g is defined when the target of f is equal to the source of g.

In fact the composition is determined by the product. If f ∈ G(X,Y ) and g ∈ G(Y, Z),
then

f · g = f ◦ 1Y −1 ◦ g = g ◦ 1Y −1 ◦ f.
In particular, G(1, 1) is an abelian group, the composition and product coinciding.

2.3. Definition. A crossed module is a homomorphism of groups

∂ : E → G

together with an action � of G on E by automorphisms, such that

∂
(
X�e

)
= X

(
∂e
)
X−1

(
∂e
)
�e′ = ee′e−1.

We call E the principal group and G the base group.

There is a natural notion of a mapping between crossed modules.

2.4. Definition. A homomorphism of crossed modules

(E,G, ∂,�) → (E ′, G′, ∂′,�′)

is given by two vertical homomorphisms

E
∂−−−→ G

Fp

� �Fb

E ′ ∂′−−−→ G′

which commute and satisfy Fp(X�e) = Fb(X)�′Fp(e). We call the latter condition the
action condition.

The equivalence with categorical groups is as follows.
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2.5. Theorem. (Verdier) The category of categorical groups and functorial homomor-
phisms and the category of crossed modules of groups and homomorphisms between them
are equivalent.

The proof is sketched. Given a categorical group, a crossed module is defined by taking
the base group G(G) to be the objects,

G(G) = (G0, ◦),
and the principal group E(G), to be the subset of morphisms which are morphisms from
the object 1 (to any object),

E(G) =
⋃
X

G(1, X),

again with the product operation ab = a ◦ b. The homomorphism E → G of the crossed
module is e ∈ G(1, X) �→ X and the action is Y�e = 1Y ◦ e ◦ 1Y −1 .

Conversely, given a crossed module (E,G, ∂,�), a categorical group is constructed
in a canonical way by taking G0 = G, G(X,Y ) = ∂−1

(
Y X−1

)
. If f ∈ G(X,Y ) and

g ∈ G(Z, T ), then the tensor product is defined as

f ◦ g = f(X�g) ∈ G(XZ, Y T )

and the composition, for Y = Z,

f · g = gf ∈ G(X,T ).

It is worth noting that the definition of a crossed module and of a categorical group
makes sense when the groups and groupoids are Lie groups and the equivalence between
Lie categorical groups and Lie crossed modules holds in the same way.

2.6. Examples.

1. Let K be a group, then we define K, the closure of K, to be the groupoid with one
object • and hom-space K(•, •) = K. If K is abelian, then the group operation
also defines a monoidal structure, so that K becomes a categorical group. The
corresponding crossed module has principal group E(K) = K and trivial base group.

2. A categorical group is connected if there is a morphism between any pair of objects.
The corresponding crossed module ∂ : E → G is surjective. This implies that E is
a central extension of G, and the action of G on E is determined by conjugation in
E.

3. A categorical group is skeletal if there are no morphisms between distinct objects
(generalising (1)). In this case the crossed module ∂ : E → G has ∂ = 1 and is
determined entirely by the action of G on the abelian group E. An example is the
wreath product, where G is the symmetric group Sn and E = (C∗)n, with the action
of Sn being the permutation of the factors in E.
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4. A categorical group is discrete if there is at most one morphism between any pair
of objects. The crossed module ∂ : E → G is injective and E is a normal subgroup
of G. Again the action of G on E is determined by conjugation.

5. The transformation categorical group of a category C is defined by

G0 = {functorial isomorphisms on C} and G = {natural isomorphisms}.
Here we consider, as usual, G0 to be a subset of G by identifying a functorial iso-
morphism with the identity natural isomorphism of it. For example, if C = K,
then the crossed module corresponding to the transformation categorical group is
K → AutK, where ∂ maps a group element to the corresponding inner automor-
phism.

3. Bicategories

In this section we recall the definitions of 2-dimensional category theory [G, KS]. First
we define 2-categories, sometimes called strict 2-categories, and then indicate the changes
required to give the weaker notion of bicategories. Finally we discuss monoidal structures
on bicategories and the example of 2-Vect.

3.1. Definition. A 2-category C is given by:

1. A set of objects C0.

2. A small category C(X,Y ), for each pair X,Y ∈ C0. The set of objects in C(X,Y )
we denote by C1(X,Y ). The elements of C1(X,Y ) are called 1-morphisms. For
each pair f, g ∈ C1(X,Y ), we denote the set of morphisms in C(X,Y ) from f to g
by C2(f, g). The elements of C2(f, g) are called 2-morphisms. The composition in
C(X,Y ) is called the vertical composition and denoted by a small dot, e.g. µ · ν (or
sometimes by simple concatenation without dot).

3. A functor
◦ : C(X,Y ) × C(Y, Z) → C(X,Z),

for each triple X,Y, Z ∈ C0. Together these are called the horizontal composition.
The horizontal composition is required to be associative and unital. The last condi-
tion means that there is a 1-morphism 1X ∈ C1(X,X), for each X ∈ C0, which is a
right and left unit for horizontal composition.

3.2. Example. Let G be a categorical group. Then we define the closure of G, which we
denote by G, to be the 2-category with one object denoted •, such that G(•, •) = G. The
horizontal composition is defined by the monoidal structure in G. Note that there is a
slightly confusing mixture of subscripts now, because G0 = {•}, whereas G1 = G1(•, •) =
G0. Unfortunately this renumbering seems unavoidable in this subject and we hope that
the context will always avoid confusion in this paper.
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Next we recall the definition of 2-functors, pseudonatural transformations and modi-
fications.

3.3. Definition. Given two 2-categories C and D, a 2-functor between them, F : C → D,
consists of:

1. A function F0 : C0 → D0.

2. A functor F1(X,Y ) : C(X,Y ) → D(F (X), F (Y )), for each pair X,Y ∈ C0. These
functors are required to be compatible with the horizontal composition and the unit
1-morphisms. By abuse of notation we sometimes denote both F0 and F1(X,Y )
simply by F .

3.4. Definition. Given two 2-functors between two 2-categories F,G : C → D, a pseudo-
natural transformation between F and G, denoted h : F ⇒ G, consists of:

1. A 1-morphism h(X) ∈ D1(F (X), G(X)), for each X ∈ C0.

2. For each pair X,Y ∈ C0, a natural isomorphism h̃ : F1(X,Y ) ◦ h(Y ) → h(X) ◦
G1(X,Y ), where we consider F1(X,Y ) ◦ h(Y ) and h(X) ◦ G1(X,Y ) both as func-
tors from C(X,Y ) to D(F (X), G(Y )). We require two coherence conditions to be
satisfied:

(a) h̃(f ◦ g) = (1F (f) ◦ h̃(g)) · (h̃(f) ◦ 1G(g)).

(b) h̃(1X) = 1h(X).

This notion of pseudonatural transformation is almost the same as the notion of quasi-
natural transformation in [G], which differs in that the 2-cells are not required to be
isomorphisms and have the arrows reversed.

3.5. Definition. Let F,G,H : C → D be three 2-functors and let h : F ⇒ G and k : G⇒
H be two pseudonatural transformations. The horizontal composite of h and k, denoted
h ◦ k, is defined by

1. For each X ∈ C0, (h ◦ k)(X) = h(X) ◦ k(X).

2. For each pair X,Y ∈ C0, h̃ ◦ k = (h̃ ◦ 1k(Y )) · (1h(X) ◦ k̃).
3.6. Definition. Let F,G : C → D be two 2-functors and h, k : F ⇒ G be two pseudo-
natural transformations. A modification φ : h � k is given by a 2-morphism φ(X) ∈
D2(h(X), k(X)), for each X ∈ C0. These 2-morphisms are required to satisfy

h̃(f) · (φ(X) ◦ 1G(f)) = (1F (f) ◦ φ(Y )) · k̃(f),

for any X,Y ∈ C0 and f ∈ C1(X,Y ).
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3.7. Definition. The horizontal and vertical compositions of modifications are directly
induced by the corresponding compositions in D.

3.8. Weakenings. The notion of a 2-category can be weakened to the notion of a bi-
category, in which the associativity of horizontal composition is not given by an equation
between 1-morphisms, but by 2-isomorphisms which are the components of a natural
isomorphism called the 1-associator,

αf,g,h : f ◦ (g ◦ h) ⇒ (f ◦ g) ◦ h,

which satisfies a certain coherence law. Similarly, the unital nature of the horizontal
composition can be weakened by introducing natural isomorphisms [BEN]. However, in
all the examples in this paper the unital isomorphisms are all identities. We call this sort
of bicategory a strictly unital bicategory

The notions of 2-functor, pseudonatural transformation and modification have suitable
generalisations to the case of bicategories. One new phenomenon which occurs is that,
for the 2-functors, the horizontal composition is no longer preserved exactly, but only up
to a family of natural isomorphisms, defined as follows. If F is a 2-functor and f and g
composable 1-mophisms in its domain, then the 2-isomorphisms are

F̃fg : F (f) ◦ F (g) → F (f ◦ g). (1)

In general a 2-functor between bicategories involves weakening the condition F (1f ) = 1F (f)

to an isomorphism. This notion of 2-functor is called a homomorphism in [BEN, STR].
It is also often called a pseudofunctor [KS].

3.9. Definition. A strictly unitary homomorphism is a 2-functor between bicategories
for which the isomorphisms F (1f ) ∼= 1F (f) are all identity 2-morphisms. If additionally,

for all f, g, F̃fg is an identity 2-morphism we call F a strict homomorphism

The strictly unitary condition is also called normal or normalized in some references.
The pseudonatural transformations have a straightforward generalisation to bicategories.

Given two bicategories C and D, then the following result gives a construction of a
new bicategory [STR, GPS].

3.10. Theorem. The 2-functors from C to D, together with their pseudonatural trans-
formations and their modifications form a bicategory bicat(C,D).

3.11. Monoidal structures. The notion of a monoidal structure on a 2-category is
straightforward to define.

3.12. Definition. A monoidal 2-category is a 2-category C together with a 2-functor
� : C × C → C the monoidal product, which is associative and unital. The latter means
that there is a unit object I which is a left and right unit for the monoidal product.

By C × C we mean the cartesian product 2-category. The requirement that � be a 2-
functor means that the interchange law is satisfied as an identity. This is too strict for the
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purposes of this paper, as we need to use bicategories rather than 2-categories. This gives
the notion of a monoidal bicategory, for which the definition is the same as the definition
for a monoidal 2-category, but with the appropriate notion of 2-functor for bicategories
and pseudonatural transformations which give the associative and unital conditions. This
means the 2-functor � : C×C → C carries natural 2-isomorphisms �̃ called the tensorator.
The monoidal structures in the examples of interest to us are not strictly associative either.
There are natural 1-isomorphisms called the 0-associator. We remark that in our examples
the 0-associator is strictly natural and satisfies the pentagon equation on the nose, so all
the other coherers in the general definition of a monoidal bicategory besides the ones
mentioned above are always trivial in this paper. This entire structure, together with
the axioms it obeys, is a special case of the definition of a tricategory given by [GPS], in
which the tricategory has only one object.

3.13. 2-Vector spaces. In this section we recall the definition, due to Kapranov and
Voevodsky [KV], of the monoidal bicategory of 2-vector spaces in the completely coordi-
natized version.

3.14. Definition. We define the monoidal bicategory 2-Vect as follows:

1. 2-Vect0 = N, the set of natural numbers including zero.

2. For any N,M ∈ 2-Vect0, we define the category 2-Vect(N,M) as follows:

i) The set of objects of 2-Vect1(N,M) consists of all N ×M matrices with coeffi-
cients in N.

ii) For any a, b ∈ 2-Vect1(N,M), the set 2-Vect2(a, b) consists of all N ×M ma-
trices whose coefficients are complex matrices such that the i, j-coefficient has
dimension aij × bij. For any a ∈ 2-Vect1(N,M), we define 1a to be the N ×M
matrix such that (1a)

i
j is the identity matrix of dimension aij The vertical com-

position of two composable 2-morphisms is defined by componentwise matrix
multiplication

(µ · ν)ij = µijν
i
j.

3. The unit 1-morphism on an object N , denoted 1N , is given by the N × N iden-
tity matrix. The (horizontal) composition of two 1-morphisms is defined by matrix
multiplication.

The horizontal composition of two composable 2-morphisms is defined by

(µ ◦ ν)ij = ⊕kµ
i
k ⊗ νkj .

4. The horizontal composition is not strictly associative, and so there are associativity
isomorphisms which carry out the corresponding permutations of bases. In detail,
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if f, g, h are composable 1-morphisms, then the associativity 2-morphism αf,g,h has
components the permutation matrices [αf,g,h]

i
j :

⊕
k

[(⊕
l

(
Cf i

l ⊗ Cgl
k

))
⊗ Chk

j

]
→
⊕
l

[
Cf i

l ⊗
(⊕

k

(
Cgl

k ⊗ Chk
j

))]

which map any vector of the form

⊕
k

[(⊕
l

(
xil ⊗ ylk

))⊗ zkj

]

to the corresponding element

⊕
l

[
xil ⊗

(⊕
k

(
ylk ⊗ zkj

))]
.

5. The monoidal product of two objects is defined by

N �M = NM.

For two 1-morphisms we define

(a� b)ijkl = aikb
j
l .

Finally, for two 2-morphisms we define

(µ� ν)ijkl = µik ⊗ νjl .

The unit object is 1.

This monoidal product has a tensorator �̃ and an 0-associator which are again given
by the corresponding permutations of basis elements.

6. The remaining coherers for a monoidal bicategory are trivial.

So far we have defined the structure of the monoidal 2-category. There are also lin-
ear structures in 2-Vect, which we define below. Although we have not defined linear
structures in general, we hope that the definitions below are clear.

3.15. Definition. There are three levels of linear structure in 2-Vect, which we call the
monoidal sum, the direct sum and the sum respectively.

1. The monoidal sum defines a monoidal structure on 2-Vect. For two objects it is
defined as

N �M = N +M,
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for two 1-morphisms as
a� b = a⊕ b

and for two 2-morphisms as
µ� ν = µ⊕ ν.

The zero object is 0. Unlike �̃, which is non-trivial, �̃ is just the identity.

2. The direct sum defines a monoidal structure on each 2-Vect(N,M). The direct sum
of two 1-morphisms a, b in 2-Vect(N,M) is defined by

(a⊕ b)ij = aij + bij.

The direct sum of two 2-morphisms in 2-Vect(N,M) is defined by

(µ⊕ ν)ij = µij ⊕ νij.

The zero 1-morphism, denoted (0), is given by the N ×M-dimensional zero matrix.

3. The sum defines the linear structure in each 2-Vect(N,M). For two 2-morphisms
we define

(µ+ ν)ij = µij + νij.

The zero 2-morphism, denoted ((0)), is given by the matrix all of whose entries are
zero matrices of the right size.

3.16. Definition. Let N ∈ N. We define the general linear categorical group GL(N) ⊂
2-Vect(N,N) to be the categorical group consisting of all invertible 1- and 2-morphisms
in 2-Vect(N,N).

This definition makes sense because the horizontal composition of invertible 1- and
2-morphisms in 2-Vect is in fact strictly associative, as proved in the following lemma.

3.17. Lemma. The monoidal category GL(N) is a categorical group, and the associated
crossed module of groups is given by

(C∗)N 1−−−→ SN ,

where SN is the symmetric group on N letters and 1 the trivial group homomorphism which
maps everything to 1 ∈ SN . The action of SN on (C∗)N is given by the permutations of
the coordinates.

Proof. The only invertible 1-morphisms in 2-Vect(N,N) are the permutation matrices.
The 1-associator for a triple of permutation matrices is trivial, because it is a set of per-
mutation matrices on 0 or 1 dimensional vector spaces. Hence the horizontal composition
in GL(N) is strictly associative and it forms a categorical group.

Between two permutation matrices there can only be an invertible 2-morphism if they
are equal. The reason is that, if the corresponding entries in two permutation matrices
are different, then one of them has to be zero.
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This shows that 2-Vect2(1N , 1N) has its only non-trivial entries on the diagonal and
these are 1-dimensional invertible complex matrices. Hence 2-Vect2(1N , 1N) is isomorphic
to (C∗)N . Theorem 2.5 shows that the action of a permutation matrix P ∈ 2-Vect1(N,N)
on a diagonal matrix a ∈ 2-Vect2(1N , 1N) is given by

PaP−1.

Here we mean the ordinary matrix multiplication, which is what 1P ⊗ a⊗ 1P−1 amounts
to in this case. Thus the element in SN , which corresponds to P , acts on the element in
(C∗)N , which corresponds to a, by permutation of its coordinates.

4. Categorical representations

In this section we give the abstract definitions of categorical representations, the func-
tors between them, the natural transformations between such functors and the monoidal
product. These definitions are analogues of Neuchl’s [N] definitions for Hopf categories.
We also work out a concrete example.

Let G be a group and G its closure (defined in Example 1). One can check that a
representation of G is precisely a functor G → Vect and an intertwiner precisely a nat-
ural transformation between two such functors. This observation motivates the following
definition for categorical groups.

The starting point is the selection of a monoidal bicategory as the category in which
the categorical group is represented. In this paper we discuss only 2-Vect, although other
monoidal bicategories could be used instead (see the remarks in the final section).

Let G be an arbitrary categorical group and let G be its closure, defined in Ex. 3.2.
We first give a conceptual definition.

4.1. Definition. a) A categorical representation of G is a strictly unitary homomorphism
(R, R̃) : G → 2-Vect. We call the non-negative integer R(•) ∈ 2-Vect0 the dimension of
the categorical representation.

b) A 1-intertwiner is a pseudonatural transformation between two categorical represen-
tations.

c) A 2-intertwiner is a modification between two 1-intertwiners with the same source
and target.

Note that Neuchl [N] uses the terms G-functors and G-transformations instead of 1- and
2-intertwiners.

Theorem 3.10 shows that the categorical representations of G, together with the 1- and
2-intertwiners, form a bicategory bicat(G, 2-Vect). To give this the structure of a monoidal
bicategory, we first promote G and 2-Vect to tricategories and use some general results
about those. We consider G as a strict tricategory, denoted G by adding only identity
3-morphisms to the existing strict bicategory. For 2-Vect we take the closure 2-Vect as the
tricategory. By a general result of Gordon, Power and Street [GPS] about tricategories
we know that tricat(G, 2-Vect) forms a tricategory. The objects of this tricategory are
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trihomomorphisms (functors between tricategories). The constant trihomomorphism is
the one that sends every 3-morphism to 111• .

4.2. Lemma. bicat(G, 2-Vect) is the subtricategory of tricat(G, 2-Vect) determined by the
1-, 2- and 3-morphisms on the unique constant trihomomorphism.

Proof. Just check the diagrams in [GPS].

Unfortunately Gordon, Power and Street [GPS] do not give explicit definitions of the
composition rules for the various morphisms in tricategories. Therefore we spell out the
tensor product in bicat(G, 2-Vect) below, which corresponds to the horizontal composition
in tricat(G, 2-Vect). The first definition can also be found in [ROU].

4.3. Lemma. Let (R, R̃) and (T, T̃ ) be two categorical representations. Then the monoidal

product (R� T, R̃� T ) of (R, R̃) and (T, T̃ ) is given by

R� T (X) = R(X) � T (X)

and the following diagram

R(X)R(Y ) � T (X)T (Y )
R̃X,Y �T̃X,Y−−−−−−−→ R(XY ) � T (XY ) = R� T (XY )���(R(X),T (X)),(R(Y ),T (Y ))

�R̃�TX,Y

(R(X) � T (X))(R(Y ) � T (Y )) (R� T (X))(R� T (Y ))

4.4. Lemma. Let (h, h̃) : R1 → R2 and (k, k̃) : T1 → T2 be 1-intertwiners. The monoidal

product (h� k, h̃� k) is given by

h� k(X) = h(X) � k(X)

using on the right the monoidal product in 2-Vect, and by the following diagram

R1 � T1(f) ◦ h� k(Y )
h̃�k−−−→ (h� k(X)) ◦ (R2 � T2(f))∥∥∥ ∥∥∥

(R1(f) � T1(f)) ◦ (h(Y ) � k(Y )) (h(X) � k(X)) ◦ (R2(f) � T2(f))

��
� ��

�
(R1(f) ◦ h(Y )) � (T1(f) ◦ k(Y ))

h̃�k̃−−−→ (h(X) ◦R2(f)) � (k(X) ◦ T2(f))

4.5. Lemma. Let α and β be two 2-intertwiners. The monoidal product is given by

α� β,

using the monoidal product in 2-Vect.

There is also a natural way of defining the monoidal sum of two categorical represen-
tations.
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4.6. Definition. Let (R, R̃) and (T, T̃ ) be two categorical representations. Their monoidal
sum is defined by

R� T (X) = R(X) � T (X),

and
R̃� T̃ (X,Y ) = R̃(X,Y ) � T̃ (X,Y ).

Note that the latter makes sense, because

(R(X) ◦R(Y )) � (T (X) ◦ T (Y )) = (R(X) � T (X)) ◦ (R(Y ) � T (Y ))

holds on the nose, i.e. the 2-isomorphism between both sides of the equation is the identity,
as already noticed in definition 3.15.

Since �̃ is trivial, the definition of their monoidal sum of 1- and 2-intertwiners is much
simpler than that of their monoidal product.

4.7. Definition. Let (h, h̃) : R1 → R2 and (k, k̃) : T1 → T2 be 1-intertwiners. We define

their monoidal sum, (h� k, h̃� k), to be

h� k(X) = h(X) � k(X)

and
h̃� k̃,

using on the right the monoidal sum in 2-Vect.

4.8. Definition. Let α and β be two 2-intertwiners. We define their monoidal sum as

α� β,

using the monoidal product in 2-Vect.

We do not give a precise definition of the direct sum of 1- and 2-intertwiners and the sum
of 2-intertwiners, because we do not need them.

4.9. Strict categorical representations. These definitions can be unpacked by
applying the general definitions of bicategories to this particular situation and expressing
the result in terms of categorical groups. The categorical representations can be formu-
lated in terms of crossed modules. In this way a strictly unitary homomorphism leads
to a weakened notion of morphism between crossed modules, involving a group 2-cocycle
on the object group G corresponding to R̃. The extra conditions on this cocycle appear
to be very complicated. Therefore we restrict our attention to a subclass of categorical
representations in the rest of this paper, which we call strict categorical representations.

4.10. Definition. A strict categorical representation is a strict homomorphism R : G →
2-Vect. This means that R̃X,Y are all identity 2-morphisms.

Restricting to strict categorical representations still gives a monoidal bicategory, as
proved by the following lemma.
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4.11. Lemma. The monoidal product and the monoidal sum of two strict categorical
representations yield strict categorical representations.

Proof. The first claim follows from the fact that the top and the left-hand side of the
diagram in lemma 4.3 are trivial. Note that �̃(R(X),T (X)),(R(Y ),T (Y )) is trivial, because all
matrices in the subscript are permutation matrices.

The second claim is obvious as well, because the monoidal sum of two identity 2-
morphisms is an identity 2-morphism.

Let us now unpack the definition of a strict categorical representation and 1- and
2-intertwiners.

• A strict categorical representation of G amounts to a choice of a non-negative integer
N and a strict homomorphism R : G → GL(N), or equivalently a functorial homo-
momorphism between categorical groups R : G → GL(N). It can also be described
as a homomorphism between the corresponding crossed modules,

E(G)
∂−−−→ G(G)

Rp

� �Rb

(C∗)N 1−−−→ SN

(2)

according to theorem 2.5 and lemma 3.17.

• Let R : G → GL(N) and T : G → GL(M) be two strict categorical representations
of G. A 1-intertwiner between them consists of a 1-morphism h• ∈ 2-Vect1(N,M)
together with a 2-isomorphism h̃(X) ∈ 2-Vect2(R(X) ◦ h•, h• ◦ T (X)), for each
X ∈ G0.

The 1-morphism h• can be thought of as a vector bundle (with fibres of varying
dimension) over the finite set N ×M , the cartesian product of the N -element set
with the M -element set. The data above determine an action of the group G0 on
this vector bundle in the following way.

There is a right action ofX ∈ G0 on the setN , i �→ iRb(X), given by the permutation
matrix Rb(X) (acting on the right) and similarly a right action of G0 on the set M
given by Tb.

4.12. Lemma. The collection of linear maps

h̃(X)ij : h•
iRb(X)
j → h•

i
jTb(X)−1

determines a left action of G0 on the vector bundle h•.
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Proof. The two coherence conditions in definition 3.4 are

h̃(X ◦ Y ) =
(
1R(X) ◦ h̃(Y )

)
·
(
h̃(X) ◦ 1T (Y )

)
h̃(1) = 1h• .

Note that the 1-associators in these expressions are trivial because R and T take
values in the permutation matrices. Taking the (i, j)-th component of h̃ gives

h̃(X ◦ Y )ij = h̃(Y )
iRb(X)
j · h̃(X)ijTb(Y )−1 ,

which is the condition for a left action. This covers the left action of G0 on N ×M
given by (iRb(X), j) �→ (i, jTb(X)−1).

The remaining condition satisfied by the 1-intertwiner is the naturality condition.
This is that the diagram

R(X) ◦ h• h̃(X)−−−→ h• ◦ T (X)

R(f)◦1h•

� �1h•◦T (f)

R(Y ) ◦ h• h̃(Y )−−−→ h• ◦ T (Y )

(3)

commutes.

Since h̃(X) is invertible, this implies the equation on 1-morphisms

R(X) ◦ h• = h• ◦ T (X). (4)

Also restricting naturality to the crossed module data (X = 1), gives the equation

(R(e) ◦ 1h•) · h̃(∂e) = 1h• ◦ T (e) (5)

for e ∈ E(G).

It is possible to show that this last condition is actually sufficient to recover all of
(3).

4.13. Lemma. For intertwiners of strict categorical representations, the naturality
condition (3) follows from condition (5) for all e : 1 → Y and the coherence condition
2(a) of definition 3.4.
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Proof. The naturality condition follows from the following computation. Suppose
f : X → X ◦ Y is an arbitrary morphism in G1. We can write f = 1X ◦ e, where
e : 1 → Y . Then

(R(f) ◦ 1h•) · h̃(X ◦ Y )

=
(
1R(X) ◦R(e) ◦ 1h•

) · ((1R(X) ◦ h̃(Y )
)
·
(
h̃(X) ◦ 1T (Y )

)
(using 2(a) of definition 3.4)

=
(
1R(X) ◦

(
(R(e) ◦ 1h•) · h̃(Y )

))
·
(
h̃(X) ◦ 1T (Y )

)
=
(
1R(X) ◦ 1h• ◦ T (e)

) · (h̃(X) ◦ 1T (Y )

)
(using (5))

= h̃(X) ◦ T (e)

=
(
h̃(X) ◦ 11

)
· (1h• ◦ 1T (X) ◦ T (e)

)
= h̃(X) · (1h• ◦ T (f)) .

In the computation, all 1-associators which occur are the identity.

• Let h = (h•, h̃), k = (k•, k̃) : R → T be 1-intertwiners. A 2-intertwiner between
them consists of a single 2-morphism φ ∈ 2-Vect2(h•, k•).

The condition that this satisfies is that for each X ∈ G0 the following diagram
commutes:

R(X) ◦ h• h̃(X)−−−→ h• ◦ T (X)

1R(X)◦φ
� �φ◦1T (X)

R(X) ◦ k• k̃(X)−−−→ k• ◦ T (X)

(6)

4.14. Example.

4.15. Convention. From now on a categorical representation will always mean a strict
categorical representation.

In this section we work out the categorical representations of a concrete example of a
finite skeletal categorical group. Recall that the crossed modules corresponding to skeletal
categorical groups are determined by a group G and an abelian group E on which G acts
by automorphisms. The simplest example is G = C2, the cyclic group with two elements
±1, and E = C3 = {1, x, x−1}, with the non-trivial action of C2 on C3, −1�x = x−1. We
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call this categorical group G(2, 3). Another way of looking at this example is by defining
the total space of all the morphisms

G(2, 3) ={(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
x 0
0 x−1

)
,

(
x−1 0
0 x

)
,

(
0 x
x−1 0

)
,

(
0 x−1

x 0

)}
.

The source and target of each morphism is determined by the place of the non-zero coef-
ficients of the corresponding matrix, e.g. the sources and targets of the first two matrices
are equal to 1 and −1 respectively. In this matrix notation the monoidal product, corre-
sponding to the horizontal composition in G(2, 3) and denoted by ◦, is defined by matrix
multiplication (giving the dihedral group D3) and the composition, corresponding to the
vertical composition in G(2, 3) and denoted by simple concatenation, by coefficientwise
multiplication.

The constructions will be carried out in this example. The main features of the general
case are apparent in this example; some comments on the generalisations are given at the
end of the section.

We classify all 1- and 2-dimensional categorical representations of G(2, 3).

1. V(1). This is the identity representation defined by Rb(±1) = 1 ∈ S1 and Rp(x) =
1 ∈ C∗. It is the only 1-dimensional categorical representation, due to the following
argument. Obviously Rb(±1) = 1 ∈ S1 has to hold. By (2) we see that R(x) = ξ(x),
where ξ is a complex group character on C3. By the action condition in definition 2.4
we see that ξ(x−1) = ξ(x), so ξ has to be the trivial character and Rp(x) = 1.

2. V(2). This is the trivial 2-dimensional categorical representation defined byRb(±1) =
1 ∈ S2 and Rp(x) = (1, 1) ∈ (C∗)2. As in the 1-dimensional case, the action condi-
tion forces Rp to be trivial if Rb is trivial. Below we show that V(2) is isomorphic
to V(1) � V(1).

3. V(2)ξ. These are the non-trivial 2-dimensional categorical representations, where
Rb(±1) = ±1 ∈ S2 and Rp is determined by one complex group character, ξ, on C3.

By (2) we see that Rp(x) = (ξ(x), ψ(x)), where ξ and ψ are both complex group char-
acters on C3. The action condition now becomes (ξ(x)−1, ψ(x)−1) = (ψ(x), ξ(x)), so
we have ξ = ψ−1. There are no further restriction on ξ. A nice way of picturing the
strict homomorphisms R of these representations is by using the matrix definition
of G(2, 3):

R

((
0 1
1 0

))
=

(
0 1
1 0

)
, R

((
x 0
0 x−1

))
=

(
ξ(x) 0

0 ξ(x)−1

)
.

The image of the other endomorphisms is obtained via horizontal composition.
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Next we study all the 1-intertwiners between these categorical representations. In
Lemma 4.12 we showed that these can be seen as vector bundles with a left action of G0.
In particular, equation (4) holds. The naturality condition simplifies a bit further in this
example. Let (h•, h̃) be a 1-intertwiner between two categorical representations R and T .
By lemma 4.13 the naturality condition reduces to the equation

R(e) ◦ 1h• = 1h• ◦ T (e), (7)

for any e ∈ E(G(2, 3)). Note that this shows that the action on the vector bundle does
not have to satisfy any additional conditions.

First we study the 1-intertwiners between categorical representations of the same di-
mension.

1. C(V(1),V(1)): A 1-intertwiner, in this case, is given by h• = (n), i.e. a 1-dimensional
matrix with a non-negative integer coefficient, and an n-dimensional representation
of C2 denoted by h̃. The naturality condition for 1-endomorphisms does not impose
any restrictions in this case, as one can easily check.

2. C(V(2),V(2)): A 1-intertwiner is given by

h• =

(
n1 n2

n3 n4

)
,

with ni ∈ N for i = 1, 2, 3, 4, and h̃. The naturality condition (7) does not impose
any restrictions in this case, because R is trivial. Just as in the one-dimensional
case we see that h̃ defines a representation of C2 on Cni , for all i = 1, 2, 3, 4.

3. C(V(2)ξ,V(2)ψ): In this case a 1-intertwiner is given by

h• =

(
n1 n2

n3 n4

)
and h̃. The naturality condition imposes restrictions on h. We need consider only

equations (4) and (7). First, let X =

(
0 1
1 0

)
. This gives

(
1n2 1n1

1n4 1n3

)
=

(
1n1 1n2

1n3 1n4

)
◦
(

0 1
1 0

)
=

(
0 1
1 0

)
◦
(

1n1 1n2

1n3 1n4

)
(8)

=

(
1n3 1n4

1n1 1n2

)
.

This shows that n1 = n4 = n and n2 = n3 = m.
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Now consider e =

(
x 0
0 x−1

)
in equation (7). In the same way, this gives(

ξ(x)1n ξ(x)1m
ξ(x)−11m ξ(x)−11n

)
=

(
ψ(x)1n ψ(x)−11m
ψ(x)1m ψ(x)−11n

)
.

Therefore there are three possible cases: a) ψ = ξ �≡ 1, b) ψ = ξ−1 �≡ 1 and c)
ψ = ξ ≡ 1.

a) Since the character group of C3 is isomorphic to C3 we see that ξ �= ξ−1.
Equation (8) holds if and only if n ∈ N is arbitrary, and m = 0. Thus we have

h• =

(
n 0
0 n

)
.

The condition that h̃ is an action on the vector bundle defined by h implies
that we have

h̃(1) =

(
1n 0
0 1n

)
and h̃(−1) =

(
0 A
A−1 0

)
,

where A ∈ GL(n,C) is arbitrary.

b) Equation (8) holds if and only if n = 0, and m ∈ N is arbitrary. Thus we have

h• =

(
0 m
m 0

)
.

Again we can determine h̃ explicitly:

h̃(1) =

(
0 1m

1m 0

)
and h̃(−1) =

(
A 0
0 A−1

)
,

where A ∈ GL(m,C) is arbitrary. Taking m = 1 shows that V(2)ξ and V(2)ξ−1

are isomorphic.

c) Equation (8) holds with no restriction on n and m. Thus we have

h• =

(
n m
m n

)
.

Obviously we can decompose this matrix as(
n m
m n

)
=

(
n 0
0 n

)
⊕
(

0 m
m 0

)
.

As in the previous two cases we see that

h̃(1) =

(
1n 1m
1m 1n

)
and h̃(−1) =

(
A B
B−1 A−1

)
,

with arbitrary A ∈ GL(n,C) and B ∈ GL(m,C).
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Finally let us describe the 1-intertwiners between categorical representations of different
type.

1. Let (h•, h̃) : V(1) → V(2) be a 1-intertwiner. Then h• has the form h• =
(
n m

)
,

where n,m ∈ N. The naturality condition does not impose any restrictions be-
cause both categorical representations are trivial. As before, h̃ simply defines two
representations of C2 of dimensions n and m respectively.

Analogously we see that any 1-intertwiner (h•, h̃) : V(2) → V(1) is of the form

h• =

(
n
m

)
,

with h̃ defining two representations of C2 again. Taking n = 1,m = 0 and n =
0,m = 1 respectively, and h̃ the trivial representation in both cases, shows that
V(2) is isomorphic to V(1) � V(1).

2. Let (h•, h̃) : V(1) → V(2)ξ be a 1-intertwiner. Again h• has the form h• =
(
n m

)
.

The naturality condition now imposes the following restriction:

(
1n 1m

) ◦ (0 1
1 0

)
=
(
1m 1n

)
=
(
1n 1m

)
.

This holds if and only if n = m. Taking e =

(
x 0
0 x−1

)
, we see that ξ has to be

equal to 1. Just as before h̃ defines an action on a vector bundle over 2 with fibre
Cn.

Likewise non-zero 1-intertwiners (h•, h̃) : V(2)ξ → V(1) can be seen to exist if and
only if ξ is trivial and the intertwiners are the transposes of the previous ones.

3. Let (h•, h̃) : V(2) → V(2)ξ be a 1-intertwiner. We already know that V(2) ∼= V(1) �
V(1). Therefore this case reduces to the direct sum of the previous case. Again by
transposition we get the classification of all 1-intertwiners between V(2)ξ and V(2).

The 2-intertwiners are very easy to describe. Given two 1-intertwiners between two
categorical representations, we know that we can interpret them as homogeneous vector
bundles by the above results. A 2-intertwiner between them can then be interpreted as a
bundle map between these homogeneous vector bundles which commutes with the actions
of C2. This interpretation follows immediately from the above and diagram (6).

Let us now have a look at the monoidal product of the above categorical representa-
tions.

1. Clearly we have V(1) � V ∼= V , for any categorical representation V . Because we
also know that V(2) ∼= V(1) � V(1), we see that V(2) � V ∼= V � V .
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2. We now study V(2)ξ � V(2)ψ. The easiest way to understand this tensor product is
by looking at (

ξ(x) 0
0 ξ(x)−1

)
�
(
ψ(x) 0

0 ψ(x)−1

)
=


ξ(x)ψ(x) 0 0 0

0 ξ(x)ψ(x)−1 0 0
0 0 ξ(x)−1ψ(x) 0
0 0 0 ξ(x)−1ψ(x)−1


and (

0 ξ(x)
ξ(x)−1 0

)
�
(

0 ψ(x)
ψ(x)−1 0

)
=


0 0 0 ξ(x)ψ(x)
0 0 ξ(x)ψ(x)−1 0
0 ξ(x)−1ψ(x) 0 0

ξ(x)−1ψ(x)−1 0 0 0

 .

It is now easy to check that

h• =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


and

h̃ =


(1) 0 0 0
0 0 0 (1)
0 (1) 0 0
0 0 (1) 0


define an invertible 1-intertwiner

V(2)ξ � V(2)ψ → V(2)ξψ � V(2)ξψ−1 .

Note that ξψ or ξψ−1 is trivial, for any choice of ξ and ψ.

5. Categorical characters

In this section we study the 1-dimensional (strict) categorical representations of an arbi-
trary categorical group G.
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5.1. Theorem. (a) A one-dimensional categorical representation R of G is completely
determined by a group character ξR on E = E(G) which is invariant under the action of
G = G(G).

(b) A 1-intertwiner (h•, h̃) between two one-dimensional categorical representations R
and T is either zero or given by a representation h̃ : G→ GL(h•) such that

h̃(X) = ξR(e)−1ξT (e), (9)

for X = ∂e and any e ∈ E. The right-hand side of (9) should be read as a scalar matrix
of the right size for the equation to make sense. In particular there exists no non-zero
1-intertwiner if the restrictions of ξR and ξT to ker ∂ ⊂ E are different. If R = T then h̃
has to be trivial on ∂(E). The composition of two 1-intertwiners corresponds to the tensor
product of the two respective representations of G.

(c) Suppose we have two 1-intertwiners between the same pair of categorical represen-
tations, then a 2-intertwiner between them is given by an ordinary intertwiner between
the corresponding representations. The horizontal composition of two 2-intertwiners cor-
responds to the tensor product of the respective ordinary intertwiners, whereas the vertical
composition of two 2-intertwiners corresponds to the ordinary (matrix) product of the two
respective intertwiners.

Proof. (a) The character is ξR(e) = R(e) restricted to e ∈ E. The first claim follows
immediately from diagram (2).

(b) Now consider a 1-intertwiner (h•, h̃) between R and T . In this particular case
h• ∈ Vect1(1, 1) ∼= N, so we can identify h with a natural number. Just as in the previous
section we see that h̃ defines a representation of G on Ch• . Condition (9) expresses the
naturality condition for h and can be read off from diagram (5).

The composite of two 1-intertwiners is given by the tensor product of the respective
representations of G, say h̃1 and h̃2, because, in the case of one-dimensional categorical
representations, we have (see definition 3.5)(

(h̃1) ◦ 1
)
·
(
1 ◦ (h̃2)

)
= (h̃1 ⊗ h̃2),

where the 1’s denote the identity matrices of the right size.
(c) This follows directly from condition (6).

We now apply our results to the examples in Sect. 2.

5.2. Example. Let G be a categorical group and (E,G, ∂,�) the corresponding crossed
module of groups. A one-dimensional categorical representation is determined by a G-
invariant group character on E, say ξ, and is denoted by Vξ. We determine the Hom-
categories between an arbitrary pair Vξ and Vψ. Let (h•, h̃) be an arbitrary 1-intertwiner
between Vξ and Vψ.

1. Suppose G is connected. Then theorem 5.1 says that h̃ is a scalar representation of
G, which is completely determined by ψξ−1. Therefore, for any two characters ξ and
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ψ which coincide on the kernel of ∂, there is exactly one 1-intertwiner between Vξ
and Vψ. The 2-intertwiners are just the ordinary intertwiners between these scalar
representations of G.

2. Suppose G is skeletal. Let Rep(G) be the monoidal category of representations of
G. Then Hom(Vξ,Vψ) = Rep(G), if ξ = ψ, and zero otherwise.

3. Suppose G is discrete, so that E is a normal subgroup of G. Note that in this
case ξ (and φ) have to be characters which are constant on each conjugacy class
of E. Theorem 5.1 says that the restriction of h̃ to E is the scalar representation
of G determined by ψξ−1. A concrete example of some interest is the case where
E = {±1} ⊂ SU(2) = G. We have two characters on E, namely the trivial one, say
ξ, and the inclusion {±1} ⊂ C∗, say ψ. Now an easy exercise reveals that we have

Hom(ξ, ξ) = Hom(ψ, ψ) = Rep(SU(2))even = Rep(SO(3))

and
Hom(ξ, ψ) = Hom(ψ, ξ) = Rep(SU(2))odd,

where the last expression denotes the subcategory of Rep(SU(2)) generated by the
odd spins only.

6. Concluding remarks

In this section we give a rather incomplete sketch of some features of the categorical
representations of general categorical groups and also make some remarks about possible
generalizations of our constructions.

As already proved, a (strict) categorical representation corresponds precisely to a
homomorphism of crossed modules

E(G)
∂−−−→ G(G)

Rp

� �Rb

(C∗)N 1−−−→ SN .

(10)

This leads to the following concrete description of a categorical representation.

6.1. Lemma. An N -dimensional categorical representation of G consists of a group ho-
momorphism Rb : G(G) = G0 → SN whose kernel contains the image of ∂, together with
N group characters ξ1, . . . , ξn on E = E(G) satisfying

ξi(X � e) = ξRb(X)i(e), (11)

for any X ∈ G(G), e ∈ E and i = 1, . . . , N . Here Rb(X) denotes the left action on the
set of N elements.
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Proof. Both Rb and Rp in (10) are group homomorphisms. Clearly Rp is a group homo-
morphism if and only if it defines N group characters. Also (10) is commutative if and
only if the kernel of Rb contains the image of ∂. Finally, (11) is equivalent to the action
condition on (Rb, Rp).

6.2. Remark. Note that (11) implies that each ξi has to be invariant under the action
of ker(Rb), i.e.

ξi(X � e) = ξi(e),

for any X ∈ ker(Rb) and e ∈ E.

6.3. Definition. Let R be a categorical representation.

a) R is called decomposable if there are two non-zero categorical representations S and
T such that R ∼= S � T holds. R is called indecomposable if it is not decomposable.

b) R is called reducible if there exist a categorical representation S of dimension less
than R and two 1-intertwiners h : S → R and h′ : R → S such that h ◦ h′ : S → S
is isomorphic to the identity 1-intertwiner on S. R is called irreducible if it is not
reducible.

Note that any irreducible categorical representation is indecomposable as well, but the
converse is false as the following example shows.

6.4. Example. In the example G(2, 3) of the previous section, we saw that V(2) ∼=
V(1) � V(1) is decomposable and V(2)ξ is irreducible for ξ �= 1. For ξ = 1, we see that
V(2)1 is indecomposable, but reducible. The lemma below shows that all categorical
representations of G(2, 3) of dimension greater than two are decomposable.

6.5. Remark. The appearance of indecomposable reducible categorical representations
is of course due to the fact that the 1-morphisms in 2-Vect are matrices with only non-
negative integer entries. For example, to decompose the non-trivial 2-dimensional repre-
sentation Rb : C2 → S2 as a representation of groups, one uses an intertwiner with negative
and fractional entries. Consequently the monoidal 2-category of categorical representa-
tions of G(2, 3) is not semi-simple (see [M-S] for the precise definition of semi-simplicity).
Therefore it is not clear if it can be used for the construction of topological state-sums,
because semi-simplicity is an essential ingredient in the proof of topological invariance
of these state-sums. Note that one cannot simply ignore the indecomposable reducible
categorical representations, because, as we showed in the previous section, one of the
summands in the decomposition of V(2)ξ � V(2)ψ is equal to V(2)1, for any choice of ξ
and ψ. It seems that this problem also exists in Crane and Yetter’s generalization of
categorical representations [CY-MC].

There are two elementary results about indecomposable categorical representations
that we decided to include in these remarks because they are very easy to prove.
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6.6. Lemma. An N -dimensional categorical representation, R, is indecomposable if and
only if the action of Rb(G(G)) on {1, . . . , N} is transitive.

Proof. Suppose we have R ∼= S � T and dimS = K and dimT = N − K. Clearly
we can write Rb

∼= Sb ⊕ Tb, where ⊕ means the composite of Sb × Tb and the canonical
map between the symmetric groups SK × SN−K → SK+(N−K) = SN , and ∼= means equal
up to conjugation by a fixed permutation. Thus we see that the action of Rb(G(G)) on
{1, . . . , N} is not transitive.

Conversely, suppose that {1, . . . , N} can be written as the union of two non-empty
subsets A and B which are both invariant under the action of Rb(G(G)). By reordering
we may assume that A = {1, . . . , K} and B = {K + 1, . . . , N}. The restrictions of
Rb(G(G)) to A and B respectively yield a decomposition Rb = Sb ⊕ Tb. Take Sp =
(ξ1, . . . , ξK) and Tp = (ξK+1, . . . , ξN). Then condition (11) shows that (Sb, Sp) and (Tb, Tp)
are both categorical representations and R = S⊕T . Note that ∼= had become the identity
here because of our assumption that A = {1, . . . , K} and B = {K + 1, . . . , N}, which
corresponds to the choice of a fixed permutation.

6.7. Lemma. If R is indecomposable, then it is completely determined by Rb and just one
character on E(G) which is invariant under the action of ker(Rb).

Proof. Suppose R is indecomposable. Let i �= j ∈ {1, . . . , N} be arbitrary. By assump-
tion there exists an X ∈ G(G) such that Rb(X)i = j. By (11) we have ξi(X � f) = ξj(f).
Thus, if you fix ξi, then ξj is uniquely determined. Since i, j were arbitrary, this shows
that one character determines uniquely all the others. We already remarked that any
such character has to be invariant under ker(Rb).

6.8. Remark. Given a subgroup H ⊂ G = G(G) of index N , the action of G on G/H
by left (or right) multiplication is transitive. Given an ordering on the elements of G/H
we thus obtain a group homomorphism Rb : G → SN such that Rb(G) acts transitively
on {1, . . . , N}. Another choice of ordering leads to a conjugate group homomorphism.
For any X ∈ G, the construction above applied to XHX−1 yields the homomorphism
XRbX

−1. It is easy to check that the converse is also true: given Rb satisfying the above
condition, the kernel of Rb has index N in G and any group homomorphism G → SN ,
determined by an ordering on G/ ker(Rb), is conjugate to Rb. This sets up a bijective cor-
respondence between conjugacy classes of group homomorphisms G→ SN and conjugacy
classes of subgroups of G of index N .

There is quite some literature on the theory of permutation representations of finite
groups. In this theory the building blocks are the transitive permutation representa-
tions. The key observation about them, from the point of view of representation theory,
is that Mackey’s theory of induced representations carries over to the context of transitive
permutation representations without problems [LLC, LLBC]. This allows for a complete
description of the decomposition of the tensor product of two transitive permutation
representations into a direct sum of transitive permutation representations, for example.
Clearly categorical representations, as defined in this paper, are a generalization of permu-
tation representations, the indecomposable ones being the generalizations of the transitive
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permutation representations, and one could probably generalize some of the techniques
used for the latter to study categorical representations.

Although we have not worked out all the details about general categorical representa-
tions, we can say some more about the categorical representations of skeletal categorical
groups G, of which G(2, 3) is a very simple example. Despite its simplicity the case of
G(2, 3) reveals the general features: an indecomposable categorical representation V cor-
responds to an orbit, G(G)ξ, in the set of characters of E(G), and a homomorphism
G(G) → SN corresponding to a subgroup 1 ⊆ H ⊆ G(G)ξ, where G(G)ξ is the stabilizer of
ξ in G(G). V is irreducible if and only H = G(G)ξ. 1-Intertwiners between two categorical
representations can be interpreted as homogeneous vector bundles on the cartesian prod-
uct of the two orbits in the spaces of characters of E(G). 2-Intertwiners can be interpreted
as maps between homogeneous bundles. The decomposition of the monoidal product of
two indecomposable categorical representions V1 and V2 can be obtained by looking at
the decomposition into orbits of the cartesian product of the two orbits, corresponding to
V1 and V2 respectively, and can, in general, contain indecomposable reducible categorical
representations.

A short remark on the fact that we have only worked out examples of strict categori-
cal representations is in place. If G is skeletal, then nothing terribly interesting happens
when considering general categorical representations. Each N -dimensional indecompos-
able categorical representations is determined by a homomorphism of crossed modules,
just as in the strict case, together with an additional group 2-cocycle on G(G) with values
in (C∗)N . Because we have only considered strict units, the 2-cocycles have to be nor-
malized, but that is the only restriction. The 1-intertwiners between two indecomposable
categorical representations V1 and V2 become projective homogeneous vector bundles on
the cartesian product of the orbits corresponding to V1 and V2, with a projective action
of G(G) which fails to be an ordinary action by the quotient of the 2-cocycles of V1 and
V2. The 2-intertwiners are just maps between these vector bundles which intertwine the
projective actions. However, for general G the categorical representations are not so easy
to describe. We tried to weaken the notion of homomorphism between crossed modules
by introducing a 2-cocycle, but we found that this 2-cocycle has to satisfy an additional
independent equation. Because the interpretation of this equation is not clear, we decided
to work out the strict categorical representations only.

Finally we want to comment on possible generalizations of our framework. One can
consider generalizations of the notion of categorical representation and generalizations
of the notion of categorical group. As an example of the former one could consider
monoidal bicategories other than 2-Vect. For example, one could consider Crane and
Yetter’s monoidal bicategory of measurable categories [CY-MC]. As they remark in their
introduction, this allows for more interesting categorical representations of categorical Lie
groups because the base group can be represented in more general topological symmetry
groups than SN . However, as we remarked above, indecomposable reducible categorical
representations seem to appear in this setting as well, which puts its applicability for
state-sums at risk. Somehow the discreteness of the non-negative integer entries in the
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1-morphisms in 2-Vect has not been solved completely in this new setting.
If one only considers 1-dimensional categorical representations, then, of course, no

indecomposable reducible categorical representations appear, e.g. the last example of
the previous section yields a semi-simple monoidal 2-category and could be used for the
construction of topological state-sums of 3- and 4-dimensional manifolds. We have not
worked out what these invariants are, but possibly they are connected to Yetter’s [Y-EX]
and Roberts [R-EX] refined invariants. One idea for a generalization would be to replace
Vect by a more interesting braided monoidal category, such as the ones appearing in the
representation theory of quantum groups.
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Universidade do Algarve
8005-139 Faro, Portugal
Email: john.barrett@nottingham.ac.uk

mmackaay@ualg.pt

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anony-
mous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/16/20/16-20.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as
they are published. Full text of published articles is available in .dvi, Postscript and PDF. Details will
be e-mailed to new subscribers. To subscribe, send e-mail to tac@mta.ca including a full name and
postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh,
rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LATEX2e is
the preferred flavour. TEX source of articles for publication should be submitted by e-mail directly to
an appropriate Editor. They are listed below. Please obtain detailed information on submission format
and style files from the journal’s WWW server at http://www.tac.mta.ca/tac/. You may also write
to tac@mta.ca to receive details by e-mail.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: mbarr@barrs.org

Transmitting editors.
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