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GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND
COSPANS OF GRAPHS

R. ROSEBRUGH, N. SABADINI AND R. F. C. WALTERS

ABSTRACT. We show that the generic symmetric monoidal category with a commu-
tative separable algebra which has a Y-family of actions is the category of cospans of
finite X-labelled graphs restricted to finite sets as objects, thus providing a syntax for
automata on the alphabet ¥. We use this result to produce semantic functors for 3-
automata.

1. Introduction.

A variety of authors have considered (bi-)categories of cospans (and spans) of graphs
in the study of algebras of processes. The present authors have concentrated attention
on algebras of automata (in [11] , [12], [13], [20], [23]), cospan operations providing the
sequential operations, and span operations corresponding parallel operations. In another
direction, cospans have been used in pushout descriptions of graph rewriting in [7], [8], [24].
This paper concerns principally the first point of view, and in particular the sequential
operations, though results similar to ours are already reported in [7], [8], for application
to rewriting. It is our intention to study the parallel operations and distributive laws
already introduced in [23] in a later paper.

The aim of this paper is to provide a complete syntax for cospans of labelled graphs,
and at the same time provide a method for constructing semantic functors. These two
things are accomplished by showing that the category of cospans of labelled graphs is
initial in a certain context. Consider the category Csp(Graph, /X) whose objects are
finite cardinals, regarded as discrete graphs, and whose arrows are cospans of graphs
labelled by the alphabet Y. This category has a symmetric strict monoidal structure
supplied by the disjoint sum of sets, and a commutative separable algebra structure
on the one element set 1, supplied by the codiagonal (cospan) V : 1 +1 — 1, the
function ! : 0 — 1, and their opposite cospans A : 1 — 141, :1 — 0. In addition,
for each letter of the alphabet ¥ there is a cospan 1 — 1 (the center of the cospan
consists of a two vertices and a single arc labelled by the letter). Our main theorem is
that Csp(Graphg /X)) is the initial such structure in the category of symmetric strict
monoidal categories and symmetric strict monoidal functors.

The first part of the proof consists in identifying the initial strict monoidal category
with a separable algebra as cospans of finite sets. When we announced that result at the
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Vancouver conference [21] we discovered that Lack, as part of work on composing PROPs
using distributive laws, now published in [17], had announced the same result. We show
that freely adjoining ¥ arrows 1 — 1 results in Csp(Graphg /X).

Perhaps some history is in order to make connections with other developments. In
1967 [16] Lawvere identified Frobenius algebras [15] as vector spaces with a multiplication
V and a comultiplication A (and unit ! and counit ;) satisfying

1NVe1eA)=V=(01)1V)(A®1),
(VeolH)(leA)('el)=A=(1c V)(A®1)(1x!).

Independently Carboni and Walters [4] in characterizing the category of relations of a
regular category discovered the equivalent axioms

18V)(A®1)=AV = (Val)(loA). (D)

Following that work they developed a theory of symmetric monoidal categories with a
well-supported self-dual compact closed structure [5], [25], in which the following axiom
was identified

VA =1. (U)

In fact, well-supported compact closed amounts to requiring these last two axioms. At
the Louvain conference André Joyal pointed out that (D) is an axiom characteristic of
2-cobordisms. In 1991 Abrams [1] published a proof that the free symmetric monoidal
category with a Frobenius algebra object is the category 2-Cobord. (Whether there
is a line from Joyal’s remark to Abrams’ paper we do not know.) This result has also
been referred to in the literature as “folklore”. A readable presentation appears in the
monograph of J. Kock [15] devoted to this theorem. In this context it can be seen that
axiom (U) expresses the condition “no holes”, and hence this suggests strongly that adding
this axiom reduces 2-Cobord to Cospan(Sets;_ ). Objects with a monoid and comonoid
structure satisfying (D) and (U) in the category of finite dimensional vector spaces were
identified by Carboni [5], following [6], as separable algebras.

2. Commutative separable algebra objects

2.1. DEFINITION. We are concerned with strictly associative monoidal categories C, i.e.
monoids in Cat with multiplication and unit denoted

®:CxC —C, [:1—C
which are also symmetric, i.e. have the structure of a symmetry
TC,D - C ® D — D X C

natural in C' and D and satisfying 7p.cTc.p = lewp, and the equations:
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Txyez = ly ®@7xz)(Txy ®@12) : X QY ®7Z — Y RZI®X,
Txovz = (Txz@ly)Ix®@Tyvz) : X QY ®Z — ZRX QY.

2.2. EXAMPLE. The category denoted Sg, has natural numbers m,n, ... as objects (and
for notation, m is {0,1,...,m —1}), arrows from m to n are arbitrary functions. Indeed,
St is equivalent to the category of finite sets. The (strict!) monoidal tensor is denoted
+, the “ordinal sum” on objects, that is m +n = {0,...,m +n — 1}. This extends in
the obvious way to arrows. The unit for the tensor is the object 0. Further, with the
symmetry T, : m +n —= n + m being the obvious permutation, Sg, is a symmetric
strict monoidal category.

2.3. EXAMPLE. The category denoted P has natural numbers as objects and permutations
as arrows. The tensor is +, and the symmetry is as for Sg,. This category is the free
symmetric strict monoidal category on an object, a result essentially due to E.H. Moore
[18]. That is, for any symmetric strict monoidal category A, there is a bijection between
symmetric strict monoidal functors F': P — A and objects of A, given by F' —— F(1).
Hence, for any permutation 7 of n and object A of a symmetric strict monoidal category A
we may associate an automorphism of AQ A® A®---® A (n fold) which we also denote,
by abuse of notation, as m; in this way there is a homomorphism from the symmetric
group on n letters to the automorphism group of AR AR A®---® A.

2.4. ExaMPLE. The category Cospan(Sets, ) has the same objects as Sg,. An arrow

. . . f g
from m to n is an equivalence class of pairs of arrows (f,g) = m —— p <— n where

the latter pair is equivalent to (f',¢") = m —— p <2 p exactly if there is a bijection

h :p — p' such that hf = f" and hg = ¢’. We will denote the cospan (f,g), or more
precisely its equivalence class, also as (f, g) : m ~» n to distinguish clearly between arrows
in Cospan(Sets; ) and those in Setss,. Composition is pushout, and is associative for
equivalence classes. The monoidal structure, denoted +, is the same as for Sg, on objects
and extends in the obvious way to arrows. The unit for the tensor is the object 0. Again
there is obvious symmetric structure.

2.5. EXAMPLE. Our principal example is Csp(Graphg /¥): objects are again natural
numbers m,n, ..., arrows m ~> n are isomorphism classes of cospans of Y-labelled finite
graphs where a cospan of labelled finite graphs from m to n is a labelled finite graph G
in Sz, and two functions

(Y0, 71) = m —2> vert(G) <—n

Composition is pushout.
An isomorphism from this cospan to another

(v0,71) =m 0 vert(H) < n
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is a labelled graph isomorphism v : G — H such that

VY% = 7,711 =N

Of course, since they are isomorphic objects of Sg,, we actually have vert(G) = vert(H),
and similarly for the edges of G and H. The monoidal structure, denoted +, is again as
in Sg, on objects, with the obvious extension to arrows. The unit is 0. The symmetric
structure is obvious.

2.6. ExaMPLE. The last two examples are special cases of the fact that if C is a category
with finite colimits then Cospan(C) is a symmetric monoidal category. A full subcat-
egory, restricted to objects closed under sum, and for which the sum may be chosen as
strictly associative, yields a symmetric strict monoidal category. For example, Cospan(V-
Cat) for a cocomplete symmetric monoidal category V is symmetric monoidal, and if we
restrict the objects to be natural numbers, considered as discrete V-categories, we obtain
symmetric strict monoidal categories Csp(V-Cat). We will be interested in the special
cases V = 2, Sets and p(X*), the power set of the free monoid on .

2.7. DEFINITION. A commutative separable algebra in a symmetric monoidal category is
an object A equipped with four arrows

'l — A VIARA — A A:A — ARA, A — 1

such that (A,V,!) form a commutative monoid, (A, A,j) form a commutative comonoid
and the following three axioms hold:

(IaV)AR14) =AV=(VRI1I4)(14®A): ARA — AR A, (D)

VA = 1,4. (U)

We will denote the algebra as (A,!,V,A,j ) or, when there is no confusion, simply as A.

NOTE. These axioms are highly redundant. For example, clearly only one of the axioms
(D) is needed, the associative laws for the (co-)monoid structure are deducible, and so
on, see [15].

2.8. PROPOSITION. If every object A of a symmetric monoidal category A has a commu-
tative separable algebra structure !4,V s, Aa,i o then A is self-dual compact closed.

PROOF. ([4]) Define n4 to be Ayly : I — A — A® A, and €4 to be j4V4 : A®
A — A — I. We have only two equations to check, namely that (¢4 ®14)(14a®mn4) =
laand (1 ®eq)(na ® 14) = 14. But
(a®14)(1a®na) = (14VaA®@14)(14 ® Aula)
=(4®10)(Va®14)(1a® An)(1a®!4)
= (14 ®14)AsV4(14®!4)
=14

The proof of the second equation is similar. [
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2.9. DEFINITION. A symmetric monoidal category in which every object has a commuta-
tive separable algebra structure is called well-supported compact closed (wscc).

NoOTE. From the fact that self-dual compact closed amounts to the requirement that
each object A is adjoint to itself, and from general facts about adjoints, a compact closed
structure on a symmetric monoidal category is essentially unique. We note that Carboni
[5] also requires a compatibility condition between the monoidal and separable structures
in a well-supported compact closed category. However, a wscc category as defined here is
equivalent to one with his compatibility condition.

2.10. PROPOSITION. If objects A and B of symmetric monoidal category A admit commu-
tative separable algebra structures then so does A® B. As a consequence, if all the objects
of a symmetric monoidal category are tensor powers of a single commutative separable
algebra, the category is well-supported compact closed.

PROOF. The following arrows furnish a commutative separable algebra structure for A®Q B:

laop =1a@lp: I — A® B,
Vage = (Va®VE)(1a®@Tap®14) : ARB®A®B — A® B,
Apgp=(1aR@Tap®@14) (A4 @A) : A®B — ARB®AR® B,
MeB =1a®ip: A®B — I

Checking the equations is straightforward. [

2.11. ExAMPLE. If C is a category with finite colimits then Cospan(C) is well-supported
compact closed — the commutative separable algebra structure on object A is provided
by unit ! = (1,14) : 0 ~ A, multiplication V = (V4,14) : A+ A ~» A, comultiplication
A= (14,V4): A~ A+ A and counit j= (14,!) : A ~» 0. Notice we have overloaded
the symbols by using them for the appropriate operations in C and also Cospan(C). As
a consequence Cospan(Sets;_), Csp(Graph,_/3) and Csp(V-Cat) are well-supported
compact closed.

2.12. DEFINITION. A commutative separable algebra with a Y-family of actions in a
symmetric monoidal category is a commutative separable algebra A together with a family
of arrows (a, : A —= A)ses. Notice that the arrows are not required to preserve any
operations.

2.13. EXAMPLE. In both Csp(Graph; /Y) and Csp(p(X*)-Cat) the object 1, as well
as being a commutative separable algebra as noted above, has a ¥-family of actions. In
Csp(Graph, /¥) the cospan a, = (0y, 01) corresponding to oeX has as middle graph
two vertices 0, 1 with a single edge 0 — 1 labelled by o; the image of J is 0, and of 0,
is 1. In Csp(p(X*)-Cat) the cospan «, corresponding to g€l has as middle category two
objects 0,1 with the only non-trivial homset being hom(0, 1) = {o}.
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3. The syntax of cospans of graphs

3.1. PROPOSITION. [17], [21] The object 1 with structure (1,11, V1, A1,j1) in the category
Cospan(Sets; ) is the generic commutative separable algebra in the category of sym-
metric strict monoidal categories and symmetric strict monoidal functors. That is, for
each symmetric strict monoidal category A there is a bijection between symmetric strict

monoidal functors ® : Cospan(Sets, ) — A and commutative separable algebras A in
A, given by the assignment ® — (P(1), D(1y), P(V1), P(A1), D(j1)).

NOTE. As we have remarked in the example above, any object of Cospan(Sets;, ),
and hence in particular 1, has a commutative separable algebra structure, and such a
structure is clearly preserved by a symmetric strict monoidal functor. Lack’s proof [17]
of the proposition uses a decomposition of the notion of commutative separable algebra,
into other algebraic structures connected by rewrite laws (traditionally called distributive
laws [2]), just as the notion of ring may be decomposed into monoid plus abelian group
connected by a distributive law. This decomposition works also at the level of theories
[22]. The most interesting aspect is that the axioms (D) and (U), considered as rewrite
laws compute the pushout up to isomorphism of functions between finite sets. Notice
that the result should not be confused with that of Gates [9] which deals with generic
separable objects in extensive categories, where separable has a different meaning.

The main result of this paper is the following:

3.2. PROPOSITION. The object 1 with structure (1,11, V1, A1,i1, (0o1)eex) in the category
Csp(Graphyg, /Y) is the generic commutative separable algebra with a ¥-family of actions
in the category of symmetric strict monoidal categories and symmetric strict monoidal
functors. That s, for each symmetric strict monoidal category A there is a bijection be-
tween symmetric strict monoidal functors ¥ : Csp(Graphg, /¥) — A and commutative
separable algebras A with a X-family of actions, in A, given by the assignment

Ui (\Ij(‘l)7 \I/(Vl)7 \IJ(AI)7 \Ij(il)7 (\Ij(aml))ﬂE)‘

For simplicity we will prove this result in the special case ¥ = 1, that is, in the unla-
belled case Csp(Graph,, ). For this we need a normal form for arrows in Csp(Graphy, ),
provided in the following proposition.

3.3. PROPOSITION. Any cospan (79,71) : m — G <— n in Csp(Graphy,) may be
written in the form

m— G <—n= (1n+5E)(¢+(e‘!’Eal))(lm“‘nE)' (NF)

where E is the edge set of G, V is the vertex set, the source and target functions of G are
do,dy, and
¢ = ((vldo), (11|dr)):m+E —V < n+FE

is the cospan of sets induced by the v’s and d’s. Note that+ oy is a cospan E ~~ E, and
ecE

Ng:0~ E+ FE cp: E+ E ~ 0 are unit and counit of the compact closed structure on
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cospans of sets.
The expression (NF) is unique in the following sense. Whenever

m —= G < n= (i +ep)(¥ + (+01))(In +1p)

it 1s the case that
=Ly +m)p(ln+7")

where 7 is a cospan of the form m = (my,1g) : E ~ E with m, : E — E a bijection.

3.4. REMARK. It is useful to have pictures in doing calculations in compact closed cat-
egories. The reader may be interested to view calculations aided by pictures in traced
monoidal categories [10] which are valid also for compact closed categories. The picture
we have in mind for normal forms is as follows:

m n

—_— >

NE + o €E
eell

PROOF OF PROPOSITION 3.3. The crucial (double) pushout to calculate in Graphyg,, is
of the diagram

E<LE+E*’">V+(4;EQ1) < E+E-Y-E,

where r = dy+ (4 0p) and s = dy + ( + 01¢). The result is V + (+ ;) quotiented by the
eell eell E

relation that the first vertex of a; must be dy(e), and the second d; (e). That is, the graph
G is constructed by taking E disjoint arrows, and V' additional vertices, and equating the
sources and targets of the disjoint arrows according to the functions dy, d;.

Regarding the uniqueness, suppose (1, +¢eg) (¢’ + ( —i—E a1))(1,, +ng) is an expression which

evaluates to (75,7;) : m —= G’ <— n, a cospan isomorphic to m — G <— n. Then
¢ = ((vldy), (v1]d})) where df,, d are the source and target of G'. There exist bijections
mo:V — V,m : E — FE such that mydy = djym, mody = d}m and w9y = g, To71 = 71
These equations are exactly what is required to verify that ¢ = (1,, + m)é(1, + 1),
noting that the inverse cospan to (m,1g) : E ~ E in Csp(Graphy, ) is (1g,m)). n

PROOF OF PROPOSITION 3.2.(unlabelled case) First notice that there is an inclusion
Cospan(Sets; ) — Csp(Graph,, )

which preserves the object 1 and its structure (1,!,Vy,Aq,j1) as a commutative sep-
arable algebra — just regard a set as a graph with vertices but no edges. Consider
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A = (A4, Va,Auja, aa), a commutative separable algebra with an action, in A. By
Proposition 3.1 there is a unique functor ® : Cospan(Sets;, ) — A such that

(©(1), 2(1), @(V1), B(A1), B(11)) = (A, !4, Va, An,ia)-

We need to show that ® extends uniquely to a functor ¥ : Csp(Graphg ) — A such
that U(ay) = aa.

Uniqueness: To show that there is at most one extension W of @ it is sufficient to show that
any cospan (y,71) = m — G <— n of labelled graphs may be given by an expression
involving composition, tensor +, symmetry 7, cospans of finite sets, and the actions «;.
But this is provided by the normal form.

FEzistence: We define W using the normal forms of cospans of graphs. If cospan (Yo, 71) =
m —> G <— n has normal form (1, +cg)((¢ + (+ a1))(1,, + ng) then we define
eeE

U(m — G <— n) by
W = G~ 1) = (8(1,) ® B(ex)(B(6) ® (@ ) (@(1,) © D(ys) € A.

eeF

We need to check that U is well-defined, and then that ¥ is functorial and monoidal.
We suspend our proof of Proposition 3.2 to consider three general lemmas concerning
self-dual compact closed categories. Then well-definedness will follow from Lemma 3.5,
functoriality from Lemma 3.6, and monoidality from Lemma 3.7. In fact we will prove
just the first of the three lemmas in detail leaving the others to the reader.

3.5. LEMMA. Let X, A be objects of a self-dual compact closed category. Consider P =
®A, and consider arrows o : A — A, ¢ : X ® P — X ® P, and a permutation
iel
m: P — P. Then
(ly @ep)(ly @ mMp(lx @71 @ (®a))(1x @np)
=(ly ®ep)(¢® (%a))(lx ®1np). (1)

PICTURE OF THE STATEMENT OF LEMMA 3.5

lir=—yiis Wl ==

PrROOF OF LEMMA 3.5. It is easy to check, using naturality of 7 and the compact closed

property, that (Tgi‘ ® laga)Naga = (laga ® Ta a)Naga. A consequence is that if P = ® A
’ i€l

and m: P — P is a permutation then

(75" @ 1p)np = (1@ 7p)np.
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A similar property holds for ep. Then

Left hand side of (1) = (1y ® (ep(mp ® 1p)))(¢ ® (%a))(lx ® ((7p' @ 1p)np))
= (ly ® (ep(lp @ mp1))) (¢ ® (®a))(1x @ (1p @ 7p)ip))

(by the above remark)
=(ly ®ep)(p® 7_1(@}04)7)(1)( ® np)

= (ly @ep)(@¢@n ' m(@a))(1x @ 1p)
(by naturality of 7)
= (ly ®ep)(¢® (®a))(1x @ np).

3.6. LEMMA. [Composite of normal forms| Let X,Y, Z, A be objects of a self-dual compact

closed category. Consider P = ®A,Q = ® A, and consider arrows a : A — A, ¢ :
iel jedJ
XRQP —=YQ®RP,Yv:Y®RQ — Z®Q. Then

(12 8 2)( @ (20))(1y @ ng)[(1y ® )6 © (H))(Lx © 1)
~ (128 2rs0)(0 @ ( & ))(Lx @1rso),

where § = (1 @ 10.p)(Y @ 1p)(ly @ 7pg)(¢ ® 1g).

PICTURE OF THE STATEMENT OF LEMMA 3.6

¢ v B 0 R A Y 3
R, R, \—/

3.7. LEMMA. [Tensor of normal forms] Let X,Y, Z, W, A be objects of a self-dual compact

closed category. Consider P = ®A,Q = ® A, and consider arrows o« : A — A, ¢ :
iel jeJ

X®P —=YQ®P,¢Yv:ZQ — WRQ. Then

[(ly ® ep)(¢p® (ga))(lx @np)] @ [(Iw ®eq) (¥ ® (J%Ot»(lz ®1q)]

= (lyew ®cpeg) (0 ® (k %JOZ))OX@Z ® NPeq),

where 0 = (1y @ 7w @ lw) (0 @) (1x @ T2p ® 1g).
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PICTURE OF THE STATEMENT OF LEMMA 3.7

9 B
<@ _ aw
T

Proofs of Lemmas 3.6 and 3.7 are straightforward calculations in a self-dual compact
closed category. n

COMPLETING THE PROOF OF PROPOSITION 3.2.

Recall that ® preserves the separable algebra structure of 1 and hence the com-
pact closed structure of Cospan(Sets; ) (which is also the compact closed structure of
Csp(Graph, )). The ambiguity in the definition of ¥ arises from the ambiguity of nor-

mal forms described in Proposition 3.3, but this ambiguity is exactly resolved by Lemma
3.5.

For the two points remaining, functoriality and monoidality, we prove only the first
since the style of proof for second is the same. Consider two cospans S, S’of graphs with
normal forms

(Lo +e)(0+ (+ 1)L +8), (L +ep) (@' + (4 1)) (Ln +1m),
respectively. By Lemma 3.6 in the category Csp(Graph,_ ), the composite S’S' is

(1p + eprp) (1 + 7o,6)(¢ + 1) (Ln + 7o) (0 + 1p) + () dm 4 05em).

But

W(S'S) =
(®(1,) @ P(epre) ) (P{(1, ® Te ) (¢ @ 1p)(1, @ Tep) (¢ @ 15)}®
®( @ aa))(@(1

1
m) ® ®(Npipr))
eeE+FE’

= (lop @ cap+e))((Lap ® Top o) (P(¢) ® log)(lon ® Topow)
(2(¢) @ lop) ® &( ﬁE,aA»u@m ® No(5+E))

= W (S)W(S9),

this last, by Lemma 3.6 applied in the category A. [
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4. Semantic functors

Semantic functors are structure-preserving functors out of Csp(Graph,,_/Y) into suitable
categories. We have discussed the construction of such functors in the context of automata
in [14], and would like to look at some examples suggested by Proposition 3.2. Clearly
this proposition suggests looking for symmetric monoidal categories with commutative
separable algebra objects, or even well-supported compact closed categories, as codomains
for semantic functors.

4.1. EXaMPLE. Csp(Cat) contains a commutative separable algebra 1 together with a

specific cospan 1 ~%. 2<% 1 whose middle category is the ordered set 2 = {0 < 1}.

The image of J is 0 and of 9; is 1. This structure in Csp(Cat) induces, by Proposition
3.2 a strict monoidal functor

U : Csp(Graph;,) — Csp(Cat).

But this functor may be identified in another way. The free category construction F (on
a graph) preserves pushouts and sums, and hence induces a strict monoidal functor

Csp(F) : Csp(Graph,,) — Csp(Cat),

which also takes the generic commutative separable algebra and its action to 1 together

with the cospan 1 % 2% 1. Hence ¥ = F. The intuition that this is a semantic
functor comes from the fact that paths in a graph form the arrows in the free category on
the graph. This is related to the idea in [19] that behaviours in a place-transition Petri
net consist of arrows in the free monoidal category generated by the net. If we compose
F with

Csp(Ilp) : Csp(Cat) — Csp(Shn),

where Il is the connected components functor, we obtain a behaviour closely related to
the classical partial function behaviour [12], in which the duration of a computation is
collapsed to zero.

4.2. EXAMPLE. Csp(p(X*)-Cat) contains a commutative separable algebra 1 together
with a ¥ family of cospans 1 % Qo A q (0eX) with «, having two objects 0,1
and non-trivial homset hom(0, 1) = {o}. This structure in Csp(p(3X*)-Cat) induces, by

Proposition 3.2 a strict monoidal functor

U : Csp(Graph; /3) — Csp(p(X*)-Cat).

This functor may be identified in another way. The free p(3*) category construction (on
a ©(X*) graph [3]) preserves pushouts and sums, and hence induces a strict monoidal
functor

Csp(Graph; /¥) — Csp(p(X*)-Cat),
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which also takes the generic commutative separable algebra and its actions to 1 together
with the cospans «,, and hence this is the functor ¥. The intuition that this is a semantic
functor comes from the fact behaviours in a labelled graph are languages traced out by
paths in the graph. In [12] we described a different behaviour, in a slightly different
context, where the codomain category was the (non-self-dual) compact closed category
Int(Matr(p(X*)), the Int construction [10] applied to matrices of languages. To make a
comparison between the two notions of behaviour it may be useful to notice that a cospan
m — C <— n in Csp(p(X*)) induces a functor m+n — C which may be factorized
into two functors, a bijective-on-objects m+n — C’ and a fully faithful C' — C, the
first of which might be considered a more precise notion of behaviour. Instead, an m x n
matrix of languages may be construed as a bijective-on-objects functor from m +n to the
rather special p(3*)-category whose (non-trivial) homs are the entries of the matrix. The
role in composition of pushout in Csp(p(X*)) is taken by trace in Int(Matr(p(3*)).

4.3. REMARK. The intuition guiding this paper is that the actions (o, )ses are basic
processes out of which composite processes are produced by the operations of a separable
algebra, and the monoidal category operations. In a future paper we will study the
situation in which the basic processes are typed, and also in which there are parallel
operations on basic operations which extend to composite processes via distributive laws
like those in [23] (just as product operations on polynomials arise by distributive laws
from products of monomials).
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