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ON THE REPRESENTABILITY OF ACTIONS
IN A SEMI-ABELIAN CATEGORY

F. BORCEUX, G. JANELIDZE, AND G.M. KELLY

ABSTRACT. We consider a semi-abelian category V and we write Act(G, X)) for the set
of actions of the object G on the object X, in the sense of the theory of semi-direct
products in V. We investigate the representability of the functor Act(—, X) in the case
where V is locally presentable, with finite limits commuting with filtered colimits. This
contains all categories of models of a semi-abelian theory in a Grothendieck topos, thus
in particular all semi-abelian varieties of universal algebra. For such categories, we
prove first that the representability of Act(—, X) reduces to the preservation of binary
coproducts. Next we give both a very simple necessary condition and a very simple
sufficient condition, in terms of amalgamation properties, for the preservation of binary
coproducts by the functor Act(—, X) in a general semi-abelian category. Finally, we
exhibit the precise form of the more involved “if and only if” amalgamation property
corresponding to the representability of actions: this condition is in particular related
to a new notion of “normalization of a morphism”. We provide also a wide supply of
algebraic examples and counter-examples, giving in particular evidence of the relevance
of the object representing Act(—, X), when it turns out to exist.

1. Actions and split exact sequences

A semi-abelian category is a Barr-exact, Bourn-protomodular, finitely complete and
finitely cocomplete category with a zero object 0. The existence of finite limits and a
zero object implies that Bourn-protomodularity is equivalent to, and so can be replaced
with, the following split version of the short five lemma:
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ko 52

K —— A &
2
given a commutative diagram of “kernels of split epimorphisms”
q;S; = 1Q, kl = Ker q;, 9, = 1, 2
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the morphism « is an isomorphism (see [25], originally from [13]).

This implies the more precise formulation of the short five lemma, where as usual a
sequence of morphisms is called exact when the image of each morphism is the kernel of
the next one.

1.1. LEMMA. [Short five lemma] In a semi-abelian category, let us consider a commu-
tative diagram of short exact sequences.

0 y L sp % ,pq 0
h flo ) |9
0 X —> A —5— G 0

1. One has always p = Coker k (and analogously, ¢ = Cokerl).

2. If g and h are isomorphisms, f is an isomorphism.

3. If g and h are monomorphisms, f is a monomorphism.

4. If g and h are reqular epimorphisms, f is a reqular epimorphism.

5. h is an isomorphism if and only if the square (*) is a pullback.

PROOF. See e.g. [7] 4.6 and [8], 4.2.4 and 4.2.5.! n

The algebraic theories T giving rise to a semi-abelian variety Set” of set-theoretical
models have been characterized in [14]: they are the theories containing, for some natural
number n € N

e exactly one constant 0;
e 1 binary operations «; satisfying a;(x,z) = 0;
e a (n+ 1)-ary operation 6 satisfying Q(al(z, Y)s .y an(x,y), y) = .

For example, a theory T with a unique constant 0 and binary operations + and — satisfying
the group axioms is semi-abelian: simply put

TL:L a(x,y) =T —Y, 9(1’,:1./) =T +Y.

Now let V be an arbitrary semi-abelian category. A point over an object G of V is a
triple (A, p, s), where p: A——G and s: G——> A are morphisms in V with ps = 15. The
points over G form a category Pt(G) when we define a morphism f: (A, p, s)— (B, q,t)

IFor the facility of the reader, we refer often to [8] with precise references, instead of sending him back
to a wide number of original papers.
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to be a morphism f: A——>B in V for which ¢f = p and fs = t (see [10]). Upon
choosing for each point (A, p,s) a definite kernel x: Kerp——A of p, we get a functor
K: Pt(G)——V sending (A, p, s) to Ker p; this functor has the left adjoint sending X to

(G+X,(1,0): G+ X—G,i: G—G + X))

(where i is the coprojection), and it is monadic (see [13]). The corresponding monad on
V is written as Gb—, its value at X being the (chosen) kernel Gb X of (1,0): G+ X —G.
It is shown in [9] that G — Gb— is a functor from V to the category of monads on V.

Given a (Gb—)-algebra (X&), the corresponding action £: GbX —— X of the monad
Gb— on the object X of V will also be called an action of the object G on X, or simply a
G-action on X; we write Act(G, X) for the set of such actions. A morphism f: G—H
in V gives a morphism fb—: Gb — — Hb— of monads, composition with which gives
a morphism Act(f, X): Act(H, X)——>Act(G, X) of sets; so that Act(—, X) constitutes a
contravariant functor from V to the category Set of sets. Our concern in this paper is
with the representability of this functor; that is, with the existence of an object [X] of V
and a natural isomorphism Act(G, X) = V(G, [X]).

We first need an alternative description of Act(G, X)) in terms of split extensions. This
description, given in lemma 1.3 below, goes back to [13] and was given in more details in
[9], although as part of wider calculations; so as to keep the present paper self-contained,
we give here the following direct argument.

Let us call an algebra (X, &) for the monad Gb— simply a G-algebra, writing G-Alg
for the category of these, with U: G-Alg——V for the forgetful functor sending (X, &)
to X, and with W: Pt(G) ——>G-Alg for the canonical comparison functor having UW =
K: Pt(G)—V. To say that K is monadic is to say that W is an equivalence. We may
of course denote a G-algebra (X, &) by a single letter such as C'.

Given a G-algebra (Y, 7) and an isomorphism f: X ——Y in V), there is a unique action
¢ of G on X for which f: (X,£)——(Y,n) is a morphism — in fact an isomorphism — of
G-algebras; we are forced to take for £ the composite

ax_f say vy Ty

We say that the G-action & — the G-structure of the algebra (X, &) — has been obtained
by transporting along the isomorphism f the G-structure on (Y, 7).

Act(G, X) is in effect the set of G-algebras with underlying object X. Write ACT(G, X)
for the set whose elements are pairs (C, ¢) consisting of a G-algebra C' together with an
isomorphism c¢: X —>UC in V. There is a function ACT(G, X)——>Act(G, X) sending
(C,c) to the G-action on X obtained by transporting along ¢ the action of G on C;
and clearly Act(G, X) is isomorphic to the quotient of ACT(G, X) by the equivalence
relation ~, where (C,c) ~ (D,d) whenever dc~': UC——-UD is a morphism C'—D of
G-algebras — that is, whenever dc™': UC——=UD is U f for some f: C—>D (necessarily
unique, and necessarily invertible) in G-Alg.
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We can imitate the formation of ACT(G, X), of the equivalence relation ~, and
of the quotient set Act(G,X) = ACT(G,X)/ ~, with any faithful and conserva-
tive functor into V in place of U. In particular, write SPLEXT(G, X) for the ana-
logue of ACT(G,X) when U is replaced by K: Pt(G)——>V. An object (E,e) of
SPLEXT(G, X) is an object E of Pt(G) together with an isomorphism e: X —> K E;
we have (E,e) ~ (H,h) when he™': KE——KH is Kg for some (necessarily unique
and 1nvert1ble) g: EHH in Pt(G); and we define SplExt(G,X) as the quotient set
SPLEXT(G, X)/ ~. Since UW = K, there is a function SPLEXT(G, X)—ACT(G, X)
sending (E, e) to (W E, e), which respects the equivalence relations ~, and hence induces
a function SplExt(G, X)——>Act(G, X; which is easily seen to be a bijection because W is
an equivalence.

An object of SPLEXT(G, X)) consists of an object £ = (A,p,s) of Pt(G) and an
isomorphism e: X —> K F = Ker p; equivalently, it consists of a short exact sequence

S
0 x_k A5G0 (1)

where ps = 1 and where k (= ke) is some kernel of p (as distinct from the chosen kernel
k: Kerp>—A).

1.2. DEFINITION. [In a semi-abelian category a short exact sequence with split quotient
part as in (1) is said to be a split exact sequence, and to constitute a split extension of G
by X. We call a monomorphism k: X >—> A protosplit if it forms the kernel part of such
a sequence. (Note that in the abelian case, “protosplit” reduces to “split”.)

It is immediate that the elements of SPLEXT(G, X)) corresponding to two such se-
quences (k, A,p,s) and (k', A", p’,s') are equivalent under the relation ~ precisely when
there is a morphism f: A——>A’ of V (necessarily invertible by Lemma 1.1) satisfying
fk=FK,pf=p, and fs = s’. When this is so, the two split extensions are said to be
isomorphic; thus SplExt(G, X) is the set of isomorphism classes of split extensions of G
by X. Summing up, we have established:

1.3. LEMMA.  For objects G and X in a semi-abelian category, the comparison functor
W: Pt(G) —G-Alg induces a bijection

7 SpIExt(G, X)) = Act(G, X) (2)

between the set of isomorphism classes of split extensions of G by X and the set of G-
actions on X. [

The right side here is a contravariant functor of G; we now make the left side into
such a functor. Given a split extension (k, A,p,s) of G by X as in (1) and a morphism
g: H——G, let the pullback of p and g be given by ¢: B——H and f: B——A, let
t: H—— B be the unique morphism with ft = sg and ¢t = 1, and let [: X —— B be the
unique morphism with fl = k and gl = 0. In fact the monomorphism [ is a kernel of ¢; for
if gz = 0 we have pfr = gqr = 0, so that fo = ky for some y; whereupon fxr = ky = fly
while gz = 0 = qly, giving x = ly. Thus (I, B, ¢, t) is a split extension of H by X.
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The isomorphism class of the split extension (I, B, q,t) is independent of the choice
of the pullback, and depends only on the isomorphism class of (k, A, p, s); so the process
gives a function

SplExt(g, X): SplExt(G, X) ————>SplExt(H, X),

which clearly makes SplExt(—, X) into a contravariant functor from V to Set.

In proving the following proposition, we use the explicit description of the equivalence
W: Pt(G)——>G-Alg, as given in Section 6 of [9]: W(A,p,s) is K(A,p,s) = Kerp with
the G-action (: Gb(Ker p) ——>Kerp where ( is the unique morphism with k¢ equal to the
composite

(s, k)

Gb(Kerp)#G + (Kerp) -2 A,
in which X is the (chosen) kernel of (1,0): G + (Kerp) —G.

1.4. PROPOSITION.  The bijection 1 of (2) above extends to an isomorphism
7: SplExt(—, X) = Act(—, X) (3)

of functors.

PrOOF. The function SPLEXT(G, X)—ACT(G, X) sends (E,e) to (WE,e), and the
surjection ACT(G, X)——>Act(G, X) transports the structure of WE along e to obtain an
action on X. Accordingly the bijection 7 takes the isomorphism class of (k, A, p, s) to
the action &: GhX — X, where k¢ is the composite

XA g x Ry

where A is the kernel of (1,0): G + X —>G. Now let g: H——>G, and let SplExt(g, X)
take the isomorphism class of (k, A, p, s) to that of (I, B, q,t); as above, the image of this
under 7y is the action n: HbX ——> X where [n is the composite

HbX — A SsH+ X %B :
It follows that n is the composite

mx-9X sapx & L x.

for
kE(gpX) = (s, k)A(gX)
=(s,k)(g+ X)X\ by the naturality of A
= J(t, DA = fln = k.

where f: A——B is the morphism used above when describing the functoriality of
SplExt(—, X). That is to say, n = Act(g, X)¢&, as desired. n
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As we said, our concern in this paper is with the representability of the functor
Act(—, X); that is, with the existence of an object [X] of V and a natural isomorphism

Act(G, X) = V(G, [X]);

this is a very strong property. In fact, from now on, we shall always work with the
isomorphic — but more handy — functor SplExt(—, X) (see proposition 1.4).
Let us give at once examples of such situations.

1.5. PROPOSITION.

1. When V is the semi-abelian category of groups, each functor Act(—, X) is repre-
sentable by the group Aut(—, X) of automorphisms of X .

2. When V 1is the semi-abelian category of Lie algebras on a ring R, each functor
Act(—, X) is representable by the Lie algebra Der(X) of derivations of X.

3. When &£ is a cartesian closed category and V 1is the corresponding category of in-
ternal groups (respectively, internal Lie algebras), each functor SplExt(—, X) is still
representable.

4. When & is a topos with Natural Number Object andV s the corresponding category of
internal groups (respectively, internal Lie rings), V is semi-abelian and each functor
Act(—, X) is representable. "

PROOF. Statements 1, 2, 3 are reformulations of well-known results, as explained in [9].
Notice that in condition 3 of proposition 1.5, the category V is generally not semi-abelian:
thus the functor Act(—, X') does not exist in general, while the functor SplExt(—, X) still
makes sense.

In statement 4, the theory T of internal groups (resp. internal Lie rings) admits a
finite presentation. Therefore, the corresponding category €' of models in a topos £ with
Natural Number Object is finitely cocomplete (see [31]). Trivially, T is pointed. Tt is
exact since so is € (see [2] 5.11). It is protomodular by [8] 3.1.16. It is thus semi-abelian.
One concludes by statement 3 and proposition 1.4. [

In this paper, we consider first a certain number of other basic examples, where the
functor Act(—, X)) is representable by an easily describable object. And next we switch
to the main concern of the paper, namely, the proof of a general representability theorem
for Act(—, X).

2. Associative algebras

The developments in this section have non-trivial intersections with several considerations
in [32] and [3].

We fix once for all a base ring R, which is commutative and unital. Every “algebra”
considered in this section is an associative R-algebra, not necessarily commutative, not
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necessarily unital; every morphism is a morphism of such algebras. Analogously, given
such an algebra A, the term “ left A-module” will always mean an A-R-bimodule, and
analogously on the right.

We write simply Alg for the category of R-algebras. This category is semi-abelian (see
[14]), thus it is equipped with a notion of semi-direct product and a notion of action of
an algebra GG on an algebra X. Of course when R = Z, the category Alg reduces to the
category Rg of rings.

2.1. PROPOSITION.  For a fized algebra G, there is an equivalence of categories between
1. the category of G-bialgebras;
2. the category Pt(G) of points over G in Alg.

Proor. By a G-bialgebra X, we mean an algebra X equipped with the structure of a
G-bimodule and satisfying the additional algebra axioms

/

g(za') = (gz)2’, (vg)a’ = x(g2"), (xa')g = x(2'g)

for g € G and z,2' € X.
Given a G-bialgebra X, define A to be the semi-direct product G x X, which is the
cartesian product of the corresponding R-algebras, equipped with the multiplication

<g7 :C> (.gla x/) = (99/7 giL‘/ + xg/ + i[)l'/).

We obtain a point p, s: G X X <SG by defining

plg,z) =g, s(g)=(9,0).

Notice that X = Kerp.

Conversely, a split epimorphism p, s: A5G of R-algebras is in particular a split
epimorphism of R-modules, thus A = G x X as an R-module, with X = Kerp. Notice
that given x € X and g € G,

p(s(9)z) = ps(g)p(x) = g0 =0

thus s(g)x € X = Kerp. Analogously, xs(g) € X. The actions of G on X are then given
by

gr =s(g) -z, xg=w-s(g). =

Proposition 2.1 shows thus that the notion of algebra action, in the sense of the theory

of semi-abelian categories, is exactly given by the notion of G-bialgebra structure on an

algebra X. In order to study the representability of the functor Act(—, X) for an algebra
X, we prove first the following lemma:
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2.2. LEMMA.  Let X be an algebra. Write LEnd(X) and REnd(X) for, respectively, the
algebras of left-X -linear and right-X -linear endomorphisms of X, with the composition as
multiplication. Then

(X]={(f,9)|Vz,2’ € X f(z) -2’ =z g(z')} C LEnd(X)° x REnd(X)
15 a subalgebra of the product.
ProoF. This is routine calculation. ]
2.3. PROPOSITION.  Given an algebra X, the functor
Act(—, X): Alg————>Set
is representable by the algebra [ X] of lemma 2.2 as soon as
Vf € LEnd(X) Vg € REnd(X) fg=gf.

Proor. It is immediate to observe that a (G-bialgebra structure on X is the same thing
as two algebra homomorphisms

A G———LEnd(X, X)), p: G———REnd(X, X)
satisfying the additional conditions
1. Vge GVr,2’ € X Mg)(z) o' =x- p(g)(x’),
2. Vg, e GVxr € X )\(g)(p( ) ()\ )

The first condition means simply that the pair (A, p) factors through the subalgebra [X].
The second condition holds by assumption on X. [

Writing IJ for the usual multiplication of two-sided ideals in an algebra, we get an
easy sufficient condition for the representability of the functor Act(—, X):

2.4. PROPOSITION.  Let X be an algebra such that XX = X. Then the functor
Act(—, X): Alg———>Set
1s representable.

PROOF. The assumption means that every element x € X can be written as © =
> yizi, with n € N and y;, z; € X. Then given f € LEnd(X) and g € REnd(X), we get

Flotw) = 1 <g (Z y)> ~ (Zg@)) DWNE
=y (gyif(zi)) =g < <Zy2)> = g(f(x))

thus fg = gf and one concludes by proposition 2.3. [
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Things become more simple in the category ComAlg of commutative algebras (without
necessarily a unit). The results could be deduced from those for arbitrary algebras, but
a direct argument is almost as short and more enlightening.

2.5. PROPOSITION. For a fixed commutative algebra G, there is an equivalence of
categories between

1. the category of commutative G-algebras;

2. the category Pt(G) of points over G in ComAlg.

ProoOF. Analogous to that of proposition 2.1. [

Proposition 2.5 shows thus that the notion of commutative algebra action, in the
sense of the theory of semi-abelian categories, is exactly given by the notion of G-algebra
structure on a commutative algebra X.

2.6. THEOREM.  Given a commutative algebra X, the following conditions are equiva-
lent:

1. the functor
Act(—, X): ComAlg——Set

18 representable;

2. the algebra End(X) of X -linear endomorphisms of X is commutative.
In these conditions, the functor Act(—, X) is represented by End(X).

ProOOF. (2 = 1). It is immediate to observe that a G-algebra structure on X is the
same thing as an algebra homomorphism G——>End(X), where End(X) is equipped with
the pointwise R-module structure and the composition as multiplication. By proposi-
tion 2.5, the algebra End(X) represents the functor Act(—, X)) as soon as this algebra is
commutative.

Conversely, suppose that the functor Act(—, X) is representable by a commutative
algebra [X]. Proposition 2.5 and the observation at the beginning of this proof show now
the existence of natural isomorphisms of functors

ComAlg(—, [X]) = Act(—, X) = Alg(—, End(X)).

In particular, the identity on [X] corresponds by these bijections to an algebra homomor-
phism wu: [X]——End(X). For every commutative algebra G, composition with u induces
thus a bijection

Alg(G, [X]) = ComAlg(G, [X]) —=—>Alg(G, End(X)).

The free non necessarily commutative algebra on one generator is the algebra R*[t] of
polynomials with coefficients in R and a zero constant term. But this algebra is commu-
tative, thus can be chosen as algebra GG in the bijection above. And since it is a strong
generator in the category Alg of all algebras, u is an isomorphism. [
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Again we deduce:

2.7. PROPOSITION. Let X be a commutative algebra such that XX = X. Then the
algebra End(X) is commutative and represents the functor

Act(—, X): ComAlg——Set.

PROOF. See the proof of proposition 2.4. m

Let us now consider some straightforward examples of interest.

2.8. PROPOSITION. When the commutative algebra X has one of the following prop-
erties:

o X is Taylor-reqular;
o X s pure;
o X is von Neumann-reqular;
e X s Boolean;
o X s unital;
the algebra End(X) is commutative and represents the functor
Act(—, X): ComAlg———>Set.

PrROOF. An X-module M is Taylor-regular (see [42]) when the scalar multiplication
X ®x M——M is an isomorphism. Putting M = X, one concludes by proposition 2.7
since the image of the multiplication is precisely the ideal X X.

An ideal I < X is pure (see [5]) when

Veel deel x=zxe.

Putting I = X, we get a special case of a Taylor-regular algebra.
The algebra X is von Neumann regular when

Vee X dJye X z=uzxyx.

This is a special case of a pure algebra: put ¢ = yx.
The algebra X is Boolean when

Ve e X zx = x.

This is a special case of a von Neumann regular algebra: put y = x.
Finally every unital algebra is pure: simply choose ¢ = 1. [
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3. Boolean rings

This section studies the case of the category BooRg of Boolean rings. We know already
that plain ring actions on a Boolean ring are representable (see proposition 2.8). One has
also:

3.1. PROPOSITION. Given a Boolean ring X, the ring End(X) is Boolean and still
represents the functor
Act(—, X): BooRg——>Set.

PROOF. The ring End(X) is Boolean, simply because its multiplication coincides with
the pointwise multiplication. Indeed, given f,h € End(X)

F(h(@)) = f(h(@z)) = f(zh(z) = F(@)h(x).

Notice moreover that computing (x + z)? yields at once = + z = 0.
We know by proposition 2.5 that every split exact sequence of rings has the form

S
0 x_k GMX%TG%O

for some G-algebra structure on X. When G and X are Boolean, then G x X is Boolean
as well since

(9.2) = (9,2)> = (¢*, gz + gv + 2°) = (9,97 + gz + ) = (3.0 + ) = (9, x).

Thus every split exact sequence in ComRg with G and X Boolean is a split exact sequence
in BooRg. This proves that the functor Act(—, X') on BooRg is the restriction of the functor
Act(—, X)) on ComRg. One concludes by proposition 2.6, since End(X) is Boolean. n

Let us also mention here a useful result, which will turn out to have close connections
with our general representability theorem (see proposition 6.2).

3.2. PROPOSITION. The category BooRg of Boolean rings satisfies the amalgamation
property (see definition 6.1).

PROOF. A Boolean algebra can be defined as a Boolean ring with unit (see [4]); the
correspondence between the various operations is given by

zVy=x+ay+y, xAy==zy, v+y=(xA-y V(-zAy).

The category Bool of Boolean algebras is thus a subcategory of BooRg: the subcategory
of Boolean rings with a unit and morphisms preserving that unit.

Notice further that writing 2 = {0, 1} for the two-element Boolean algebra, BooRg is
equivalent to the slice category Bool/2. The morphisms f: B——2 of Boolean algebras
correspond bijectively with the maximal ideals f~'(0) C B; and each (maximal) ideal is
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a Boolean ring. Conversely, given a Boolean ring R without necessarily a unit, R is a
maximal ideal in the following Boolean ring R = R x {0, 1}, admitting (0, 1) as a unit:

(r,n)+ (s,m) =(r+s,n+m), (r,n)x(s,m)=(rs+nr+ ms,nm).

The category Bool of Boolean algebras satisfies the amalgamation property (see [20] or
[30]), from which each slice category Bool/B does, thus in particular the category BooRg
of Boolean rings. n

4. Commutative von Neumann regular rings
A ring X (without necessarily a unit) is von Neumann regular when
Ve X Jye X zyr =ux.
Putting 2* = yxy one gets further
x=xxr, ¥ =x"rr.

In the commutative case, an element x* with those properties is necessarily unique (see
for example [27], V.2.6). Indeed if 2’ is another such element

r* = xfrxt = 2t ed vt = 2t = ¥ 2x

and analogously starting from x’. This proves that the theory of commutative von Neu-
mann regular rings is algebraic and can be obtained from the theory of commutative rings
by adding a unary operation ( )* satisfying the two axioms above. This is of course a
semi-abelian theory, since it contains a group operation and has a unique constant 0 (see
14]).

The uniqueness of x* forces every ring homomorphism between commutative regular
rings to preserves the operation ( )*. Thus the category ComRegRg of commutative regular
rings is a full subcategory of the category ComRg of commutative rings.

Let us first summarize several well-known facts (see, e.g.[38]).

4.1. LEMMA.  Writing a, a;, b, c, e for elements of a commutative von Neumann regular
ring R:

1. (ab)* = a*b*;

2. Va Je e?=e, e =¢*, a=ae;

3. Vay,...,a, Jee? =e, e=¢€*, aje=ai,...,a,e = Qp;
4. (a=10b) < (Ve ac=bc);

Proor. (1) follows at once from the uniqueness of (ab)*. For (2), choose e = a*a. Given
a, b with corresponding idempotents e, ¢’ as in condition 2, put e = e + ¢’ — e€’; iterate
the process to get condition 3; put ¢ = e to get condition 4. [
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4.2. COROLLARY. Every finitely generated object R of the category of commutative
von Neumann regular rings is a unital ring.

PRrROOF. Write aq,...,a, for a family of generators; choose e as in condition 3 of
lemma 4.1. It suffices to prove that e remains a unit for every element constructed form
the generators a; and the operations +, —, x and ( )*. Only the last case requires a
comment: if re = e, then

x¥e = x'xx’e = xfrext = rfra” = a”. ]
Proposition 2.8 gives us a first bit of information concerning the representability of
actions for von Neumann regular rings. Let us observe further that:

4.3. LEMMA.  When X is a commutative von Neumann reqular ring, the ring End(X)
of X-linear endomorphisms of X is still a commutative von Neumann reqular ring.

PROOF. By proposition 2.8, End(X) is commutative. Given f € End(X), define
f(x) = (f(:zc*))*7 let us prove that this makes End(X) a von Neumann regular ring.
First,

F(ab) = (F((@b))) = (F@b)" = (a"F(7)" = a™ (F7)" = af*(b)
Next
[*(a+be = [ ((a+b)e) = (a+b)f*(c) = af*(c) +bf*(e)
= [*(ac) + f(be) = [*(a)e + f(b)e = (f*(a) + 17 (B))e

and so by lemma 4.1.4, f* € End(X).
It remains to observe that ff*f = f. Given a € R and e as in lemma 4.1.2, we have

)= (1) = (f(e)"
Given two endomorphisms f, g € End(X) we have also
fgle) = fglee) = f(egle)) = f(e)g(e)

and therefore

f1fe) = fle)f*(e)f(e) = f(e)(f(e)) fle) = fle).

Finally
fff(a) = ff flae) =aff f(e) = af(e) = f(ac) = f(a). =
4.4. LEMMA.  Consider a split exact sequence
0 Xk A%G%O

in the category of commutative rings. When X and G are von Neumann reqular rings, A
15 a von Neumann reqular ring as well.
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Proor. In the locally finitely presentable category ComRegRg of commutative von
Neumann regular rings, every object G is the filtered colimit (o;: G;>—>G);e; of its
finitely generated subobjects. But filtered colimits are computed as in the category of
sets, thus are also filtered colimits in the category of all commutative rings.

Pulling back the split exact sequence of the statement along each morphism o; yields
a filtered diagram of split exact sequences, still with the kernel X (see lemma 1.1.5).

Si
0 x ki A

> Gi——0.

By universality of filtered colimits, A = colim;c; A;. If we can prove that each A; is a von
Neumann regular ring, the same will hold for A, as a filtered colimit of von Neumann
regular rings. But each ring G; is unital by corollary 4.2. So it suffices to prove the
statement in the special case where the ring GG is unital.

Let us prove next that we can reduce further the problem to the case where both G
and X are unital. So we suppose already that G is unital and, for simplicity, we view
both s and k& as canonical inclusions.

Write Xe for the ideal of X generated by an idempotent element e. If €’ is another
idempotent element such that ee’ = e, then Xe C Xe'. By lemma 4.1.3, the family of
ideals Xe, with e = €2 € R, is thus filtered. But still by lemma 4.1.2, the ring X is
generated by its idempotent elements. Thus finally X is the filtered union of its principal
ideals Xe with e idempotent. Of course, each of these ideals is a unital ring: the unit is
simply e.

For each e = €2 € X, we consider further

A ={ze+glre X, ge G} C A
We observe that:
1. Since X is an ideal in A, each A, is a subring of A.

2. Each ring A, still contains G, so that the pair (g, s) restricts as a split epimorphism
Ge; Se Ae %G

3. Since g(ze + g) = g,
Kerg. = Xe = {ze|lr € X} = {z|z € X, ze = z}.

4. Since A = G x X as abelian groups (see propositions 2.5, 2.1) and X is the filtered
union of the various Xe, A is the filtered union of the various A, = G x Xe.

By this last observation, it suffices to prove that each A, is a von Neumann regular ring.
And this time we have a split exact sequence

Se
0 Xe Ae%qG%O
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with both Xe and G commutative von Neumann regular rings with a unit.

So we have reduced the problem to the case where both X and G admit a unit. In
that case we shall prove that the ring A is isomorphic to the ring G x X. And since the
product of two von Neumann regular rings is trivially a von Neumann regular ring, the
proof will be complete.

We know already that A and G x X are isomorphic as abelian groups (see proposi-
tions 2.5, 2.1). We still view k£ and s as canonical inclusions and we write u € X, v € G
for the units of these two rings. Since each element of A can be written as = + g with
x € X and g € G, it follows at once that e = u+ v — uv € A is a unit for the ring A:

(x+g)(u+v—w)=x+av—a0v+gut+g—gu=1x+g.
Now since u and e — u are idempotent elements of A, the morphism
A———A(e —u) x Au, a— (a(e — u),au)
is an isomorphism of rings, with inverse
Ale —u) x Au———A, (a,b) — a+b.
It remains to prove that we have ring isomorphisms
Ale —u) =G, Au=X.
The second isomorphism is easy: u is the unit of X and X is an ideal of A, thus
X =XuC Au C X.

To prove the first isomorphism, notice first that ¢(u) = 0 implies g(e) = g(v) = v.
Consider then the mapping
G———A(e—u), g gle—u)
which is a ring homomorphism, since e — u is idempotent. This mapping is injective
because g(e —u) = 0 forces ge = gu € X and thus
g9 =gv=a(g)qle) = q(ge) = 0.

The mapping is also surjective because every a € A can be written a = g+ z, with g € G
and x € X, and

ale—u)=(g+x)e—u)=gle—u)+rze—azu=gle—u)+r—zr=gle—u). =

4.5. PROPOSITION.  Let V be the semi-abelian category of commutative von Neumann
reqular rings. For every object X € V), the functor Act(—, X) is representable by the
commutative von Neumann regular ring End(X) of X-linear endomorphisms of X.

PROOF. By lemma 4.4, the functor Act(—, X) of the statement is the restriction of the
corresponding functor defined on the category of all commutative rings. Since End(X) is
a von Neumann regular ring by lemma 4.3, we conclude by proposition 2.8. [



ON THE REPRESENTABILITY OF ACTIONS IN A SEMI-ABELIAN CATEGORY 259

As for Boolean rings, let us conclude this section with proving the amalgamation
property in the category of commutative von Neumann regular rings.

4.6. LEMMA. The category of (not necessarily unital) commutative von Neumann
reqular rings satisfies the amalgamation property.

PROOF. In a locally finitely presentable category, every finite diagram can be presented
as the filtered colimit of a family of diagrams of the same shape, whose all objects are
finitely presentable (see [19], the uniformization lemma). Taking the images of the various
canonical morphisms, we conclude that every finite diagram is the filtered colimit of a
family of diagrams with the same shape, whose all objects are finitely generated subobjects
of the original ones.

Consider now a pushout da = v of commutative von Neumann regular rings, with
a and [ injective. Applying the argument above to the diagram («, ), write it as a
filtered colimit of diagrams («;, 3;), with each X; a finitely generated subobject of X and
analogously for A; and B;.

X 2 5 4 X, Y 5 A
B 4 Bi 0;

The morphisms «; and ; are still injective, as restrictions of o and ; define (C;, 6;, ;) to
be their pushout (which of course is still finitely generated). The pushout da = /3 is the
filtered colimit of the pushouts d;c;; = 7;0;; thus if 7; and 9; turn out to be monomorphisms,
so are ¢ and 7. So, it suffices to prove the amalgamation property for finitely generated
commutative regular rings. By corollary 4.2, we have reduced the problem to the case
where the rings are unital.

Let us thus assume that X, A, B have a unit. Of course, a and [ have no reason
to preserve the unit. Writing Ra for the principal ideal generated by an element a of a
commutative ring R, we consider the following squares, where the various morphisms are
the restrictions of «, 3, 7, .

X 25 4a(1) 0 »——A(1— (1))
b1 01 P

BB(1)—;>Coa(l) B(1 = 8(1))—=;—C (1 = da(1))
Now given an idempotent element e in a commutative ring R, the ideal Re is always
a unital ring (with unit e) and is also a retract of R, with the multiplication by e as
a retraction. Moreover when R is regular, so is every ideal [ < R, since @ € I implies
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-k

1* = ¢*1* € I. Thus the two squares above are still pushouts of commutative regular
rings, as retracts of the pushout da = .

But the left hand square is now a pushout in the category of unital commutative von
Neumann regular rings and morphisms preserving the unit. This category satisfies the
amalgamation property (see [18] or [30]), thus d; and 7, are injective. And the right hand
pushout is in fact a coproduct: therefore d and -, are injective as well, with retractions
(id,0) and (0, id).

Finally, if R is a commutative ring with unit and e € R is idempotent, as already
observed in the proof of lemma 4.4, the morphism

R———>Rex R(1—e), r+ (re,r(1—e))
is an isomorphism: it is trivially injective and the pair (ue,v(1 — €)) is the image of

ue +v(1 —e). Via such isomorphisms, we conclude that § = §; x dy and v = vy X 79, thus
0 and vy are injective. [

5. Locally well-presentable semi-abelian categories

We switch now to the proof of a general representability theorem for the functors
SplExt(—, X). We shall prove such a theorem for a very wide class of semi-abelian
categories V: the locally well-presentable ones. For such categories, we reduce first the
representability of the functors

SplExt(—, X): V———Set
to the preservation of binary coproducts.

5.1. DEFINITION. A category V is locally well-presentable when
1. 'V 1s locally presentable;
2. in'V, finite limits commute with filtered colimits.

Of course every locally finitely presentable category is locally well-presentable. But
also all Grothendieck toposes are locally well-presentable (see [22], or [6] 3.4.16) and
these are generally not locally finitely presentable. In fact, the models of a semi-abelian
algebraic theory in a Grothendieck topos £ constitute always a semi-abelian locally well-
presentable category (see proposition 5.2). Putting & = Set, this contains in particular
the case of the semi-abelian varieties of universal algebra.

5.2. PROPOSITION. The category E* of models of a semi-abelian theory T in a
Grothendieck topos £ is locally well-presentable.
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PROOF. Trivially, ET is pointed. It is exact since so is € (see [2] 5.11). It is protomodular
by [8] 3.1.16. It is also semi-abelian locally presentable (see [22] or [6] 3.4.16 and [1] 2.63);
thus in particular it is complete and cocomplete. So ET is already semi-abelian by [25]
2.5. Finally if £ is the topos of sheaves on a site (C,7), then £T is a localization of the
category of T-models in the topos of presheaves Set®”. In the case of presheaves, finite
limits and filtered colimits of T-models are computed pointwise, thus commute. And the
reflection to the category £ preserves finite limits and filtered colimits. [

The following two results are essentially part of the “folklore”, but we did not find an
explicit reference for them. Of course when we say that a contravariant functor preserves
some colimits, we clearly mean that it transforms these colimits in limits.

5.3. PROPOSITION. Let V be a locally presentable category. A contravariant functor
F:V——Set is representable if and only if it preserves small colimits.

PrROOF. The category V is cocomplete and has a generating set; it is also co-well-powered
(see [1], 1.58). One concludes by [29], 4.90. "

Let us recall that a finitely complete category V is a Mal’tsev category when every
reflexive relation in V is at once an equivalence relation (see [15], [16], [17], [35]. Semi-
abelian categories are Mal’tsev categories (see [25]).

5.4. PROPOSITION. Let V be a finitely cocomplete Barr-exact Mal’tsev category. A
contravariant functor F:V——>Set preserves finite colimits if and only if it preserves

1. the initial object;
2. binary coproducts;
3. coequalizers of kernel pairs.

When the category V is also locally presentable, the functor F is representable when,
moreover, it preserves

4. filtered colimits.

Proor. Conditions 1 and 2 take care of all finite coproducts. But in a category with finite
coproducts, every finite colimit can be presented as the coequalizer of a pair of morphisms
with a common section (see [33], exercise V-2-1). Given such a pair (u,v) with common
section r as in diagram 1, consider the image factorization (u,v) = pr. By assumption,
the composite (u,v)r is the diagonal of B x B. Thus R is a reflexive relation on B and
by the Mal’tsev property, an equivalence relation. By Barr-exactness of V (see [2]), R is
a kernel pair relation. Since 7 is an epimorphism, one has still ¢ = Coker (p1p, p2p) and
thus (p1p, p2p) is the kernel pair of q.
Consider now for simplicity the covariant functor

F:V——Set®.
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r

{ u

A—=B 15 q
v

dor]l

RMp B x B

Diagram 1

By condition 4 in the statement, F' preserves regular epimorphisms, but also the coequal-
izer ¢ = Coker (p1p, p2p). Thus F () is an epimorphism and therefore

F(q) = Coker (F(p1p), F(pap))
= Coker ( (p1p) F (), F(pzp)F(W))
= Coker (F(u), F(v)).

F
F

This concludes the proof that F' preserves all finite colimits.

Suppose next that V is also locally presentable. An arbitrary colimit is the filtered
colimit of its finite subcolimits, thus condition 4 forces the preservation of all small col-
imits. By proposition 5.3, F' is then representable. [

We now switch back to the functor SplExt(—, X).

5.5. LEMMA. Let 'V be a semi-abelian category. The functor SplExt(—, X) preserves
the initial object.

Proor. When G = 0 in the split exact sequence of definition 1.2, k£ is an isomorphism
and thus SplExt(0, X) is a singleton. n

5.6. LEMMA. Let V be a semi-abelian category. The functor SplExt(—, X) preserves
the coequalizers of kernel pairs.

PrROOF. In V, let us consider a regular epimorphism v and its kernel pair (u,v). We
must prove to have an equalizer in Set

0% SplExt(u, X
SplExt(H, X) SplExt(P, X).
SplExt(v, X

SplExt(, X)2PIEXE(:

We prove first the injectivity of SplExt(y, X). Given a point (A, p, s) over GG, consider
its pullback (B, q,t) over H, as in the following diagram.
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u /
C —3B—>4
UI

wl |r ql |t plls

u

PTHﬁ>G

Since yu = v, pulling back (B, ¢,t) along u or v yields the same point (C,w,r) over P.
Now ~' is a strong epimorphism since so is 7, while (u/,v’) is the kernel pair of 4 since
(u,v) is the kernel pair of 7. Therefore v/ = Coker (u/,v"). As a consequence, (4, p,s) is
indeed entirely determined via a coequalizer process from the left hand square. Thus if
two points over G have the same pullback over H, they are isomorphic.

For the surjectivity, still using the same diagram, consider now a split exact se-
quence ([, q,t) € SplExt(H, X) whose pullbacks along u and v are the same: let us write
(m,w,r) € SplExt(P, X) for this pullback. We put further 4" = Coker (v’,v’) and p, s are
the factorizations of ¢, ¢t through the cokernels. Trivially ps = 14.

By a well-known Barr—Kock result (see [2], 6.10), the square py’ = vq is a pullback
since so are the squares qu’ = uw and ¢gv’ = vw. By lemma 1.1, the kernel k& = Kerp is
isomorphic to [ = Ker g, thus (k,p,l) € SplExt(G, X). So (I,q,t) is the image of (k,p,s)
under SplExt(y, X). "

5.7. LEMMA. Let V be a locally well-presentable semi-abelian category. The functor
SplExt(—, X) preserves filtered colimits.

Proor. This is an immediate consequence of the commutation between filtered colimits
and kernels in V. Notice that a filtered colimit of a constant diagram on X is again X.m

As a conclusion of the various results of this section, we get:

5.8. THEOREM. Let V be a semi-abelian category. For a fized object X € V), the
following conditions are equivalent:

1. the functor SplExt(—, X) preserves binary coproducts;
2. the functor SplExt(—, X) preserves finite colimits.
When V is also locally well-presentable, those conditions are further equivalent to:

3. the functor SplExt(—, X) is representable. n

6. A necessary condition and some sufficient conditions

Let us first recall the standard form of the amalgamation property.
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6.1. DEFINITION. In a category with pushouts, two monomorphisms I, m with the
same domain X satisfy the amalgamation property when in the pushout square

X %nl Sy

Mo 01

Sz >5751 +x 52

the morphisms o1 and oo are still monomorphisms.

Here is at once a necessary condition for the representability of actions.

6.2. PROPOSITION. Let X be an object of a semi-abelian category V. If the functor
SplExt(—, X) preserves binary coproducts (in particular, when it is representable), the
amalgamation property holds in V' for protosplit monomorphisms with domain X (see
definition 1.2).

PROOF.  Start with two split exact sequences (I,q,t) and (m,r,w) as in diagram 2.
Since the functor SplExt(—, X) preserves binary coproducts, there is a unique split exact

B —— G

.
C<—= H
w

Diagram 2

sequence (k,p, s) such that the squares 0gq = psp and oyw = psc are pullbacks. The
morphisms og and oy are monomorphisms, with retractions (1¢,0) and (0,1x). So sp
and s¢ are monomorphisms and the square sgl = k = sgm is commutative. Thus sg and
s¢ factor through the pushout of [, m and, since sg, s¢ are monomorphisms, so are the
morphisms of this pushout. ]

Let us immediately exhibit a sufficient condition for the representability of actions:
this result is in fact a corollary of the more general considerations of section 4. We use
the notation of definition 6.1.
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6.3. PROPOSITION. LetV be a semi-abelian category. Suppose that given two protosplit
monomorphisms ny, no with domain X, the diagonal n = o;n; of their pushout is a normal
monomorphism. Then the functor SplExt(—, X) preserves finite colimits. Moreover, when
V is also locally well-presentable, the functor SplExt(—, X) is representable.

PROOF. Anticipating on definition 7.1 and lemma 7.2, the morphism n is its own
universal normalization. Thus the conditions of theorem 8.5 are satisfied and the functors
SplExt(—, X) are representable. n

Notice that proposition 6.3 does not require the morphisms o; to be monomorphisms.
But of course, propositions 6.3 and 6.2 force this to be the case. It is interesting to notice
moreover that with the notation of proposition 6.3:

e n being a monomorphism is a necessary condition for the representability of
SplExt(—, X) (proposition 6.2);

e 1 being a normal monomorphism is a sufficient condition (proposition 6.3).

Thus the necessary and sufficient condition is “squeezed” between these two properties.
In the applications, it is often more convenient to use the following variation on propo-
sition 6.3.

6.4. DEFINITION. A semi-abelian category V satisfies the axiom of normality of unions
when given a commutative square of subobjects

X1t s p

m SB

CTA

if X is normal in both B and C', then it is also normal in their union BV C.
6.5. THEOREM.  Let V be a semi-abelian category. If V satisfies

1. the amalgamation property for normal monomorphisms;

2. the normality of unions;

then every functor SplExt(—, X) preserves finite limits. When moreover V is locally well-
presentable, every functor SplExt(—, X) is representable.

PrROOF. In the pushout of definition 6.1, oy and o, are now monomorphisms, so that
the pushout square is a union. One concludes by proposition 6.3. [
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Let us now exhibit the link between our axiom of normality of unions and D. Bourn’s
axiom of strong protomodularity. We thank D. Bourn for fruitful exchanges of messages
concerning this.

6.6. PROPOSITION.  In a semi-abelian category V, consider a short exact sequence

0 K—Fk sa_ 4 50 0.

For a subobject s: S>—> A, the union KV S>— A is the subobject ¢! (q(S))
Proor. Trivially,
K=q¢0)Cq"(a(8), S<Sqa(al9)).
Next, if T C A contains K and S, T is saturated for the quotient (see [8], 4.3.8) and thus
g " (q(9)) Cq ' (g(T)) =T. i

A semi-abelian category is strongly protomodular in the sense of Dominique Bourn
when the inverse image functors of the fibration of points reflect normality. In terms of
short exact sequences this means that given a diagram of split exact sequences,

S
0 A—F s pe——c-—5o0
p
u v
t
0 D> ES—S5C—0
q

if u is a normal monomorphism, then [u is a normal monomorphism as well. This notion
goes back to the work of Gerstenhaber on Moore categories (see [23], [12], [39]).

6.7. PROPOSITION. If a semi-abelian category V satisfies the axiom of normality of
unions, it 1s strongly protomodular.

PROOF. In the diagram above, q(B) = C thus by proposition 6.6, £ = DV B. An
alternative proof consists in observing that DV C' = E by [25] 2.4, while DV B 2 DV C
follows from the equality ¢t = vs. One concludes by the normality of unions. n

Eventually, here is an abstract and rather general setting forcing the normality of
unions.

6.8. EXAMPLE. Let T be a one-sorted pointed algebraic theory containing a set N of
binary terms such that

1. every normal subalgebra X C B is such that

Vee X VYbe B VteN t(x,b) € X;
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2. asubalgebra X C S is normal as soon as there exists a subset U C S that generates
S and has the following property

VieN Vee X YueU t(x,u) € X.

The category Set” of T-algebras satisfies the normality of unions.

PROOF. In the conditions of definition 6.4, choose for U the set theoretical union
U = BUC and take S to be the union of B and C' as subobjects of A. Clearly U
generates S and condition 1 of the statement implies that ¢(z,u) € X for all z € X and
uel. [

The reader should observe that conditions 1 and 2 in example 6.8 are inherited by
every subvariety (i.e. by all theories obtained from T by adding axioms). The categories
of interest (see [34]) are examples of situations as in example 6.8 and these cover the cases
of groups, Lie algebras, rings, and so on.

7. The normalization of a morphism

This section introduces a new notion: the normalization of a morphism. This will be the
key ingredient to express the necessary and sufficient condition forcing the representability
of the functors SplExt(—, X).

7.1. DEFINITION. Let n be a morphism in a semi-abelian category V. By a normal-
ization of n we mean a commutative diagram

Xx —2 599250

p

0 X = S c Q 0

where ¢ = Cokern and the bottom line is a short exact sequence.

Of course, the choice of a specific cokernel of n is unessential in this definition. Let us
first make some easy observations.

7.2. LEMMA. In the situation of definition 7.1:
1. n s a monomorphism;
2. pis a reqular (thus normal) epimorphism;
3. if q is a split epimorphism, the bottom exact sequence is split;

4. n is a normal monomorphism if and only if p is an isomorphism;
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5. every normal monomorphism n admits a universal normalization
(namely, itself together with its cokernel);

6. the morphism n admits a universal normalization if and only if n admits a unique
normalization (up to isomorphism,).

PROOF. The morphism n is a monomorphism since so is n.
The normal closure of n — the smallest normal subobject of S containing X — is the
kernel n = Ker q of q. This yields at once the various factorizations as in diagram 3. In

X

X s —L 5@
TJ/ p
Xr—=>§ >0

Diagram 3

particular r is a regular epimorphism and by the short five lemma for regular epimor-
phisms, p is a regular epimorphism as well.

If ¢ admits a section ¢, ¢ = pt is a section of §.

When 7 is a normal monomorphism, (n, q) is a short exact sequence and by the short
five lemma for isomorphisms, p is an isomorphism. And of course if p is an isomorphism,
n is normal because so is n. This implies trivially condition 5.

Finally by the short five lemma for isomorphisms, every morphism between two nor-
malizations of n is necessarily an isomorphism. This implies at once the last affirmation.m

Let us comment a little bit more that notion of “normalization”. In the conditions of
definition 7.1, n is thus a monomorphism and p is a normal epimorphism (lemma 7.2).
Thus S is the quotient of S by the kernel m: Y >—S of p and clearly, the whole situation
is entirely determined by the knowledge of n and m. Let us thus translate the notion of
“normalization of n” in terms of this normal subobject m of S.

7.3. PROPOSITION. In a semi-abelian category V, consider a monomorphism
n: X>—S with normal closure m: X >—S (i.e. n = Ker Cokern). Up to isomorphisms,
there is a bijection between

1. the normalizations of n;

2. the normal subobjects m: Y >—S such that

YCX, XAY =0, XVY=X.
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Proor. Consider diagram 4 with m a normal subobject. Put ¢ = Cokern, p = Coker m,
n = pn, ¢ = Cokern. Let x be the factorization through the cokernels, and s the inclusion
of X in X.

X Y
n m
g
X s —15Q

..071

Tl p T .X 0
X525 ——5>Q
Diagram 4

The construction above determines a normalization of n precisely when
1. there exists a morphism 7 such that ¢ = 7p;

2. m is a monomorphism;

3. that monomorphism 7 is normal.

Indeed, in the case of a normalization,  is an isomorphism and it suffices to put 7 = x~1¢;
conditions 2 and 3 are then trivial. Conversely, by conditions 2 and 3, n = Ker g, from
which we obtain the factorization r through the kernels. Since nrs = pns = pn = n, we
get rs = 1x. Thus 7n = ™nrs = Tpns = qn = 0, from which we obtain a factorization 6
of 7 through ¢ = Cokern. The equalities

Oxq=0qp=71p=4q, XOqp=XTP=Xq=qp

prove finally that y and € are inverse isomorphisms.
The three conditions above are respectively equivalent to:

1. Y CX;

2. X ANY = 0; indeed n is a monomorphism if and only if its kernel is zero (see [§]
3.1.21); but the kernel of n = pn is trivially the kernel Y of p intersected with X;

3. the monomorphism 7 is normal,

and it remains to see that we can replace the third condition by X VY = X.
We know by proposition 6.6 that Y VX = p~! (p(X )) But since n = pn is a monomor-
phism by condition 2, p(X) is simply the subobject n. When 7 is normal, the factorization
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r exists and so X factors through p~! (p(X)) =Y V X, proving the equality X = X VY.
Conversely when X = X VY = p~! (p(X )), then X is the pullback of 7 along p, yield-
ing again the existence of the epimorphism r. But then n is the image of the normal
monomorphism 7 along the regular epimorphism p: thus 7 is normal (see [7] 3.9.3). =

Having a normalization is certainly a strong property. For example:

7.4. COUNTEREXAMPLE. In the category of groups, consider a simple group S and
a subgroup n: X>—S; let ¢ = Cokern. The morphism n admits a normalization if and
onlyif X =0or X = 5.

PROOF. With the notation of definition 7.1, p is a quotient map by lemma 7.2; thus by
simplicity of .S, S=0orS=5.1fS5=0, thenX—O If S = Sthenn—nanXms
normal in S, thus X =0 or X = S. m

But nevertheless there are highly interesting examples of normalizations:

7.5. EXAMPLE. In a semi-abelian category V, consider an object G and the corre-
sponding monad Gb— defining the semi-direct product. The G-algebra structures (X, ¢)
on a fixed object X € V are in bijection with the (isomorphism classes of ) normalizations
of the canonical morphism ox: X>—G + X.

PROOF. It is routine to observe that (1g,0) is the cokernel of oy.

ox &
X “Zsarx—— @

(1G7 0)
1

S
0 X o0 (X956 — 0

This cokernel is a split epimorphism with section the canonical inclusion og. The kernel
of (1¢,0) is precisely the object GbX (see [13]).

By lemma 7.2, every normalization of ox yields a bottom split exact sequence, thus
also a factorization £: T (X)—— X through the kernels.

Conversely every (Gb—)-algebra structure (X, &) on X yields a normalization diagram
as above (see [13] again). The equivalence between the category of G-algebras and the
category of points over GG forces the conclusion. [

8. The representability theorem

This section presents the central result of this paper: a necessary and sufficient condition
for the representability of the functors SplExt(—, X'). Here is that condition:
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8.1. DEFINITION. Let V be a semi-abelian category. Consider the pushout of two
protosplit monomorphisms ny, ny with common domain X and the corresponding diagonal
morphism n.

n
X — 5
») n 01

.
Sz —5,51 +x 52

We say that the category V satisfies the protonormalization of pushouts over X when each
such morphism n admits a universal normalization.

First of all, we recall a well-known fact.

8.2. LEMMA. Let F': C——Set be a functor defined on a category C with binary
products. The following conditions are equivalent:

1. F preserves finite products;

2. the category Elts(F') of elements of F' has binary products preserved by the forgetful
functor ¢: Elts(F)——C.

PROOF. When F' preserves binary products, (C,z) x (D,y) = (C’ X D,(x,y)) in
Elts(F'). Conversely if (C' x D,z) = (C,z) x (D,y), the two elements x € F(C) and
y € F(D) are the images of z € F(C x D) by F(pc) and F(pp). If 2/ € F(C x D) is
another element mapped on x and y by F'(pc) and F(pp), the corresponding factorization
(C x D,z')—>(C x D, z) commutes in C with the projections, thus is the identity on
C x D. Therefore z = 2'. n

As an intermediate step in our arguments, we consider the category SplPsExt[X] with
objects the triples (n, ¢, t) where X is fixed, ¢ = Cokern and ¢t = 1¢.

@ (8
, /
X n s S/ % Ql

The morphisms are the triples (1y, ¢, 1) making the diagram commutative. This is thus
the category of “split-pseudo-right-exact sequences”.

8.3. LEMMA. Let V be a semi-abelian category. The category SplPsExt[X]| admits
binary coproducts preserved by the “cokernel part” functor

SpIPsExt[ X| ——V, (X - 55 Q) — Q.



272 F. BORCEUX, G. JANELIDZE, AND G.M. KELLY

PROOF. Given two objects of SpIPsExt[.X]

t;
X%Si%ﬁ@, i=1,2

their coproduct is simply

(n1, na) btte
XMSl +x SZWQl + QZ- u
1+ q2
8.4. PROPOSITION. Let X be an object of a semi-abelian category V. The following

conditions are equivalent:

1. the functor SplExt(—, X) preserves binary coproducts;

2. the category V' satisfies the protonormalization of pushouts over X.

PrROOF. Given X € V, consider the category of elements of the functor SplExt(—, X).
It is equivalent to the subcategory SplExt[X| of SpIPsExt[X| whose objects are split exact
sequences and whose morphisms yield a pullback diagram at the level of cokernels (see
the proof of proposition 1.4). But by lemma 1.1, the pullback requirement holds always
since the morphisms have identities in the component X. This shows that we have a full

subcategory
i: SpIExt[X] < SplIPsExt[X].

We use the notation of definition 7.1. Let (n,q,t) be an object of the category
SplPsExt[ X ] such that n has a universal normalization (7, ¢). By lemma 7.2, this normal-
ization is unique and § admits a unique section ¢ making the diagram commutative. Let
us prove that N

(1x,p,19): (n,q,t)———>(n, q, 1)
is the universal reflection of (n,q,t) along the inclusion functor i.
Consider for this another morphism

(1X7p/7p//) : (n7 q, t) %(”/a q/7 t/)
in SplIPsExt[.X], with thus

/
0 X 850

q
a split exact sequence. By lemma 1.1, pulling ¢’ back along p”: Q —— @' and taking the
kernel yields a split exact sequence (n”,¢”,t"”) with kernel object X; due to the pullback
construction, the morphism (1x,p’,p”) factors through this sequence.

(1X7p71 ) ~ ~ X
(n, 0.} s )

(1X7 pla p”)

(n/,q/7t/> (;L”,q//,t”)
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Thus (n”, ¢") is another normalization of n and by uniqueness of such a normalization, this
is simply (7, ¢) (up to an isomorphism). So (1x,p’,p”) factors indeed through (1x,p, 1g);
this factorization is unique since, by lemma 7.2, p is an epimorphism.

Finally, since SpIPsExt[X] has binary coproducts, a standard argument on universal
constructions shows that the coproduct of two objects (n;, g;, t;) of SpIExt[X] exists if and
only if the corresponding coproduct in SpIPsExt[X]| (which exists by lemma 8.3) admits
a universal reflection along the inclusion functor . By the form of binary coproducts in
SplPsExt[X], this is exactly the protonormalization of pushouts. Moreover, the construc-
tion of the universal morphism (1y,p, 1g) above shows that universal reflections preserve
the “cokernel part”. Thus the “cokernel part functor” on SplExt[X], which is the forgetful
functor of this category of elements, preserves binary coproducts since this is the case for
SplPsExt[X], by lemma 8.3. ]

And finally, theorem 5.8 and proposition 8.4 yield the expected representability theo-
rem:

8.5. THEOREM. Let X be an object of a semi-abelian category V. The following
conditions are equivalent:

1. the category V satisfies the protonormalization of pushouts over X;
2. the functor SplExt(—, X) preserves finite colimits.

When moreover, the category V is locally well-presentable, these conditions are also equiv-
alent to

3. the functor SplExt(—, X)) is representable. [

It should again be observed that the protonormalization of pushouts in definition 8.1
does not explicitly require o7 and o9 to be monomorphisms (= the amalgamation property
for ny and ny): but we know by theorem 8.5 and proposition 6.2 that this is nevertheless
the case.

9. A topos theoretic example

Examples of the representability of functors Act(—, X) in a topos theoretic context have
already been given in proposition 1.5. And the same type of arguments extends at once
to Boolean rings or commutative von Neumann regular rings, in a topos with Natural
Number Object.

Let us also observe that the sufficient conditions in theorem 6.5 transfer easily from
Set to a Grothendieck topos.

9.1. LEMMA.  Let T be a semi-abelian category whose category Set” of models satisfies
the amalgamation property for normal monomorphisms and the normality of unions. The
same properties hold in the semi-abelian category ET of T-models in a Grothendieck topos
E. Then for every object X € ET, the functor Act(—, X) is representable.
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PRrROOF. If £ is the topos of sheaves on a site (C,7'), the announced properties hold in the
category of T-models in the topos Set®” of presheaves, simply because they hold pointwise.
But &7 is a localization of this category, thus the corresponding reflection preserves all
the ingredients involved in the properties indicated. One concludes by theorem 6.5. n

Of course, the topos case calls for a more intrinsic approach of the representability
theorem. Some routine work shows that the category €' and the functor Act(—, X)
can be enriched in &£, viewed as a cartesian closed category. One could then ask for the
representability of Act(—, X) as a functor enriched in £. One could even generalize further
the situation and consider an internal algebraic theory T yielding a semi-abelian category
of models. But all these considerations escape the scope of the present paper, devoted to
the Set-valued representability of actions.

Let us conclude this discussion of the topos theoretic case with an example of highly
non-algebraic nature.

9.2. PROPOSITION. Let EP be the dual of the category of pointed objects of an
elementary topos €. This category is semi-abelian and when £ is boolean, the actions on
an object (X, *) are representable by (X, *) itself.

Proor. It is known that the dual category of the category of pointed objects of a topos
is semi-abelian (see [8] 5.1.8). To avoid any confusion, let us work in the category &, of
pointed objects, not in its dual.

We consider first a co-split co-exact sequence

(17 *)é(G’ *)%(Aa *)L(Xv *)%(1’ *)

Since the topos & is boolean, the base point *: 1> X is a complemented subobject,
thus X 2 111Y in &€ (to avoid confusion, we write II for the coproduct in £ and + for
the coproduct in &,). Then in &€

A p () Iy (V) 2 G T (V).
Since p is an epimorphism in &, its restriction
py:p (YY) —Y

is an epimorphism as well. The kernel pair of py is the restriction to p~!(Y) x p~!(Y") of
the kernel pair of p, which is

(G X G) V AA = (G X G) V AG V Ap—l(y) = (G X G) vV Ap—l(y).

Since G is disjoint from p~'(Y) in A, the kernel pair of py is thus simply A,-1(y), prov-
ing that py is a monomorphism as well. Thus py is an isomorphism. This yields a
corresponding morphism

*Mpyt 1THY —GIp YY) A
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whose composite with ¢ yields a morphism (X, *) — (G, *).
Conversely given a morphism 7: (X, %) —> (G, %), we get at once a co-split co-exact
sequence

(id, 7) .
(1) (G0 S5 (Gx) + (402 () (1,5),

It is routine to check that we have constructed inverse bijections (up to isomorphisms
of co-split co-exact sequences). [

10. Some counter-examples

This paper introduces three conditions related to the representability of actions: a nec-
essary condition, a sufficient condition, a necessary and sufficient condition. This section
presents various counter-examples distinguishing between these conditions, thus proving
the pertinence of all of them.

First of all, let us make clear that the representability of actions is by no means a gen-
eral property of semi-abelian categories, even of semi-abelian varieties. As the following
counter-examples will show, this is even a rather exceptional property.

10.1. COUNTEREXAMPLE. Actions are generally not representable on the category
ComRg of commutative rings.

PROOF. By theorem 2.6, it suffices to exhibit a ring X such that End(X) is not
commutative. For example, the additive abelian group Z? with the zero multiplication,
for which End(X) is the ring of 2 x 2-matrices with entries in Z. =

Second, let us exhibit a counter-example showing that the necessary condition of
proposition 6.2 is not sufficient. By a non-associative ring, we mean clearly an additive
abelian group equipped with a multiplication which distributes over the addition in each
variable. Analogous arguments can be developed in the commutative case.

10.2. COUNTEREXAMPLE. In the variety of non-associative rings, which is semi-
abelian:

1. the amalgamation property holds for protosplit monomorphisms;
2. the actions on an object X are representable if and only if X is the zero ring.

PrRoOOF. The arguments developed in the proofs of propositions 2.1 and 2.3 apply as
such to prove that, for non associative rings, there is a bijection between

e the (isomorphism classes of) split exact sequences of the form

S
0 Xk A%TGEO;
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e the pairs of additive abelian group homomorphisms

A G——Ab(X, X), p: G———Ab(X, X).

This proves thus the isomorphism
Act(G, X) = Ab(G, Ab(X, X) x Ab(X, X)).

Given a second split exact sequence

/
, s
0 XK a0,
p
with corresponding pair (X, p'), we get at once abelian group homomorphisms

ML) GG ———Ab(X, X), (p,p): GG —Ab(X, X)

and therefore a corresponding split exact sequence of non-associative rings

S”

0 XK y (h—c P Y}

And the two canonical inclusions of G, G’ in G x G’ are ring homomorphisms making the
following diagram commutative:

id.0 0.id
¢ 140 did) .,

and analogously with (p, p’). But we have
A= Gx (XA p), A2 (GxG)x (X, (M), (p.p), A= x (X, N, p)

and therefore the morphisms (id,0), (0,id) induce corresponding morphisms of non-

associative rings
/

A— S« > A
But at the level of underlying additive abelian groups, the square ak = ok’ is simply

XM]C GxX

G/XX?GXG/XX
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k(z) = (0,2), K(z)=1(0,2), alg,z)=(9,0,z), o(¢,z)=1(0,9"2).
Thus the ring homomorphisms «, ' are injective and by factorization, also the canon-
ical morphisms of the pushout of k and &’ are injective. This proves the amalgamation
property for protosplit monomorphisms.
Now suppose that X has representable actions. In particular, the functor Act(—, X)
transforms binary coproducts in binary products, yielding the canonical bijection

Act(G + G, X) = Act(G, X) x Act(G, X)

for every non-associative ring G. The form of Act(—, X), established earlier in the proof,
yields thus the canonical bijections

Ab(G + G, Ab(X, X)?) 22 Ab(G, Ab(X, X)?) x Ab(G', Ab(X, X)?). (%)

Write now T for the theory of non-associative rings and M for the theory of magmas
(a set equipped with a binary operation, without any axiom). The forgetful functor
U: Set” —Set™ mapping a non-associative ring on its underlying multiplicative magma
is algebraic, thus has a left adjoint L. Trivially, L(M, ) is the free abelian group on the
set M epuipped with the multiplication induced by distributivity from the multiplication
on the magma (M, -) of generators. The terminal magma — the singleton {z} — is the
magma with a single generator = satisfying the relation zz = x. The corresponding ring
L{zx} is simply the ring (Z, +, x) of integers. Therefore, since L preserves colimits,

L({x} + {y}) = [z} + L{y} 2 Z+Z.

And the magma {x}+ {y} is the quotient of the magma of all bracketed words in x and y,
by the congruence generated by the relations xz = x and yy = y. This is thus an infinite
countable set and the non-associative ring Z + Z admits as underlying additive group a
free abelian group on infinitely many generators.

Writing w for the infinite countable cardinal, the canonical bijection (*) become thus,
choosing G = Z,

(pgays Pryy) : (AB(X, X)?)* 22 Ab(X, X)? x Ab(X, X).
But the pair of projections (p{x},p{y}) is a bijection only when Ab(X, X)? is the zero
group, that is, when (X, +) itself is the zero group. n

Finally, let us provide a counter-example showing that the sufficient conditions in
proposition 6.3 or theorem 6.5 are not necessary. The theory T used in this counter-
example can already be found in [13] and [12].

10.3. COUNTEREXAMPLE.  Let T be the theory having two abelian group operations
with the same neutral element. The variety Set” is semi-abelian and there exist objects
X € Set” such that:

1. the functor Act(—, X) is representable;

2. the sufficient conditions of proposition 6.3 and theorem 6.5 are not satisfied.
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Proor. A split exact sequence of T-algebras is in particular a split exact sequence of
abelian groups for the first abelian group operations, thus has set theoretically the form

Sa@
0 X 5x GxX%TG%()

5X(£) = (SE,O), pG(gv'r) =9, 5G<g) = (g,O)

with the first abelian group structure on G'x X defined pointwise. And this is a split exact
sequence of T-algebras when G x X is equipped with a second abelian group structure,
with neutral element (0,0), and making sy, pg, Sg group homomorphisms for the second
abelian group operations. Let us use the symbol 4 to denote these second abelian group
operations.

Since a split exact sequence of T-algebras is also a split exact sequence of abelian
groups for the second abelian group operations, we know that

V(ig,2) eGx X ¢ eG ' € X (g9,2) =(g,0) + (0,2).
But pg is a +-homomorphism, thus we have necessarily in G x X
(¢',0) +(0,2") = (¢, g * 2')

for some element ¢’ * 2’ € X. Therefore ¢ = ¢’ and the condition above can be rephrased
as

V(igr) eGx X A’ e X z=g=a'.

Still in other words, this means that the mapping
gx —: X—>X, z—gx*xz
is bijective. For simplicity, we write (¢ * —)~'(z) = x, and we have thus
gxr, =1, (g*xx), =1
Let us also write Perm(X) for the set of permutations of X. The mapping

¢ (G,0)———(Perm(X), 1x), g~ g*—

is a morphism of pointed sets, since
(9,0) +(0,0) = (g,0), (0,0) +(0,z) = (0,z)

that is
gx0=0, Oxx==x.
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Moreover this mapping £ determines entirely the second abelian group operation of G x X.
Indeed, since sx and sg are +-homomorphisms, we have

= (9,9 *x4) + (h,hxyp)

= (g9,0) + (0,z4) + (h,0) + (0, yn)
= (9 +h,0) + (0,24 + )
=(g+h,(g+h)=(zs+yn)).

(9,7) + (h,y)

Conversely, given a morphism of pointed sets
¢: (G,O)%(Perm(X), 1X), g gx —
and putting as before z, = (g x —)~!(x), we define an addition on G x X by the formula

(g:x) + (h,y) = (9+ . (g + h) * (zg 4+ yn))-

It is trivial that this addition is commutative. It admits (0,0) as neutral element because
¢ is a morphism of pointed sets. It is associative because every sum of (g, z), (h,y) and
(k, z) yields the result

(g+h+k (g+h+Ek)x(zg+yn+ 21)).

Finally the opposite of the element (g, z) is given by
We conclude that the functor Act(—, X)) is isomorphic to
Act(—, X): Set’ ———Set, G+ Set,((G,0), (Perm(X),1x)

where Set, denotes the category of pointed sets.

Now if X = {0,z} has exactly two elements (that is, X = Z/2Z with both group
operations necessarily equal), the only second abelian group operation of G x X is the
pointwise one. Indeed for every g € G, g * 0 = 0 and therefore g x x # g *x 0 = 0, thus
g*x = x. Thus every permutation g * — is the identity on X and the second abelian
group operation of G x X is pointwise. But then each Act(G, X) is a singleton and the
functor Act(—, X) is representable by the zero T-algebra.

It remains to show that the sufficient conditions of proposition 6.3 and theorem 6.5
are not satisfied for this T-algebra X = Z,. For this consider the square of injections

o 257 X 7y

/{ [5

ZXZ2>?Z><Z><Z2
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alz) = (0,z), B(x)=(0,z), v(z,x2)=(20,2), §(z,x)=(0,z, ).
Equip each of the two occurrences of Z x Zo with twice the pointwise addition inherited
form the usual additions of Z and Z,. And as first addition on the object Z x Z X Zs,
take again the pointwise one.
It is trivial that given an abelian group (A, +;), every permutation ¢ of A yields
another group operation on the set A, namely

a+2b=¢""(¢(a) +¢(b)).

and both operations have the same zero as soon as ¢(0) = 0. Define the second group
operation on Z X Z X Zs in that way, choosing for ¢ the permutation which interchanges

the two elements
(17170)> (_17170)

and fixes all the other elements. This completes the description of the square above, where
a, [, 7, ¢ are trivially morphisms of T-algebras.
We have a split exact sequence

Sz,
0 ZQ a 7. X ZQTZ%O

thus « is a protosplit monomorphism, and analogously for 5. Moreover, already for the
first additions, every element of Z x Z X Zs is the sum of two elements in the two copies
of Z X Z, thus the square ya = § is certainly a union of T-algebras. Let us now observe
that Zs, is not a normal subobject of Z x Z X Z,.

For this we consider the cokernel ¢ of that inclusion:

ZQ%Z X7 x Zo—1 Q.

We keep using the notation +; for the pointwise addition on Z x Z X Zy and 4+ for the
second addition, that is, the addition +; “twisted” by the permutation (. Since

(1,1,0) +1 (0,0,1) = (1,1,1)

with (0,0,1) € Zy, we have
[1,1,0] =[1,1,1] € Q.

And since
(1,1,0) +2 (0,0,1) = ¢~ ((=1,1,0) 41 (0,0,1)) = ¢~ (=1,1,1) = (=1,1,1)
with again (0,0, 1) € Zs, we have also
1,1,0) =[-1,1,1] € Q.

By transitivity this implies
1,1,1]=[-1,1,1] € @
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and thus
2,0,0] =[1,1,1] - [-1,1,1] =0 € Q.

But (2,0,0) & Zs, thus Z, is not a normal subobject of Z x Z x Zs. This proves that the
sufficient condition in theorem 6.5 is not satisfied.

Finally let us observe that the protosplit monomorphisms «, 3 do not satisfy either
the sufficient condition in proposition 6.3. Writing S for their pushout, the union above
(as every union) is a quotient of that pushout and we get a commutative square

Zy —5— §

lp

Zo WZ X 4 X Lo
where s is the diagonal morphism of the pushout, which is thus a monomorphism. Since
p is a quotient morphism, the normality of s would imply that of its image da along p
(see [7] 3.9.3), which is not the case. =

11. Open problems

In this section, V denotes a semi-abelian variety of universal algebras, although in many
cases one could also consider much wider contexts. Let us recall:

(A) Representability of actions in V, for which a necessary and sufficient condition is
provided by Theorem 8.5, implies amalgamation property for protosplit monomor-
phisms (by Proposition 6.2) in V.

(B) Whenever V satisfies the normality of unions (Definition 6.4), the representability
of actions in V is equivalent to the amalgamation property for protosplit monomor-
phisms (by Propositions 6.2 and 6.3).

(C) If Vis a category of interest in the sense of M. Barr (see G. Orzech [34]), then it sat-
isfies the normality of unions (see Example 6.8 and the last paragraph of Section 6);
therefore — we repeat from (B) — the representability of actions in V is equivalent
to the amalgamation property for protosplit monomorphisms. In particular, this
applies to every subvariety of the following varieties:

a. Groups;
b. Associative algebras over an arbitrary fixed commutative unital ring;

c. Lie algebras over an arbitrary fixed commutative unital ring.
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d. Any of the structures above equipped with any fixed set of unary linear op-
erators; this includes — up to a category equivalence — crossed modules and
other internal categorical structures in the categories of those structures.

Note also that this applies not only to subvarieties, but also to all full subcategories
closed under finite limits and quotients that are varieties — such as von Neumann
regular rings among all rings.

We would like to propose the following open problems:

Problem 1. Give a syntactical characterization of semi-abelian varieties satisfying
all/any of the conditions mentioned in (B).

Problem 2. Using (C), find new examples of categories of interest with representable
actions and/or just individual objects in a category of interest with representable actions,
and, if possible, describe the representing objects in each case. Note that the amalgama-
tion property of all monomorphisms have been studied by many authors (see [30]), but
the amalgamation property of protosplit ones is new, and it is a much weaker condition.
For example the amalgamation property of all monomorphisms is known for Lie algebras
over a field, but its protosplit version holds for Lie algebras over an arbitrary unital com-
mutative ring — simply because the object actions are representable (by derivations). We
expect a kind of negative result for varieties of groups, since the only non-abelian variety
of groups where we are able to prove the representability of actions is the variety of all
groups.

Problem 3. As we know from Counterexample 10.3, the representability of actions does
not imply the normality of unions (even for protosplit monomorphisms). However, we do
not have any example of a semi-abelian variety in which every object has representable
actions, but the normality of unions does not hold. Does such an example exist?

Before formulating our next problems, let us recall:

a. An object X in, say, a semi-abelian category, is said to be abelian if the codiagonal
X + X—— X factors through the canonical morphism X + X——X x X. This
notion goes back to S.A. Huq [24], who observes that it is a reformulation of S. Mac
Lane’s observation for groups.

b. An abelian object in a semi-abelian category is the same as a group object; the group
structure is unique, as observed by many authors independently in various contexts
many years ago.

c. An abelian object in a semi-abelian variety is the same as what universal algebraists
call an abelian algebra (in the pointed case).

d. Anobject X is abelian if and only if its largest commutator [ X, X] is trivial; in the case
of a semi-abelian variety, all known universal-algebraic and categorical definitions
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of the largest commutator are equivalent (see e.g. [24], [41], [21], [36], [26]). In
particular [ X, X] is the usual commutator in the cases of groups and of Lie algebras,
and [X, X] = XX for rings (commutative or not).

e. A group is an abelian object in the category of groups if and only if it is abelian in
the usual sense. A ring is an abelian object in the category of rings if and only if it
has zero multiplication; the same is true for non-associative rings, for commutative
rings, for Lie algebras, etc.

Problem 4. Characterize and/or give new examples of semi-abelian varieties in which
every abelian object has representable actions.

Problem 5. Characterize and/or give new examples of semi-abelian varieties in which
every perfect object has representable actions. Of course we call an object X perfect if it
has trivial abelianization, i.e. if [X, X] = X. Note that, as follows from Propositions 2.4
and 2.7, in the categories of rings/algebras, commutative or not, every perfect object has
representable actions.

Problem 6. For an object X in V, define the conjugation action of X on itself as the
action corresponding to the split epimorphism (first projection, diagonal): X x X COXLIf
the representing object [X] does exist, this determines a morphism X ——[X]. Investigate
the cases where this morphism is a

a. monomorphism;
b. (normal) epimorphism;
c. isomorphism.

Note (as easily follows from Proposition 2.7; see also proposition 2.8) that X ——[X]
is an isomorphism for Taylor-regular rings but not, say, for all Boolean rings. For finite
Boolean rings, this however follows independently from two results: they are unital and
their dual category is equivalent to the category of pointed objects in the topos of finite
sets.
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