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FUNCTORIAL CONCEPTS OF COMPLEXITY
FOR FINITE AUTOMATA

For Aurelio, an exacting colleague and a treasured friend since 1972,
when he was one of the unfailingly enthusiastic four who traveled weekly
from Milan to Perugia for mathematical discussions “fuori programma”.

F. WILLIAM LAWVERE

Abstract. Some unsolved problems about the classifying topos for Boolean algebras,
as well as about the axiomatic arithmetic of finite combinatorial toposes, are closely
connected with some simple distinctions between finite automata.

1. Adequacy of Measurement and Boolean Algebra

An automaton Q determines the following notion of perceived element y for any set X: For
any partitioning f of X into Q parts, y(f) specifies the state q into which the “element”
is placed by f , but in a way that is natural with respect to the state transition rule, i.e.
y(wf) = wy(f) for all of the w acting on Q. Say that Q measures X if every perceived
element of X comes from a (unique) actual element x in X via evaluation: y(f) = f(x) for
all f . (This is opposite to the set theorists’ use of “X has measurable cardinality” which
on the contrary is equivalent to the condition that X has some non-actual Q-perceived
point, where Q is a given infinite set with all actors.) There is a three-element automaton
that measures all finite sets X.

Denoting by F the category of all finite non-empty sets and arbitrary maps between
them, the product-preserving functors F → Sets correspond exactly to Boolean algebras,
making explicit that all jobs done by such algebras can be described as natural shufflings
of such partitions. Because any non-empty finite set is a retract of a power of a fixed Q,
a Boolean algebra is determined by the functor’s restriction to the part of F consisting
of powers of Q, and traditionally one took Q = 2; however, as pointed out in the first
paragraph, in some contexts it is more effective to take Q = 3, because then only unary
“propositional” operations w (not binary or higher ones) need be considered. Explicitly,
if Q is considered as the integers modulo 3, the three polynomial state transitions 0, t ±
(1− t2) suffice to insure the naturality, and hence by the above assertion the actuality, of
perceptions.
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2. A Classifying Topos and the Aufhebung of Complexity

By contrast, the topos of all functors F op → Sets constitutes the classifier for Boolean
algebras in the sense that its points correspond uniquely to such algebras. The objects
of this topos can be presented by infinitary positive formulas in the theory of Boolean
algebras (the topos as a whole is not itself Boolean). This classifying topos contains as a
cartesian closed reflective subcategory the category of all groupoids (= small categories in
which every morphism is invertible) just as the category of all small categories is similarly
contained in the simplicial topos of all functors from Deltaop to sets where Delta is the
category of non-empty finite totally ordered sets and all order-preserving maps between
them. A striking reciprocity is that for a small category C, the topos of C-automata is
Boolean iff C is a groupoid; elementary algebra shows that in the group case every C-
automaton Q is the disjoint sum of connected ones and that the connected ones are small
in number (“small” can also be interpreted to mean “finite”), and in fact the converse
holds: the only small categories C for which the number of connected C-automata is small
are the groupoids. For example, the only Boolean toposes of finite automata are those
for which all state transitions are invertible.

In case C ⊂ D ⊂ F are finite, retract closed, full subcategories of the category F
of nonempty finite sets, a right D-automaton Q might be considered to have mere C-
complexity if it were adjointly induced up from its restriction Q0 to C. But there are two
senses of adjoint induction (unlike the case where C and D are themselves groups and
linear automata are being considered), namely the left and right Kan quantifiers relative
to the restriction process. Any Q which restricts to the same Q0 lies between (in the sense
of canonical maps of D-automata) these two extensions as follows:

Q0 ⊗C D → Q → HomC(D,Q0)

Note that up to splitting idempotents, we can assume that D is the monoid of all endomaps
of a given finite set and that C is the monoid of all endomaps of a certain retract of that
set, determined by an idempotent in D.

An open problem which seems important for the understanding of these combinatorics
is the following: Given C, how much bigger must we take D in order that for all further
enlargements to D′ ⊇ D the two extreme inductions give the same result:

Q0 ⊗C D′ = HomD(D′, Q0 ⊗C D)

The latter common object would then be an equivariant retract of any D′-automaton Q
whose C-restriction is Q0.

3. Second order automata

Any topos can replace sets as an arena in which monoids, automata, measuring, etc.,
can be considered, for example the Boolean algebra classifier could so serve. However, in
some toposes (such as this one) there is a generalized notion of monoid, motivated by the
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theory of higher order differential equations, which sometimes shares with monoids the
topos-character of the actions. In any cartesian closed category a first-order action of an
alphabet A on Q, i.e. a map A × Q → Q, can equivalently be viewed as a map Q → QA

assigning to each state its destinies under all actions; in case there is a preferred point in A
which we want to act as the identity, that can be expressed by requiring that the composite
Q → QA → Q is 1Q (where the second map is evaluation at the point); invoking subjective
infinity, we can even consider this as an action of a quotient monoid. The generalization
starts not with just an alphabet, but with a given sub-alphabet A0 ↪→ A; an “action”
on a configuration space Q is defined to mean a prolongation operator QA0 → QA, i.e.
an operation assigning to each A0 → Q an extension to all of A. By analogy with
physics and with higher-order ODEs, the term “state space” is best applied to QA0 (not
to the configuration space Q) in this context; in order that an actor in A can determine
a new configuration, there must be given not only the current configuration, but also
a specification of what initial transition is already under way. (Actually, the notion of
“current configuration” itself is only meaningful if we are given the additional structure
of a specified point in A0.) There can be derived, from such an action, an ordinary unary
automaton with states QA0 and alphabet AA0 as follows: For any “letter” σ and any state
x, (x · σ)(t) = x(σ(t)) for t in A0, where the underbar denotes the given prolongation
operator.

For example, Fibonacci constructed a model, a key feature of which has become a
metaphor for such “states of becoming” in other contexts: “the old is pregnant with the
new”. Indeed his dynamics is second order relative to the inclusion

A0 = {−1, 0} → {previous, present, next} = A

which interprets −1 as previous and 0 as present; a prolongation operator is determined
by any binary operation on Q, which could be, for example, (truncated) addition. Among
the non-identity elements of the alphabet AA0 is the special σ defined by

σ(−1) = present

σ(0) = next

whose action brings the states in QA0 forward in time, generating by iteration the asso-
ciated Fibonacci sequences. There is further structure here beyond first-order time: the
other seven letters of this alphabet are also natural state actors on every Fibonaccian
second-order automaton.

However, not every automaton with alphabet AA0 (even with the inclusion acting as the
identity) comes from a prolongation; indeed the prolongations do not usually form a topos,
unless the sub-alphabet A0 is a very special sort of object, one for which the exponentiation
functor ( )A0 has a further right adjoint. In the case of the Boolean algebra classifier, there
is such an object for every finite set, but considered as a contractible object rather than
as a discrete one! That is, there are two adjointly opposite embeddings of the category
F of finite sets into the topos of all functors F op → Sets: the discrete embedding assigns
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the associated constant functors, and the other interprets S0 ∈ F instead as the functor
A0(n) = Sn

0 (this topos has the remarkable property that codiscrete = representable).
Then the right adjoint to ( )A0 turns out to be the functor ( )1/A0 assigning to each Q the
new functor

(Q1/Ao)(n) = Q(nS0)

For example, S0 = 2 gives the contractible object which is the generic Boolean algebra
2( ) (in the usual 2-valued notation), and an inclusion of A0 in some object A is equivalent
to the choice of a special element of A(2).

4. Finite Toposes and their Internal Theory

For purposes of this discussion, we have been considering that finite automata are objects
in toposes of finite presheaves on finite categories. (Thus with this broad definition,
graph theory and combinatorial topology are part of automata theory.) These toposes are
simpler than Grothendieck toposes in several respects: (a) Any topos morphism between
two such is actually essential (i.e. has an extra left adjoint), as is (b) any subtopos,
i.e. given any Lawvere-Tierney modal operator, the associated sheafification functor has
a left adjoint, giving rise to a “skeleton” comonad; in fact, (c) any subtopos of such is
again such, i.e. although the existential and disjunctive conditions on an object which
can be imposed with the help of a Grothendieck topology or a Lawvere-Tierney modal
operator may be a useful way to express certain examples, the end result will nonetheless
be another full presheaf topos, on a smaller site [1].

Finiteness implies that much more powerful principles are available than merely the
higher-order Heyting logic of an arbitrary topos. The number theory of cohesive and
variable “numbers” can be generated by making such principles explicit.

Peano’s axioms as such would hold only in a discrete case, but consider Dedekind’s:
The condition

X
α ��X

β ��X & βα = 1 ⇒ αβ = 1

(internalized by stating that a certain subobject (equalizer) of XX×XX is invariant under
switching) can be imposed on all objects of a topos. A consequence is then the much
stronger form of Dedekind finiteness which involves general subobjects, not just retracts:
If a monomorphic endomap of Y is given, then on X = P (Y ), the induced map splits (by
quantification), hence is an isomorphism by the imposition, but the inverse descends to
yield that the given mono is an isomorphism. (Similarly, any given epimorphic endomap
of any object is invertible.)

An open problem is whether the “Dedekind finite” toposes in this sense enjoy the
properties a,b,c stated above for the smaller class of “actually finite” toposes. Note that
although there is a huge number of incomparable nonstandard examples, the assumption
of a given geometric morphism involves functors (adjoint) in both directions and hence
a certain commensurability of domain and codomain. Does the finiteness principle of
Dedekind or the essentiality of all modal operators imply that there exists an automaton
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Q which can measure all objects (as in our opening discussion with Q = 3 for the case of
abstract finite sets)? Of course, the converse is not true because toposes of infinite sets
measured by a single infinite automaton are common in set theory (it suffices to exclude
so-called “measurable” cardinals).

More formally, the measuring concept poses the question whether a certain monad T ,
constructed by double dualizing into Q, is actually the identity monad. One always has
Q = T (Q). A less internal version is the following: Let M be a transition monoid on
Q = 3 which is adequate for finite abstract sets. Then for any finite monoid C, the topos
of right C-automata is fixed by a monad obtained by a dual measuring whose processing
takes place in the category of left M ×C automata [2]. This is a combinatorial reflection
of the common phenomenon that when the base category of less-structured spaces has
a bounded duality, then so do many categories of spaces with additional geometrical
structure.
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