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HIGHER-DIMENSIONAL ALGEBRA V: 2-GROUPS

JOHN C. BAEZ AND AARON D. LAUDA

ABSTRACT. A 2-group is a ‘categorified’ version of a group, in which the underlying set
G has been replaced by a category and the multiplication map m: G x G — G has been
replaced by a functor. Various versions of this notion have already been explored; our
goal here is to provide a detailed introduction to two, which we call ‘weak’ and ‘coherent’
2-groups. A weak 2-group is a weak monoidal category in which every morphism has an
inverse and every object x has a ‘weak inverse’: an object y such that r®y = 1 X y®x.
A coherent 2-group is a weak 2-group in which every object x is equipped with a specified
weak inverse T and isomorphisms i,: 1 — z®7T, e;: T®x — 1 forming an adjunction. We
describe 2-categories of weak and coherent 2-groups and an ‘improvement’ 2-functor that
turns weak 2-groups into coherent ones, and prove that this 2-functor is a 2-equivalence
of 2-categories. We internalize the concept of coherent 2-group, which gives a quick way
to define Lie 2-groups. We give a tour of examples, including the ‘fundamental 2-group’
of a space and various Lie 2-groups. We also explain how coherent 2-groups can be
classified in terms of 3rd cohomology classes in group cohomology. Finally, using this
classification, we construct for any connected and simply-connected compact simple Lie
group G a family of 2-groups Gy, (h € Z) having G as its group of objects and U(1)
as the group of automorphisms of its identity object. These 2-groups are built using
Chern—Simons theory, and are closely related to the Lie 2-algebras gy, (i € R) described
in a companion paper.

1. Introduction

Group theory is a powerful tool in all branches of science where symmetry plays a role.
However, thanks in large part to the vision and persistence of Ronald Brown [14], it
has become clear that group theory is just the tip of a larger subject that deserves to
be called ‘higher-dimensional group theory’. For example, in many contexts where we
are tempted to use groups, it is actually more natural to use a richer sort of structure,
where in addition to group elements describing symmetries, we also have isomorphisms
between these, describing symmetries between symmetries. One might call this structure
a ‘categorified’ group, since the underlying set G of a traditional group is replaced by a
category, and the multiplication function m: GxG — G is replaced by a functor. However,
to hint at a sequence of further generalizations where we use n-categories and n-functors,
we prefer the term ‘2-group’.

There are many different ways to make the notion of a 2-group precise, so the history
of this idea is complex, and we can only briefly sketch it here. A crucial first step was
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J. H. C. Whitehead’s [53] concept of ‘crossed module’, formulated around 1946 without
the aid of category theory. In 1950, Mac Lane and Whitehead [41] proved that a crossed
module captures in algebraic form all the homotopy-invariant information about what is
now called a ‘connected pointed homotopy 2-type—roughly speaking, a nice connected
space equipped with a basepoint and having homotopy groups that vanish above m. By
the 1960s it was clear to Verdier and others that crossed modules are essentially the same
as ‘categorical groups’. In the present paper we call these ‘strict 2-groups’, since they are
categorified groups in which the group laws hold strictly, as equations.

Brown and Spencer [15] published a proof that crossed modules are equivalent to cat-
egorical groups in 1976. However, Grothendieck was already familiar with these ideas,
and in 1975 his student Hoang Xuan Sinh wrote her thesis [44] on a more general con-
cept, namely ‘gr-categories’, in which the group laws hold only up to isomorphism. In
the present paper we call these ‘weak’ or ‘coherent’ 2-groups, depending on the precise
formulation.

While influential, Sinh’s thesis was never published, and is now quite hard to find.
Also, while the precise relation between 2-groups, crossed modules and group cohomology
was greatly clarified in the 1986 draft of Joyal and Street’s paper on braided tensor
categories [33], this section was omitted from the final published version. So, while the
basic facts about 2-groups are familiar to most experts in category theory, it is difficult
for beginners to find an introduction to this material. This is becoming a real nuisance as
2-groups find their way into ever more branches of mathematics, and lately even physics.
The first aim of the present paper is to fill this gap.

So, let us begin at the beginning. Whenever one categorifies a mathematical concept,
there are some choices involved. For example, one might define a 2-group simply to be
a category equipped with functors describing multiplication, inverses and the identity,
satisfying the usual group axioms ‘on the nose’—that is, as equations between functors.
We call this a ‘strict’ 2-group. Part of the charm of strict 2-groups is that they can be
defined in a large number of equivalent ways, including:

e a strict monoidal category in which all objects and morphisms are invertible,

a strict 2-category with one object in which all 1-morphisms and 2-morphisms are
invertible,

e a group object in Cat (also called a ‘categorical group’),
e a category object in Grp,
e a crossed module.

There is an excellent review article by Forrester-Barker that explains most of these notions
and why they are equivalent [26].

Strict 2-groups have been applied in a variety of contexts, from homotopy theory
[13, 15] and topological quantum field theory [54] to nonabelian cohomology [8, 9, 27],
the theory of nonabelian gerbes [9, 11], categorified gauge field theory [1, 2, 28, 43], and
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even quantum gravity [21, 22]. However, the strict version of the 2-group concept is not
the best for all applications. Rather than imposing the group axioms as equational laws,
it is sometimes better to ‘weaken’ them: in other words, to require only that they hold up
to specified isomorphisms satisfying certain laws of their own. This leads to the concept
of a ‘coherent 2-group’.

For example, given objects x,y, z in a strict 2-group we have

(zRY)®2z=20 (Y 2)

where we write multiplication as ®. In a coherent 2-group, we instead specify an isomor-
phism called the ‘associator’:

Uy (TRY) @2 —— 2R (YO 2).
Similarly, we replace the left and right unit laws
1 ® xr = 1‘7 T ® ]_ =T

by isomorphisms
lp:1®x > x, rper®1 " x

and replace the equations
@z =1, rler=1

by isomorphisms called the ‘unit’ and ‘counit’. Thus, instead of an inverse in the strict
sense, the object x only has a specified ‘weak inverse’. To emphasize this fact, we denote
this weak inverse by .

Next, to manipulate all these isomorphisms with some of the same facility as equations,
we require that they satisfy conditions known as ‘coherence laws’. The coherence laws
for the associator and the left and right unit laws were developed by Mac Lane [39] in
his groundbreaking work on monoidal categories, while those for the unit and counit are
familiar from the definition of an adjunction in a monoidal category [33]. Putting these
ideas together, one obtains Ulbrich and Laplaza’s definition of a ‘category with group
structure’ [36, 50]. Finally, a ‘coherent 2-group’ is a category G with group structure in
which all morphisms are invertible. This last condition ensures that there is a covariant
functor

inv:G — G

sending each object x € G to its weak inverse z; otherwise there will only be a contravari-
ant functor of this sort.

In this paper we compare this sort of 2-group to a simpler sort, which we call a ‘weak
2-group’. This is a weak monoidal category in which every morphism has an inverse and
every object x has a weak inverse: an object y such that y® x = 1 and x ® y = 1. Note
that in this definition, we do not specify the weak inverse y or the isomorphisms from
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y®x and x ® y to 1, nor do we impose any coherence laws upon them. Instead, we
merely demand that they exist. Nonetheless, it turns out that any weak 2-group can be
improved to become a coherent one! While this follows from a theorem of Laplaza [36],
it seems worthwhile to give an expository account here, and to formalize this process as
a 2-functor

Imp: W2G — C2G

where W2G and C2G are suitable strict 2-categories of weak and coherent 2-groups,
respectively.
On the other hand, there is also a forgetful 2-functor

F:C2G — W2G.

One of the goals of this paper is to show that Imp and F fit together to define a 2-
equivalence of strict 2-categories. This means that the 2-category of weak 2-groups and
the 2-category of coherent 2-groups are ‘the same’ in a suitably weakened sense. Thus
there is ultimately not much difference between weak and coherent 2-groups.

To show this, we start in Section 2 by defining weak 2-groups and the 2-category W2G.
In Section 3 we define coherent 2-groups and the 2-category C2G. To do calculations in
2-groups, it turns out that certain 2-dimensional pictures called ‘string diagrams’ can be
helpful, so we explain these in Section 4. In Section 5 we use string diagrams to define the
‘improvement’ 2-functor Imp: W2G — C2G and prove that it extends to a 2-equivalence
of strict 2-categories. This result relies crucially on the fact that morphisms in C2G
are just weak monoidal functors, with no requirement that they preserve weak inverses.
In Section 6 we justify this choice, which may at first seem questionable, by showing
that weak monoidal functors automatically preserve the specified weak inverses, up to a
well-behaved isomorphism.

In applications of 2-groups to geometry and physics, we expect the concept of Lie
2-group to be particularly important. This is essentially just a 2-group where the set of
objects and the set of morphisms are manifolds, and all relevant maps are smooth. Until
now, only strict Lie 2-groups have been defined [2]. In section 7 we show that the concept
of ‘coherent 2-group’ can be defined in any 2-category with finite products. This allows
us to efficiently define coherent Lie 2-groups, topological 2-groups and the like.

In Section 8 we discuss examples of 2-groups. These include various sorts of ‘automor-
phism 2-group’ for an object in a 2-category, the ‘fundamental 2-group’ of a topological
space, and a variety of strict Lie 2-groups. We also describe a way to classify 2-groups using
group cohomology. As we explain, coherent 2-groups—and thus also weak 2-groups—can
be classified up to equivalence in terms of a group G, an action o of G on an abelian
group H, and an element [a] of the 3rd cohomology group of G with coefficients in H.
Here G is the group of objects in a ‘skeletal” version of the 2-group in question: that is,
an equivalent 2-group containing just one representative from each isomorphism class of
objects. H is the group of automorphisms of the identity object, the action « is defined
using conjugation, and the 3-cocycle a comes from the associator in the skeletal version.
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Thus, [a] can be thought of as the obstruction to making the 2-group simultaneously both
skeletal and strict.

In a companion to this paper, called HDAG6 [3] for short, Baez and Crans prove a Lie
algebra analogue of this result: a classification of ‘semistrict Lie 2-algebras’. These are
categorified Lie algebras in which the antisymmetry of the Lie bracket holds on the nose,
but the Jacobi identity holds only up to a natural isomorphism called the ‘Jacobiator’. It
turns out that semistrict Lie 2-algebras are classified up to equivalence by a Lie algebra
g, a representation p of g on an abelian Lie algebra b, and an element [j]| of the 3rd Lie
algebra cohomology group of g with coefficients in . Here the cohomology class [j] comes
from the Jacobiator in a skeletal version of the Lie 2-algebra in question. A semistrict
Lie 2-algebra in which the Jacobiator is the identity is called ‘strict’. Thus, the class [j]
is the obstruction to making a Lie 2-algebra simultaneously skeletal and strict.

Interesting examples of Lie 2-algebras that cannot be made both skeletal and strict
arise when g is a finite-dimensional simple Lie algebra over the real numbers. In this
case we may assume without essential loss of generality that p is irreducible, since any
representation is a direct sum of irreducibles. When p is irreducible, it turns out that
H3(g,p) = {0} unless p is the trivial representation on the 1-dimensional abelian Lie
algebra u(1), in which case we have

H*(g,u(1)) = R.

This implies that for any value of h € R we obtain a skeletal Lie 2-algebra g, with g as its
Lie algebra of objects, u(1) as the endomorphisms of its zero object, and [j] proportional
to h € R. When h = 0, this Lie 2-algebra is just g with identity morphisms adjoined to
make it into a strict Lie 2-algebra. But when A # 0, this Lie 2-algebra is not equivalent
to a skeletal strict one.

In short, the Lie algebra g sits inside a one-parameter family of skeletal Lie 2-algebras
@, which are strict only for A = 0. This is strongly reminiscent of some other well-known
deformation phenomena arising from the third cohomology of a simple Lie algebra. For
example, the universal enveloping algebra of g gives a one-parameter family of quasitri-
angular Hopf algebras Uyg, called ‘quantum groups’. These Hopf algebras are cocommu-
tative only for A = 0. The theory of ‘affine Lie algebras’ is based on a closely related
phenomenon: the Lie algebra of smooth functions C*°(S?, g) has a one-parameter family
of central extensions, which only split for A = 0. There is also a group version of this
phenomenon, which involves an integrality condition: the loop group C*(S!, G) has a
one-parameter family of central extensions, one for each h € Z. Again, these central
extensions split only for & = 0.

All these other phenomena are closely connected to Chern—Simons theory, a topological
quantum field theory whose action is the secondary characteristic class associated to an
element of H*(BG,Z) = 7Z. The relation to Lie algebra cohomology comes from the
existence of an inclusion H*(BG,Z) — H?3(g,u(1)) 2 R.

Given all this, it is tempting to seek a 2-group analogue of the Lie 2-algebras gp.
Indeed, such an analogue exists! Suppose that G is a connected and simply-connected
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compact simple Lie group. In Section 8.5 we construct a family of skeletal 2-groups Gy,
one for each A € Z, each having G as its group of objects and U(1) as the group of
automorphisms of its identity object. The associator in these 2-groups depends on A, and
they are strict only for A = 0.

Unfortunately, for reasons we shall explain, these 2-groups are not Lie 2-groups except
for the trivial case h = 0. However, the construction of these 2-groups uses Chern—Simons
theory in an essential way, so we feel confident that they are related to all the other
deformation phenomena listed above. Since the rest of these phenomena are important
in mathematical physics, we hope these 2-groups G will be relevant as well. A full
understanding of them may require a generalization of the concept of Lie 2-group presented
in this paper.

Note: in all that follows, we write the composite of morphisms f:x — y and g:y — =
as fg:x — z. We use the term ‘weak 2-category’ to refer to a ‘bicategory’ in Bénabou'’s
sense [5], and the term ‘strict 2-category’ to refer to what is often called simply a ‘2-
category’ [46].

2. Weak 2-groups
Before we define a weak 2-group, recall that a weak monoidal category consists of:
(i) a category M,

(ii) a functor m: M x M — M, where we write m(x,y) = x ® y and m(f,g9) = f ® g for
objects x,y, € M and morphisms f,g in M,

(iii) an ‘identity object’ 1 € M,
(iv) natural isomorphisms
Upy (TQY)R2— 2R (Y@ 2),

ly:1®x— x,

re:t®1 — x,
such that the following diagrams commute for all objects w, x,y,z € M:

(wWRr)® (Y 2)

AGwRz,y,z Qw,z,y®z
(wer)®y) ® 2 wR(re (Y 2))
aw,z,y®lz %@az,y,z

Aw,z®y,z

(we(ey)ez — wo(tey)©?2)
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az,1,y

(z®1)®y r®(1y)
XY

A strict monoidal category is the special case where a, , ., {;, 7, are all identity mor-
phisms. In this case we have

TRy z=28 (Y 2),

1®z=uz, r®1=uc.

As mentioned in the Introduction, a strict 2-group is a strict monoidal category where
every morphism is invertible and every object « has an inverse x~!, meaning that

@z =1, =1

Following the principle that it is wrong to impose equations between objects in a
category, we can instead start with a weak monoidal category and require that every
object has a ‘weak’ inverse. With these changes we obtain the definition of ‘weak 2-
group’:

2.1. DEFINITION.  If x is an object in a weak monoidal category, a weak inverse for
x 1s an object y such that x @ y = 1 and y ® x = 1. If x has a weak inverse, we call it
weakly invertible.

2.2. DEFINITION. A weak 2-group is a weak monoidal category where all objects are
weakly invertible and all morphisms are invertible.

In fact, Joyal and Street [33] point out that when every object in a weak monoidal
category has a ‘one-sided’ weak inverse, every object is weakly invertible in the above
sense. Suppose for example that every object  has an object y with y ® x = 1. Then y
has an object z with z ® y = 1, and

22201 %20 YRr) 22y RrE1r Xz,

so we also have r ® y = 1.

Weak 2-groups are the objects of a strict 2-category W2G; now let us describe the
morphisms and 2-morphisms in this 2-category. Notice that the only structure in a weak
2-group is that of its underlying weak monoidal category; the invertibility conditions on
objects and morphisms are only properties. With this in mind, it is natural to define a
morphism between weak 2-groups to be a weak monoidal functor. Recall that a weak
monoidal functor F: C' — C’ between monoidal categories C' and C’ consists of:

(i) a functor F:C — ',
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(ii) a natural isomorphism Fy: F(z) ® F(y) — F(x ® y), where for brevity we suppress
the subscripts indicating the dependence of this isomorphism on x and v,

(iii) an isomorphism Fy:1" — F(1), where 1 is the identity object of C' and 1’ is the
identity object of C’,

such that the following diagrams commute for all objects x,y, 2z € C":

(F(z) @ F(y)) ® F(2) /25 Pl @ y) @ F(2) ——— F((z 0 y) @ 2)

aF<z>,F<y>,F<z>l lF(az,y,z)

F(2)® (F(y) ® F(2)) — 2% F(2) ® Fy @ 2) — 2 F(z ® (y © 2))

/

'® F(x) ——— F(x)

FO®1J( TF(ZI)

F(1) @ F(z) 2= F(1 @ x)

!
"F(x)

Fz)® 1 ——— F(x)

1®Fol TF(%)

F(z)® F(1) 2 F(z @ 1)

A weak monoidal functor preserves tensor products and the identity object up to
specified isomorphism. As a consequence, it also preserves weak inverses:

2.3. PROPOSITION. If F:C — C" is a weak monoidal functor and y € C is a weak
inverse of x € C, then F(y) is a weak inverse of F(x) in C".

PROOF. Since y is a weak inverse of x, there exist isomorphisms v: z®y — 1 and &: y®x —
1. The proposition is then established by composing the following isomorphisms:

F(Q)TF(@N‘”T F(@TF(Q)N—”T
F(y®ﬂ7)WF(1) F($®Q)WF(1)
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We thus make the following definition:

2.4. DEFINITION. A homomorphism F:C — C' between weak 2-groups is a weak
monoidal functor.

The composite of weak monoidal functors is again a weak monoidal functor [25], and com-
position satisfies associativity and the unit laws. Thus, 2-groups and the homomorphisms
between them form a category.

Although they are not familiar from traditional group theory, it is natural in this
categorified context to also consider ‘2-homomorphisms’ between homomorphisms. Since
a homomorphism between weak 2-groups is just a weak monoidal functor, it makes sense to
define 2-homomorphisms to be monoidal natural transformations. Recall that if F, G: C' —
C" are weak monoidal functors, then a monoidal natural transformation 0: F' = G is
a natural transformation such that the following diagrams commute for all z,y € C.

F(z) @ Fly) —= G(x) @ G(y)

FJ leg

F(zr®vy) focy G(r®vy)

1/
Go
Fy
F(1) -2 G(1)

Thus we make the following definitions:

2.5. DEFINITION. A 2-homomorphism 0: F' = G between homomorphisms F,G: C —
C" of weak 2-groups is a monoidal natural transformation.

2.6. DEFINITION. Let W2G be the strict 2-category consisting of weak 2-groups,
homomorphisms between these, and 2-homomorphisms between those.

There is a strict 2-category MonCat with weak monoidal categories as objects, weak
monoidal functors as 1-morphisms, and monoidal natural transformations as 2-morphisms
[25]. W2G is a strict 2-category because it is a sub-2-category of MonCat.

3. Coherent 2-groups

In this section we explore another notion of 2-group. Rather than requiring that objects
be weakly invertible, we will require that every object be equipped with a specified ad-
junction. Recall that an adjunction is a quadruple (z,z,i,,e,) where i,:1 — 2 ® T
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(called the unit) and e,:Z ® © — 1 (called the counit) are morphisms such that the
following diagrams commute:

1oz 21 0r 2% @ (T ® )

fg;l ll@ez

T r®1

&
T'EJ( J/€z®1
x

1®z

When we express these laws using string diagrams in Section 4, we shall see that they
give ways to ‘straighten a zig-zag’ in a piece of string. Thus, we refer to them as the first
and second zig-zag identities, respectively.

An adjunction (z,Z,i,,e,) for which the unit and counit are invertible is called an
adjoint equivalence. In this case x and ¥ are weak inverses. Thus, specifying an
adjoint equivalence for x ensures that x is weakly invertible—but it does so by providing
x with extra structure, rather than merely asserting a property of x. We now make the
following definition:

3.1. DEFINITION. A coherent 2-group is a weak monoidal category C' in which
every morphism is invertible and every object x € C' is equipped with an adjoint equivalence
(:U7 i” Z’w? eI) .

Coherent 2-groups have been studied under many names. Sinh [44] called them ‘gr-
categories’ when she initiated work on them in 1975, and this name is also used by
Saavedra Rivano [47] and Breen [9]. As noted in the Introduction, a coherent 2-group
is the same as one of Ulbrich and Laplaza’s ‘categories with group structure’ [36, 50|
in which all morphisms are invertible. It is also the same as an ‘autonomous monoidal
category’ [33] with all morphisms invertible, or a ‘bigroupoid’ [29] with one object.

As we did with weak 2-groups, we can define a homomorphism between coherent 2-
groups. As in the weak 2-group case we can begin by taking it to be a weak monoidal
functor, but now we must consider what additional structure this must have to preserve
each adjoint equivalence (z,Z,i,,¢€,), at least up to a specified isomorphism. At first it
may seem that an additional structural map is required. That is, given a weak monoidal
functor F' between 2-groups, it may seem that we must include a natural isomorphism

F . F(z) — F(x)
relating the weak inverse of the image of x to the image of the weak inverse z. In Section 6
we shall show this is not the case: F_; can be constructed from the data already present!
Moreover, it automatically satisfies the appropriate coherence laws. Thus we make the
following definitions:
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3.2. DEFINITION. A homomorphism F:C — C’ between coherent 2-groups is a weak
monotdal functor.

3.3. DEFINITION. A 2-homomorphism 0: F' = G between homomorphisms F,G: C —
C" of coherent 2-groups is a monoidal natural transformation.

3.4. DEFINITION. Let C2G be the strict 2-category consisting of coherent 2-groups,
homomorphisms between these, and 2-homomorphisms between those.

It is clear that C2G forms a strict 2-category since it is a sub-2-category of MonCat.

We conclude this section by stating the theorem that justifies the term ‘coherent 2-
group’. This result is analogous to Mac Lane’s coherence theorem for monoidal categories.
A version of this result was proved by Ulbrich [50] and Laplaza [36] for a structure called
a category with group structure: a weak monoidal category equipped with an adjoint
equivalence for every object. Through a series of lemmas, Laplaza establishes that there
can be at most one morphism between any two objects in the free category with group
structure on a set of objects. Here we translate this into the language of 2-groups and
explain the significance of this result.

Let c2g be the category of coherent 2-groups where the morphisms are the functors
that strictly preserve the monoidal structure and specified adjoint equivalences for each
object. Clearly there exists a forgetful functor U: c2g — Set sending any coherent 2-group
to its underlying set. The interesting part is:

3.5. PROPOSITION.  The functor U:c2g — Set has a left adjoint F': Set — c2g.

Since a, ¢, r,i and e are all isomorphism, the free category with group structure on a
set S is the same as the free coherent 2-group on S, so Laplaza’s construction of F'(S)
provides most of what we need for the proof of this theorem. In Laplaza’s words, the
construction of F'(S) for a set S is “long, straightforward, and rather deceptive”, because
it hides the essential simplicity of the ideas involved. For this reason, we omit the proof
of this theorem and refer the interested reader to Laplaza’s paper.

It follows that for any coherent 2-group G there exists a homomorphism of 2-groups
eq: F(U(G)) — G that strictly preserves the monoidal structure and chosen adjoint equiv-
alences. This map allows us to interpret formal expressions in the free coherent 2-group
F(U(G)) as actual objects and morphisms in G. We now state the coherence theorem:

3.6. THEOREM. There exists at most one morphism between any pair of objects in

FUG)).

This theorem, together with the homomorphism e, makes precise the rough idea that
there is at most one way to build an isomorphism between two tensor products of objects
and their weak inverses in G using a, ¢, 7,1, and e.
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4. String diagrams

Just as calculations in group theory are often done using 1-dimensional symbolic expres-
sions such as

w(yz)z" = (wyx")(zza"),

calculations in 2-groups are often done using 2-dimensional pictures called string diagrams.
This is one of the reasons for the term ‘higher-dimensional algebra’. String diagrams for 2-
categories [45] are Poincaré dual to the more traditional globular diagrams in which objects
are represented as dots, 1-morphisms as arrows and 2-morphisms as 2-dimensional globes.
In other words, in a string diagram one draws objects in a 2-category as 2-dimensional
regions in the plane, 1-morphisms as 1-dimensional ‘strings’ separating regions, and 2-
morphisms as 0-dimensional points (or small discs, if we wish to label them).

To apply these diagrams to 2-groups, first let us assume our 2-group is a strict monoidal
category, which we may think of as a strict 2-category with a single object, say o. A
morphism f:xz — gy in the monoidal category corresponds to a 2-morphism in the 2-
category, and we convert the globular picture of this into a string diagram as follows:

N Lk
OR:

Y

We can use this idea to draw the composite or tensor product of morphisms. Compo-
sition of morphisms f:x — y and ¢g:y — 2z in the strict monoidal category corresponds
to vertical composition of 2-morphisms in the strict 2-category with one object. The
globular picture of this is:

T

NS

D%

z

and the Poincaré dual string diagram is:

z

y @

Similarly, the tensor product of morphisms f:x — y and g:2’ — ¥’ corresponds to
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horizontal composition of 2-morphisms in the 2-category. The globular picture is:
T z’ zQx’
./P./P. ./ﬂb.

and the Poincaré dual string diagram is:

TRz’
x x!
=
y y' YRy’

We also introduce abbreviations for identity morphisms and the identity object. We
draw the identity morphism 1,:x — x as a straight vertical line:

The identity object will not be drawn in the diagrams, but merely implied. As an example
of this, consider how we obtain the string diagram for i,: 1 — = ® Z:

1
m ~
oe——0 — 0
x x

Note that we omit the incoming string corresponding to the identity object 1. Also, we
indicate weak inverse objects with arrows ‘going backwards in time’, following this rule:

T T

&I
Il
8

In calculations, it is handy to draw the unit 7, in an even more abbreviated form:

iy

)
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where we omit the disc surrounding the morphism label ‘z,’, and it is understood that the
downward pointing arrow corresponds to x and the upward pointing arrow to z. Similarly,

we draw the morphism e, as

€x

In a strict monoidal category, where the associator and the left and right unit laws are
identity morphisms, one can interpret any string diagram as a morphism in a unique way.
In fact, Joyal and Street have proved some rigorous theorems to this effect [32]. With the
help of Mac Lane’s coherence theorem [39] we can also do this in a weak monoidal category.
To do this, we interpret any string of objects and 1’s as a tensor product of objects where
all parentheses start in front and all 1’s are removed. Using the associator and left /right
unit laws to do any necessary reparenthesization and introduction or elimination of 1’s,
any string diagram then describes a morphism between tensor products of this sort. The
fact that this morphism is unambiguously defined follows from Mac Lane’s coherence
theorem.

For a simple example of string diagram technology in action, consider the zig-zag
identities. To begin with, these say that the following diagrams commute:

1=, (r® ) Qx5 r ® (z®x)

zml ll(@e:c

T r®1
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Taking Poincaré duals, we obtain the zig-zag identities in string diagram form:

iz 2

T T

This picture explains their name! The zig-zag identities simply allow us to straighten a
piece of string.

In most of our calculations we only need string diagrams where all strings are labelled
by x and Z. In this case we can omit these labels and just use downwards or upwards
arrows to distinguish between z and z. We draw 7, as

and draw e, as

The zig-zag identities become just:

We also obtain some rules for manipulating string diagrams just from the fact that i,

and e, have inverses. For these, we draw i, ! as

N
'_ -

The equations i,i, ! = 1; and e, 'e, = 1; give the rules

and e, ! as
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which mean that in a string diagram, a loop of either form may be removed or in-
serted without changing the morphism described by the diagram. Similarly, the equations
e, = lzge and i ', = 1,0z give the rules

U v
N N

Again, these rules mean that in a string diagram we can modify any portion as above
without changing the morphism in question.

By taking the inverse of both sides in the zig-zag identities, we obtain extra zig-zag
identities involving i ' and e, *

Conceptually, this means that whenever (z,z,i,,e,) is an adjoint equivalence, so is

(T, z, et i7h).

'y Yx Y Yx

In the calculations to come we shall also use another rule, the ‘horizontal slide’:

This follows from general results on the isotopy-invariance of the morphisms described by
string diagrams [33], but it also follows directly from the interchange law relating vertical
and horizontal composition in a 2-category:

AR A A AYanY
NN NI VAN =
S
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We will also be using other slightly different versions of the horizontal slide, which can be
proved the same way.

As an illustration of how these rules are used, we give a string diagram proof of a
result due to Saavedra Rivano [47], which allows a certain simplification in the definition
of ‘coherent 2-group’:

4.1. PROPOSITION. Let C' be a weak monoidal category, and let x,x € C' be objects
equipped with isomorphisms iy: 1 — x @ T and e,: T @x — 1. If the quadruple (x, %, iy, e;)
satisfies either one of the zig-zag identities, it automatically satisfies the other as well.

PROOF. Suppose the first zig-zag identity holds:

Then the second zig-zag identity may be shown as follows:
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In this calculation, we indicate an application of the ‘horizontal slide’ rule by a dashed
line. Dotted curves or lines indicate applications of the rule e,e;! = 1;0,. A box indicates
an application of the first zig-zag identity. The converse can be proven similarly. [

5. Improvement

We now use string diagrams to show that any weak 2-group can be improved to a coherent
one. There are shorter proofs, but none quite so pretty—at least in a purely visual sense.
Given a weak 2-group C' and any object x € C, we can choose a weak inverse T for x
together with isomorphisms i,: 1 — x®7, e,: t®x — 1. From this data we shall construct
an adjoint equivalence (z,z,1i", e’ ). By doing this for every object of C', we make C' into
a coherent 2-group.
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5.1. THEOREM.  Any weak 2-group C' can be given the structure of a coherent 2-group
Imp(C) by equipping each object with an adjoint equivalence.

Proor. First, for each object x we choose a weak inverse  and isomorphisms i,:1 —
TR, e,: T ®x — 1. From this data we construct an adjoint equivalence (x, z, i, e’ ). To
do this, we set €/, = e, and define i/, as the following composite morphism:
. zl ! zey 'z Taz,2,5 a;}c,xi iz (2T) a1 2.5 lpT
1 — 2z — z(1z2) — z((Z2)z) — z(Z(2Z)) — (2%)(zZ) — 1(27) — (1lz)Z

where we omit tensor product symbols for brevity.

The above rather cryptic formula for ¢/, becomes much clearer if we use pictures. If
we think of a weak 2-group as a one-object 2-category and write this formula in globular
notation it becomes:

where we have suppressed associators and the left unit law for clarity. If we write it as a

string diagram it looks even simpler:

At this point one may wonder why we did not choose some other isomorphism going from

the identity to z ® z. For instance:

is another morphism with the desired properties. In fact, these two morphisms are equal,
as the following lemma shows.

5.2. LEMMA.
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PROOF.

¥e

Now let us show that (z,z,i, e, ) satisfies the zig-zag identities. Recall that these

) VX T
identities say that:
and

-/
m
e/
x
,L'/
m
e/
xT

If we express i/, and €/, in terms of i, and e,, these equations become

2
w )
izt ex
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and

To verify these two equations we use string diagrams. The first equation can be shown as

follows:

The second equation can be shown with the help of Lemma 5.2:

G)- IR
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The ‘improvement’ process of Theorem 5.1 can be made into a 2-functor Imp: W2G —

C2G:

5.3. COROLLARY. There exists a 2-functor Imp: W2G — C2G which sends any object
C € W2G to Imp(C) € C2G and acts as the identity on morphisms and 2-morphisms.

ProoF. This is a trivial consequence of Theorem 5.1. Obviously all domains, codomains,
identities and composites are preserved, since the 1-morphisms and 2-morphisms are un-
changed as a result of Definitions 3.2 and 3.3. [

On the other hand, there is also a forgetful 2-functor F: C2G — W2G, which forgets
the extra structure on objects and acts as the identity on morphisms and 2-morphisms.

5.4. THEOREM. The 2-functors Imp: W2G — C2G, F: C2G — W2G extend to define
a 2-equivalence between the 2-categories W2G and C2G.

PrROOF. The 2-functor Imp equips each object of W2G with the structure of a coherent
2-group, while F forgets this extra structure. Both act as the identity on morphisms and
2-morphisms. As a consequence, Imp followed by F acts as the identity on W2G:

ImpoF = lywag

(where we write the functors in order of application). To prove the theorem, it therefore
suffices to construct a natural isomorphism

e:Fo Imp = loog.

To do this, note that applying F' and then Imp to a coherent 2-group C' amounts
to forgetting the choice of adjoint equivalence for each object of C' and then making a
new such choice. We obtain a new coherent 2-group Imp(F(C)), but it has the same
underlying weak monoidal category, so the identity functor on C defines a coherent 2-
group isomorphism from Imp(F(C)) to C. We take this as ec: Imp(F(C)) — C.

To see that this defines a natural isomorphism between 2-functors, note that for every
coherent 2-group homomorphism f:C' — C’ we have a commutative square:

Imp(F(C)) —22 T tp(F(C))

eol leo/

C '’
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This commutes because Imp(F(f)) = f as weak monoidal functors, while e and ecr are
the identity as weak monoidal functors. [

The significance of this theorem is that while we have been carefully distinguishing
between weak and coherent 2-groups, the difference is really not so great. Since the 2-
category of weak 2-groups is 2-equivalent to the 2-category of coherent ones, one can use
whichever sort of 2-group happens to be more convenient at the time, freely translating
results back and forth as desired. So, except when one is trying to be precise, one can
relax and use the term 2-group for either sort.

Of course, we made heavy use of the axiom of choice in proving the existence of the
improvement 2-functor Imp: W2G — C2G, so constructivists will not consider weak and
coherent 2-groups to be equivalent. Mathematicians of this ilk are urged to use coherent
2-groups. Indeed, even pro-choice mathematicians will find it preferable to use coherent
2-groups when working in contexts where the axiom of choice fails. These are not at all
exotic. For example, the theory of ‘Lie 2-groups’ works well with coherent 2-groups, but
not very well with weak 2-groups, as we shall see in Section 7.

To conclude, let us summarize why weak and coherent 2-groups are not really so
different. At first, the choice of a specified adjoint equivalence for each object seems
like a substantial extra structure to put on a weak 2-group. However, Theorem 5.1
shows that we can always succeed in putting this extra structure on any weak 2-group.
Furthermore, while there are many ways to equip a weak 2-group with this extra structure,
there is ‘essentially’ just one way, since all coherent 2-groups with the same underlying
weak 2-group are isomorphic. It is thus an example of what Kelly and Lack [35] call a
‘property-like structure’.

Of course, the observant reader will note that this fact has simply been built into our
definitions! The reason all coherent 2-groups with the same underlying weak 2-group are
isomorphic is that we have defined a homomorphism of coherent 2-groups to be a weak
monoidal functor, not requiring it to preserve the choice of adjoint equivalence for each
object. This may seem like ‘cheating’, but in the next section we justify it by showing that
this choice is automatically preserved up to coherent isomorphism by any weak monoidal
functor.

6. Preservation of weak inverses

Suppose that F: C' — C" is a weak monoidal functor between coherent 2-groups. To show
that F' automatically preserves the specified weak inverses up to isomorphism, we now
construct an isomorphism

(FL1),: F(2) — F(7)

for each object x € C'. This isomorphism is uniquely determined if we require the following
coherence laws:
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H1
F(z) @ Flz) > F(z) © F(7) 2 F(z © 7)
iF@J TF(@'I)
I = P F(1)
H2
F_1®1 F

F(z) @ F(z) — F(z) ® F(z) =

1 F(1)

Fy

These say that F_; is compatible with units and counits. In the above diagrams and in
what follows, we suppress the subscript on F_1, just as we are already doing for F5.

6.1. THEOREM. Suppose that F:C — C" is a homomorphism of coherent 2-groups.
Then for any object x € C' there ezists a unique isomorphism F_q: F(x) — F(Z) satisfying
the coherence laws H1 and H2.

Proor. This follows from the general fact that pseudofunctors between bicategories
preserve adjunctions. However, to illustrate the use of string diagrams we prefer to simply
take one of these laws, solve it for F_;, and show that the result also satisfies the other
law. We begin by solving equation H1 for 1 ® F_. In string notation the result is:

- w.
F -

F(3) ﬁ

F(iy) = Fyo F(iy) o Fy 111 — F(z) ® F(7).

where we set

This equation can in turn be solved for F'_;, as follows:
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Here and in the arguments to come we omit the labels ip @), ere), i;%w)’ e;%x).

Since we have solved for F'; starting from H1, we have already shown the morphism
satisfying this law is unique. We also know it is an isomorphism, since all morphisms in
C' are invertible. However, we should check that it exists—that is, it really does satisfy
this coherence law. The proof is a string diagram calculation:

F(z)

v

Flig)

F(z)

To conclude, we must show that F_; also satisfies the coherence law H2. In string
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notation, this law says:

where we set

P

F(ey) = Fy0F(ey) o Fy ' F(7) ® F(z) — 1.
Again, the proof is a string diagram calculation. Here we need the fact that

—_—~

(F(z), F(z), F(iz), F(€x))

e~ e~

is an adjunction. This allows us to use a zig-zag identity for F'(i,) and F'(e,) below:

F(a) F@ |

In short, we do not need to include F_; and its coherence laws in the definition of a
coherent 2-group homomorphism; we get them ‘for free’.
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7. Internalization

The concept of ‘group’ was born in the category Set, but groups can live in other categories
too. This vastly enhances the power of group theory: for example, we have ‘topological
groups’, ‘Lie groups’, ‘affine group schemes’, and so on—each with their own special
features, but all related.

The theory of 2-groups has a similar flexibility. Since 2-groups are categories, we have
implicitly defined the concept of 2-group in the 2-category Cat. However, as noted by
Joyal and Street, this concept can generalized to other 2-categories as well [33]. This
makes it possible to define ‘topological 2-groups’, ‘Lie 2-groups’, ‘affine 2-group schemes’
and the like. In this section we describe how this generalization works. In the next section,
we give many examples of Lie 2-groups.

‘Internalization’ is an efficient method of generalizing concepts from the category of
sets to other categories. To internalize a concept, we need to express it in a purely
diagrammatic form. Mac Lane illustrates this in his classic text [40] by internalizing the
concept of a ‘group’. We can define this notion using commutative diagrams by specifying:

e aset G,
together with
e a multiplication function m: G x G — G,

e an identity element for the multiplication given by the function id: I — G where [
is the terminal object in Set,

e a function inv: G — G,
such that the following diagrams commute:

e the associative law:

GxGxd

x G G X
e the right and left unit laws:

idx1

— G

x GEY G T

G
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e the right and left inverse laws:

GxGX™ axG Gx G2 axa
2/ \”(; GA/ \’g
\1% \I%

where A: G — G x G is the diagonal map.

To internalize the concept of group we simply replace the set G by an object in some
category K and replace the functions m,id, and inv by morphisms in this category. Since
the definition makes use of the Cartesian product x, the terminal object I, and the
diagonal A, the category K should have finite products. Making these substitutions in
the above definition, we arrive at the definition of a group object in K. We shall usually
call this simply a group in K.

In the special case where K = Set, a group in K reduces to an ordinary group. A
topological group is a group in Top, a Lie group is a group in Diff, and a affine group
scheme is a group in CommRing®?, usually called the category of ‘affine schemes’. Indeed,
for any category K with finite products, there is a category K Grp consisting of groups
in K and homomorphisms between these, where a homomorphism f:G — G’ is a
morphism in K that preserves multiplication, meaning that this diagram commutes:

GxG—"——=G
Ixf f
G/XG/LG/

As usual, this implies that f also preserves the identity and inverses.

Following Joyal and Street [33], let us now internalize the concept of coherent 2-group
and define a 2-category of ‘coherent 2-groups in K’ in a similar manner. For this, one
must first define a coherent 2-group using only commutative diagrams. However, since the
usual group axioms hold only up to natural isomorphism in a coherent 2-group, these will
be 2-categorical rather than 1-categorical diagrams. As a result, the concept of coherent
2-group will make sense in any 2-category with finite products, K. For simplicity we shall
limit ourselves to the case where K is a strict 2-category.

To define the concept of coherent 2-group using commutative diagrams, we start with
a category C' and equip it with a multiplication functor m: C' x C' — C' together with an
identity object for multiplication given by the functor id: I — C, where [ is the terminal
category. The functor mapping each object to its specified weak inverse is a bit more
subtle! One can try to define a functor x:C' — C' sending each object © € C to its
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specified weak inverse T, and acting on morphisms as follows:

g
x
X —
Yy
€y

However, * is actually a contravariant functor. To see this, we consider composable
morphisms f:x — y and g:y — 2 and check that (fg)* = ¢*f*. In string diagram form,
this equation says:

g iy g

[ €z €y

This equation holds if and only if

Ly

Cy

But this is merely the first zig-zag identity!

Contravariant functors are a bit annoying since they are not really morphisms in Cat.
Luckily, there is also another contravariant functor ~': C' — C sending each morphism to
its inverse, expressed diagrammatically as

If we compose the contravariant functor x with this, we obtain a covariant functor inv: C' —

C given by ‘
ty
mv: —
y

Thus, we can try to write the definition of a coherent 2-group in terms of:

e the category C,
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together with

e the functor m: C' x C' — C, where we write m(z,y) = x®y and m(f,g) = f ® g for
objects x,y, € C' and morphisms f, g in C,

e the functor id: I — C where [ is the terminal category, and the object in the range
of this functor is 1 € C,

e the functor inv: C' — C,
together with the following natural isomorphisms:
CxCxC
N\

Ox(C —— (Ox(C
C

idx1 1xid

IxC——(Cx(C+———Cx1

N

C
Cx O 0 xC Cx 2L 0% 0
SRR

I I

and finally the coherence laws satisfied by these isomorphisms. But to do this, we must
write the coherence laws in a way that does not explicitly mention objects of C. For
example, we must write the pentagon identity

(wRr)® (Y 2)
M m

(w®z)y)® = ® (y ® 2))

aw,z,y@\l 1w®az,y,z

WR@EoyY)®r —5 we (2®y)® 2)
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without mentioning the objects w, z,y, z € C. We can do this by working with (for exam-
ple) the functor (1x1xm)o(1xm)om instead of its value on the object (z,y, z,w) € C*,
namely z ® (y ® (z @ w)). If we do this, we see that the diagram becomes 3-dimensionall
It is a bit difficult to draw, but it looks something like this:

C><C>.<O><C

where the downwards-pointing single arrows are functors from C* to C, while the hori-
zontal double arrows are natural transformations between these functors, forming a com-
mutative pentagon. Luckily we can also draw this pentagon in a 2-dimensional way, as
follows:

(mxm)om

(mx1x1)o 1x1xm)oa

(mx1x1)o(mx1)om (1x1xm)o(lxm)om

(aXl)oer] /(l\xa)om

(Ixmx1)o(mx1)om ——— % (I1xmx1)o(1xm)om
(1xmx1)oa

Using this idea we can write the definition of ‘coherent 2-group’ using only the structure
of Cat as a 2-category with finite products. We can then internalize this definition, as
follows:

7.1. DEFINITION.  Given a 2-category K with finite products, a coherent 2-group in
K consists of:

e an object C' € K,
together with:
e ¢ multiplication morphism m:C x C' — C,
e an identity-assigning morphism id: I — C where I is the terminal object of K,
e an inverse morphism inv:C' — C,

together with the following 2-isomorphisms:



454 JOHN C. BAEZ AND AARON D. LAUDA

e (he associator:

CxCxC

e the left and right unit laws:

idx1 1xid

IxC——(Cx(C+———Cx1

b

C
o the unit and counit:
CxC20xC CxC2LoxC
W

I 1

such that the following diagrams commute:

e the pentagon identity for the associator:

m><mm

(mx1x1)o(mx1)om (1x1xm)o(lxm)om

(aXl)onx /(1\><a)om

(I1xmx1)o(mx1)om ———— % (I1xmx1)o(1xm)om
(I1xmx1)oa

e the triangle identity for the left and right unit laws:

(Ixidx1)o
(1xidx1)o mxl)om—> (1xidx1)o(1xm)om

i, _aen
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o the first zig-zag identity:

To(1xinvx1)oa

To(1xinvx1)o(mx1)om To(1xinvx1)o(lxm)om
i N
(idx1)om (1xid)om

e the second zig-zag identity:

To(invx1xinv)oa~!

To(invx1xinv)o(1xm)om To(invx1xinv)o(mx1)om
(inVXi)on/ \c;xinv)om
(invxid)om (idxinv)om

\ /
inv

where T:C — C3 is built using the diagonal functor.
7.2. PROPOSITION. A coherent 2-group in Cat is the same as a coherent 2-group.

Proor. Clearly any coherent 2-group gives a coherent 2-group in Cat. Conversely,
suppose C' is a coherent 2-group in Cat. It is easy to check that C' is a weak monoidal
category and that for each object z € C there is an adjoint equivalence (z, ¥, i,, €, ) where
Z = inv(z). This permits the use of string diagrams to verify the one remaining point,
which is that all morphisms in C' are invertible.

To do this, for any morphism f:2 — y we define a morphism f~':y — x by

To check that f~1f is the identity, we use the fact that ¢ is a natural isomorphism to note

that this square commutes:
T ®
1

i)
T——5y®7y
\il
Yy
! 1

1
_—
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In string notation this says that:

iy
x x
y y
=1
by

and we can use this equation to verify that f~'f = 1,. In the calculation that follows, the
dotted curves connecting two parallel strings indicate an application of the rule 7, Y, =
lye5. The box indicates an application of the first zig-zag identity.

z | Tz
- O® & |,
yx Y
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The proof that ff~! = 1, is similar, based on the fact that e is a natural isomorphism.m

Given a 2-category K with finite products, we can also define homomorphisms be-
tween coherent 2-groups in K, and 2-homomorphisms between these, by internalizing the
definitions of ‘weak monoidal functor’ and ‘monoidal natural transformation’

7.3. DEFINITION.  Given coherent 2-groups C,C" in K, a homomorphism F:C — ('
consists of:

e a morphism F:C — ('
equipped with:

e a 2-isomorphism
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e a 2-isomorphism

id id’
Fo

C——F—C
such that diagrams commute expressing these laws:

e compatibility of Fy with the associator:

(F x FxF)(m'x 1)m’m>/ (m x 1)(F x F)m (m x 1)mF

(FXFXF)Oah haoF

; (mx1)olh
—

(Fx FxF)(1xm')m ——— (1 xm)(F x F)m' ———— (1 x m)mF
(FXFQ)OTTL/ (le)OFQ
o compatibility of Fy with the left unit law:
(id" x F)ym/ Foll F
(FOXF)om’J ]\KOF
(ld X ].)(F X F)m’ W (ld X 1)mF
e compatibility of Fy with the right unit law:
(F x id'ym/ —°" F
(FXFO)Oml ]\roF
(]_ X ld)(F X F)m/ m (]_ X ld)mF
7.4. DEFINITION. Given homomorphisms F,G:C — C' between coherent 2-groups

C,C" in K, a 2-homomorphism 6: F = G is a 2-morphism such that the following
diagrams commute:

o compatibility with Fy and Gsy:

(F x Fym' " (G x G)ym!

El FQ

mF mof mG
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o compatibility with Fy and Gy:

Y\

idF T I idG

It is straightforward to define a 2-category KC2G of coherent 2-groups in K, homomor-
phisms between these, and 2-homomomorphisms between those. We leave this to the
reader, who can also check that when K = Cat, this 2-category KC2G reduces to C2G
as already defined.

To define concepts such as ‘topological 2-group’, ‘Lie 2-group’ and ‘affine 2-group
scheme’ we need to consider coherent 2-group objects in a special sort of 2-category which
is defined by a further process of internalization. This is the 2-category of ‘categories in
K’, where K itself is a category. A category in K is usually called an ‘internal category’.
This concept goes back to Ehresmann [24], but a more accessible treatment can be found
in Borceux’s handbook [7]. For completeness, we recall the definition here:

7.5. DEFINITION. Let K be a category. An internal category or category in K,
say X, consists of:

e an object of objects X € K,

e an object of morphisms X; € K|
together with

e source and target morphisms s,t: X1 — X,
e ¢ identity-assigning morphism i: Xo — X,

e o composition morphism o: X7 xx, X1 — X3
such that the following diagrams commute, expressing the usual category laws:

e laws specifying the source and target of identity morphisms:

Xo—— X,  X,——X,

NN

Xo Xo
e laws specifying the source and target of composite morphisms:

X1 XX0X10—>X1 X1 XXOX10—>X1

p1 s p2 t
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e the associative law for composition of morphisms:

OXXO].
X1 Xxg X1 Xxg X1 —2— X7 Xy, X1

1><X00 o

X1 X X, X1 ° Xl

o the left and right unit laws for composition of morphisms:

ix1 1x4
X() XXOX1—>X1 XX0X1<—X1 XXOXO

X4

The pullbacks used in this definition should be obvious from the usual definition of
category; for example, composition should be defined on pairs of morphisms such that
the target of one is the source of the next, and the object of such pairs is the pullback
Xo Xx, X1. Notice that inherent to the definition is the assumption that the pullbacks
involved actually exist. This automatically holds if K is a category with finite limits, but
there are some important examples like K = Diff where this is not the case.

7.6. DEFINITION.  Let K be a category. Given categories X and X' in K, an internal
functor or functor in K, say F: X — X', consists of:

e a morphism Fy: Xo — X,
e a morphism Fi: X1 — X]

such that the following diagrams commute, corresponding to the usual laws satisfied by a
functor:

e preservation of source and target:

X1;>XO X1;>Xo
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e preservation of identity morphisms:
Xog—— X,
Ky Fy
X/ i X!
0T M
e preservation of composite morphisms:

F1><X0F1 ’ ,
X1 X xy Xp ——— X{ % x; X}

X, il X!
7.7. DEFINITION. Let K be a category. Given categories X, X' in K and functors

F.G: X — X', an internal natural transformation or natural transformation in
K, say 0: F = G, is a morphism 0: Xo — X for which the following diagrams commute,
expressing the usual laws satisfied by a natural transformation:

e laws specifying the source and target of the natural transformation:

Xo Xo
| N | N

e the commutative square law:

A(sOxG)

! !

X, X Xx, X1
A(Fxte) o’
! li o’ li
X1 Xxo X Xi

Given any category K, there is a strict 2-category K Cat whose objects are categories
in K, whose morphisms are functors in K, and whose 2-morphisms are natural transfor-
mations in K. Of course, a full statement of this result requires defining how to compose



462 JOHN C. BAEZ AND AARON D. LAUDA

functors in K, how to vertically and horizontally compose natural transformations in K,
and so on. We shall not do this here; the details can be found in Borceux’s handbook [7]
or HDAG [3].

One can show that if K is a category with finite products, KCat also has finite
products. This allows us to define coherent 2-groups in K Cat. For example:

7.8. DEFINITION. A topological category is a category in Top, the category of
topological spaces and continuous maps. A topological 2-group is a coherent 2-group
in TopCat.

7.9. DEFINITION. A smooth category is a category in Diff, the category of smooth
manifolds and smooth maps. A Lie 2-group is a coherent 2-group in Diff Cat.

7.10. DEFINITION. An affine category scheme is a category in CommRing®®,
the opposite of the category of commutative rings and ring homomorphisms. An affine
2-group scheme is a coherent 2-group in CommRing®’Cat.

In the next section we shall give some examples of these things. For this, it sometimes
handy to use an internalized version of the theory of crossed modules.

As mentioned in the Introduction, a strict 2-group is essentially the same thing as a
crossed module: a quadruple (G, H,t,«) where G and H are groups, t: H — G is a
homomorphism, and a: G x H — H is an action of G as automorphisms of H such that
t is G-equivariant:

t(a(g, h)) = gt(h) g~

and t satisfies the so-called Peiffer identity:
a(t(h),h) = hW'h ™.

To obtain a crossed module from a strict 2-group C' we let G = Cy, let H = kers C (Cf,
let t: H — G be the restriction of the target map t: Cy — Cy to H, and set

a(g, h) =i(g) hi(g)™"

for all g € G and h € H. (In this formula multiplication and inverses refer to the group
structure of H, not composition of morphisms in Conversely, we can build a strict 2-
group from a crossed module (G, H,t,«) as follows. First we let Cy = G and let C be
the semidirect product H x GG in which multiplication is given by

(h,g)(W',g') = (ha(g, 1), g9").

Then, we define source and target maps s,t: C; — Cy by:

s(th,g) =9,  t(h,g) =t(h)g,

define the identity-assigning map i: Cy — Cy by:

i(9) = (1,9),
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and define the composite of morphisms

(h,9):9g— ¢, (W', ¢"):g" = ¢"

to be:
(hh',g9):9 — g".

For a proof that these constructions really work, see the expository paper by Forrester-
Barker [26].

Here we would like to internalize these constructions in order to build ‘strict 2-groups
in KCat’ from ‘crossed modules in K’ whenever K is any category satisfying suitable

conditions. Since the details are similar to the usual case where K = Set, we shall be
brief.

7.11. DEFINITION. A strict 2-group in a 2-category with finite products is a co-
herent 2-group in this 2-category such that a,i,e,l,r are all identity 2-morphisms—or
equivalently, a group in the underlying category of this 2-category.

7.12. DEFINITION. Given a category K with finite products and a group G in K, an
action of G on an object X € K is a morphism a: G x X — X such that the following
diagrams commute:

GxGx X" L GxX
IGXaJ la
GxX @ X

Ix X X Jaxx

1%
—
Q

If X is a group i K, we say « is an action of G as automorphisms of X if this
diagram also commutes:

lgxm

GxXxX GxX = X

(AGX1X><X)J ]\m

(1G><SG,X><1X
—_—

GxGExXxX )GXXXGXXWQ—>XXX

where Sg x stands for the ‘switch map’ from G x X to X x (.
7.13. DEFINITION.  Given a category K with finite products, a crossed module in K

is a quadruple (G, H,t,«) with G and H being groups in K, t: H — G a homomorphism,
and a: G x H — H an action of G as automorphisms of H, such that diagrams commute
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expressing the G-equivariance of t:

Gx H 2 H G

(AGX1H)(1G><SG,H)k m

lgxtxlg

G><H><G—>G><G><Gm—X§G><G

and the Peiffer identity:

t><1H

Hx H GxH
(AHX1H)(1HXSH,H)J J{a
Hx Hx H™™  pgwg-—"_ g

Next, consider a strict 2-group C' in the 2-category K Cat, where K is a category with
finite products. This is the same as a group in the underlying category of KCat. By
‘commutativity of internalization’, this is the same as a category in K Grp. So, C' consists

of:

a group Cp in K,

a group C in K,

source and target homomorphisms s, t: C; — C,

an identity-assigning homomorphism i: Cy — Cf,
e a composition homomorphism o: C x¢, C7 — C4
such that the usual laws for a category hold:
e laws specifying the source and target of identity morphisms,
e laws specifying the source and target of composite morphisms,
e the associative law for composition,
e the left and right unit laws for composition of morphisms.

We shall use this viewpoint in the following:
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7.14. PROPOSITION. Let K be a category with finite products such that KGrp has

finite limits. Given a strict 2-group C in KCat, there is a crossed module (G, H,t,«) in
K such that

G = Cy, H = kers,
such that
t:H — G,

1s the restriction of t: C; — Cy to the subobject H, and such that

aGxH—H
makes this diagram commute:
Gx H = H
(AXlH)(lGXSH,G)l Tm
GxHXxG Hx H

ilexiJ melH

Hx H x H -t o i H

Conversely, given a crossed module (G, H,t,«) in K, there is a strict 2-group C' in K
for which

Co - G
and for which
Cl =Hx{d

is made into a group in K by taking the semidirect product using the action o of G as
automorphisms on H. In this strict 2-group we define source and target maps s,t: Cy — Cjy
so that these diagrams commute:

HxGE2—G

lHXGl %

HxdG

HxGt—a

] &

G x G

define the identity-assigning map id: Cy — C4 so that this diagram commutes:

G—Y. gxqg

_J/ 4@

I x@
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and define composition o: Cy X, C1 — Cy such that this commutes:

(HxG)xe(HxG) ———HxG
Tr123l melc
HxGxH rSe Hx Hx@

where 93 projects onto the product of the first, second and third factors.

PrROOF. The proof is modeled directly after the case K = Set; in particular, the rather
longwinded formula for « reduces to

a(g, h) =i(g) hi(g)~"

in this case. Note that to define ker s we need K Grp to have finite limits, while to define
C7 and make it into a group in K, we need K to have finite products. [

When the category K satisfies the hypotheses of this proposition, one can go further
and show that strict 2-groups in K Cat are indeed ‘the same’ as crossed modules in K. To
do this, one should first construct a 2-category of strict 2-groups in K Cat and a 2-category
of crossed modules in K, and then prove these 2-categories are equivalent. We leave this
as an exercise for the diligent reader.

8. Examples

8.1. AUTOMORPHISM 2-GROUPS. Just as groups arise most naturally from the
consideration of symmetries, so do 2-groups. The most basic example of a group is
a permutation group, or in other words, the automorphism group of a set. Similarly,
the most basic example of a 2-group consists of the automorphism group of a category.
More generally, we can talk about the automorphism group of an object in any category.
Likewise, we can talk about the ‘automorphism 2-group’ of an object in any 2-category.

We can make this idea precise in somewhat different ways depending on whether we
want a strict, weak, or coherent 2-group. So, let us consider various sorts of ‘automorphism
2-group’ for an object x in a 2-category K.

The simplest sort of automorphism 2-group is a strict one:

8.1.1. EXAMPLE. For any strict 2-category K and object z € K there is a strict 2-
group Autg(z), the strict automorphism 2-group of x. The objects of this 2-group are
isomorphisms f:x — x, while the morphisms are 2-isomorphisms between these. Multipli-
cation in this 2-group comes from composition of morphisms and horizontal composition
of 2-morphisms. The identity object 1 € Auty(x) is the identity morphism 1,:x — x.

To see what this construction really amounts to, take K = Cat and let M € K be a
category with one object. A category with one object is secretly just a monoid, with the
morphisms of the category corresponding to the elements of the monoid. An isomorphism
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f: M — M is just an automorphism of this monoid. Given isomorphisms f, f': M — M,
a 2-isomorphism from f to f’ is just an invertible element of the monoid, say «, with the
property that f conjugated by « gives f’:

fi(m) = a~' f(m)a

for all elements m € M. This is just the usual commuting square law in the definition
of a natural isomorphism, applied to a category with one object. So, Auts(M) is a strict
2-group that has automorphisms of x as its objects and ‘conjugations’ as its morphisms.

Of course the automorphisms of a monoid are its symmetries in the classic sense,
and these form a traditional group. The new feature of the automorphism 2-group is
that it keeps track of the symmetries between symmetries: the conjugations carrying
one automorphism to another. More generally, in an n-group, we would keep track of
symmetries between symmetries between symmetries between... and so on to the nth
degree.

The example we are discussing here is especially well-known when the monoid is actu-
ally a group, in which case its automorphism 2-group plays an important role in nonabelian
cohomology and the theory of nonabelian gerbes [8, 9, 27]. In fact, given a group G, people
often prefer to work, not with Aut,(G), but with a certain weak 2-group that is equivalent
to Auts(G) as an object of W2G. The objects of this group are called ‘G-bitorsors’. They
are worth understanding, in part because they illustrate how quite different-looking weak
2-groups can actually be equivalent.

Given a group G, a G-bitorsor X is a set with commuting left and right actions of G,
both of which are free and transitive. We write these actions as g-x and x - g, respectively.
A morphism between G-bitorsors f: X — Y is a map which is equivariant with respect to
both these actions. The tensor product of G-bitorsors X and Y is defined to be the space

XY =XxY/((x-g,y) ~(v,9-Y)),

which inherits a left G-action from X and a right G-action from Y. It is easy to check
that X ® Y is again a bitorsor. Accompanying this tensor product of bitorsors there is an
obvious notion of the tensor product of morphisms between bitorsors, making G-bitorsors
into a weak monoidal category which we call G-Bitors.

The identity object of G-Bitors is just G, with its standard left and right action on
itself. This is the most obvious example of a G-bitorsor, but we can get others as follows.
Suppose that f: G — G is any automorphism. Then we can define a G-bitorsor Gy whose
underlying set is GG, equipped with the standard left action of G:

g-h=gh, ge G, heGy
but with the right action twisted by the automorphism f:

h-g="hf(g), g€ G, heaGy.
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The following facts are easy to check. First, every G-bitorsor is isomorphic to one of
the form Gy. Second, every morphism from Gy to Gy is of the form

h — ha

for some o € G with
f(g) = flg)a

for all g € G. Third, the tensor product of Gy and Gy is isomorphic to G .

With the help of these facts, one can show that G-Bitors is equivalent as a weak
monoidal category to Auts(G). The point is that the objects of G-Bitors all correspond,
up to isomorphism, to the objects of Aut,(G): namely, automorphisms of G. Similarly,
the morphisms of G-Bitors all correspond to the morphisms of Auty(G): namely, ‘conju-
gations’. The tensor products agree as well, up to isomorphism.

Since Auts(G) is a strict 2-group, it is certainly a weak one as well. Since G-Bitors
is equivalent to Aut,(G) as a weak monoidal category, it too is a weak 2-group, and it is
equivalent to Auts(G) as an object of the 2-category W2G.

In this particular example, the ‘strict automorphism 2-group’ construction seems quite
useful. But for some applications, this construction is overly strict. First, we may be
interested in automorphism 2-group of an object in a weak 2-category (bicategory), rather
than a strict one. Second, given objects =,y in a weak 2-category K, it is often unwise
to focus attention on the isomorphisms f:x — y. A more robust concept is that of a
weakly invertible morphism: a morphism f:x — y for which there exists a morphism
f:y — 2 and 2-isomorphisms ¢: 1, = ff, e ff = 1,. Using weakly invertible morphisms
as a substitute for isomorphisms gives a weak version of the automorphism 2-group:

8.1.2. EXAMPLE. For any weak 2-category K and object x € K there is a weak 2-
group Aut,(z), the weak automorphism 2-group of z. The objects of this 2-group are
weakly invertible morphisms f:x — z, while the morphisms are 2-isomorphisms between
these. Multiplication in this 2-group comes from composition of morphisms and horizontal
composition of 2-morphisms. The identity object 1 € Aut,,(C) is the identity functor.

A weakly invertible morphism f:2 — y is sometimes called an ‘equivalence’. Here
we prefer to define an equivalence from x to y to be a morphism f:x — y with a
specified weak inverse f:y — x and specified 2-isomorphisms tprly = ff, €r: ff= 1,.
An equivalence from  to y is thus a quadruple (f, f,is,€5). We can make a coherent
2-group whose objects are equivalences from x to itself:

8.1.3. EXAMPLE. For any weak 2-category K and object x € K there is a coherent
2-group Aut,(z), the autoequivalence 2-group of z. The objects of Aut.,(z) are
equivalences from x to . A morphism in Aut,,(z) from (f, f,¢s,€;) to (g, g, Ly, €5) consists
of 2-isomorphisms

a: f =g, @:f:g
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such that the following diagrams commute:

469

Lf/ff ff\ef

1 a-a a-a 1

N L/
g9 g9

Multiplication in this 2-group comes from the standard way of composing equivalences,
together with horizontal composition of 2-morphisms. The identity object 1 € Aut.,(z)
is the equivalence (1., 1,,11,,11,).

One can check that Aut.,(z) is a weak 2-group, because every object F' = (f, f, i, €;)
of Aut,(z) has the weak inverse F' = (f, f, e;l, ijl). But in fact, the proof of this involves
constructing isomorphisms

ip:l, = FF, ep: FF =1,

from the data at hand, and these isomorphisms can easily be chosen to satisfy the zig-zag
identities, so Aut,(z) actually becomes a coherent 2-group.

An equivalence (f, f, ¢y, €;) is an adjoint equivalence if it satisfies the zig-zag iden-
tities. We can also construct a coherent 2-group whose objects are adjoint equivalences
from z to itself:

8.1.4. EXAMPLE. For any weak 2-category K and object € K there is a coherent 2-
group Aut,(z), the adjoint autoequivalence group of x. The objects of this 2-group
are adjoint equivalences from x to x, while the morphisms are defined as in Aut.,(z).
Multiplication in this 2-group comes from the usual way of composing equivalences (using
the fact that composite of adjoint equivalences is again an adjoint equivalence) together
with horizontal composition of 2-morphisms. The identity object 1 € Aut.q(z) is the
adjoint equivalence (1., 1,,11,,11,). Autyy(z) becomes a coherent 2-group using the fact
that every object F' of Aut.q(x) becomes part of an adjunction (F, F, i, er) as in Example
8.1.3.

8.2. THE FUNDAMENTAL 2-GROUP.  Another source of 2-groups is topology: for any
topological space X and any point x € X there is a coherent 2-group Ily(X, z) called the
‘fundamental 2-group’ of X based at x. The fundamental 2-group is actually a watered-
down version of what Hardie, Kamps and Kieboom [29] call the ‘homotopy bigroupoid’
of X, denoted by II5(X). This is a weak 2-category whose objects are the points of X,
whose morphisms are paths in X, and whose 2-morphisms are homotopy classes of paths-
of-paths. More precisely, a morphism f:2 — y is a map f:[0,1] — X with f(0) = 2 and
f(1) = y, while a 2-morphism «: f = ¢ is an equivalence class of maps «a:[0,1]> — X

with
a(s,0) = f(s)
a(s, 1) = g(s)
a(0,t) = =z
a(lt) =y
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for all s,t € [0,1], where the equivalence relation is that a ~ o' if there is a map
H:[0,1]> — X with

H(s,t,0) = afs,t)
H(s,t,1) = d(s,t)
H(S’O’u) = f(S)
H(Sa 17“) = 9(3)
H(0,t,u) = =x
H(l,t,u) = y

for all s,t,u € [0,1]. This becomes a weak 2-category in a natural way, with composition
of paths giving composition of morphisms, and two ways of composing paths-of-paths
giving vertical and horizontal composition of 2-morphisms:

N R,

Hardie, Kamps and Kieboom show that every 2-morphism in II5(X) is invertible, and
they construct an adjoint equivalence (f, f, ¢y, ;) for every morphism f in IIy(X). This
is why they call II(X) a ‘bigroupoid’. One might also call this a ‘coherent 2-groupoid’,
since such a thing with one object is precisely a coherent 2-group. Regardless of the
terminology, this implies that for any point x € X there is a coherent 2-group whose
objects are morphisms f:x — x in II5(X), and whose morphisms are those 2-morphisms
a: f = g in IIy(X) for which f, g: x — x. We call this coherent 2-group the fundamental
2-group II,(X, ).

In fact, a fundamental 2-group is a special case of an ‘autoequivalence 2-group’, as
defined in Example 8.1.3. A point z € X is an object of the weak 2-category II5(X), and
the autoequivalence 2-group of this object is precisely the fundamental 2-group Iy (X, z).
Even better, we can turn this idea around: there is a way to see any autoequivalence 2-
group as the fundamental 2-group of some space, at least up to equivalence! Unfortunately,
proving this fact would take us too far out of our way here. However, the relation between
2-groups and topology is so important that we should at least sketch the basic idea.

Suppose K is a weak 2-category, and let K be its underlying coherent 2-groupoid—
that is, the weak 2-category with the same objects as K, but with the adjoint equivalences
in K as its morphisms and the invertible 2-morphisms of K as its 2-morphisms. Let |Kj|
be the geometric realization of the nerve of Ky as defined by Duskin [23]. Then any object
x € K gives a point z € |Ky|, and the autoequivalence 2-group Aut.,(z) is equivalent to
HQ ( | KO |7 ZE) .

In fact, something much stronger than this should be true. According to current
thinking on n-categories and homotopy theory [4], 2-groups should really be ‘the same’
as connected pointed homotopy 2-types. For example, we should be able to construct a
2-category Conn2Typ, having connected pointed CW complexes with 7, = 0 for n > 2
as objects, continuous basepoint-preserving maps as morphisms, and homotopy classes of
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basepoint-preserving homotopies between such maps as 2-morphisms. The fundamental
2-group construction should give a 2-functor:

[Iy: Conn2Typ, — C2G
(X,z) — TIa(X,x)

while the geometric realization of the nerve should give a 2-functor going the other way:

I;':C2G — Conn2Typ.
¢ — (IC1)

and these should extend to a biequivalence of 2-categories. To the best of our knowledge,
nobody has yet written up a proof of this result. However, a closely related higher—
dimensional result has been shown by C. Berger [6]: the model category of homotopy
3-types is Quillen equivalent to a suitably defined model category of weak 3-groupoids.

8.3. CLASSIFYING 2-GROUPS USING GROUP COHOMOLOGY. In this section we sketch
how a coherent 2-group is determined, up to equivalence, by four pieces of data:

e a group G,

e an abelian group H,

e an action a of G as automorphisms of H,

e an element [a] of the cohomology group H?(G, H),

where the last item comes from the associator. Various versions of this result have been
known to experts at least since Sinh’s thesis [44], but since this thesis was unpublished
they seem to have spread largely in the form of ‘folk theorems’. A very elegant treatment
can be found in the 1986 draft of Joyal and Street’s paper on braided tensor categories
[33], but not in the version that was finally published in 1993. So, it seems worthwhile to
provide a precise statement and proof here.

One way to prove this result would be to take a detour through topology. Using the
ideas sketched at end of the previous section, equivalence classes of coherent 2-groups
should be in one-to-one correspondence with homotopy equivalence classes of connected
pointed CW complexes having homotopy groups that vanish above m,. The latter, in
turn, can be classified in terms of their ‘Postnikov data’: the group G = 7, the abelian
group H = my, the action of 7m; on ms, and the Postnikov k-invariant, which is an element
of H3(my,m). The advantage of this approach is that it generalizes to n-groups for higher
n, and clarifies their relation to topology. The disadvantage is that it is indirect and
relies on results that themselves take some work to prove. Besides the relation between
coherent 2-groups and homotopy 2-types, one needs the theory of Postnikov towers in the
case where m; acts nontrivially on the higher homotopy groups [48].

To avoid all this, we take a more self-contained approach. First we show that every
coherent 2-group is equivalent to a ‘special’ one:
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8.3.1. DEFINITION. A coherent 2-group is skeletal if its underlying category is skeletal:
that is, if any pair of isomorphic objects in this category are equal.

8.3.2. DEFINITION. A special 2-group is a skeletal coherent 2-group such that
the left unit law £, the right unit law r, the unit i and the counit e are identity natural
transformations.

We then show that any special 2-group determines a quadruple (G, H, o, a). The objects
of a special 2-group form a group . The automorphisms of the unit object form an
abelian group H. There is an action a of G on H, defined just as in the construction of
a crossed module from a strict 2-group. The associator gives rise to a map a: G — H.
Furthermore, the pentagon identity and other properties of monoidal categories imply
that a is a ‘normalized 3-cocycle’ on GG with values in the G-module H. When we work
through this in detail, it will also become clear that conversely, any quadruple (G, H, o, a)
of this sort determines a special 2-group.

Following Joyal and Street, we exploit these results by constructing a 2-category of
special 2-groups that is biequivalent to C2G, for which not only the objects but also
the morphisms and 2-morphisms can be described using group cohomology. As a corol-
lary, it will follow that coherent 2-groups are classified up to equivalence by quadruples
(G, H,a, [a]), where [a] € H*(G, H) is the cohomology class of the 3-cocycle a.

We begin by proving the following fact:

8.3.3. PROPOSITION.  FEwery coherent 2-group is equivalent in C2G to a special 2-group.

Proor. First suppose that C is a coherent 2-group. Note that C is equivalent, as an
object of C2G, to a skeletal coherent 2-group. To see this, recall that every category is
equivalent to a skeletal one: we can take this to be any full subcategory whose objects
include precisely one representative from each isomorphism class. Using such an equiva-
lence of categories, we can transfer the coherent 2-group structure from C' to a skeletal
category Cy. It is then routine to check that C' and Cj are equivalent as objects of C2G.

Next suppose C' is a skeletal coherent 2-group. We shall construct a special 2-group C
that is equivalent to C. As a category, C' will be precisely the same as C, so it will still be
skeletal. However, we shall adjust the tensor product, left and right unit laws, unit and
counit, and associator to ensure that 1 , 7,7 and é are identity natural transformations. We
do this using the following lemma:

8.3.4. LEMMA. If C' is a coherent 2-group, and for each x,y € C we choose an
isomorphism 7, ,: 1@y — x ® y for some object @y € C, then there exists a unique way
to make the underlying category of C' into a coherent 2-group C' such that:

1. the tensor product of any pair of objects x,y in C is Ty,

2. there is a homomorphism of coherent 2-groups F: C' — C whose underlying functor
1s the identity, for which Fy and F_q are the identity, and for which

(F2)ay = Yoy
for every z,y € C.
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Moreover, F:C — C'is an equivalence in C2G.

Proor. First we show uniqueness. The tensor product of objects in C is determined
by item 1. For F as in item 2 to be a weak monoidal functor we need Fy to be natural,
so the tensor product f&g of morphisms f:z — 2/, g:y — v/ in C is determined by the
requirement that

Ty e ® Y
f®gl Jf ®g
YRy Y @y
commute. The unit object of C must be the same as that of C, since Fy is the identity.
The unit 7 and counit € of C' are determined by the coherence laws H1 and H2 in Section
6. The associator a of C' is determined by this coherence law in the definition of ‘weak
monoidal functor’:

(F(x)&F (y))®F(2) —22% F(e @ y)OF (2) — 2 F((r © y) @ 2)

aFp(a),F(y), F(z)l ) J{F(az,y,z)
F(2)&(F(y) ® F(2)) —2 F(2)@F(y ® 2) ———— F(z @ (y ® 2))

Similarly, the left and right unit laws I, 7 of C' are determined by the other two coherence
laws in this definition:

F(1)®F(z) = F(1® z)

F(z)&1 — s F(2)

1®Fol TF(TI)

F)&F(1) 2o Fre1)

It is then an exercise to check that with these choices, C really does become a coherent
2-group, that F:C — C is a homomorphism, and that F' is an equivalence of coherent
2-groups. [

We now apply this lemma, taking

y ifx=1
r ify=1
TRy = 1 ifrx=y
1 ify==x
r ®y otherwise
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and taking
-1 if
b itz =1
rot o ify=1
Yoy =14 ¢ ifz=7

i, ify==x
lagy otherwise
Calculations then show that with these choices, Z, 7,7 and € are identity natural transfor-
mations. For example, to show that 7 is the identity we use coherence law H1, which says
this diagram commutes:

T@F (1) 18F, F(2)®F (z) LN Flz®7)

5F<z)T TF(iz)

1 o F(1)

By the definition of F, Fyy, and F, = 7 together with the fact that x®z = 1, this diagram

reduces to

1 1 iz

1 rTRT
1 I 1

which implies that 7, = 1;. Similarly, to show that €, is the identity we use H2, and to
show /¢, and 7, are identities we use the coherence laws for the left and right unit laws in
the definition of ‘weak monoidal functor’. =

We now describe in a bit more detail how to get a quadruple (G, H,«,a) from a
special 2-group C. In general, the objects of a 2-group need not form a group under
multiplication, since we only have isomorphisms

TRy :¥re (¥ 2),
1®z =z, r®1=zx,
T®xr =1, r®T=1.

However, in a special 2-group, isomorphic objects are equal, so the objects form a group.
This is our group G.

The Eckmann-Hilton argument shows that in any weak monoidal category, the endo-
morphisms of the unit object form a commutative monoid under tensor product or, what
is the same, composition:

h&h

(h11) @ (11h')
(h®1)(1, 1)
hh'

(LL®h) (M ®1)
(LK) ® (h1y)

= KN®h
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for all h, h': 1 — 1. Applied to 2-groups this implies that the automorphisms of the object
1 form an abelian group. This is our abelian group H.
There is an action a of G as automorphisms of H given by

a(g,h) = (1,®h) ® 15.

This is the same formula for « as in the crossed module construction of Section 7; we are
just writing it a bit differently now because a coherent 2-group is not a category object in
Grp. Here we need to be a bit more careful to check that « is an action as automorphisms,
since the associator is nontrivial.

Finally, since our 2-group is skeletal, we do not need to parenthesize tensor products
of objects, and the associator gives an automorphism

Qgy,g0,95° 91 @ g2 ® g3 — g1 & g2 & gs.

For any object x € G we identify Aut(x) with Aut(1) = H by tensoring with & on the
right: if f:x — z then f ® :1 — 1, since x ® ¥ = 1. By this trick the associator can be
thought of as a map from G? to H, and by abuse of language we denote this map by:

aG? — H
(91:92:93) '+ algr,92,93) = g, 95,9, ® 91 @ g2 ® gs.
The pentagon identity implies that this map satisfies

9oa(91, 92, g3) — a(9o91, 92, g3) + a(go, G192, 93) — a(go, g1, 9293) + a(go, g1, g2) = 0

for all go, g1, g2, g3 € G, where the first term is defined using the action of G on H, and we
take advantage of the abelianness of H to write its group operation as addition. In the
language of group cohomology [38], this says precisely that a is a ‘3-cocycle’ on G with
coefficients in the G-module H. Mac Lane’s coherence theorem for monoidal categories
also implies that a is a ‘normalized’ 3-cocycle, meaning that a(gi, g2, g3) = 1 whenever
g1, g2 Or g3 equals 1.

This completes the construction of a quadruple (G, H, «, a) from any special 2-group.
Conversely, any such quadruple determines a unique 2-group of this sort. Since proving
this is largely a matter of running the previous construction backwards, we leave this as
an exercise for the reader.

Having shown that every coherent 2-group is equivalent to one that can be described
using group cohomology, we now proceed to do the same thing for homomorphisms be-
tween coherent 2-groups.

8.3.5. DEFINITION. A special homomorphism F:C — C" is a homomorphism between
special 2-groups such that Fy is an identity morphism.

8.3.6. PROPOSITION. Any homomorphism between special 2-groups is isomorphic in
C2G to a special homomorphism.

Proor. It suffices to show that for any weak monoidal functor F:C — C’ between
weak monoidal categories, there is a weak monoidal natural isomorphism #: F' = F’ where
Fj:1 — F'(1) is an identity isomorphism. We leave this as an exercise for the reader. m
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To give a cohomological description of special homomorphisms, let F:C' — C' be
a special homomorphism and let (G, H,«a,a) and (C, H,,a’) be the quadruples corre-
sponding to C' and C’, respectively. The functor F' maps objects to objects and preserves
tensor products up to isomorphism, so it gives a group homomorphism

¢»:G— G,
For similar reasons, I’ also gives a group homomorphism
v:H — H',

and in fact this is a morphism of modules in the following sense:

for all ¢ € G and h € H. As a weak monoidal functor, F' also comes equipped with an
natural isomorphism from F(g;) ® F(g2) to F(g1 ® go) for all g;,g2 € G. Since C' is
skeletal, this is an automorphism:

(F2)g1.g.: F(g1) ® F(g2) — F(g1) ® F(g2).

Copying what we did for the associator, we define a map

kLG? — H
(91792> = k(gl7g2) = (F2)g1,gz ® F(gl) ® F(92)'

Using the fact that F{ is the identity, the coherence laws for the left and right unit laws
in the definition of a weak monoidal functor imply that k(g;, g2) = 1 whenever g; or go
equals 1. In the language of group cohomology, £ is thus a ‘normalized 2-cocycle’ on G
with values in H’. Furthermore, the coherence law for the associator in the definition of
a weak monoidal functor implies that

U(algo, g1, 92)) — a'(6(g0), (91), P(g2)) =

¢(90)k (91, 92) — k(g091, 92) + k(go, 9192) — k(g1 g2)
for all go, g1, 92 € G. This says precisely that 1a and a’'¢* differ by the coboundary of k:

va —d ¢ = dk.

In short, a special homomorphism F: C' — C gives a triple (¢, v, k) where ¢: G — G’
is a group homomorphism, ¥: H — H' is a module homomorphism, and & is a normalized
2-cocycle on G with values in H’ such that dk = va — a’¢®. Conversely, it is not hard to
see that any such triple gives a special homomorphism from C' to C".

Finally, we give a cohomological description of 2-homomorphisms between special
homomorphisms. Let F, F’: C'— C’ be special homomorphisms with corresponding triples
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(p,1, k) and (¢, ', k'), respectively. A 2-homomorphism 6: F' = F” is just a monoidal
natural transformation, so it gives a map
pG — H'
g — kig):=0,®F(g).
The condition that 6 be natural turns out to have no implications for p: it holds no matter
what p is. However, the condition that ¢ be monoidal is equivalent to the equations
p(1) =1 and
k(g1:92) — K' (g1, 92) = ¢'(g1)p(92) — p(9192) + p(g1)
for all g1, 92 € G. In the language of group cohomology, these equations say that p is a
1-cochain on G with values in H’ such that dp = k — k’. So, 2-homomorphisms between
special homomorphisms are in one-to-one correspondence with 1-cochains of this sort.
Summarizing all this, we obtain:

8.3.7. THEOREM. The 2-category C2G s biequivalent to the sub-2-category S2G for
which the objects are special 2-groups, the morphisms are special homomorphisms between
these, and the 2-morphisms are arbitrary 2-homomorphisms between those. Moreover:

e There is a one-to-one correspondence between special 2-groups C' and quadruples
(G, H,«a,a) consisting of:

— a group G,

— an abelian group H,

an action « of G as automorphisms of H,
— a normalized 3-cocycle a: G® — H.

e Given special 2-groups C,C" with (G, H,«,a) and (G', H',d/,d") the corresponding
quadruples, there is a one-to-one correspondence between special homomorphisms
F:C — C'" and triples (¢,, k) consisting of:

— a homomorphism of groups ¢:G — G,
— a homomorphism of modules v: H — H’,
— a normalized 2-cochain k: G* — H' such that dk = ya — a'¢>.

e Given special homomorphisms F, F': C' — C" with corresponding triples (¢, ¢, k) and
(¢, ', K, there is a one-to-one correspondence between 2-homomorphisms 0: F =

F’" and normalized 1-cochains p: G — H' with dp =k — k'.
Proor. The fact that C2G is biequivalent to the sub-2-category S2G follows from the
fact that every object of C2G is equivalent to an object in S2G (Proposition 8.3.3) and
every morphism of C2G is isomorphic to a morphism in S2G (Proposition 8.3.6). The
cohomological descriptions of objects, morphisms and 2-morphisms in S2G were deduced
above. [
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We could easily use this theorem to give a complete description of the 2-category S2G
in terms of group cohomology, but we prefer to extract a simple corollary:

8.3.8. COROLLARY. There is a 1-1 correspondence between equivalence classes of
coherent 2-groups, where equivalence is as objects of the 2-category C2G, and isomorphism
classes of quadruples (G, H, a, [a]) consisting of:

e a group G,

e an abelian group H,

e an action o of G as automorphisms of H,

e an element [a] of the cohomology group H>(G, H),

where an isomorphism from (G, H,«, [a]) to (G', H',d,[d']) consists of an isomorphism
from G to G' and an isomorphism from H to H', carrying o to o and [a] to [d].

ProoOF. This follows directly from Theorem 8.3.7, together with the fact that group
cohomology can be computed using normalized cochains. [

Though the main use of Proposition 8.3.3 is to help prove Theorem 8.3.7, it has some
interest in its own right, because it clarifies the extent to which any coherent 2-group
can be made simultaneously both skeletal and strict. Any coherent 2-group is equivalent
to a skeletal one in which ¢, 7,7 and e are identity natural transformations—but not the
associator, unless the invariant [a] € H?(G, H) vanishes. On the other hand, if we drop
our insistence on making a 2-group skeletal, we can make it completely strict:

8.3.9. PROPOSITION.  Every coherent 2-group is equivalent in C2G to a strict one—that
1s, one for which €,r,i,e and a are identity natural transformations.

PROOF. Let C be a coherent 2-group. By a theorem of Mac Lane [39], there is a strict
monoidal category C” that is equivalent to C’ as a monoidal category. We can use this
equivalence to transfer the coherent 2-group structure from C to C’, making C’ into a
coherent 2-group for which ¢, r, and a are identity natural transformations, but not yet ¢
and e.

As a strict monoidal category, C’ is an object of CatMon, the category of ‘monoids in
Cat’. There is a pair of adjoint functors consisting of the forgetful functor U: CatGrp —
CatMon and its left adjoint F: CatMon — CatGrp. Thus C” = F(C”) is a group in Cat,
or in other words a strict 2-group. It suffices to show that C’ is equivalent to C” as an
object of C2G.

The unit of the adjunction between U and F' gives a strict monoidal functor icr: C" —
U(F(C")), which by Theorem 6.1 determines a 2-group homomorphism from C’ to C" =
F(C"). One can check that this is extends to an equivalence in C2G; we leave this to the
reader.

An alternative approach uses Proposition 8.3.3 to note that C' is equivalent to a special
2-group C’. From the quadruple (G, H, a,a) corresponding to this special 2-group one
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can construct a crossed module (see Mac Lane [38] or, for a more readable treatment,
Ken Brown’s text on group cohomology [12]). This crossed module in turn gives a strict
2-group C”, and one can check that C” is equivalent to C' in C2G. The details for this
approach can be found in the 1986 draft of Joyal and Street’s paper on braided tensor
categories [33]. "

This result explains why Mac Lane and Whitehead [41] were able to use strict 2-groups
(or actually crossed modules) to describe arbitrary connected pointed homotopy 2-types,
instead of needing the more general coherent 2-groups.

8.4. STRICT LIE 2-GROUPS. It appears that just as Lie groups describe continu-
ous symmetries in geometry, Lie 2-groups describe continuous symmetries in categorified
geometry. In Definition 7.9 we said that Lie 2-groups are coherent 2-groups in DiffCat,
the 2-category of smooth categories. In this section we shall give some examples, but
only ‘strict’ ones, for which the associator, left and right unit laws, unit and counit are
all identity 2-morphisms. We discuss the challenge of finding interesting nonstrict Lie
2-groups in the next section.

Strict Lie 2-groups make no use of the 2-morphisms in Diff Cat, so they are really just
groups in the underlying category of Diff Cat. By ‘commutativity of internalization’, these
are the same as categories in Diff Grp, the category of Lie groups. To see this, note that if
C is a strict Lie 2-group, it is first of all an object in DiffCat. This means it is a category
with a manifold of objects Cy and a manifold of morphisms C, with its source, target,
identity-assigning and composition maps all smooth. But since C' is a group in DiffCat,
Cy and C4 become Lie groups, and all these maps become Lie group homomorphisms.
Thus, C' is a category in DiffGrp. The converse can be shown by simply reversing this
argument.

Treating strict Lie 2-groups as categories in Diff Grp leads naturally to yet another
approach, where we treat them as ‘Lie crossed modules’. Here we use the concept of
‘crossed module in K, as described in Definition 7.13:

8.4.1. DEFINITION. A Lie crossed module is a crossed module in Diff.

Concretely, a Lie crossed module is a quadruple (G, H, t, ) consisting of Lie groups G and
H, a homomorphism ¢: H — G, and an action « of G on H such that ¢ is G-equivariant

t(alg,h) = gt(h) g™
and t satisfies the Peiffer identity
a(t(h),h) = hh'h!

for all g € G and h,h' € H. Proposition 7.14 shows how we can get a Lie crossed module
from a strict Lie 2-group and vice versa. Using this, one can construct a 2-category of strict
Lie 2-groups and a 2-category of Lie crossed modules and show that they are equivalent.
This equivalence lets us efficiently construct many examples of strict Lie 2-groups:



480 JOHN C. BAEZ AND AARON D. LAUDA

8.4.2. EXAMPLE.  Given any Lie group G, abelian Lie group H, and homomorphism
a:G — Aut(H), there is a Lie crossed module with ¢: G — H the trivial homomorphism
and G acting on H via p. Because t is trivial, the corresponding strict Lie 2-group C'
is ‘skeletal’, meaning that any two isomorphic objects are equal. It is easy to see that
conversely, all skeletal strict Lie 2-groups are of this form.

8.4.3. EXAMPLE. Given any Lie group G, we can form a Lie crossed module as in
Example 8.4.2 by taking H = g, thought of as an abelian Lie group, and letting a be the
adjoint representation of GG on g. If C' is the corresponding strict Lie 2-group we have

Ci=gxG=2TG
where T'G is the tangent bundle of G, which becomes a Lie group with product
dm: TG x TG — TG,
obtained by differentiating the product
m:G x G — G.

We call C' the tangent 2-group of G and denote it as 7G.

Another route to the tangent 2-group is as follows. Given any smooth manifold M
there is a smooth category 7 M, the tangent groupoid of M, whose manifold of objects
is M and whose manifold of morphisms is T'M. The source and target maps s,t: TM — M
are both the projection to the base space, the identity-assigning map i: M — T'M is the
zero section, and composition of morphisms is addition of tangent vectors. In this category
the arrows are actually little arrows—that is, tangent vectors!

This construction extends to a functor

T Diff — DiffCat

in an obvious way. This functor preserves products, so it sends group objects to group
objects. Thus, if G is a Lie group, its tangent groupoid 7 G is a strict Lie 2-group.

8.4.4. EXAMPLE. Similarly, given any Lie group G, we can form a Lie crossed module
as in Example 8.4.2 by letting a be the coadjoint representation on H = g*. If C'is the
corresponding Lie 2-group, we have

Ci=g" xG2TG

where T*G is the cotangent bundle of G. We call C' the cotangent 2-group of G and
denote it as 7*G.
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8.4.5. EXAMPLE. More generally, given any representation « of a Lie group G on a
finite-dimensional vector space V', we can form a Lie crossed module and thus a strict Lie
2-group with this data, taking H = V. For example, if G is the Lorentz group SO(n, 1),
we can form a Lie crossed module by letting « be the defining representation of SO(n, 1)
on H = R If C is the corresponding strict Lie 2-group, we have

C; = R"" % SO(n, 1) 2 1SO(n, 1)

where ISO(n, 1) is the Poincaré group. We call C' the Poincaré 2-group. After this
example was introduced by one of the authors [2], it became the basis of an interesting
new theory of quantum gravity [21, 22].

8.4.6. EXAMPLE. Given any Lie group H, there is a Lie crossed module with G =
Aut(H), t: H — G the homomorphism assigning to each element of H the corresponding
inner automorphism, and the obvious action of G as automorphisms of H. We call the
corresponding strict Lie 2-group the strict automorphism 2-group of H, Aut,(H),
because its underlying 2-group is just Auts(H) as defined previously.

8.4.7. EXAMPLE. If we take H = SU(2) and form Auty(H), we get a strict Lie 2-
group with G = SO(3). Similarly, if we take H to be the multiplicative group of nonzero
quaternions, Auts(H) is again a strict Lie 2-group with G = SO(3). This latter example
is implicit in Thompson’s work on ‘quaternionic gerbes’ [49].

8.4.8. EXAMPLE. Suppose that t: G — H is a surjective homomorphism of Lie groups.
Then there exists a Lie crossed module (G, H,t, «) if and only if ¢ is a central extension
(that is, the kernel of ¢ is contained in the center of G). Moreover, when this Lie crossed
module exists it is unique.

8.4.9. EXAMPLE. Suppose that V' is a finite-dimensional real vector space equipped
with an antisymmetric bilinear form w:V x V — R. Make H = V @ R into a Lie group
with the product

(v,)(w, B) = (v+w,a+ [+ w(v,w)).

This Lie group is called the ‘Heisenberg group’. Let GG be V' thought of as a Lie group,
and let t: H — G be the surjective homomorphism given by

t(v,a) =v.

Then t is a central extension, so by Example 8.4.8 we obtain a 2-group which we call the
Heisenberg 2-group of (V,w).

8.5. 2-GROUPS FROM CHERN—-SIMONS THEORY. We conclude by presenting some
interesting examples of 2-groups built using Chern—Simons theory. Since the existence of
these 2-groups was first predicted using an analogy between the classifications of 2-groups
and Lie 2-algebras, we begin by sketching this analogy. We then describe some nonstrict
Lie 2-algebras discussed in the companion paper HDAG6, and use this analogy together
with some results from Chern—Simons theory to build corresponding 2-groups. Naively,
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one would expect these to be Lie 2-groups. However, we prove a ‘no-go theorem’ ruling
out the simplest ways in which this could be true.

The paper HDAG studies ‘semistrict Lie 2-algebras’. These are categorified Lie algebras
in which the Jacobi identity has been weakened, but not the antisymmetry of the bracket.
A bit more precisely, a semistrict Lie 2-algebra is a category in Vect, say L, equipped
with an antisymmetric bilinear functor called the ‘bracket’:

[, LxL—L,
together with a natural isomorphism called the ‘Jacobiator’:

Joye: .yl 2] = [, [y, 2] + [l 2], ]

satisfying certain coherence laws of its own.

HDAG gives a classification of semistrict Lie 2-algebras that perfectly mirrors the
classification of 2-groups summarized in Corollary 8.3.8 above, but with Lie algebras
everywhere replacing groups. Namely, there is a 1-1 correspondence between equivalence
classes of semistrict Lie 2-algebras L and isomorphism classes of quadruples (g, b, p, [j])
consisting of:

e a Lie algebra g,

e an abelian Lie algebra b,

e a representation p of g as derivations of b,

e an element [j] of the Lie algebra cohomology group H?(g, h).

Here g is the Lie algebra of objects in a skeletal version of L, b is the Lie algebra of
endomorphisms of the zero object of L, the representation p comes from the bracket in
L, and the 3-cocycle j comes from the Jacobiator. Of course, an abelian Lie algebra is
nothing but a vector space, so it adds nothing to say that in the representation p elements
of g act ‘as derivations’ of h. We say this merely to make the analogy to Corollary 8.3.8
as vivid as possible.

Recall that in the classification of 2-groups, the cohomology class [a] € H3(G, H)
comes from the associator in a skeletal version of the 2-group in question. In fact, this
class is the only obstruction to finding an equivalent 2-group that is both skeletal and
strict. The situation for Lie 2-algebras is analogous: the cohomology class [j] € H?(g,b)
comes from the Jacobiator, and gives the obstruction to finding an equivalent Lie 2-algebra
that is both skeletal and strict.

Using this, in HDA6 we construct some Lie 2-algebras that are not equivalent to
skeletal strict ones. Suppose G is a connected and simply-connected compact simple Lie
group, and let g be its Lie algebra. Let p be the trivial representation of g on u(1), the
1-dimensional abelian Lie algebra over the reals. Then

(g, u(1) = R.
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By the classification of Lie 2-algebras, for any value of A € R we obtain a skeletal Lie
2-algebra g, having g as its Lie algebra of objects and 1(1) as the endomorphisms of its
zero object. When h = 0 this Lie 2-algebra is just g with identity morphisms adjoined
to make it into a strict Lie 2-algebra. However, when A # 0, this Lie 2-algebra is not
equivalent to a skeletal strict one.

An interesting question is whether these Lie 2-algebras have corresponding Lie 2-
groups. There is not a general construction of Lie 2-groups from Lie 2-algebras, but we
can try to build them ‘by hand’. We begin by seeking a skeletal 2-group G}, with G as its
group of objects and U(1) as the automorphism group of its identity object, which is strict
only at A = 0. To define the associator in G, we would like to somehow ‘exponentiate’
the element of H?(g,u(1)) coming from the Jacobiator in g to obtain an element of
H3(G,U(1)). However, from experience with affine Lie algebras and central extensions of
loop groups, we expect this to be possible only for elements of H?(g,u(1)) satisfying some
sort of integrality condition.

Indeed this is the case: sitting inside the Lie algebra cohomology H?(g,u(1)) = R
there is a lattice A, which we can identify with Z, that comes equipped with an inclusion

A — H*(G,U(1)).

This is actually a key result from the papers of Chern—Simons [19] and Cheeger—Simons
[18] on secondary characteristic classes. We describe how this inclusion is constructed
below, but for now we record this:

8.5.1. THEOREM. Let G be a connected and simply-connected compact simple Lie
group. Then for any h € Z there exists a special 2-group Gy having G as its group of
objects, U(1) as the group of endomorphisms of its unit object, the trivial action of G on
U(1), and [a] € H*(G,U(1)) given by 1(h). The 2-groups Gy, are inequivalent for different
values of h, and strict only for h = 0.

To give more of a feeling for this result, let us sketch how the lattice A and the map
t can be constructed. Perhaps the most illuminating approach uses this commutative
diagram:
H>»7Y(G,U(1))

HZ (BG,R) G HZ (BG,Z)

H>Y(g,u(1)) < Higy (G, R) «—— Hig; 7 (G, Z)
In this diagram, the subscript ‘top’ refers to the cohomology of the compact simple Lie
group G or its classifying space BG as a topological space. The integral cohomology
Hf(f;_l(G, Z) maps to a lattice in the vector space Hﬁ%‘l(G, R), and thus defines a lattice
A inside the isomorphic vector space H**(g,u(1)). In the case relevant here, namely
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n = 2, the maps labelled 7 are isomorphisms and the maps labelled ¢ and k are injections.
Thus, in this case the diagram serves to define an injection

v A — H*(G,U(1)).

Let us say a few words about the maps in this diagram. The isomorphism from
Hi (G,R) to H"(g,u(1)) is defined using deRham theory: there is a cochain map given
by averaging differential forms on G to obtain left-invariant forms, which can be identified
with cochains in Lie algebra cohomology [20]. Since the classifying space has Q(BG) ~ G,
there are ‘transgression’ maps 7 and g from the 2nth integral or real cohomology BG
to the (2n — 1)st cohomology of G. These are isomorphisms for n = 2, since in general
the transgression map 7: th;;l (X,R) — H{,(QX,R) is an isomorphism whenever X is
k-connected, ¢ < 2k —1 and the coefficient ring R is a principal ideal domain [52]. Finally,
the change—of—coefficient maps tpe and g map the integral cohomology of either of these
spaces to a full lattice in its real cohomology. The universal coefficient theorem implies
Lc is an injection for n = 2 because the 3rd integral cohomology of a compact simple Lie
group is torsion-free, in fact Z. Similarly, ¢pg is an injection because Ht‘lop(BG, 7)=7.

The innovation of Chern, Cheeger and Simons was the homomorphism &, which maps
elements of HZ (BG,Z) to certain elements of H*"~'(G,U(1)) called ‘secondary charac-
teristic classes’. This is where some differential geometry enters the story. For ease of
exposition, we describe this map only in the case we need, namely n = 2. In this par-
ticular case we only need to say what x does to the standard generator of Hfop(BG, Z),
which is called the ‘second Chern class’ ¢;.

Since BG is the classifying space for principal G-bundles, any principal G-bundle P
over a smooth manifold M gives a homotopy class of maps M — BG, which we can use to
pull back ¢y to an element of Hfop(M ,Z). Chern showed that the corresponding element
of Ht‘lop(M ,R) can be described using deRham theory by choosing an arbitrary connection
A on P. We can think of this connection as g-valued 1-form on P, and its curvature

F=dA+ANA

as an g-valued 2-form. This allows us to define a 4-form on P:

ca(A) = Ltlr(F NF).
82
where ‘tr’ is defined using a suitably normalized invariant bilinear form on g. The 4-form
c2(A) is the pullback of a unique closed 4-form on M, which represents the image of ¢o(P)
in H (M,R).
While the 4-form down on M is merely closed, Chern and Simons noted that cy(A)

itself is actually exact, being the differential of this 3-form:

1 2
CSy(A) = @tr(A NdA + gA NANA).
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If the connection A is flat, meaning F' = 0, then CSy(A) is closed. It thus represents
an element of HY (P,R). This element is not canonically the pullback of an element of
HE (M,R), but it is up to an integral cohomology class.

As a consequence, CSy(A) canonically gives rise to an element of H{ (M,R/Z) =
HE (M, U(1)) for any principal G-bundle with flat connection over M. Note however
that a principal G-bundle with flat connection is the same as a principal Gs-bundle,
where Gy is the group G equipped with the discrete topology. Since our assignment of
cohomology classes to manifolds equipped with principal Gs-bundle is functorial, it must
be a characteristic class: in other words, it must come from pulling back some element
of HY,,(BGs,U(1)) along the classifying map M — BGs. But HY, (BGs,U(1)) is just
another way of talking about the group cohomology H?(G,U(1)). Thus we obtain an
element CS, € H3(G,U(1)).

Since the second Chern class generates Hy, (BG,Z), we can define
Kk HY

top

(BG,Z) — H3(G,U(1))

by
k(cg) = CSa.

One can show that x is an injection by explicit calculations [31].

It would be natural to hope the 2-groups G, are Lie 2-groups and therefore topological
2-groups. However, we shall conclude with a ‘no-go theorem’ saying that GG, can be made
into a topological 2-group with a reasonable topology only in the trivial case A = 0. For
this, we start by internalizing the cohomological classification of special 2-groups given
in Theorem 8.3.7. Suppose K is any category with finite products such that K Grp has
finite limits. We discussed the concept of ‘coherent 2-group in KCat’ in Section 7. We
now say what it means for such a 2-group to be ‘special’:

8.5.2. DEFINITION. A special 2-group C in KCat is a coherent 2-group in KCat
for which:

1. its underlying category in K is skeletal, meaning that the source and target mor-
phisms s,t: C7 — Cy are equal,

2. the equalizer of the morphisms s: Ch, — Cy and C1——1 — 50, exists,

3. the left unit law ¢, the right unit law r, the unit i and the counit e are identity
natural transformations.

Given a special 2-group C' in K Cat, we can obtain a quadruple (G, H, o, a) by inter-
nalizing the construction described in Section 8.3. We merely sketch how this works. The
multiplication in C' makes Cj into a group in K, even if the associator is nontrivial, since
C is skeletal. Let G be this group in K. Composition of morphisms makes the equalizer
in item 2 into an abelian group in K, thanks to the Eckmann—Hilton argument. Let H be
this abelian group in K. Conjugation in C' gives an action « of GG as automorphisms of H,



486 JOHN C. BAEZ AND AARON D. LAUDA

and the associator of C' gives a morphism a: G* — H. This morphism a is a normalized
3-cocycle in the cochain complex for internal group cohomology:

hom(G?, H) — hom(G!, H) —= hom (G2, H) —%— . ..

where the differential is defined as usual for group cohomology. It thus defines an element
la] € H3(G, H) of internal group cohomology. Conversely, given a quadruple (G, H, o, a)
of this form, we can obtain a special 2-group in K Cat.

We have been unable to show that every coherent 2-group in KCat is equivalent to
a special one, or even a skeletal one. After all, to show this for K = Set, we used the
axiom of choice to pick a representative for each isomorphism class of objects in a given
2-group C. This axiom is special to Set, and fails in many other categories. So, the
above cohomological description of special 2-groups in K Cat may not yield a complete
classification of coherent 2-groups in KCat. Nonetheless we can use it to obtain some
information about the problem of making the 2-groups G, into topological or Lie 2-groups.

To do this, we also need the concept of ‘special homomorphisms’ between special
2-groups in K Cat:

8.5.3. DEFINITION. A special homomorphism F:C — C' is a homomorphism between
special 2-groups such that Fy is an identity morphism.

Recall that K CatC2G is the 2-category of coherent 2-groups in KCat. By a straightfor-
ward internalization of Theorem 8.3.7 we obtain:

8.5.4. PROPOSITION. Suppose that K is a category with finite products. The 2-category
KCatC2G has a sub-2-category KCatS2G for which the objects are special 2-groups,
the morphisms are special homomorphisms between these, and the 2-morphisms are arbi-
trary 2-homomorphisms between those. There is a 1-1 correspondence between equivalence
classes of objects in KCatS2G and isomorphism classes of quadruples (G, H,a,[a]) con-
sisting of:

e a group G in K,

e an abelian group H,

e an action o of G as automorphisms of H,
e an clement [a] € H*(G,H).

Now we consider K = Top. In this case the internal group cohomology is usually

called ‘continuous cohomology’, and we shall denote it by H? (G, H) to avoid confusion.

8.5.5. THEOREM. Let G be a connected compact Lie group and H a connected abelian
Lie group. Suppose C' is a special topological 2-group having G as its group of objects
and H as the group of endomorphisms of its unit object. Then the associator a of C' has
la] = 0. Thus C is equivalent in TopCatS2G to a special topological 2-group that is strict.
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ProoF. The work of Hu [30], van Est [51] and Mostow [42] on continuous cohomology
implies that H2 (G, H) is trivial. We thus have [a] = 0, and the rest follows from
Proposition 8.5.4.

For the sake of completeness we sketch the proof that H3 (G, H) = {0}. First we
consider the case where H is a real vector space equipped with an arbitrary representation
of G. For any continuous cocycle f:G" — H with n > 1 there is a continuous cochain
F:G" ! — H given by

F(g1,..., gn-1) /fg17"' )dgn,

where the integral is done using the normalized Haar measure on G. A simple calculation
shows that dF' = £f. This implies that H? (G, H) = {0} for all n > 1.

In general, any action of G on a connected abelian Lie group H lifts uniquely to an
action on the universal cover H , which is a real vector space. Any normalized continuous
cochain f:G" — H lifts uniquely to a normalized continuous cochain f G" — H for
n > 2, since the n-fold smash product of GG with itself is simply-connected in this case.
Since df = df, this implies that H (G, H) =~ H™ (G, H) = {0} for n > 3. =

Now suppose C'is a topological 2-group whose underlying 2-group is isomorphic to a
2-group of the form Gy, for some h € Z. Then the objects of C' form a topological group
which is isomorphic as a group to G, but possibly with some nonstandard topology, e.g.
the discrete topology. Similarly, the endomorphisms of its identity object form a topolog-
ical group which is isomorphic as a group to U(1), but possibly with some nonstandard
topology.

8.5.6. COROLLARY. Let G be a connected and simply-connected compact simple Lie
group. Suppose C' is a topological 2-group whose underlying 2-group is isomorphic to Gy
for some h € Z. If the topological group of objects of C' is isomorphic to G with its usual
topology, and the topological group of endomorphisms of its identity object is isomorphic
to U(1) with its usual topology, then h = 0.

Proor.  Given the assumptions, C' is a special topological 2-group which fulfills the
hypotheses of Theorem 8.5.5. It is thus equivalent in TopCatS2G to a strict special
topological 2-group, so its underlying 2-group G, is equivalent in C2G to a strict skeletal
2-group. By Theorem 8.5.1 this happens only for A = 0. n

In rough terms, this means that for A # 0, the 2-group Gj cannot be made into
a topological 2-group with a sensible topology. However, we have not ruled out the
possibility that it is equivalent to the underlying 2-group of some interesting topological
2-group, or even of some Lie 2-group. Another possibility is that the concept of Lie
2-group needs to be broadened to handle this case—perhaps along lines suggested by
Brylinksi’s paper on multiplicative gerbes [16, 17].
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