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THE DOUBLE POWERLOCALE AND EXPONENTIATION:
A CASE STUDY IN GEOMETRIC LOGIC

STEVEN VICKERS

Abstract. If X is a locale, then its double powerlocale PX is defined to be PU(PL(X))
where PU and PL are the upper and lower powerlocale constructions. We prove various
results relating it to exponentiation of locales, including the following. First, if X is a
locale for which the exponential S

X exists (where S is the Sierpinski locale), then PX is
an exponential S

S
X

. Second, if in addition W is a locale for which PW is homeomorphic
to S

X , then X is an exponential S
W .

The work uses geometric reasoning, i.e. reasoning stable under pullback along geometric
morphisms, and this enables the locales to be discussed in terms of their points as though
they were spaces. It relies on a number of geometricity results including those for locale
presentations and for powerlocales.

1. Introduction

Why should exponentiable locales be locally compact? That is, if a locale X is such that
the exponential Y X exists for every locale Y , why does it follow that the frame ΩX of
opens is a continuous lattice? The proof in [Johnstone 82] involves an analysis of injective
locales, but [Hyland 81] gives a more direct proof. We paraphrase it in a naive way that,
on the face of it, is just too simple to be right.

1. If X is exponentiable, then, in particular, S
X exists, where S is the Sierpinski locale

whose frame is free on one generator. The points of S
X are in bijective (and order

preserving – cf. Hyland’s sublemma 2.1) correspondence with the continuous maps
from X to S, and hence with the opens of X. We should therefore like to think of
S

X as a particular topology on the frame ΩX, and one whose specialization order
is the frame order.

2. The evaluation map ev : S
X ×X → S corresponds to an open of S

X ×X, and that
can be expressed in the form

ev =
∨
{V × b V ∈ ΩS

X , b ∈ ΩX,V × b ≤ ev}.

3. If V × b ≤ ev then b is a lower bound of V . This is because if a is in V (we are
thinking of V as an open subset of ΩX here) and x is in b then 〈a, x〉 is in ev and
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so x is in a. Hence b ≤ a. Indeed, b� a (b is way below a), for suppose a ≤ ∨↑
i ci.

In a locale every open V is also Scott open, and it follows that ci ∈ V for some i,
and then b ≤ ci. (cf. Hyland’s sublemma 2.3.)

4. If a is an open of X, then (Hyland’s sublemma 2.4)

a =
∨↑{b ∈ ΩX ∃V ∈ ΩS

X . (V × b ≤ ev, a ∈ V )}

This join is directed, for if Vi × bi ≤ ev and a ∈ Vi (i = 1, 2), then a ∈ V1 ∧ V2,
(V1∧V2)× bi ≤ ev and so (V1 ∧V2)× (b1∨ b2) ≤ ev. Also, the set of joined elements
is inhabited, for it contains b = ∅ because S

X ×∅ = ∅ ≤ ev.

To show that a is this join, suppose x ∈ a. Then 〈a, x〉 ∈ ev and so 〈a, x〉 ∈ V × b ≤
ev for some V, b.

5. Hence every open of X is a join of opens way below it, which suffices to show that
ΩX is a continuous lattice.

We have used very spatial modes of reasoning here, treating opens as sets of points.
On the other hand, we have also used the sobriety of locales in step 3, since that is what
tells us that every open is Scott open. It appears to be an argument that could only work
for sober spaces or spatial locales, and if we tried to restrict it to those we should have
the problem of saying just which category X is exponentiable in.

The flaw in such spatial arguments is, of course, that in general locales are not spatial:
they do not have enough points. It is for this reason that one usually approaches locales
through pure lattice theory, as captured in the phrase “point-free topology” [Johnstone
82].

An underlying goal of this paper is to show that, nonetheless, naive spatial arguments
of this kind can in fact be essentially correct.

The correctness does not come for free, however. If the points of X are understood as
the maps from 1 to X, in other words the global points, then there really are not enough
in general. It is only by understanding points in a generalized fashion, maps from an
arbitrary locale Y to X, that one finds enough. Reasoning about these points can be
carried through by replacing ordinary sets by sheaves over Y , but these do not conform
with all classical reasoning principles – one must instead reason constructively.

This, then, is a practical benefit of constructive reasoning. If it is of the kind that is
valid in toposes (which we shall refer to as intuitionistic reasoning), it can be applied to
give results about sheaves, treating them as though they were sets. This is perhaps most
strikingly displayed in [JoyTie 84]. This also allows results about locales to be turned for
free into results about continuous maps between locales, since a map targeted on X is
equivalent to an internal locale in the category SX of sheaves over X.

A further refinement is to use the more stringent geometric reasoning, stable under
pullback along geometric morphisms. Under this regime, reasoning in SX about the
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generic point of X can be transferred to all points of X, and this can be exploited to give
a very spatial view of locale theory. A locale is then defined by saying (geometrically)
what its points are, and a geometric morphism – a map – is defined by saying (geometri-
cally) how it transforms points. Topology is intrinsic, and continuity is automatic. This
technique, actually an old trade secret of topos theorists, is used very explicitly in [Vickers
99], [Vickers 01].

The present paper develops this in an example where geometric constructions must be
used not only on points, but even on locales themselves. To see this in overview, the main
result is that if a locale X is exponentiable then so is S

X (where S is the Sierpinski locale),
and S

SX
is homeomorphic to a different construction PX, the double powerlocale of the

title. (It is defined as PU PLX ∼= PL PUX, but we shall not use that for the moment.)
Looking at global points, this implies an equivalence between points of PX and opens

of S
X (i.e. maps S

X → S). However, the definition of exponential goes beyond this to
require an equivalence between maps Y × S

X → S and maps Y → PX for any locale Y .
Consider what happens when we work intuitionistically in SY . The maps Y × S

X → S

are equivalent to opens of a locale over Y given by the projection fst : Y × S
X → Y . If

we have a proof for global points that is intuitionistic then we can apply it in SY to get
an equivalence with points over Y of PY (Y × X → Y ) where PY is the P construction
carried out in SY .

Y ×X PY (Y ×X → Y )
↘
fst

↙
p

Y

Such a point over Y is a map e : Y → PY (Y ×X → Y ) such that e; p = IdY . However,
it remains to make a connection between PY and P, and what is needed is that P itself
should be geometric, preserved by pullback. This is to say that

PY (Y ×X → Y ) ∼= (Y × PX → Y )

and then points of Y × PX over Y are just maps Y → PX.
The geometricity of a construction such as P is highly non-trivial. This is because

locales are defined as frames (certain complete lattices), but the frames are not geometric.
If f : X → Y is a map and A is a frame in SY , then f ∗(A) is not in general a frame in
SX. The reason is that completeness of A in SY means having all Y -set-indexed joins,
joins of all families (ai)i∈I indexed by objects I of SY . This property is preserved in
f ∗(A), but to be a frame in SX it needs more general X-set-indexed joins. In effect,
f ∗(A) is only a basis, not the full topology, for the pulled back locale, and this provides
the essential idea for our geometric working. We must deal not directly with the frames
themselves but with presentations of them (by generators and relations) and show how P

can be constructed geometrically in terms of the presentations. In fact this result is one
of considerable depth, relying on “coverage theorems” to relate presentations of frames to
those of suplattices and preframes, and showing that some messy geometric constructions
can be given universal characterizations intuitionistically.
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That, then, is the underlying shape of the paper: geometricity results can be exploited
to simplify some localic reasoning. We now move on to discussing the double powerlocale
P.

In locale theory one encounters a number of ways of forming locales whose points are
sublocales of other locales. Obvious examples are the powerlocales (upper, lower and
Vietoris), and in addition if a locale X is exponentiable then the points of S

X (where S

is the Sierpinski locale) are the maps from X to S and hence in bijective correspondence
with the open or with the closed sublocales of X.

Some interesting ways in which these relate to each other are shown in the case of
algebraic dcpos.

1.1. Proposition. If X is an algebraic dcpo then S
SX ∼= PL(PU(X)) where PL and

PU denote the lower and upper powerlocales.

Proof. An algebraic dcpo is one of the form Idl P where P is a poset. Its frame
of Scott opens is isomorphic to the Alexandrov topology on P , an open being an upper
closed subset of P . This is equivalent to a filter of FP (the finite powerset) under the
upper preorder

S �U T iff ∀t ∈ T. ∃s ∈ S. s � t

This is the same as an ideal of FP under (�U)op, and in fact Idl(P ) is exponentiable with
S

X homeomorphic to the ideal completion of (FP, (�U)op). On the other hand, the upper
powerlocale is the ideal completion of (FP,�U), so for algebraic dcpos X the exponential
S

X is found by first taking the upper powerlocale and then taking the “Hofmann-Lawson”
dual that inverts the generating poset (of compact points). A consequence is that S

SX
is

got by first taking the upper powerlocale, then dualizing, then taking the upper power-
locale again, then dualizing again. But the last three steps are equivalent to taking the
lower powerlocale, for that is given by the ideal completion of (FP,�L) where

S �L T iff ∀s ∈ S. ∃t ∈ T. s � t

Hence for an algebraic dcpo X we have S
SX ∼= PL(PU(X)), which we write as PX.

We shall show (Theorem 11.1) that this result extends to all exponentiable locales.
To some extent this is no surprise. It is a result stating that the points of PX are in

bijective correspondence with the maps from S
X to S, in other words the opens of S

X .
By [JoVic 91], the global points of PX are known to be the functions from ΩX to Ω that
preserve directed joins. On the other hand, it is also known that if S

X exists then X is
exponentiable and ΩX is a continuous lattice whose Scott topology gives the locale S

X .
Hence the opens of S

X , the Scott opens of ΩX, are just the Scott continuous maps from
ΩX to Ω – in other words, the functions that preserve directed joins.

We therefore know already that the global points of PX correspond to the global opens
of S

X . However, we do not rely on established results about exponentiability, but show
direct from the definition that if S

X exists then S
SX

(exists too and) is homeomorphic
to PX. In a partial converse, we also show that if S

X is homeomorphic to PW then S
W
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exists and is homeomorphic to X. In the process we also prove many properties of P and
P-algebras.

Recent work of Paul Taylor [Taylor 01] has investigated an abstract formalism that
includes the monad Σ2 : X �→ S

SX
on locally compact (i.e. exponentiable) locales (the

Sierpinski locale is Σ in Taylor’s notation). The Σ2-algebras are frames, and amongst
other topics Taylor considers the Σ2-algebra structure on S and (hence) on exponentials
S

X , showing for instance a Stone duality result that maps X → Y are equivalent to
Σ2-homomorphisms S

Y → S
X .

Another purpose therefore of the present paper is to show how Σ2 is the restriction to
locally compact locales of a monad (P) that does not rely on exponentiability.

2. Miscellaneous remarks on locales and toposes

Locales and maps. We use the words “locale” and “frame” following [Johnstone 82]
(as opposed to “space” and “locale” in [JoyTie 84]) and we shall always take care to use
notation and language for locales that is appropriate to their spatial aspect. We write
Loc for the category of locales. If X is a locale, then we write ΩX for its corresponding
frame of opens and SX for its category of sheaves. We write true and false for the top
and bottom elements of a frame.

If X and Y are locales, then notation such as f : X → Y will always denote a
continuous map from X to Y , corresponding to a frame homomorphism Ωf (also written
as f ∗) from ΩY to ΩX.

Dcpo enrichment. We write � for the specialization order on Loc,

f � g iff ∀b ∈ ΩY. Ωf(b) ≤ Ωg(b)

Loc is dcpo (directed complete poset) enriched under �, with directed joins defined by

Ω(
⊔↑

i
fi)(b) =

∨↑
i
Ωfi(b)

(This will be elaborated in Section 6.) The superscript ↑ after a join symbol will indicate
that the join is directed.

Presentations. Crucial to our development will be the use of generators and relations
for presenting frames (see in particular [Vickers 89]), using notation such as

Fr〈G|R〉

Here G is a set of generators and R a set of relations of the form φ1 ≤ φ2 or φ1 = φ2,
φ1 and φ2 being expressions formed from the generators using finite meets and arbitrary
joins. (This will be formalized in Section 5.) If G has structure (e.g. poset or semilattice)
that is to be preserved in the frame, then it is convenient to indicate this by the word
“qua”, for instance, “G (qua ∧-semilattice)”.
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Sierpinski locale. The Sierpinski locale S is defined by

ΩS = Fr〈1〉,
i.e. the free frame on one generator. Its points are the subsets of 1, and in particular we
have two classical points ⊥ = ∅ and � = 1. We write {�} for the generating open, since
� is the sole point of S in it.

¿From the definition it is clear that there is a bijection between opens of X and maps
X → S. By abuse of notation, we shall use the same symbol a for –

• an open a ∈ ΩX,

• the map a : X → S,

• the open sublocale a ↪→ X.

However, ifX is exponentiable, we shall use different notation �a� for the corresponding
point of S

X .

Toposes. ¿From time to time, mostly in discussing the constructive reasoning, we shall
refer to toposes. Just as with locales, we shall use notation and language adapted to
their aspect as generalized spaces rather than generalized universes of sets. For a topos
X, we write SX for its category of sheaves, its generalized universe of sets. This is its
ordinary category-theoretic expression: in the conventional language one simply says that
the topos is this category. Note also that what we refer to as sheaves over a topos are
exactly the objects of this category. We also write ΩX for its frame of opens, the frame
of subobjects of 1 (or global elements of Ω) in SX. Notationally a locale X is thus just a
special “localic” kind of topos, one in which the whole of SX is determined by ΩX. We
make no attempt to say whether a locale “is” its frame or “is” its category of sheaves. It
simply has both and can be defined by either.

If X and Y are toposes, then notation such as f : X → Y will always denote a
geometric morphism from X to Y , never a functor from SX to SY . We shall often refer
to this as a map from X to Y .

Note that the inverse image functor f ∗ : SY → SX is pullback along f in the following
sense. Sheaves over Y (objects of SY ) correspond, up to homeomorphism, with local
homeomorphisms (étale maps) targeted at Y , and then f ∗ on sheaves corresponds to
pullback along f (also written f ∗) applied to the local homeomorphisms.

Important to our development will be the geometric logic of sets, i.e. that fragment of
the internal intuitionistic logic of categories of sheaves that is preserved by inverse image
functors. See [Vickers 99] for an account of how that includes not only the pure logic
(
∨
,∧,=,∃) but also set constructions (principally colimits, finite limits, free algebras). We

shall consistently understand finite to mean Kuratowski finite, and then the finite power
set F (free semilattice) and finitely bounded universal quantification are also geometric.

If T is a geometric theory, we write [T ] for its classifying topos (as generalized space)
and S[T ] for the corresponding category of sheaves (generalized universe of sets).
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Very important to us will be the fact that locale theory, insofar as it is constructive,
can be conducted internally in categories of sheaves SB (B a topos). From an internal
frame ΩX in SB one can construct a category of sheaves SX with a localic geometric
morphism f : X → B (i.e. what [JoyTie 84] Section VI.5 call a spatial geometric mor-
phism). The frame ΩX can be recovered (up to isomorphism) as f∗(ΩX), where ΩX is the
subobject classifier in SX. An important fact is that continuous maps between the locales
(in the sense of frame homomorphisms between the frames) are equivalent to geometric
morphisms between the toposes:

2.1. Theorem. Let f : X → B be a map (geometric morphism) that is localic. Then
for any other map g : E → B, there is an equivalence between maps from E to X over
B, and frame homomorphisms from f∗ΩX to g∗ΩE in SB. (ΩX and ΩE are the subobject
classifiers in SX and SE.)

Proof. Joyal and Tierney [JoyTie 84].

Stages of definition. We now turn to the spatial aspects of locale theory. As is
well-known, a locale X may not have an adequate supply of points in the sense of maps
1 → X (global points), and so reasoning solely in terms of those points cannot give full
results about the locale. Instead, we must consider generalized points, maps Y → X,
where Y , an arbitrary topos, is the stage of definition. In particular, the identity map
Id : X → X can be considered a point (the generic point) in the internal logic of SX,
and for many purposes it is already a sufficiency of points. For instance, as discussed
at length in [Vickers 99] and [Vickers 01], a map f : X → Y can be described in full
simply by giving a geometric construction of f(x) for the generic point x of X. The fact
that this construction is intuitionistic means that it can be done internally in SX, thus
obtaining a point of Y there, and the fact that it is geometric means that it is preserved
by pullback along geometric morphisms and so the same construction applies at any stage
of definition.

Let us examine the relationship between global locale theory and locale theory at some
stage B.

If X is a (global) locale, then we have a corresponding locale over B, namely the first
projection, a localic map, B ×X → B. This can be expressed concretely in frames, but
in Section 5 we shall see how to express it using frame presentations.

Suppose Y is another global locale. A map from X to Y at stage (or over) B is a
map from B ×X to B × Y making this triangle commute:

B ×X −→ B × Y
↘ ↓

B

Globally, this is equivalent to a map from B × X to Y . The correspondence respects
order, for a pair of maps f � g : X → Y is equivalent to a map S × X → Y . Working
over B, this is equivalent to (B×S)×B (B×X) ∼= B×S×X → B×Y over B (it follows
from the main result of Section 5 that the Sierpinski locale as calculated at stage B is
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just B × S→ B), and that is equivalent to S× B ×X → Y , i.e. two maps B ×X → Y
with one less than the other.

The final locale at stage B is the identity map B ∼= B × 1→ B, and so a point of X
at stage B, a map 1→ X at stage B, is, globally, a map B → X.

An open of X at stage B is a map X → S at stage B and hence, globally, a map
B ×X → S, in other words an open of B ×X.

If, at stage B, we have a point x and an open a of X, then we write x � a for the
truth value (point of S) calculated over B as x; a : 1→ X → S. Globally, this is given as
〈B, x〉; a : B → B ×X → S.

2.2. Proposition. Let X be a locale, and let a and b be two sublocales. Then a ≤ b
iff every point of a is also in b.

Proof. If the generic point of a is also in b, then the same goes for every point at every
stage. Working with the generic point is equivalent to working over a. Viewed globally,
the generic point ∆ : a→ a× a is, as point of X, 〈Ida, ia〉 : a→ a×X where ia : a ↪→ X
is the sublocale inclusion. For this to be in b we must have some 〈Ida, f〉 : a→ a× b with
〈Ida, f〉; 〈Ida, ib〉 = 〈Ida, ia〉. In other words ia = f ; ib, i.e. a ≤ b.

Suplattices and preframes. A suplattice [JoyTie 84] is a complete join semilattice;
the homomorphisms are the functions that preserve all joins. A preframe [JoVic 91] is
a poset equipped with finite meets and directed joins, the former distributing over the
latter. The homomorphisms are the functions that preserve finite meets and directed
joins. In various contexts we shall use “SupL” and “PreFr” as abbreviations for these.

Continuous dcpos. We shall need some results on continuous dcpos (or continuous
posets), treated as locales. To access geometric methods for handling them, we present
them using the continuous information systems of [Vickers 93].

2.3. Definition. A continuous information system is a set P equipped with an
idempotent binary relation <.

“Idempotent” means that <;<=<. The ⊆ direction of this says that < is transitive,
while the ⊇ direction says that it is interpolative — if x < z then x < y < z for some y.

2.4. Definition. Let P be a continuous information system. Then an ideal of P is
a subset I such that

1. I is inhabited.

2. I is lower closed under <.

3. If x, y ∈ I then there is some z ∈ I such that x < z and y < z.

(Note from (3) that if x ∈ I then there is some z ∈ I such that x < z: in other words,
I is rounded.)
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The ideal completion Idl(P ) of P is the locale whose points are the ideals of P . It can
be presented as

Ω Idl(P ) = Fr〈↑ x (x ∈ P )|true ≤
∨

x∈P

↑ x

↑ y ≤↑ x (x < y)

↑ x∧ ↑ y ≤
∨
{↑ z x < z, y < z}〉

where for any ideal I we have I �↑ x iff x ∈ I.

3. The upper and lower powerlocales

The powerlocales PL (lower) and PU (upper) are conveniently summarized in [Vickers 97].
They are the functor parts of two monads on Loc, denoted (PL, ↓,�) and (PU, ↑,�).

3.1. Definition. The lower powerlocale is defined by

Ω PLX = Fr〈ΩX (qua SupL)〉
= Fr〈♦a (a ∈ ΩX)|♦ preserves all joins〉

Ω PL(f)(♦b) = ♦Ωf(b) (f : X → Y )

Ω(↓)(♦a) = a

Ω(�)(♦a) = ♦♦a

(Its points are the weakly closed sublocales of X with open domain.)

3.2. Definition. The upper powerlocale is defined by

Ω PUX = Fr〈ΩX (qua PreFr)〉
= Fr〈�a (a ∈ ΩX)|� preserves finite meets and directed joins〉

Ω PU(f)(�b) = �Ωf(b) (f : X → Y )

Ω(↑)(�a) = a

Ω(�)(�a) = ��a

(Its points are the compact fitted sublocales of X.)

Note a crucial feature of these definitions: they are not geometric in form. This is
because neither suplattice structure nor preframe structure is preserved by inverse image
functors. A substantial part of this paper is devoted to showing that, nonetheless, the
powerlocales are geometric.

An important feature is that PL is a KZ-monad and PU is a coKZ-monad (i.e. a
KZ-monad on Locco, with the order reversed), so we first mention some of the standard
properties of these.
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3.3. Definition. Let C be a poset-enriched category, and let (T, η, µ) be a monad on
C for which T preserves the order on morphisms. Then the monad is a KZ-monad iff, for
each X, TηX � ηTX .

3.4. Proposition. Let C be a poset-enriched category, and let (T, η, µ) be a KZ-monad
on C.

1. For each object X, µX is right adjoint to TηX and left adjoint to ηTX – this amount
to two inequalities

µ;TηX � IdT 2X � µ; ηTX

(In fact, these conditions are also sufficient for the KZ-property.)

2. If X is an object and α : TX → X is T -algebra structure on X, then α is left
adjoint to ηX . Hence T -algebra structure on X, if it exists at all, is unique.

Proof. [Kock 95]

Dually, a monad (T, η, µ) is coKZ iff TηX � ηTX .

3.5. Proposition. PL is a KZ-monad.

Proof. We omit the proof that it is a monad. To show it is KZ, we show

PL(↓X) � ↓PL X : PLX → PL
2X

The finite meets
∧

a∈S ♦a form a basis for PLX, and so the opens ♦∧
a∈S ♦a form a sub-

basis of PL
2X. Examining inverse image functions, we find that the required inequalities

follows from
♦

∧

a∈S

a ≤
∧

a∈S

♦a

3.6. Proposition. PU is a coKZ-monad.

Proof. To show it is coKZ, we show

PU(↑X) � ↑PU X : PUX → PU
2X.

The finite joins
∨

a∈S �a form a preframe basis for PUX, in the sense that every open is
a directed join of finite meets of them. This is because the �bs form a subbasis, so every
open is a join of finite meets of them. An arbitrary join is a directed join of finite joins,
and by finite distributivity a finite join of finite meets is a finite meet of finite joins. Hence
the opens �

∨
a∈S �a form a subbasis of PU

2X. Examining inverse image functions, we
find that the required inequalities follows from

�
∨

a∈S

a ≥
∨

a∈S

�a
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3.7. Proposition. Let X be a locale. Then the following are equivalent.

1. The unique map ! : X → 1 and the diagonal map ∆ : X → X2 have right adjoints.

2. For every n, the diagonal ∆ : X → Xn has a right adjoint.

3. X is a localic semilattice whose semilattice operations are meets with respect to the
specialization order.

Proof. 2⇒ 1 a fortiori.
1⇒ 3: Let us write � and � for the right adjoints of ! and ∆. It is easy to show that

these operations satisfy the semilattice laws. For instance, for associativity one shows
that both sides of the equation give right adjoints for the diagonal ∆ : X → X3. To
define n-ary meets with respect to the specialization order is to define a right adjoint �
for the diagonal ∆ : X → Xn: for we want �n

i=1xi � y iff (xi) � ∆(y).
3⇒ 2 also now follows.

3.8. Definition. A locale X is a localic meet semilattice if it satisfies the equivalent
conditions of Proposition 3.7.

Proposition 3.7 dualizes, replacing right adjoints by left adjoints and meets by joins.
A locale satisfying the dual proposition is a localic join semilattice.

3.9. Proposition.

1. Any PU-algebra is a localic meet semilattice.

2. Any PL-algebra is a localic join semilattice.

Proof. 1. Let X be a locale. We first show that PUX is a localic meet semilattice.
We define � : 1→ PUX and � : (PUX)2 → PUX by

Ω�(�a) = true

Ω � (�a) = �a×�a

To show that � is right adjoint to !, we calculate �; ! � Id1 (actually, equality is
obvious) and IdPU X � !;�. The latter follows because

�a ≤ true = Ω!(true) = Ω! ◦ Ω�(�a).

For � right adjoint to ∆, we want �; ∆ � Id(PU X)2 and IdPU X � ∆;�. For the former,
we note that the opens �a of PUX form a basis, and so the opens �a × �b of (PUX)2

form a basis. We then calculate

Ω(�; ∆)(�a×�b) = Ω � (�a ∧�b) = Ω � (�(a ∧ b))
= �(a ∧ b)×�(a ∧ b) ≤ �a×�b
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For the latter,
Ω(∆;�)(�a) = Ω∆(�a×�a) = �a ∧�a = �a

Now let X be any PU-algebra with structure map α : PUX → X. We can define its
semilattice operations �n : Xn → X by the composite

Xn ↑n−→ (PUX)n �n−→ PUX
α−→ X

Now

∆; ↑n;�n;α = ↑; ∆;�n;α =↑;α = IdX

↑n;�n;α; ∆ = ↑n;�n;α; ∆; ↑n;αn

= ↑n;�n;α; ↑; ∆;αn

� ↑n;�n; ∆;αn

� ↑n;αn = IdXn

so that these are right adjoint to the diagonals as required.
2. The proof is more or less dual. The localic join semilattice operations ⊥ and � on

PLX are defined by

Ω⊥(♦a) = false

Ω � (♦a) = ♦a � ♦a

(In a product X × Y , we write a � b for a× Y ∨X × b.)
We shall need results on powerlocales of dcpos.

3.10. Definition. Let (X,<) be a continuous information system. Then the orderings
<U and <L on FG, the upper and lower orders, are defined by

S <U T iff ∀t ∈ T. ∃s ∈ S. s < t

S <L T iff ∀s ∈ S. ∃t ∈ T. s < t

Both are idempotent. If in addition < is reflexive (so it is a preorder), then so are <U

and <L, and we write ≡U and ≡L for the corresponding equivalence relations.

3.11. Theorem. Let (X,<) be a continuous information system. Then –

PU(Idl(X)) ∼= Idl(FX,<U)

PL(Idl(X)) ∼= Idl(FX,<L)

Proof. [Vickers 93].
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4. The double powerlocale P

In [JoVic 91] it is shown that the upper and lower powerlocales commute up to isomor-
phism. We shall write P for (without prejudice) PU PL or PL PU. Under the isomorphisms,
the open �♦a of PU PLX (a an open of X) corresponds to the open ♦�a of PL PUX. We
write �a for the corresponding open of PX, � being intended as a kind of combination
of � and ♦.

Another way to understand the monad structure on PU PL is in terms of distributivities
[Beck 69]: PU and PL distribute over each other.

4.1. Definition. Let (Ti, ηi, µi) be a monad (i = 1, 2). A distributive law of T2 over
T1 is a natural transformation σ : T2 ◦ T1 → T1 ◦ T2 such that the following diagrams
commute.

T2
T2η1−→ T2 ◦ T1

η2T1←− T1

↘
η1T2

↓ σ ↙
T1η2

T1 ◦ T2

T2 ◦ T1 ◦ T1
T2µ1−→ T2 ◦ T1

µ2T1←− T2 ◦ T2 ◦ T1

↓σT1 ↓T2σ

T1 ◦ T2 ◦ T1 ↓σ T2 ◦ T1 ◦ T2

↓T1σ ↓σT2

T1 ◦ T1 ◦ T2
µ1T2−→ T1 ◦ T2

T1µ2←− T1 ◦ T2 ◦ T2

There is then a monad structure on T1 ◦ T2, with unit

η = η1η2 : Id→ T1 ◦ T2

and multiplication

µ = (T1σT2); (µ1µ2) : T1 ◦ T2 ◦ T1 ◦ T2 → T1 ◦ T1 ◦ T2 ◦ T2 → T1 ◦ T2

4.2. Proposition. The isomorphism PL PU
∼= PU PL is a distributive law of PL over

PU. Its inverse is a distributive law of PU over PL.

Proof. The conditions are routine to check.

4.3. Corollary. P is the functor part of a monad on Loc, with unit !: X → PX
defined by Ω ! (�a) = a and multiplication H : PPX → PX defined by ΩH(�a) = � � a.

(The notation is explained as follows. The powerlocales give monads (PU, ↑,�) and
(PL, ↓,�), where the notation is chosen to match the fact that the points of the power-
locales are sublocales of the original locale. Then, for instance, if x is a point of X, then
the point ↑ x of PUX is the compact saturated sublocale of X whose points are those of
X that are bigger than x in the specialization order. Then ! is chosen as a combination
of ↑ and ↓, and H as a combination of � and �.)

4.4. Theorem. ΩPX ∼= Fr〈ΩX (qua dcpo)〉.
Proof. [JoVic 91].
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Our contention is that the P-algebras are in some sense “localic frames”. They are
both PU-algebras and PL-algebras, and this makes them both localic meet-semilattices
and localic join semilattices. Moreover, as lattices they are distributive. But every locale
has directed joins (of its points), and the meets, being continuous, preserve those directed
joins. Hence we can reasonably think of a P-algebra as having all joins as well as frame
distributivity.

We shall show in due course that the Sierpinski locale S, whose points are the subsets of
1, is the initial P-algebra (in fact, S ∼= P∅). Also, for locale X, the exponential S

X is a P-
algebra if it exists. Then the points of X are equivalent to the P-algebra homomorphisms
from S

X to S, and we have lifted to Loc the standard fact that the points of X are
equivalent to the frame homomorphisms from ΩX to Ω.

In a frame the meets and joins are determined by the order. In a locale the specializa-
tion order is intrinsic, and so we should expect that P-algebra structure, where it exists
at all, is unique. We shall now prove this.

4.5. Proposition. Let α : PX → X make X a P-algebra.

1. X is a PU-algebra and α is a PU-homomorphism.

2. X is a PL-algebra and α is a PL-homomorphism.

3. α is the unique P-algebra structure of X.

Proof. 1. Define αU = PU(↓);α : PUX → PU PLX = PX → X. The properties of
distributivities tell us that

!= (↑; PU(↓)) : X → PUX → PU PLX = PX,

and it follows that
↑;αU =!;α = IdX

Next, to complete the proof that αU makes X a PU-algebra, we should prove that
�;αU = PU(αU);αU . However, it is easier to prove first that α is a PU-homomorphism
(note that PX = PU PLX is itself a PU-algebra), i.e. that �;α = PU α;αU . For this, note
first that

� = PU(↓); H : PU PX → P
2X → PX

for both have inverse image map �a �−→ ��♦a. It follows that

�;α = PU(↓); H;α

= PU(↓); Pα;α

= PU(↓; PL α);α

= PU(α; ↓);α
= PU α; PU(↓);α
= PU α;αU



386 STEVEN VICKERS

Now to complete the proof that αU makes X a PU-algebra, we have

�;αU = �; PU(↓);α
= PU

2(↓);�;α

= PU
2(↓); PU α;αU

= PU(PU(↓);α);αU

= PU(αU);αU

The proof of (2) is formally very similar, using αL = PL(↑);α : PLX → PL PUX ∼=
PX → X.

For (3), suppose β : PX → X also makes X a P-algebra. By Proposition 3.4 we
have αU = βU and αL = βL. Let us fix on PX as PU PLX and be careful about the
isomorphism with PL PUX. αL is strictly speaking the map

αL = PL(↑);∼=;α : PLX → PL PUX ∼= PU PLX = PX → X

We can see that PL(↑);∼= is equal to ↑, since the inverse image functions for both take
�♦a �→ ♦a. It follows that α is the unique PU-homomorphism from PU PLX to X
extending αL. Similarly β is the unique PU-homomorphism from PU PLX to X extending
βL, and since αL = βL we deduce α = β.

The following result is analogous to the fact that any order isomorphism between
frames is a frame isomorphism.

4.6. Corollary. Any homeomorphism between P-algebras is a P-algebra isomorphism.

Proof. Let α : PX → X and β : PY → Y be P-algebras, and let f : X → Y be a
homeomorphism. It is straightforward to verify that Pf ; β; f−1 is a P-algebra structure
on X, so Pf ; β; f−1 = α.

4.7. Proposition. The initial P-algebra P∅ is S. Its structure map, from PS to S,
corresponds to the open �{�}.
Proof. This is most conveniently calculated applying Theorem 3.11 in the special case
of algebraic dcpos, Idl P where P is a poset.

Now the initial locale ∅ is the ideal completion of the empty set, so PL ∅ is the ideal
completion of {∅}. This is just the final, one-point locale. Then PU PL ∅ is the ideal
completion of a 2-element poset {⊥ � �}. A point of PU PL ∅ is an ideal of {⊥,�}, i.e. a
subset I ⊆ {⊥,�} that is directed and lower closed. Since it is inhabited and lower closed
it must contain ⊥, so it is completely determined by whether it contains � — in other
words, by its intersection with {�}. But if I ′ is an subset of {�} then {⊥}∪I ′ is an ideal.
Hence there is a bijection between points of PU PL ∅ and subsets of 1. Moreover, this
bijection is geometrically definable. The Sierpinski locale S is defined by its frame being
free on one generator, and it follows that its points are the subsets of 1. We therefore
have that P∅ is homeomorphic to S.
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The generator {�} of ΩS is �false in PU 1, i.e. �♦false in PU PL ∅, i.e. �false in P∅.
The structure map is just H, and the corresponding open is ΩH({�}) = ΩH(�false) =
� � false = �{�}.

We now investigate the localic lattice structure of P-algebras.

4.8. Proposition. Let X be a P-algebra. Then X is both a localic meet semilattice
and a localic join semilattice, and the resulting lattice structure is distributive.

Proof. We have already shown that X is both a PU-algebra and a PL-algebra. We
show distributivity first for algebras PY . We must consider two maps (PY )3 → PY . The
first takes (u, v, w) to u � (v � w), and its inverse image function takes

�a �→ �a×�a �→ �a× (�a � �a)

The second takes (u, v, w) to (u � v) � (u � w). Its inverse image function takes

�a �→ �a � �a �→ (�a×�a) � (�a×�a)
= ((�a× PY × PY × PY ) ∧ (PY ×�a× PY × PY ))

∨ ((PY × PY ×�a× PY ) ∧ (PY × PY × PY ×�a))
�→ ((�a× PY × PY ) ∧ (PY ×�a× PY )) ∨ ((�a× PY × PY ) ∧ (PY × PY ×�a))
= (�a× PY × PY ) ∧ ((PY ×�a× PY ) ∨ (PY × PY ×�a))
= �a× (�a � �a)

Hence the two are equal, and PY is distributive. Since the corresponding maps for X are
got by composing the ones for PX with !3: X3 → (PX)3 and α : PX → X, it follows that
the arbitrary P-algebra X is also distributive.

Since � : X2 → X is continuous, it also distributes over directed joins in X, and this
justifies our claim that P-algebras are localic frames.

5. Geometricity of presentations

With this section we begin a series of geometricity results, essential for the geometric
reasoning in the main results about P and exponentiation. We start by discussing the
geometricity of frame presentations. This is important, because frames themselves are
not geometric.

A frame presentation will include sets G and R of generators and relations, and each
relation can be written in the form e1 ≤ e2, where e1 and e2 are frame expressions in the
generators. Using frame distributivity, each ei can be written as a join of finite meets
of generators; and then the relation can be replaced by a set of relations, one for each
disjunct in e1, saying that the disjunct is ≤ e2. After all this rewriting we have that each
relation r is of the form –

finite meet of generators ≤ join of finite meets of generators
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Let us write λ(r) ∈ FG for the finite set of conjuncts on the left. For the right-hand
side, we have an arbitrary set of disjuncts: so what we should do is take the set D of
all disjuncts in all relations, fibred over R by some π : D → R. Each disjunct d is a
conjunction of a finite set ρ(d) of generators, so the relation r has been formalized as –

∧
λ(r) ≤

∨

π(d)=r

∧
ρ(d)

5.1. Definition. A frame presentation (or a (G,R,D)-system) is a structure com-
prising three sets G, R and D with functions λ : R→ FG, ρ : D → FG, and π : D → R.

We write FrPr for the (geometric) theory of frame presentations.
Given such a frame presentation, then in conformity with established notation we shall

write Fr〈G|R〉 for the frame presented by it. (Of course, this conceals the involvement
of D, λ, ρ and π.) Then a frame homomorphism from Fr〈G|R〉 to a frame A is given
by a function γ : G → A that respects the relations in the following way. Since A is
a semilattice under ∧, and FG is the free semilattice over G, γ extends uniquely to a
semilattice homomorphism γ′ : (FG,∪)→ (A,∧) such that γ′({g}) = γ(g). We want for
each relation r that

γ′ ◦ λ(r) ≤
∨
{γ′ ◦ ρ(d) : π(d) = r}

5.2. Theorem. Let T be a geometric theory whose ingredients include a frame presen-
tation as above, and let A be the frame in S[T ] presented by it. Then the corresponding
locale over [T ] classifies the theory T ′ that is T extended by –

• a predicate symbol I(g) (g : G)

• an axiom

∀r : R.((∀g∈λ(r). I(g)) −→ ∃d : D. (π(d) = r ∧ ∀g∈ρ(d). I(g)))

Proof. Let f : E → [T ] be any topos over [T ]. We know (by Theorem 2.1) that
geometric morphisms over [T ] from E to the locale are equivalent to frame homomorphisms
in S[T ] from A to f∗ΩE, and these are equivalent to functions from G to f∗ΩE that respect
the relations. On the other hand, geometric morphisms over [T ] from E to [T ′] are
equivalent to subsets of f ∗(G) that satisfy the axiom. We show that these are equivalent,
and that suffices to show that the locale and [T ′] are equivalent over [T ].

Functions γ : G → f∗ΩE are equivalent to functions from f ∗G to ΩE, which in turn
are equivalent to subsets I of f ∗G. The difficult part is to show that the one respects the
relations iff the other satisfies the axiom.

Recall some general properties about how f ∗ and f∗ relate to algebras for any finitary
algebraic theory. First, because both f∗ and f ∗ preserve finite products, they transform
algebras into algebras. (In particular, this gives the distributive lattice structure on
f∗ΩE, though not the frame structure – for Mikkelson’s description of joins in f∗ΩE see
[Johnstone 77], Proposition 5.36.) Moreover, if X and Y are algebras in S[T ] and SE
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respectively, and θ : X → f∗Y and φ : f ∗X → Y are adjoint transposes of each other,
then θ is a homomorphism iff φ is. Finally, if F denotes the free algebra construction,
then f ∗ preserves it: f ∗

FX ∼= F(f ∗X) by an algebra isomorphism in SE (we shall apply
this for the theory of semilattices, so that F is F). We interrupt the proof of the theorem
with a lemma about finitely bounded universal quantification,

5.3. Lemma. Let θ : X → f∗ΩE in S[T ] give semilattice homomorphism θ′ : FX →
(f∗ΩE,∧), and let their adjoint transposes be φ : f ∗X → ΩE and φ′ : f ∗FX → ΩE. Then
the function

∼=;φ′ : F(f ∗X) ∼= f ∗FX → ΩE

maps S to the truth value [∀x ∈ S. φ(x)].

Proof.

f ∗X
φ−→ ΩE

{−} ↙ ↓f∗{−} ↗φ′

Ff ∗X −→∼= f ∗FX

X
θ−→ f∗ΩE

{−} ↓ ↗θ′

FX
In the left-hand diagram, both triangles commute: the left-hand one by definition of

the isomorphism, and the right-hand one by naturality of the adjoint transpose. Also, φ′

is a semilattice homomorphism (ΩE as ∧-semilattice) because θ′ is. It follows that ∼=;φ′ is
the unique semilattice homomorphism mapping each {x} to φ(x), but S �→ [∀x ∈ S.φ(x)]
is such a one.

Proof. We now return to the proof of the theorem. From the lemma (applied to
γ : G → f∗ΩE), and using naturality, it follows that the adjoint transposes of λ; γ′ :
R → f∗ΩE and ρ; γ′ : D → f∗ΩE correspond to the subsets {r : ∀g ∈ f ∗λ(r). I(g)} and
{d : ∀g ∈ f ∗ρ(d). I(g)} of f ∗R and f ∗D. It remains to show that the adjoint transpose
of the function r �→ ∨{γ′ ◦ ρ(d) : π(d) = r} from R to f∗ΩE corresponds to the subset

{r : ∃d. (f ∗π(d) = r ∧ ∀g∈f ∗ρ(d). I(g)}
of f ∗R. Our function from R to f∗ΩE calculates the join of a generalized element of Ωf∗ΩE

[T ] ,

namely r �→ {γ′ ◦ ρ(d) : π(d) = r}. The generalized element comes from a function from
R × f∗ΩE to Ω[T ], and this corresponds to a subset of R × f∗ΩE, namely the image of
〈π, γ′ ◦ ρ〉 : D → R × f∗ΩE. We obtain a function 〈f ∗π, α〉 : f ∗D → f ∗R × ΩE, where
α : f ∗D → ΩE is the adjoint transpose of γ′ ◦ ρ, which by the lemma corresponds to the
subset {d : ∀g ∈ f ∗ρ(d). I(g)} of f ∗D. The image of 〈f ∗π, α〉 gives a function from f ∗R
to ΩΩE

E ,

r �→ {a ∈ ΩE ∃d : f ∗D. (f ∗π(d) = r ∧ a = [∀g ∈ f ∗ρ(d). I(g)])}
and the join of this set is the truth value [∃d : f ∗D. (f ∗π(d) = r∧∀g ∈ f ∗ρ(d). I(g)], and
Mikkelson’s description says that this is the adjoint transpose of

r �→
∨
{γ′ ◦ ρ(d) π(d) = r}.
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5.4. Corollary. Let E be a topos, let P = (G,R,D, λ, ρ, π) be a frame presentation
in SE and let X → E be the corresponding locale over E. Let f : E ′ → E be a map.
Then the locale X ′ over E ′ corresponding to the frame presentation f ∗(P ) in SE ′ is the
pullback E ′ ×E X.

Proof. Let [FrPr][pt] classify a frame presentation together with a point described by
predicate I and axiom as in Theorem 5.2. The map [FrPr][pt] → [FrPr] that forgets the
point is localic, and is in effect the generic presented locale. The theorem tells us that
X $ E ×[FrPr] [FrPr][pt] and X ′ $ E ′ ×[FrPr] [FrPr][pt] $ E ′ ×E X.

Corollary 5.4 enables us to address the geometricity of locale constructions in the
following way. Suppose T : Loc → Loc is a functorial construction of locales that can
be described intuitionistically. Then for any topos E we have a functor TE : Loc/E →
Loc/E. Now suppose we have a map p : E ′ → E. If we have a locale X over E, then
we have two locales over E ′, namely p∗(TE(X)) and TE′(p∗(X)). How do they relate to
each other? In general there is no obvious morphism between them. However, we shall be
interested in the case where they are isomorphic. In this case we shall say T is geometric,
in that it is preserved by pullback along maps.

Corollary 5.4 allows us to use frame presentations to reduce the problem to geometric
constructions on sets, in other words those set constructions that are preserved by the
inverse image functors. As remarked earlier, the principal geometric set constructions
are colimits, finite limits and free algebra constructions, and also universal quantification
bounded over (Kuratowski) finite sets.

5.5. Proposition. Let T : Loc→ Loc be an intuitionistically describable functorial
construction of locales as above, and let T ′ be a geometric construction on frame presen-
tations (in other words, an endomorphism T ′ : [FrPr]→ [FrPr] of the classifying topos for
frame presentations). Suppose we have an intuitionistic proof (valid over any topos) that
if a (G,R,D)-system P presents a locale X then T ′(P ) presents (up to homeomorphism)
T (X). Then T is geometric.

Proof. We shall write T ′
E and TE for T ′ and T working at stage E. Let f : E ′ → E

be a map of toposes, and suppose, working over E, that X is a locale presented by P .
Then by Corollary 5.4, f ∗X is presented over E ′ by f ∗(P ). Hence TE′(f ∗X) is presented
by T ′

E′(f ∗P ). By geometricity of T ′ this is isomorphic to f ∗(T ′
E(P )), and that, using

Corollary 5.4 again, presents f ∗(TE(X)). Hence f ∗(TE(X)) ∼= TE′(f ∗X) as desired.

In what follows, the set of generators will often have structure (partial order, or meets
or joins) that is to be preserved in the frame generated. This can easily be incorporated
into the relations and disjuncts, and we use the “qua” notation to indicate that this should
be done.

5.6. Definition. Let (G,R,D, λ, ρ, π) be a GRD-system in which G is equipped with
a preorder ≤G. Then by

(G (qua preorder), R,D, λ, ρ, π)
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we denote the GRD-system
(G,R′, D′, λ′, ρ′, π′)

in which

R′ = R+ ≤G

λ′(r) = λ(r), λ′(g1, g2) = {g1}
D′ = D+ ≤G

ρ′(d) = ρ(d), ρ′(g1, g2) = {g2}
π′ = π+ ≤G

This presents

Fr〈G|
∧

λ(r) ≤
∨

π(d)=r

∧
ρ(d) (r ∈ R),

g1 ≤ g2 (g1 ≤ g2 in G)〉

which is isomorphic to Fr〈G (qua preorder)|∧λ(r) ≤ ∨
π(d)=r

∧
ρ(d) (r ∈ R)〉.

In fact, we shall find it best to order not only G, but also R and D. The reasons
for this will be revealed later. For the moment, let us say first, that we shall sometimes
require the joins in the relations to be directed, and that requires an order on D. Second,
in satisfying meet and join stability conditions, the generators G get incorporated into
both R and D in such a way that the order cannot be neglected.

5.7. Definition. An ordered GRD-system is a system (G (qua poset), R,D, λ, ρ, π)
in which G, R and D are equipped with partial orders ≤, π is monotone and λ and ρ are
monotone with respect to ≤U on FG.

Notes:

• The orders on R and D make no difference to the frame that is presented.

• We expect the orders to be partial orders and not preorders.

• Ordinary GRD-systems can always be ordered by the discrete order.

5.8. Definition.

1. Let (G,R,D, λ, ρ, π) be an ordered GRD-system in which G is a meet semilattice.
Then by

(G (qua ∧ -semilattice), R,D, λ, ρ, π)

we denote the GRD-system

(G (qua poset), R′, D′, λ′, ρ′, π′)



392 STEVEN VICKERS

in which

R′ = R + 1 +G×G
λ′(r) = λ(r), λ′(∗) = ∅, λ′(g1, g2) = {g1, g2}
D′ = D + 1 +G×G

ρ′(d) = ρ(d), ρ′(∗) = {�G}, ρ′(g1, g2) = {g1 ∧ g2}
π′ = π + 1 +G×G

The extra relations are imposing true ≤ �G and (g1) ∧ (g2) ≤ (g1 ∧ g2).

2. Let (G,R,D, λ, ρ, π) be an ordered GRD-system in which G is a join semilattice.
Then by

(G (qua ∨ -semilattice), R,D, λ, ρ, π)

we denote the GRD-system

(G (qua poset), R′, D′, λ′, ρ′, π′)

in which

R′ = R + 1 +G×G
λ′(r) = λ(r), λ′(∗) = {⊥G}, λ′(g1, g2) = {g1 ∨ g2}
D′ = D + ∅ + (G×G+G×G)

ρ′(d) = ρ(d), ρ′((g1, g2)1) = {g1}, ρ′((g1, g2)2) = {g2}
π′ = π+! +∇

where ∇ is the codiagonal. The extra relations are imposing ⊥G ≤ false and (g1 ∨
g2) ≤ (g1) ∨ (g2).

6. Geometricity of internal directed joins

We have already mentioned in Section 2 that Loc is dcpo enriched. However, the directed
joins there are as indexed by external directed sets. More deeply we find that if (yi) is a
family of maps from X to Y indexed by a directed set I internal to sheaves over X, then
they have a directed join

∨↑
i∈I yi : X → Y . Moreover, this is geometric: the directed joins

are preserved under pullback along maps into X. (This corresponds at the global level to
precomposition preserving directed joins, but we have to be more careful about looking
after the directed index set.)

It is convenient to use the “Ω-set” description of sheaves [FoScott 79]. This approach is
slightly misleading, since the use of Ω-sets is very specific to locales. It therefore obscures
the fact that geometricity of directed joins for locales is just a special case of geometricity
of filtered colimits for toposes. However, we retain the account here for its concreteness.



THE DOUBLE POWERLOCALE AND EXPONENTIATION 393

6.1. Definition. Let X be a locale. Then an ΩX-set is a set S equipped with a
function E : S2 → ΩX, (p, q) �→ Epq, such that

1. Epq ≤ Eqp

2. Epq ∧ Eqr ≤ Epr

Working in SX, we find that E defines a partial equivalence relation on S – condition
(1) expresses symmetry, and condition (2) expresses transitivity. To put it another way,
each point x of X gives a partial equivalence relation ≡x on S, p ≡x q iff x � Epq, and
in SX we consider this for the generic point. Its quotient S/E is an object of SX, i.e.
a sheaf over X. (To form the quotient of a partial equivalence relation ≡ on S, you
first restrict to S ′ = {p ∈ S p ≡ p}, on which ≡ is an equivalence relation, and form
S ′/ ≡.) It is shown in [FoScott 79] that, with respect to suitable morphisms, the category
of ΩX-sets is equivalent to SX, and so ΩX-sets are just another way to describe sheaves
over locales.

6.2. Proposition. Let X be a locale. Then a directed set at stage X is a set P
equipped with a function L : P × P → ΩX, (p, q) �→ Lpq, that satisfies the following
conditions.

1. Lpq ≤ Lpp ∧ Lqq

2. Lpq ∧ Lqr ≤ Lpr

3. true ≤ ∨
p∈P Lpp

4. Lpp ∧ Lqq ≤
∨

r∈P (Lpr ∧ Lqr)

Proof. Let (P,E) be an ΩX-set. As a binary relation, a partial order is given by
a subsheaf of (P/E)2, and this is given by a function L : P × P → ΩX, (p, q) �→ Lpq,
satisfying

Lpq ∧ Ep′p ∧ Eq′q ≤ Lp′q′

Lpq ≤ Epp ∧ Eqq

The partial order properties (reflexive, transitive, antisymmetric) are then

Epp ≤ Lpp

Lpq ∧ Lqr ≤ Lpr

Lpq ∧ Lqp ≤ Epq

and directedness is

true ≤
∨

p∈P

Epp

Epp ∧ Eqq ≤
∨

r∈P

(Lpr ∧ Lqr)
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If we have E and L satisfying these, then we must have Epq = Lpq ∧ Lqp. The ≥
direction is already hypothesized, and for ≤ we have

Epq = Epp ∧ Epp ∧ Epq ≤ Epp ∧ Lpp ∧ Epq ≤ Lpq

and Epq ≤ Lqp by symmetry. It follows that Epp = Lpp, and we can easily deduce the
properties listed in the statement.

Conversely, suppose we have L satisfying the stated properties and we define Epq =
Lpq ∧ Lqp. We can then check that (P,E) is an ΩX-set and that L defines a directed
partial order on it.

6.3. Proposition. Let X and Y be locales and let P be a directed set at stage X
(equipped with order L). Then a P -indexed family of points of Y is a family of maps
yp : Lpp → Y such that yp|Lpq � yq|Lpq : Lpq → Y .

Proof. Each element of P/L is represented by an element p of P , but it is only partial
– it exists where Lpp holds. The corresponding point of Y is a map yp : Lpp → Y . The
remaining condition represents the monotonicity of the family, if p ≤ q then yp � yq.

6.4. Theorem. Let X and Y be locales, let P be a directed set over X, and let (yp) be

a P -indexed family of points of Y at stage X. Then the directed join
⊔↑

p∈P yp is the map
y : X → Y defined by

Ωy(b) =
∨

p∈P

Ωyp(b)

(Note that we are taking ΩLpp = ↓ Lpp ⊆ ΩX.)

Proof. The requirement on y is that it should be the least map from X to Y such that
for every p ∈ P we have

yp � y|Lpp : Lpp → Y,

in other words that Ωyp(b) ≤ Ωy(b) for every p ∈ P and every b ∈ ΩY . The function Ωy
in the statement is clearly the least function from ΩY to ΩX that satisfies this, and so it
suffices to show that it is a frame homomorphism.

It is evident that Ωy preserves all joins. For finite meets, first,

Ωy(true) =
∨

p∈P

Ωyp(true) =
∨

p∈P

Lpp = true
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For binary meets,

Ωy(b) ∧ Ωy(c) =
∨

p∈P

Ωyp(b) ∧
∨

q∈P

Ωyq(c)

=
∨

p,q∈P

(Ωyp(b) ∧ Ωyq(c))

=
∨

p,q∈P

(Ωyp(b) ∧ Ωyq(c) ∧ Lpp ∧ Lqq)

≤
∨

p,q,r∈P

(Ωyp(b) ∧ Ωyq(c) ∧ Lpr ∧ Lqr)

≤
∨

p,q,r∈P

(Ωyr(b) ∧ Ωyr(c) ∧ Lpr ∧ Lqr)

≤
∨

r∈P

Ωyr(b ∧ c) = Ωy(b ∧ c)

Next we prove that composition of maps distributes on both sides over directed joins.
For precomposition, we must explain how to shift the stage of a directed set.

6.5. Proposition. Let X be a locale, let P be a directed set at stage X, and let
f : W → X be a map. Then the pullback of P along f , f ∗P , is the directed set at stage
W with the same underlying set P and with order f ∗L defined by

(f ∗L)pq = Ωf(Lpq) = f ∗(Lpq)

Proof. This is simply the way f ∗ works with Ω-sets.

6.6. Definition. Let X be a locale, let P be a directed set at stage X, and let
f : W → X be a map. If (yp) is a P -indexed family of points of Y , then we denote by
(f ; yp) the following f ∗P -indexed family of points of Y . For each p, let ip : Lpp ↪→ X
be the sublocale inclusion. Then, abusing notation slightly, f ; yp here denotes (i∗pf); yp :
f ∗Lpp → Lpp → Y .

6.7. Theorem. Let X and Y be locales, let P be a directed set over X, and let (yp)
be a P -indexed family of points of Y at stage X.

1. If f : W → X is a map, then

f ;
⊔↑

p∈P
yp =

⊔↑
p∈f∗P

(f ; yp)

2. If g : Y → Z is a map, then

(
⊔↑

p∈P
yp); g =

⊔↑
p∈P

(yp; g)
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Proof. 1. We have

Ω(f ;
⊔↑

p∈P
yp)(b) = Ωf(

∨

p

Ωyp(b)) =
∨

p

Ωf(Ωyp(b))

Ω(
⊔↑

p∈f∗P
(f ; yp))(b) =

∨

p

Ω(f ; yp)(b)

We must therefore show that Ωf(Ωyp(b)) = Ω(f ; yp)(b) – this is not completely obvious,
because we have slightly redefined what f ; yp means. If ip : Lpp ↪→ X is the sublocale
inclusion then Ω(f ; yp)(b) = Ω(i∗pf)(Ωyp(b)), where Ωyp(b) ∈ ΩLpp. But when we identify
this with ↓ Lpp in ΩX, and make a similar identification for f ∗Lpp, we find this is equal
to Ωf(Ωyp(b)).

2.

Ω((
⊔↑

p∈P
yp); g)(c) =

∨

p

Ωyp(Ωg(c))

=
∨

p

Ω(yp; Ωg)(c) = Ω(
⊔↑

p∈P
(yp; g))(c)

7. Geometricity of the lower powerlocale

We shall now use the technique of Proposition 5.5 to prove that the powerlocales PU

and PL, and hence also the double powerlocale P, are geometric. The argument makes
essential use of the coverage theorems, by which frame presentations are transformed into
suplattice or preframe presentations.

We deal first with the suplattice coverage theorem, which is Johnstone’s original form
[Johnstone 82].

7.1. Theorem. [Suplattice coverage theorem] Let S be a meet semilattice, and let
C ⊆ S × PS have the following properties. (If (x, U) ∈ C then we say that U covers x.)

• If U covers x and u ∈ U then u ≤ x.

• (Meet stability) If U covers x and y ∈ S then {y ∧ u u ∈ U} covers y ∧ x.
Then

Fr〈S (qua meet semilattice)|x ≤
∨

U (U covers x)〉
∼= SupL〈S (qua poset)|x ≤

∨
U (U covers x)〉

Proof. [Johnstone 82] proved that the frame presented on the left can be represented
concretely as the lattice of “C-ideals”. It was proved in [AbrVic 93] that this lattice
could be given the suplattice presentation on the right. The arguments used there are
constructive.
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7.2. Definition. A site is an ordered GRD-system of the form (G (qua ∧-semilattice),
R,D) equipped with the following structure and properties.

1. Factorizations of λ and ρ via the singleton embedding {−} : G → FG, λ(r) =
{λ0(r)} and ρ(d) = {ρ0(d)}.

2. ρ0(d) ≤ λ0(π(d)).

3. Actions of G on R and D, denoted (g, r) �−→ g · r and (g, d) �−→ g · d.
4. The functions · : G×R→ R and · : G×D → D are both monotone.

5. π(g · d) = g · π(d)

6. If π(d′) = g · r then there is some d such that π(d) = r and d′ ≤ g · d.
7. λ0(g · r) = g ∧ λ0(r)

8. ρ0(g · r) = g ∧ ρ0(r)

This is mostly just a formalization in terms of GRD-systems of the conditions used in
Theorem 7.1, so it is not surprising that we now have the following.

7.3. Corollary. Let (G,R,D) be a site, and let X be presented by (G (qua ∧-
semilattice), R,D). Then PLX is presented by (G (qua poset), R,D).

Proof. We define a coverage relation C ⊆ G× PG whose elements are the pairs

(λ0(r), {ρ0(d) π(d) = r})

for r ∈ R. The fact that it is a coverage comes from the structure of the site; in particular
the G-action on R and D gives meet stability. Then ΩX is

Fr〈G (qua ∧ -semilattice)|x ≤
∨

U (U covers x)〉

Using Theorem 7.1 we see that

Ω PLX ∼= Fr〈ΩX (qua suplattice)〉
∼= Fr〈G (qua poset)|x ≤

∨
U (U covers x)〉

and this is presented by (G (qua poset), R,D).
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In the light of this, geometricity of the lower powerlocale reduces to showing that any
presentation can be geometrically transformed into an equivalent site. First, however,
we take the opportunity to prove a Lemma, probably well-known, that will be useful in
various places.

7.4. Lemma.

1. Let P be a poset. Then FP/ ≤L is a free join semilattice over P (qua poset).

2. Let P be a poset. Then FP/ ≤U is a free meet semilattice over P (qua poset).

3. Let P be a meet semilattice. Then FP/ ≤L is a free distributive lattice over P (qua
meet semilattice).

Proof. 1. ∅ and ∪ in FP provide (nullary and binary) joins with respect to ≤L.
For instance, U ≤L U ∪ V , and if U ≤L W and V ≤L W then U ∪ V ≤L W . The
singleton embedding of P in FP , x �→ {x}, is monotone with respect to ≤L: if x ≤ y
then {x} ≤L {y}.

Now let S be a join semilattice and f : P → S monotone. This extends uniquely to
a semilattice homomorphism f1 : FP → S, U �−→ ∨{f(u) u ∈ U}, and this factors via
FP/ ≤L: if U ≤L V then f1(U) ≤ f1(V ).

2. This follows by duality from the fact that S ≤U T iff T (≥)LS. Hence a meet semi-
lattice homorphism from FP/ ≤U to S is equivalent to a join semilattice homomorphism
from F(P op)/ ≤L to Sop, which is equivalent to a monotone function from P op to Sop and
hence to a monotone function from P to S.

3. The top element is {�P}, and binary meets are defined by

U ∧ V = {u ∧ v u ∈ U, v ∈ V }

We have U ∧ V ≤L U and if W ≤L U and W ≤L V then W ≤L U ∧ V . For distributivity
we have

U ∧ (V ∪W ) ≤L (U ∧ V ) ∪ (U ∧W )

Suppose S is a distributive lattice and f : P → S a meet semilattice homomorphism.
Then the unique extension to a join semilattice homomorphism f2 : FP/ ≤L → S is in
fact a lattice homomorphism, for

f1(U ∧ V ) = f1({u ∧ v u ∈ U, v ∈ V })
=

∨
{f(u) ∧ f(v) u ∈ U, v ∈ V }

= f1(U) ∧ f1(V )
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If U ∈ FP then we shall write [U ] for its image in FP/ ≤U or FP/ ≤L as appropriate.

7.5. Theorem. The lower powerlocale PL is geometric.

1. If X is presented by an ordered GRD-system (G (qua poset), R,D), then PLX is
presented by a system (G′ (qua poset), R′, D′) where

G′ = FG/ ≤U

R′ = G′ ×R
λ(S, r) = {S ∧ λ(r)}

D′ = G′ ×D
ρ(S, d) = {S ∧ ρ(d) ∧ λ(π(d))}

π = G′ × π

2. Ω ↓ takes [U ] �−→ ∧
U , Ω

⊔
takes [U ] �−→ [{[U ]}].

3. Let Xi be presented by (Gi (qua poset), Ri, Di) (i = 1, 2). Let f : X1 → X2 be a
map, and suppose φ ⊆ FG1 ×G2 is such that, for g ∈ G2,

Ωf(g) =
∨
{
∧

S (S, g) ∈ φ}.

Let
φ′ = {({

⋃

(S,g)∈φ0

S}, V ) φ0 ∈ Fφ,F sndφ0 = V } ⊆ FFG1 ×FG2.

Then PL f is similarly described by φ′,

Ω PL f([V ]) =
∨
{

∧

U∈U
[U ] (U , V ) ∈ φ′}.

Proof. 1. If U ∈ FG, let us write [U ] for its image in G′.
We have

ΩX = Fr〈G (qua poset)|
∧

λ(r) ≤
∨

π(d)=r

∧
ρ(d) (r ∈ R)〉

∼= Fr〈G′ (qua ∧ -semilattice)|
S ∧ [λ(r)] ≤

∨

π(d)=r

(S ∧ [ρ(d)] ∧ [λ(r)]) (r ∈ R,S ∈ G′)〉

This is shown by demonstrating the mutually inverse frame homomorphisms. α from left
to right is defined by α(g) = [{g}], β from right to left by β([U ]) =

∧
U , using Lemma

7.4 (2).
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We must still check that the relations are respected, but once that is done the two
homomorphisms will be mutually inverse. On one side, β ◦ α(g) = β([{g}]) = g. On the
other we have

α ◦ β([{g}]) = α(g) = [{g}]
after which α ◦ β = Id by Lemma 7.4.

Now we check that the relations are respected. From left to right, there is only one.
We have

α(
∧

λ(r)) =
∧

g∈λ(r)

[{g}] = [
⋃

g∈λ(r)

{g}] = [λ(r)]

≤
∨

π(d)=r

[ρ(d)] =
∨

π(d)=r

∧

g∈ρ(d)

[{g}]

= α(
∨

π(d)=r

∧
ρ(d)).

Going from right to left, we have

β(S ∧ [λ(r)]) = β(S) ∧
∧

λ(r)

≤ β(S) ∧
∨

π(d)=r

∧
ρ(d) ∧

∧
λ(r)

=
∨

π(d)=r

(β(S) ∧
∧

ρ(d) ∧
∧

λ(r))

= β(
∨

π(d)=r

(S ∧ [ρ(d)] ∧ [λ(r)])

The right-hand presentation corresponds to the GRD-system described, and moreover
it is a site, with G′-actions given by

S · (T, r) = (S ∧ T, r)
S · (T, d) = (S ∧ T, d)

The result now follows from Corollary 7.3.
2. U ∈ FG represents ♦∧

g∈U g ∈ Ω PLX. Under Ω ↓, this maps to
∧
U . Under Ω

⊔
,

it maps to ♦♦∧
g∈U g, which corresponds to [{[U ]}].

3. Under Ω PL f , ♦∧
g∈V g maps to

♦
∧

g∈V

∨

(S,g)∈φ

∧
S

If V ∈ FG, let us write

Φ(V ) = {φ0 ∈ Fφ ∀(S, g) ∈ φ0. g ∈ V and ∀g ∈ V. ∃(S, g) ∈ φ0}
= {φ0 ∈ Fφ F snd(φ0) = V }
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We must therefore show that

∧

g∈V

∨

(S,g)∈φ

∧
S =

∨

φ0∈Φ(V )

∧

(S,g)∈φ0

∧
S

For ≥, suppose we have φ0 ∈ Φ(V ), and we have h ∈ V . We can find (T, h) ∈ φ0 for
some T , so ∧

(S,g)∈φ0

∧
S ≤

∧
T ≤

∨

(S,h)∈φ

∧
S

For ≤, we use induction on V (see [Vickers 99]). If V = ∅, then the LHS is true.
For the RHS, the only possible φ0 is ∅ and it follows that the RHS also is true. For the
induction step, suppose V = V ′ ∪ {h}.

LHS =
∧

g∈V ′

∨

(S,g)∈φ

∧
S ∧

∨

(T,h)∈φ

∧
T

=
∨

φ0∈Φ(V ′)

∧

(S,g)∈φ0

∧
S ∧

∨

(T,h)∈φ

∧
T

=
∨
{

∧

(S,g)∈φ0∪{(T,h)}

∧
S φ0 ∈ Φ(V ′), (T, h) ∈ φ}

≤
∨

φ0∈Φ(V )

∧

(S,g)∈φ0

∧
S

Hence
♦

∧

g∈V

∨

(S,g)∈φ

∧
S =

∨

φ0∈Φ(V )

♦
∧

(S,g)∈φ0

∧
S =

∨

φ0∈Φ(V )

♦
∧

(
⋃

(S,g)∈φ0

S)

which gives us the result.

8. Geometricity of the upper powerlocale

Turning now to the upper powerlocale, we first define a preframe analogue of site.

8.1. Definition. An ordered GRD-system (G (qua ∨-semilattice), R,D) is a preframe
site if it has the following structure and properties.

1. For each r in R, the set Dr = {d ∈ D π(d) = r} is directed under ≤.

2. For each d in D, ρ(d) ≤U λ(π(d)).

3. Actions of G on R and D, denoted (a, r) �→ a ∗ r and (a, d) �→ a ∗ d.
4. The functions ∗ : G×R→ R and ∗ : G×D → D are both monotone.

5. π(a ∗ d) = a ∗ π(d).
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6. If π(d′) = g ∗ r then there is some d such that π(d) = r and d′ ≤ g ∗ d.
7. λ(a ∗ r) ≡U {a ∨ b b ∈ λ(r)}.
8. ρ(a ∗ d) ≡U {a ∨ b b ∈ ρ(d)}.
Conditions 1 and 2 here say that the relations are all of the form

∧
S ≤

∨↑
i

∧
Ti

with a directed join on the right, such that each
∧
Ti ≤

∧
S. Conditions 3-8 express a

join stability property, namely that if we have such a relation in R, and a ∈ G, then we
also have the relation

∧
{a ∨ b b ∈ S} ≤

∨↑
i

∧
{a ∨ b b ∈ Ti}

8.2. Theorem. [Preframe coverage theorem] Let (G,R,D) be a preframe site. Then

Fr〈G (qua join semilattice)|
∧

λ(r) ≤
∨↑

π(d)=r

∧
ρ(d) (r ∈ R)〉

∼= PreFr〈G (qua poset)|
∧

λ(r) ≤
∨↑

π(d)=r

∧
ρ(d) (r ∈ R)〉

Proof. [JoVic 91] The first task is to show that the preframe presented on the right
actually exists. Once that is done, binary joins can be defined as preframe bilinear maps,
and proved to be joins.

8.3. Corollary. Let (G,R,D) be a preframe site, and let X be presented by (G (qua
∨-semilattice), R,D). Then PUX is presented by (G (qua poset), R,D).

We shall now show that the upper powerlocale PU is geometric. Just as for PL,
the strategy is to show how to manipulate an arbitrary presentation into an equivalent
preframe site. However, in doing so we shall also need to use finite distributivity and we
must first say something about the geometric nature of that.

Let X be a distributive lattice and V a finite set of finite subsets of X. As ever, “finite”
here means Kuratowski finite, so V ∈ FFX. We are interested in the problem of writing
the join of meets ∨

V ∈V

∧
V

as a meet of joins. If one imagines writing this out, one finds that each of the joins has a
disjunct from each V in V , so

∨

V ∈V

∧
V =

∧
{

∨

V ∈V
γ(V )|γ a choice function for V}

A choice function for V is a function γ : V →⋃V such that γ(V ) ∈ V for every V .
Since V is finite, the graph of γ must be a finite subset of V×⋃V , but unfortunately
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the set of such γ’s is not a geometrically definable subset of F(V×⋃V). This is because
the single-valuedness property of a function, ∀V, v, v′. (V γv ∧ V γv′ → v = v′), is not
geometric. (To make it so we should need decidable equality on X, when the property
can be expressed as ∀(V, v) ∈ γ. ∀(V ′, v′) ∈ γ. (V '= V ′ ∨ v = v′).) However, it turns out
that single-valuedness is not needed for our applications. We can make do with choice
relations that are total but not necessarily single-valued.

8.4. Definition. Let X be a set and V ∈ FFX. A choice for V is some γ ∈
F(V×⋃V) satisfying

• ∀V ∈ V. ∃v ∈ V. (V, v) ∈ γ
• ∀(V, v) ∈ γ. v ∈ V

8.5. Definition. We write Ch(V) for the set of choices of V, and Im γ for the image
of γ, i.e. its direct image under the second projection to

⋃V (note that Im γ is finite).

8.6. Proposition. Let X be a set and V ∈ FFX. Then Ch(V) is finite.

Proof. We use the “F -recursion” of [Vickers 99] to define a function Ch : FFX →
FF(FX×X) and show that γ ∈ F(FX×X) is in Ch(V) iff it is a choice of V as defined
above.

First, Ch(∅) = {∅}. ∅ is, vacuously, a choice of ∅, and it is the only finite subset of
∅×⋃

∅.
Next,

Ch(V ∪ {U}) = {γ ∪ ({U} × S) γ ∈ Ch(V) and S ∈ F+U}
(F+U denotes the set of nonempty finite subsets of U – note that for finite sets, emptiness
is decidable.) There are two proof obligations to be discharged in showing that this
definition is good. For W ∈ FF(FX×X) and U ∈ FX let us write

Φ(W , U) = {γ ∪ ({U} × S) γ ∈ W and S ∈ F+U}

so we are attempting to define Ch to satisfy

Ch(V ∪ {U}) = Φ(ChV , U)

Then we must show

Φ(Φ(W , U), V ) = Φ(Φ(W , V ), U)

Φ(Φ(W , U), U) = Φ(W , U)

Both of these are easy and we deduce by F -recursion that Ch is well-defined. Now for
correctness, we can suppose by induction that Ch(V) is correct (i.e. the set of choices of
V). Then clearly all the elements of Ch(V ∪ {U}) are choices of V ∪ {U}. Conversely,
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let γ be a choice of V ∪ {U}, and write γ = γ1 ∪ γ2 where the γis are both finite, for
every (V, v) in γ1 we have V in V , and for every (V, v) in γ2 we have V = U . (If U ∈ V
then γ1 and γ2 are not uniquely defined. Because this possibilitiy cannot be eliminated
geometrically, the reasoning is slightly more elaborate than one might have expected.)
We have ∀V ∈ V. ∃v ∈ V. (V, v) ∈ γ, and so there is a finite total relation R from V to⋃V contained in γ. Replacing γ1 by γ1∪R we can suppose that γ1 is total on V . We also
have some u ∈ U such that (U, u) ∈ γ, so replacing γ2 by γ2 ∪ {(U, u)} we can suppose
that γ2 is of the form {U}×S for some finite non-empty set S. Hence γ ∈ Ch(V ∪{U}).
8.7. Theorem. Let L be a distributive lattice and let V ∈ FFL. Then

∨

V ∈V

∧
V =

∧

γ∈Ch(V)

∨
Im γ.

Proof. By F -induction on V . (See [Vickers 99]. Note that this is not induction on
the cardinality of V , which in general does not exist. Rather, it is is induction on the
length of an enumeration of V .) If V is empty, then the LHS is ⊥L and the RHS is∧

γ∈{∅}
∨

∅ = ⊥L. For the induction step,

∨

V ′∈{V }∪V

∧
V ′ =

∧
V ∨

∨

V ′∈V

∧
V ′ =

∧
V ∨

∧

γ′∈Ch(V)

∨
Im γ′

=
∧

v∈V,γ′∈Ch(V)

(v ∨
∨

Im γ′) =
∧

γ∈Ch(V)

∨
Im γ

Of course, there is a dual result in which meets and joins are interchanged.

8.8. Theorem. The upper powerlocale PU is geometric.

1. If X is presented by an ordered GRD-system (G (qua poset), R,D), then PUX is
presented by a system (G′ (qua poset), R′, D′) where

G′ = FG/ ≤L

R′ = G′ ×R
λ(S, r) = {S ∨ [{g}] g ∈ λ(r)}

D′ = {(S,D0, r) ∈ G′ ×FD ×R|∀d ∈ D0. π(d) = r}/(≤ × ≤L × ≤)

ρ(S,D0, r) = {(S ∨ [Im γ]) γ ∈ Ch{λ(r) ∪ ρ(d)|d ∈ D0}}
π(S,D0, r) = (S, r)

2. Ω ↑ takes [U ] �−→ ∨
U , Ω� takes [U ] �−→ [{[U ]}].
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3. Let Xi be presented by (Gi (qua poset), Ri, Di) (i = 1, 2). Let f : X1 → X2 be a
map, and suppose φ ⊆ FG1 ×G2 is such that, for g ∈ G2,

Ωf(g) =
∨
{
∧

S (S, g) ∈ φ}.
Let

φ′ = {({Im γ γ ∈ Ch({S (S, g) ∈ φ0})}, V )|φ0 ∈ Fφ,F sndφ0 ⊆ V }
⊆ FFG1 ×FG2

Then PU f is similarly described by φ′,

PU f([V ]) =
∨
{

∧

U∈U
[U ] (U , V ) ∈ φ′}

Proof. 1. Note that (G′ (qua ∨ -semilattice), R′, D′) is a preframe site. To show ρ is
well-defined, suppose S ≤ S ′, D0 ≤L D

′
0 and r ≤ r′. We must show that ρ(S,D0, r) ≤U

ρ(S ′, D′
0, r

′). Suppose
γ′ ∈ Ch{λ(r′) ∪ ρ(d′)|d′ ∈ D′

0}.
For every d ∈ D0 we can find d′ ∈ D′

0 with d ≤ d′. Then

λ(r) ∪ ρ(d) ≤U λ(r′) ∪ ρ(d′).
We can find g′ ∈ λ(r′) ∪ ρ(d′) with (d′, g′) ∈ γ′ and then g ∈ λ(r) ∪ ρ(d) with g ≤ g′. It
follows that there is some γ ∈ Ch{λ(r) ∪ ρ(d) d ∈ D0} such that if (d, g) ∈ γ, then there
is some (d′, g′) ∈ γ′ such that d ≤ d′ and g ≤ g′. Then S ∨ Im γ ≤ S ′ ∨ Im γ′, because
Im γ ≤L Im γ′.

To show condition 2 in Definition 8.1 we must show ρ(S,D0, r) ≤U λ(S, r). If g ∈ λ(r),
so S ∨ [{g}] ∈ λ(S, r), then D0 × {g} is a constant choice for {λ(r) ∪ ρ(d) d ∈ D0} and
its image is {g}. Hence S ∨ [{g}] ∈ ρ(S,D0, r).

The G′-actions are given by

S ∗ (T, r) = (S ∨ T, r)
S ∗ (T,D0, r) = (S ∨ T,D0, r)

Once we have shown that it is equivalent to (G (qua poset), R,D), we can apply Corollary
8.3.

We have

ΩX = Fr〈G (qua poset)|
∧
λ(r) ≤

∨

π(d)=r

∧
ρ(d) (r ∈ R)〉

∼= Fr〈G (qua poset)|
∧
λ(r) ≤

∨

π(d)=r

∧
(λ(r) ∪ ρ(d)) (r ∈ R)〉

∼= Fr〈G (qua poset)|
∧

λ(r) ≤
∨↑

D0∈FrD

∨

d∈D0

∧
(λ(r) ∪ ρ(d)) (r ∈ R)〉
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where
FrD = {D0 ∈ FD ∀d ∈ D0. π(d) = r}

To handle the distributivity, let us write

U(r,D0) = {λ(r) ∪ ρ(d) d ∈ D0}
Then

ΩX ∼= Fr〈G (qua poset)|
∧

λ(r) ≤
∨↑

D0∈FrD

∧
{
∨

Im γ γ ∈ ChU(r,D0)} (r ∈ R)〉
∼= Fr〈G (qua poset)|

∧
{
∨

V ∨ g g ∈ λ(r)}
≤

∨↑
D0∈FrD

∧
{
∨

V ∨
∨

Im γ|γ ∈ ChU(r,D0)}
(r ∈ R, V ∈ FG)〉

∼= Fr〈G′ (qua ∨ -semilattice)|
∧
{(S ∨ [{g}]) g ∈ λ(r)}

≤
∨↑

D0∈FrD

∧
{S ∨ [Im γ]|γ ∈ ChU(r,D0)}

(r ∈ R,S ∈ G′)〉
This is what is presented by the preframe site

(G′ (qua ∨-semilattice), R′, D′)

and we are done.
2. V ∈ FG represents �

∨
g∈V g ∈ Ω PUX. Under Ω ↑, this maps to

∨
V . Under Ω�,

it maps to ��
∨

g∈V g, which corresponds to [{[V ]}].
3. For V ∈ FG2, let us write

Ψ(V ) = {φ0 ∈ Fφ F snd(φ0) ⊆ V }
Under Ω PU f , �

∨
h∈V h maps to

�
∨

h∈V

∨

(S,h)∈φ

∧
S = �

∨↑
φ0∈Ψ(V )

∨

(S,g)∈φ0

∧
S

=
∨↑

φ0∈Ψ(V )
�

∧

γ∈Ch({S(S,g)∈φ0})

∨
Im γ

=
∨↑

φ0∈Ψ(V )

∧

γ∈Ch({S(S,g)∈φ0})

�
∨

Im γ
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9. Geometricity of the double powerlocale

By combining Theorems 7.5 and 8.8 we already have :

9.1. Theorem. The double powerlocale is geometric.

However, we shall gain more useful information by considering presentations for which
the generators form a distributive lattice and all the relations are of the form

g ≤
∨↑

i
hi

with every hi ≤ g.

9.2. Definition. An ordered GRD-system (G (qua DL), R,D) (G being a distributive
lattice, i.e. DL) is a DL-site iff it is equipped with structure and properties to make
(G (qua ∧ -semilattice), R,D) a site and (G (qua ∨ -semilattice), R,D) a preframe site.

9.3. Theorem. Suppose a locale X is presented by a DL-site (G (qua DL), R,D).
Then PX is presented by (G (qua poset), R,D).

Proof. Consider the relations expressing preservation of finite joins in G:

⊥G ≤
∨

∅

(a ∨ b) ≤ (a) ∨ (b)

By distributivity these are meet-stable. It follows that if we add them to R and D to give
new sets R′ and D′, then (G (qua ∧-semilattice), R′, D′) is a site, equivalent to (G (qua
DL), R,D). Hence by Theorem 7.3, PLX is presented by (G (qua poset), R′, D′), which
is equivalent to (G (qua ∨-semilattice), R,D). This is a preframe site, and so by Theorem
8.3 we have that PX ∼= PU PLX is presented by (G (qua poset), R,D).

We now proceed to show that every presentation can be transformed into a DL-site.

9.4. Lemma. Let (G (qua ∧-semilattice), R,D) be a site. Then it is equivalent to a
DL-site (G′ (qua DL), R′, D′) where

G′ = FG/ ≤L

R′ = G′ ×FR/ ≤L

λ0(S, U) = S ∨ [{λ0(r) r ∈ U}]
D′ = {(S,D0, U) ∈ G′ ×FD ×FR|Fπ(D0) ⊆ U}/(≤ × ≤L × ≤L)

π(S,D0, U) = (S, U)

ρ0(S,D0, U) = S ∨ [{ρ0(d) d ∈ D0}]
T ∗ (S, U) = (T ∨ S, U)

T ∗ (S,D0, U) = (T ∨ S,D0, U)

T · (S, U) = (T ∧ S, {t · r t ∈ T, r ∈ U})
T · (S,D0, U) = (T ∧ S, {t · d t ∈ T, d ∈ D0}, {t · r t ∈ T, r ∈ U})
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(Note: in expressions such as {t · r t ∈ T, r ∈ U} we have treated T and U as
though they were actual sets rather than as sets modulo ≤L. The well-definedness of the
expressions is easily checked; for instance, if T ≤L T

′ then {t · r t ∈ T, r ∈ U} ≤L {t · r
t ∈ T ′, r ∈ U}.)
Proof. We must show that

Fr〈G (qua ∧ -semilattice)|λ0(r) ≤
∨

π(d)=r

ρ0(d) (r ∈ R,S ∈ G′)〉

is isomorphic to

Fr〈FG/ ≤ L (qua DL)|
∨

S ∨
∨

r∈U

λ0(r) ≤
∨↑{

∨
S ∨

∨

d∈D0

ρ0(d) Fπ(D0) ⊆ U} (U ∈ FR,S ∈ FG)〉

This is routinely proved by constructing mutually inverse homomorphisms, much as in
Theorem 7.5.

It is also necessary to show that the structure described is indeed that of a DL-site.
The trickiest part is ·. For instance, we have

λ0(T · (S, U)) = (T ∧ S) ∨
∨
{λ0(t · u) t ∈ T, u ∈ U}

= (T ∧ S) ∨
∨
{t ∧ λ0(u) t ∈ T, u ∈ U}

= (T ∧ S) ∨ (T ∧
∨
{λ0(u) u ∈ U})

= T ∧ λ0(S, U)

For condition 6 for a site, suppose π(S ′, D′
0, U

′) = T · (S, U), so S ′ = T ∧ S and
U ′ = {t · r t ∈ T, r ∈ U}. For each d′ ∈ D′

0, we have π(d′) ∈ U ′ and so we can find t ∈ T
and r ∈ U such that π(d′) = t · r, and then d such that π(d) = r and d′ ≤ t · d. Hence
we can find D0 ∈ FD such that Fπ(D0) ⊆ U and D′

0 ≤L {t · d t ∈ T, d ∈ D0}. Then
π(S,D0, U) = (S, U) and (S ′, D′

0, U
′) ≤ T · (S,D0, U).

9.5. Theorem. Every presentation can be geometrically transformed into an equivalent
one given by a DL-site.

Proof. By Theorem 7.5, any presentation is equivalent to one given by a site; and then
Lemma 9.4 it is equivalent to one given by a DL-site.

10. Geometricity of exponentiation of locales

We use the ordinary categorical definition of exponentiation.
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10.1. Definition. Let X and Y be locales. Then the exponential Y X is a locale
equipped with a map ev : Y X ×X → Y , the evaluation map, such that the two functors
Loc(−, Y X) and Loc(− × X,Y ) from Loc to Set are naturally isomorphic under the
transformation g �→ (g × IdX); ev.

If f : Z × X → Y then we write �f� : Z → Y X for its corresponding exponential
transpose.

This is all completely standard. Note, however, that the natural isomorphism is nec-
essarily an order isomorphism, with respect to the order enrichment � (the specialization
order) on Loc. This is because for any locales Z and W , a pair of maps f, g : Z → W
with f � g is equivalent to a map from S× Z → W .

10.2. Proposition. Let X, Y and Z be locales. Then Z is an exponential Y X iff
there is a geometric bijection between points of Z and maps from X to Y .

By “geometric bijection”, we mean a bijection at every stage that is preserved by pull-
back along maps.

Proof. ⇒: Let ev : Z × X → Y be the evaluation map. Consider stage W . Points
of Z over W are equivalent to global maps z : W → Z, and maps X → Y over W are
equivalent to global mapsW×X → Y . By the definition of exponential there is a bijection
between these, under which z corresponds to y = (z × IdX); ev. To show geometricity,
suppose f : W ′ → W is a map. Under pullback along f , we find z and y become f ; z and
(f × IdX); y, which still correspond under the bijection at W ′.
⇐: At stage Z, let the generic point IdZ correspond to a map ev : Z × X → Y . At

any stage W , geometricity tells us that maps z : W → Z correspond to (z × IdX); ev as
required for the exponential.

10.3. Proposition. Exponentiation – when it exists – is preserved by pullback.

Proof. This essentially follows from the previous proposition. Suppose Z is an ex-
ponential Y X at stage W (X, Y and Z are locales over W ), and suppose f : W ′ → W .
For stages previous to W ′, i.e. maps W ′′ → W ′, we have the geometric bijection between
points of Z and maps X → Y , but this amounts to a geometric bijection between points
of f ∗Z and maps f ∗X → f ∗Y . Hence f ∗Z is an exponential (f ∗Y )(f∗X) over W ′.

The standard account ([Hyland 81]; or see [Johnstone 82] for a slightly different de-
velopment) says –

• If S
X exists then ΩX is a continuous lattice.

• If ΩX is a continuous lattice then Y X exists for every locale Y .

We shall not assume these results, but our geometric development of P will prove them
along the way.
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11. The first main result

In this section we shall prove the following.

11.1. Theorem. Let X be a locale for which the exponential S
X exists. Then S

SX
also

exists, and is homeomorphic to PX.

Hence S
(−) is a kind of partial square root for P = PU ◦PL.

Throughout the section (and the next section too), let X be a locale for which
the exponential S

X exists. We suppose further that (GX (qua DL), RX , DX) and
(GSX (qua DL), RSX , DSX ) are DL-sites presenting X and S

X .

11.2. Definition. We write In : X × S
X → S for the reverse of ev : S

X × X → S.
We also write In for the corresponding open of X ×S

X (an element of Ω(X ×S
X)) or for

the open sublocale In ↪→ X × S
X .

Since GX and GSX are bases for X and S
X , the opens b × V (b ∈ GX , V ∈ GSX )

provide a basis for X × S
X . Hence there is a subset In0 of GX × GSX such that In =∨{b× V |〈b, V 〉 ∈ In0}.

11.3. Definition. Let W ⊆ GX ×GSX . We say W is a finitely bilinear ideal iff

1. W is lower closed under ≤ × ≤.

2. If b ∈ GX , V ∈ FGSX , and for every V ∈ V we have 〈b, V 〉 ∈ W , then 〈b,∨V〉 ∈ W .

3. If U ∈ FGX , V ∈ GSX , and for every b ∈ U we have 〈b, V 〉 ∈ W , then 〈∨U, V 〉 ∈
W .

11.4. Lemma. Given W ⊆ GX × GSX , we can construct, intuitionistically, a finitely
bilinear ideal W such that

∨
{b× V 〈b, V 〉 ∈W} =

∨
{b× V 〈b, V 〉 ∈ W}

Proof. W is {〈b, V 〉 ∈ GX ×GSX |b× V ≤ ∨{b′ × V ′ 〈b′, V ′〉 ∈W}}.
(For present purposes, the intuitionistic construction (valid in any category of sheaves)

is enough, for the property of being a finitely bilinear ideal with the required properties
is geometric. However, we conjecture that W can be constructed geometrically from W .)

It follows that, without loss of generality, we can assume that In0 is a finitely bilinear
ideal.

The map In can be understood as an open in three ways. It is an open of X × S
X ,

but also over S
X it is an open of X (which is how we shall often view it in this section),

while over X it is an open of S
X (which is more the viewpoint of the next section).

Intuitionistic reasoning (valid in toposes) allows us to exploit these three viewpoints, but
it is the more stringent geometric reasoning that allows us to move continuously between
them. For instance, working over S

X we view In as an open of X and can therefore find
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an open � In of PX. But that is PX constructed working over S
X , and it is the detailed

geometricity arguments that allow us to view � In as a global open of PX×S
X . We shall

look at this more closely in due course.
If �a� is a point of S

X , then its exponential transpose a : X → S has a(x) = In〈x, �a�〉
for each point x of X, and so we see that x � a iff 〈x, �a�〉 � In.

11.5. Proposition. Let a and U be opens of X and S
X respectively. Then a×U ≤ In

iff �a� is a lower bound of U .

Proof. ⇒: Let �b� be a point of U ↪→ S
X . If x is a point of a, then 〈x, �b�〉 � a×U ≤ In

and so x � b. We deduce that a ≤ b, and so �a� � �b�.
⇐: Let 〈x, �b�〉 be a point of a × U . Since �b� � U we have �a� � �b�, and so a ≤ b.

Since x � a we deduce x � b, and so 〈x, �b�〉 � In. Hence a× U ≤ In.

It is perhaps worth pausing here to examine more closely how this very spatial argu-
ment can have any hope of yielding a valid result for locales.

First, note that the proposition is intended to be true at any stage Y – we shall
certainly need this in the subsequent development. Viewed globally, the proposition then
concerns opens a and U of Y ×X and Y × S

X , and the left hand condition says that, as
opens of Y ×X×S

X , we have a×Y U ≤ Y × In. The right hand condition is a little more
subtle, and we shall discuss it shortly.

Next, it suffices to prove the proposition globally, with Y = 1 – just as it appears to
be stated –, as long as we reason intuitionistically. This uses the geometricity of S

X and
its gadgetry (Proposition 10.3), which implies that

(Y × S
X)×Y (Y ×X) ∼= Y × S

X ×X Y ×ev−→ Y × S

makes Y × S
X the exponential (Y × S)(Y ×X) over Y . It follows that the ambient assump-

tions about existence of S
X also hold over Y , so what we prove globally about X and S

X

also holds (as long as we reason intuitionistically) about Y ×X and Y × S
X over Y .

Next we consider what it means to say that �a� is a lower bound of U . Since U is an
open sublocale of S

X , any point of U is also a point of S
X and we ask for all these to be

greater than �a�. The catch, however, is that a point of U may be at some non-global
stage, and then corresponds to a point of S

X at that stage. This must be compared not
directly with �a�, but with a pullback of it.

Working over U , we have a point of S
X (given by the inclusion U ↪→ S

X) and hence an
open b of X. It is the generic open of X in U , and for any point u of U the corresponding
open of X is u∗(b). We can therefore say that �a� is a lower bound of U iff a ≤ b over U .
Reviewing this globally we see that a and b correspond to two opens of X ×U and hence
of X × S

X . a corresponds to a× U , and b to In: hence we obtain the result.
We now move on to showing that each point of S

X is a directed join of global points
below it (in fact, way below it). However, first we prove a lemma.
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11.6. Lemma. Let b and c be opens of X and 1 (so c is a point of S, or a proposition).
b× c is an open of X × 1 ∼= X and so gives a point �b× c� of S

X . Then

�b× c� =
⊔↑

({�∅�} ∪ {�b�|c})

Proof. Consider exponential transposes. If x is a point of X, then

〈x,
⊔↑

({�∅�} ∪ {�b� c})〉 =
⊔↑

({〈x, �
∅

�〉} ∪ {〈x, �b�〉|c})

and so

〈x,
⊔↑

({�∅�} ∪ {�b� c})〉 � In ⇔ x � ∅ or (c and x � b)

⇔ 〈x, �b× c�〉 � In

Our main tool is the following. It says in effect that the generic open of X (the generic
point of S

X) is a directed join of global points that are in fact way below it. Clearly this
is a generalization of the known fact that ΩX is a continuous lattice, so that every global
open of X is a directed join of globals way below it.

11.7. Theorem. If a is an open of X then

a =
∨↑{b ∃V. (〈b, V 〉 ∈ In0 and �a� � V )}

Proof. Note that the join is directed. Suppose 〈bi, Vi〉 ∈ In0 and �a� � Vi holds for i
in some finite indexing set. Let V =

∧
i Vi. Then �a� � V holds. Also 〈bi, V 〉 ∈ In0, so if

b =
∨

i bi then 〈b, V 〉 ∈ In0 and b is an upper bound for the bi’s in the set.
Now for any point x of X, we have

x � a ⇔ 〈x, �a�〉 � In =
∨
{b× V 〈b, V 〉 ∈ In0}

⇔ ∃〈b, V 〉 ∈ In0 . (x � b and �a� � V )

⇔ x �
∨↑{b ∃V. (〈b, V 〉 ∈ In0 and �a� � V )}

Again, geometricity plays an important role. The result is to hold at any stage Y ,
but geometricity of exponentiation (Proposition 10.3) allows us to assume without loss of
generality that Y = 1. After that we use Proposition 2.2.

11.8. Corollary. If �a� is a point of S
X then

�a� =
⊔↑{�b�|∃V. (〈b, V 〉 ∈ In0 and �a� � V )}

We now turn to the role of PX.
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11.9. Lemma.

1. If e is a point of PX then there is an open U(e) of S
X defined by

�a� � U(e) iff e � �a.

2. If U is an open of S
X then there is a point �U� of PX defined by

�U� � �b iff �b� � U

for b ∈ GX . In fact this holds for every open b of X.

3. (1) and (2) define a geometric bijection between points of PX and opens of S
X .

Proof. (1): Obvious – but relies heavily on the geometricity of the constructions of a
from �a� and of �a from a.

(2): We must show that this definition of �U� respects the relations used in presenting
PX (Theorem 9.3). Each relation is of the form b ≤ ∨↑

i ci, where the join is globally

directed. We know, then, that �b� � ⊔↑
i (

�c�i ), so it follows that if �b� � U then �c�i � U
for some i.

The general result holds because, by Theorem 11.7, every open of X is a directed join
of generating global opens from GX .

(3): Suppose U is an open of S
X . If �a� is any point of S

X then we have

�a� � U(�U�)⇔ �U� � �a⇔ �a� � U

and so U(�U�) = U .
Now suppose e is a point of PX. For any b ∈ GX we then have

�U(e)� � �b⇔ �b� � U(e)⇔ e � �b

and so �U(e)� = e.

Applying Proposition 10.2, we have now proved Theorem 11.1. Moreover, the con-
struction in Proposition 10.2 gives us –

11.10. Proposition. The evaluation map ev : PX × S
X → S is got by working over

S
X . There In : X × S

X → S corresponds to an open of X. This gives an open � In of
PX, and ev is the corresponding global open of PX × S

X .

Note how geometricity resolves an apparent ambiguity here: is this P calculated over
S

X , or is it the global PX pulled back to a locale PX × S
X over S

X? However, the
geometricity of P (Theorem 9.1) gives us a canonical homeomorphism.

11.11. Proposition. As an open of PX × S
X ,

ev =
∨
{�b× V 〈b, V 〉 ∈ In0}
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Proof. We use Theorem 11.8. Working over S
X we have that In is an open of X, and

the corresponding point � In� of S
X is the generic point. Hence

In =
∨↑{b ∃V. (〈b, V 〉 ∈ In0 and V )}

and

ev = � In =
∨↑{�b ∃V. (〈b, V 〉 ∈ In0 and V )}

because � preserves internal directed joins. By geometricity of P and its gadgetry we see
that the open �b of PX over S

X corresponds to the open �b× S
X of PX × S

X globally,
so externally we get

ev =
∨
{(�b× S

X) ∧ (X × V )|〈b, V 〉 ∈ In0}
which gives us the result.

12. S
X as P-algebra

We continue our examination of a locale X for which S
X exists. We shall see that S

X

inherits a P-algebra structure from S, calculated elementwise. Moreover, the P-algebra
homomorphisms from S

X to S are equivalent to points of X. Since the global points of S
X

and of S are the elements of ΩX and of Ω, this supports the contention that a P-algebra
is a kind of localic frame and that the P-algebra structure on S

X (where the exponential
exists) is the localic analogue of the frame structure on ΩX.

In this section we consider In not so much as an open of X over S
X , but as an open

of S
X over X.

12.1. Proposition. Let x be a point of X. Under the homeomorphism PX ∼= S
SX

,
the point ! x of PX corresponds to an open Inx = U(! x) of S

X defined by

�a� � Inx iff 〈x,� a�〉 � In (i.e. x � a)

Proof. By Lemma 11.9,

�a� � U(! x)⇔ ! x � �a⇔ x � a.

The construction x �→ Inx is analogous to the embedding of a vector space in its double
dual.

12.2. Definition. The map α : P(SX)→ S
X is defined by

〈x, α(e)〉 � In iff e � � Inx

12.3. Lemma. α∗ Inx = � Inx.

Proof.

e � α∗ Inx ⇔ α(e) � Inx ⇔ 〈x, α(e)〉 � In⇔ e � � Inx
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12.4. Theorem. α : P(SX)→ S
X makes S

X a P-algebra.

Proof. To show !;α = IdSX we show

〈x, α◦ ! (�a�)〉 � In⇔ ! (�a�) � � Inx ⇔ �a� � Inx ⇔ 〈x, �a�〉 � In

so α◦ ! (�a�) = �a�.
Similarly, for Pα;α = H;α.

〈x, α ◦ Pα(ζ)〉 � In ⇔ Pα(ζ)) � � Inx

⇔ ζ � � � Inx (using Lemma 12.3)

⇔ H(ζ) � � Inx ⇔ 〈x, α ◦ H(ζ)〉 � In

12.5. Proposition. If x is a point of X, then the map Inx : S
X → S is a P-algebra

homomorphism.

Proof. By definition of α, the composite α; Inx corresponds to the open � Inx of P(SX),
and this is just P Inx; �{�}. Since �{�} is the P-algebra structure map for S, this is
enough to show the result.

12.6. Theorem. The transformation x �−→ Inx gives a bijection between points x of
X and P-algebra homomorphisms from S

X to S.

Proof. By Theorem 11.1 we have a bijection between points �U� of PX and opens U
of S

X , and from Proposition 12.1 we see that if �U� can be expressed as ! (x) (x then is
unique, since ! is an inclusion) then U = Inx. Therefore, it suffices to show that �U� is
in the image of ! iff U : S

X → S is a P-algebra homomorphism and the ⇒ direction has
already been done.

Suppose, then, that U is an open of S
X such that U : S

X → S is a P-algebra homo-
morphism. The point �U� of PX is defined by

�U� � �b iff �b� � U

for b ∈ GX . We show that �U� is in the image of !. If �U� =! (x) then x must be defined
by

x � b iff �b� � U

and so what we are required to show is that this respects the lattice structure of GX .
This is clear, because from the presentation of X we know that the map GX → S

X ,
b �→ �b�, is a (localic) lattice homomorphism, and so also is U : S

X → S because it is a
P-homomorphism.
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12.7. Theorem. Let X be a locale for which S
X exists, and let W be a locale such

that PW is homeomorphic to S
X . Then S

W exists and is homeomorphic to X.

Proof. Opens of W , maps W → S, are equivalent to P-algebra homomorphisms PW →
S. The exponential S

X is also a P-algebra, and so, by Corollary 4.6, its homeomorphism
with PW is a P-algebra isomorphism. Thus the P-algebra homomorphisms PW → S are
in bijection with the P-algebra homomorphisms S

X → S, and by Theorem 12.6 these are
in bijection with the points of X. Hence X serves as an exponential S

W .

13. Characterizing exponentiability

We have mostly been studying the consequences of the existence of S
X , and where (in

Theorem 12.7) we gave a sufficient condition, it relied on the existence already established
of another exponential. In order to get off the ground we must find some locales X for
which S

X is known to exist. It suffices to use the continuous dcpos.
We shall give a somewhat indirect proof of what is, after all, a well-known result: that

continuous dcpos are exponentiable as locales. When continuous dcpos are understood
particularly as ideal completions of continuous information systems, it can be deduced
from the following Theorem, which is intuitionistically valid.

13.1. Theorem. Let P be a continuous information system. Then Ω Idl(P ) is
isomorphic to the lattice of rounded upper subsets of P .

Proof. [Vickers 93] Note that the result is not geometric, as it is not even stated
geometrically.

However, to avoid the explicit use of frames we shall give a geometric proof. We first
prove a special case.

13.2. Definition. [Smyth 77] An R-structure is a continuous information system P
in which, for every s ∈ P , ↓ s = {t ∈ P t < s} is an ideal.

13.3. Lemma. Let P be an R-structure, let X = Idl P and let Y = Idl(FP, (<U)op).
Then Y serves as the exponential S

X .

Proof. If a is an open of X, then we can define a point J(a) of Y by

J(a) = {S ∈ FP ∀s ∈ S. ↓ s � a}.

Since

↓ s =
⊔↑

s′<s
↓ s′,

we find that if ↓ s � a then ↓ s′ � a for some s′ < s. It follows that if S ∈ J(a) then
S ′ ∈ J(a) for some S ′ <U S (J(a) is rounded). If Si ∈ J(a) (1 ≤ i ≤ n) then we can find
S ′

i ∈ J(a) with S ′
i <U Si. Taking S =

⋃
i S

′
i, we get that S ∈ J(a) and S <U Si. After

this it is easy to conclude that J(a) is an ideal.
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Now suppose J is a point of Y . We can define an open a(J) of X by

I � a(J) iff ∃s ∈ I. {s} ∈ J

Starting from J , we have J = J(a(J)). For

S ∈ J(a(J)) ⇔ ∀s ∈ S. {s} ∈ J
⇔ ∃S ′ ∈ J. ∀s ∈ S. S ′ <U {s}
⇔ ∃S ′ ∈ J. S ′ <U S ⇔ S ∈ J

Starting from a, we have a = a(J(a)). For if I is a point of X then I =
⊔↑

s∈I ↓ s and
so

I � a(J(a))⇔ ∃s ∈ I. ↓ s � a⇔ I � a

Since all these constructions are geometric, we can now call on Proposition 10.2.

13.4. Theorem. Let P be a continuous information system, let W = Idl P and let
X = Idl(FP, (<U)op). Then X serves as the exponential S

W .

Proof. (FP, (<U)op) is an R-structure. For suppose S <U Ti (1 ≤ i ≤ n). For each i
we can find T ′

i with S <U T ′
i <U Ti, and then S <U

⋃
i T

′
i <U Ti. It follows by Lemma

13.3 that S
X exists and is Idl(FFP,≺), where

U ≺ V iff ∀U ∈ U . ∃V ∈ V. U <U V

By Theorem 3.11 we see that this is PL(PU(Idl X)), i.e. P(Idl X), and it remains to
apply Theorem 12.7.

13.5. Theorem. Let X be a locale for which S
X exists, with lattices of generators GX

and GSX and so on as in Section 11. We define the relation < on GX by

b < a iff ∃V. (〈b, V 〉 ∈ In0 and �a� � V ).

Then < makes GX a continuous information system, and S
X is homeomorphic to

Idl(GX).

Proof. First we must show that < is transitive and interpolative. It will be helpful
later to generalize b < a slightly, to allow a to be an arbitrary open of X. We therefore
define

Ia = {b ∈ GX ∃V. (〈b, V 〉 ∈ In0 and �a� � V )

so that, when a and b are both in GX , we have b < a iff b ∈ Ia. Ia is lower closed with
respect to <, for suppose c < b ∈ Ia, with 〈c,W 〉, 〈b, V 〉 ∈ In0,

�b� � W and �a� � V .
By Proposition 11.5, �c� is a lower bound of W and so c ≤ b. Hence 〈c, V 〉 ∈ In0 and we
have c ∈ Ia. It follows that < is transitive. Next we show that Ia is rounded with respect
to <. Suppose c ∈ Ia, with 〈c,W 〉 ∈ In0 and �a� � W . By Theorem 11.8 we know that
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�a� =
⊔↑{�b�|b ∈ Ia}, so it follows that we have some b ∈ Ia with �b� � W , so c < b. It

follows that < is interpolative.
In fact, Ia is an ideal with respect to <, as we now show. Suppose ci ∈ Ia for i in some

finite indexing set, with 〈ci,Wi〉 ∈ In0 and �a� � Wi. Then �a� �
∧

iWi, 〈ci,
∧

iWi〉 ∈ In0

and so 〈∨i ci,
∧

iWi〉 ∈ In0. It follows that
∨

i ci ∈ Ia. Now let us find b such that∨
i ci < b ∈ Ia, with 〈∨i ci, V 〉 ∈ In0 and �b� � V . We have 〈ci, V 〉 ∈ In0 and it follows

that ci < b.
We have now shown that for each open a we can define an ideal Ia such that a is the

directed join of the opens in Ia. It remains only to show that if I is an ideal and a is the
join of its elements, then I = Ia. First, if c ∈ I, then we can find b such that c < b ∈ I.
We have b ≤ a, and it follows that c ∈ Ib ⊆ Ia. For the converse, suppose c ∈ Ia with
〈c,W 〉 ∈ In0 and �a� � W . By Scott openness of W , and the fact that a is a directed join
of the elements of I, it follows that there is some b ∈ I such that �b� � W . Then c < b,
so c ∈ I.

The geometricity of this argument suffices to show that S
X is homeomorphic to

Idl(GX).

13.6. Corollary. Let X be a locale for which S
X exists. Then ΩX is a continuous

lattice, and ΩS
X is the Scott topology on ΩX. Its way below relation � satisfies

b� a iff ∃V ∈ ΩS
X . (b× V ≤ In and �a� � V )

We can now characterize those locales X for which S
X exists. Note that the char-

acterization does not require a universal quantification over all locales, but simply the
existence of certain structure and properties. In this respect it is like the well known
characterization by local compactness, that ΩX is a continuous lattice. However, we use
structure and properties that are geometric.

13.7. Theorem. Let W be a locale. Then S
W exists iff there is a continuous

information system X such that PW is homeomorphic to Idl(FX, (<U)op), and in that
case S

W is homeomorphic to Idl(X).

Proof. ⇐: Use Theorem 12.7.
⇒: Let X be the information system (GW , <) defined as in Theorem 13.5. Then S

W

is homeomorphic to Idl(X) and so

PW ∼= S
SW ∼= S

Idl(X) ∼= Idl(FX, (<U)op)

To round off this section, we give a geometric proof to show how exponentiability of
X can be deduced from the existence of S

X .

13.8. Lemma. Any discrete locale is exponentiable.
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Proof. Let S be a discrete locale (i.e. a set). Let Y be an arbitrary locale, with
presentation (G,R,D), and let Y ′ be presented by (G× S,R× S,D × S) with

π(〈d, s〉) = 〈π(d), s〉
λ(〈r, s〉) = {〈g, s〉 g ∈ λ(r)}
ρ(〈d, s〉) = {〈g, s〉 g ∈ ρ(d)}

If f : S → Y then we can define a point f ′ of Y ′ by

f ′ � 〈g, s〉 iff f(s) � g

and, conversely, for any point f ′ of Y ′ the same equation defines a map f : S → Y .
This defines a geometric bijection between points of Y ′ and maps S → Y .

13.9. Theorem. Let X be a locale for which S
X exists. Then X is exponentiable.

Proof. Let Y be a locale, presented by (G,R,D). Since S
X exists, we see by the lemma

that (SX)G does too, and we then have

(SG)X ∼= S
X×G ∼= (SX)G

and, similarly,
(SR)X ∼= S

X×R ∼= (SX)R

Consider two maps φλ, φρ : S
G → S

R defined as follows. φλ is the exponential transpose
of the open φ′

λ of S
G ×R,

〈�a�, r〉 � φ′
λ iff ∀g ∈ λ(r). g � a

φ′
ρ is the exponential transpose of the open φ′

ρ of S
G ×R,

〈�a�, r〉 � φ′
ρ iff ∃d. (π(d) = r and ∀g ∈ ρ(d). g � a)

¿From these we define two maps ψλ and ψρ from (SG)X to (SR)X , by ψλ = φX
λ and

ψρ = φX
ρ .

Let E ↪→ (SG)X be the inserter from ψλ to ψρ, i.e. the greatest sublocale restricted to
which we have ψλ � ψρ. Then E is the exponential Y X . For if f : X → Y then we can
define an open f ′ of X ×G (corresponding to a point of S

X×G) by

〈x, g〉 � f ′ iff f(x) � g

and the relations for Y , holding for each point f(x), tell us that f ′ is in E. Conversely, if
f ′ is an open of X×G that happens to be in E then the same definition in reverse defines
a point f(x) of Y for each x.

This gives a geometric bijection between points of E and maps X → Y .
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14. Conclusion

The technical results proved here seem rather specialized. We have taken the upper and
lower powerlocales, known principally from computer science, and composed them to give
a hitherto unstudied “double powerlocale” P. This is then related to exponentiation by
the homeomorphism PX ∼= S

SX
, provided S

X exists.
P is the functor part of a monad on Loc, and its algebras bear some analogies with

frames, but carried by locales instead of sets. Following through this analogy, we find
that S

X inherits P-algebra structure from S ∼= P∅, and P-algebra homomorphisms from
S

X to S are equivalent to points of X. We deduce that if S
X ∼= PW then X ∼= S

W . An
intriguing direction of further study is that of (P-alg)op as a category Coloc of “localic
locales” or colocales.

In addition to investigating P we have also taken the opportunity to develop techniques
of geometricity – that is, structure and properties preserved by pullback along maps
(geometric morphisms). It is these techniques that make possible a much more spatial
development of locale theory using points of locales. For these points must be generalized
points, i.e. arbitrary maps targeted on the locale. It is the geometricity that allows
us to cope continuously with the variation of source. Of particular importance is the
geometricity of the powerlocale constructions themselves. The treatment relies on the
fact that though frames are not geometric representations of the locales (because frame
structure is not preserved by inverse image functors), frame presentations are geometric.

Our primary application of the long section of geometricity results is thus to justify a
spatial treatment of locales. However, an additional hope is that they might contribute
to the foundations of constructive topology. In particular, we have in mind the formal
topologies of [Sambin 87]. He follows Martin-Löf’s school of constructive type theory in
rejecting impredicative arguments, and this includes many arguments that are valid in
(the categories of sheaves over) toposes. (On the other hand, that school admits more of
the axiom choice than is valid in toposes.) This leads to a rather fundamental contrast
between formal topology and locale theory as conducted in toposes: although they both
treat opens as more fundamental than points, formal topology cannot admit the frames
as algebras carried by sets. In effect various kinds of formal topology are various ways
of presenting frames (sometimes with extra structure, such as positivity predicates when
presenting open locales). Since our geometricity requirements lead us also to reject the
frames, and to develop ways of handling locales without the frames, we hope that our
methods will also find application in formal topology and help to find common ground
between the two approaches to constructive topology.
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