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K-PURITY AND ORTHOGONALITY

MICHEL HÉBERT

Abstract. Adámek and Sousa recently solved the problem of characterizing the sub-
categories K of a locally λ-presentable category C which are λ-orthogonal in C, using their
concept of Kλ-pure morphism. We strenghten the latter definition, in order to obtain
a characterization of the classes defined by orthogonality with respect to λ-presentable
morphisms (where f :A �� B is called λ-presentable if it is a λ-presentable object
of the comma category (A ↓ C)). Those classes are natural examples of reflective sub-
categories defined by proper classes of morphisms. Adámek and Sousa’s result follows
from ours. We also prove that λ-presentable morphisms are precisely the pushouts of
morphisms between λ-presentable objects of C.

1. Introduction

We say that a morphism f :A �� B in a category C is λ-presentable if it is λ-presentable
as an object of the comma category (A ↓ C). In [H1, 98] and [H, 04], we demonstrated
the usefulness of this concept to study purity. We start our paper by characterizing these
morphisms as precisely the pushouts of the morphisms between λ-presentable objects
(Theorem 2.3), a problem left open in [H, 04]. Then we compare subcategories defined by

(a) orthogonality with respect to morphisms between λ-presentable objects (called
λ-orthogonality classes), to those defined by

(b) orthogonality with respect to λ-presentable morphisms (called λm-orthogonality
classes).

In [AS, 04], Adámek and Sousa introduce the concept of Kλ-pure morphism, and
use it to characterize the λ-orthogonality classes as the ones closed under products, λ-
directed colimits and Kλ-pure subobjects. This completed the solution to a problem which
arose from the works of Coste ([C, 79]) and Volger ([V, 79]). Using λ-presentable mor-
phisms, we define strongly Kλ-pure morphisms, and we obtain a characterization of the
λm-orthogonality classes as those which are closed under products and strongly Kλ-pure
subobjects (Theorem 4.1). We derive the Adámek-Sousa’s result from our character-
ization, by proving a lemma giving closure conditions on K under which all Kλ-pure
morphisms are strong.

This parallels the results and methods of [H1, 98] and [H, 04]. In the former paper, we
obtained a characterization of λm-injectivity classes as those closed under products and
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(strongly) λ-pure subobjects, and in the latter we showed how to derive from this the
characterization of λ-injectivity classes of [RAB, 02].

On our way, we observe that all λm-orthogonality classes are reflective in C. Note that,
in contrast with the morphisms between λ-presentable objects, there is a proper class of
λ-presentable morphisms. Similarly, λm-cone-orthogonality classes are multireflective, but
despite partial results in this direction, we could not determine whether the “expected”
characterization for them holds, namely as the classes closed under pullbacks and strongly
Kλ-pure subobjects. However, an example will show that closedness under pullbacks, Kλ-
pure subobjects and λ-directed colimits is not sufficient for being a λ-cone-orthogonality
class.

Much of the usefulness of the λ-presentable morphisms rests on the fact that if C is
a λ-accessible category with pushouts, then all the associated comma categories (A ↓ C)
are also λ-accessible (Proposition 2.6). Whether this holds without the assumption that
pushouts exist is left as an open problem.

Finally, we also consider general orthogonality classes in locally presentable categories.
We find the orthogonality hull of any subcategory K to be the one obtained by adding to
K all the objects which, for every α ≥ λ, is a strongly Kα-pure subobject of some product
of objects in K (Corollary 4.5).

2. Kλ-purity and strong Kλ-purity

For basic definitions and results on locally presentable and accessible categories, we refer
the reader to [AR, 94]. For convenience, we recall the following.

If λ is a regular infinite cardinal, an object A of a category C is λ-presentable if the
hom-functor C(A,−): C �� Set preserves λ-directed colimits. Then, C is λ-accessible if
it has all λ-directed colimits, as well as a (small) set S of λ-presentable objects such that
every object in C is the λ-directed colimit of a diagram with all its vertices in S. Finally,
C is locally λ-presentable if it is λ-accessible and cocomplete (or, equivalently, complete).
We write finitely presentable for ω-presentable.

Throughout the paper we will need to distinguish, for a given category C, between the
λ-presentable objects of the comma categories (A ↓ C) (A ∈ C), and those of C2 (= the
category of morphisms in C). In order to do this, we denote by Cλ the full subcategory of
C on the λ-presentable objects of C, and we recall, from [H1, 98], the following definition.

2.1. Definition. A morphism f :A �� B in a category C will be called λ-presentable
if it is a λ-presentable object of the comma category (A ↓ C).

2.2. Remarks and Examples.

(a) In a λ-accessible category, being a λ-presentable morphism is easily seen to be
strictly weaker than being λ-presentable as an object of C2: this is clear from the
fact that the latter is the same than being a morphism in Cλ (see [AR, 94], Exercise
2.c), and from Theorem 2.3 below. For example, a function f :X �� Y is finitely
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presentable in Set2 just when X and Y are finite, but it is a finitely presentable
morphism in Set if and only if the sets Y −X and {(x, x′) | x �= x′, f(x) = f(x′)}
are finite.

(b) Let C be the category of all right R-modules, for some ring R. One can verify
directly (or using Theorem 2.3 below) that the embedding A ↪→ B of a submodule
is a finitely presentable morphism in C if and only if the quotient B/A is a finitely
presentable module.

(c) The intuition might suggest that a morphism f :A �� B is λ-presentable when f
provides a way to “present B” in the usual sense of classical algebra, by adding less
than λ generators and relations to some presentation of A. This is indeed correct
in the category of all structures of some λ-ary signature (see [H, 04]). In categorical
terms, there is a translation of this idea in terms of pushouts that seems reasonable,
and that the following theorem shows to be valid in a wider context.

2.3. Theorem. Let C be a locally λ-presentable category. Then f :A �� B is
λ-presentable if and only if there exists a pushout diagram

A B
f

��

C

A
��

C D�� D

B
��

where C and D are λ-presentable

Proof. Proposition 1.2 of [H, 04] already shows that this is true up to a retraction in
(A ↓ C):

2.4. Lemma. ([H, 04]) In a λ-accessible category with pushouts, f :A �� B is
λ-presentable if and only if there exists a commutative diagram

A B′f ′
��

C

A

m

��

C Dh �� D

B′

n

��
B′

B

r

����
B

B′

��
s

��A

B

f
���

��
��

��
��

�

where C and D are λ-presentable, the square is a pushout, and rs = 1B.

We need another, technical lemma, which will be used again later:
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2.5. Lemma. Any pushout square

A B′
f ′

��

C

A

m

��

C Dh �� D

B′

n

��

with C and D λ-presentable can be completed as follows:

Ai Bifi

��

C

Ai

mo,i

��

C Dh �� D

Bi

no,i

��

Aj Bjfj

��

Ai

Aj

mi,j

��

Ai Bi
�� Bi

Bj

ni,j

��

C

A

m

��

D

B′

n

��
A B′

f ′
��

Aj

A

mj

��

Aj Bj
�� Bj

B′

nj

��

where all Ai’s and Bi’s are λ-presentable, all squares are pushouts, and (mi:Ai
�� A)I

and (ni:Bi
�� B′)I are λ-directed colimit diagrams.

Proof. Let (mi,j:Ai
�� Aj)I be a λ-directed diagram with the Ai’s λ-presentable,

and with colimit cocone (mi:Ai
�� A)I . m must factorize m = mimo,i for some i ∈ I,

and then A is the colimit of (mj,k:Aj
�� Ak)k≥j≥i. For each j ≥ i, form the pushout

(fj, no,j) of (h,mo,j), and let the nj, (j ≥ i) and the nj,k (j ≤ k) be the induced morphisms,
as in the diagram above. Then all the Bi’s are λ-presentable, and the squares in the
diagram are pushouts. The fact that (nj:Bj

�� B′)j≥i is the colimit diagram of (nj,k:Bj
�� Bk)k≥j≥i is a straighforward computation.

End of the proof of Theorem 2.3:

Given f :A �� B λ-presentable, there exist diagrams as in Lemmas 2.4 and 2.5. If
srn = n (in the diagram of Lemma 2.4), it follows easily that r is an isomorphism, and we
are done. Otherwise, srn must factorize through some nj, srn = njn

′. Let g:Bj
�� �� E

be the coequalizer of n′ and no,j, and (g′:B′ �� F, n′
j:E �� F ) be the pushout of

(g, nj), as in the diagram below. Then E is λ-presentable, and (g′f ′, n′
j) is the pushout of

(gfj,mj).

We have rnjno,j = rn = rsrn = rnjn
′, so that there exists a unique q:E �� B such
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that qg = rnj. r and q then induce a unique t:F �� B such that tn′
j = q and tg′ = r:

Aj Bjfj

��

C

Aj

mo,j

��

C Dh �� D

Bj

no,j

��

A B′f ′
��

Aj

A

mj

��

Aj Bj
�� Bj

B′

nj

��

D

Bj

n′

��

B′ F
g′ ��

Bj

B′
��

Bj E
g �� �� E

F

n′
j

��
B′

B

s

�� ���
��

��
��

��
� F

B

t

��
B

B′

��
r

�����������

A

B

f

��������������������

E

B

q

		

To complete the proof, we need only to show that t is an isomorphism: the required
pushout will then be (f)(mj) = (q)(gfj).

We have t(g′s) = rs = 1B, and we need to show that (g′s)t = 1F . The lower right
hand square being a pushout, this amounts to show that
(1) g′stg′ = g′, and
(2) g′stn′

j = n′
j.

As for (1), we have g′stg′ = g′sr, and showing that g′sr = g′ amounts to show that
(a) g′srf ′ = g′f ′ and (b) g′srn = g′n, because the (vertical) left rectangle nh = f ′m is
a pushout. Now, (a) is clear since srf ′ = sf = f ′; for (b), we have g′srn = g′njn

′ =
n′

jgn
′ = n′

jgno,j = g′njno,j = g′n.
For the second equality (2), the top left square being a pushout and g being epi, it

will be sufficient to show that (i) g′stn′
jgno,j = n′

jgno,j and (ii) g′stn′
jgfj = n′

jgfj. For (i),
we have g′stn′

jgno,j = g′stg′njno,j = g′njno,j = n′
jgno,j (using (1)). Finally, (ii) follows

from g′stn′
jgfj = g′stg′f ′mj = g′f ′mj = n′

jgfj (using (1) again).

Theorem 2.3 solves a problem left open in [H, 04].

Recall that, since finitely accessible categories have filtered colimits, finitely accessible
categories with finite colimits are locally finitely presentable. In the following, we will
often work with the slightly weaker assumption of the existence of pushouts. The next
result gives the main reason:

2.6. Proposition. Let A be any object of a λ-accessible category C with pushouts.
Then (A ↓ C) is λ-accessible.

Proof. From Lemma 2.4, one sees easily that there is essentially only a set of λ-
presentable objects in (A ↓ C). To obtain f :A �� B as the colimit of a λ-directed
diagram of λ-presentable morphisms, one proceeds as in the proof of 2.4 (see [H, 04]):
C2 being locally λ-presentable, consider any λ-directed diagram ((aij, bij): fi

�� fj)I

of λ-presentable objects of C2 with colimit ((ai, bi): fi
�� f)I ; let then (f ∗

i , a
∗
i ) be the
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pushout (in C) of (fi, ai) (i ∈ I), and f ∗
ij: f

∗
i

�� f ∗
j and f ′

i : f
∗
i

�� f be the induced
morphisms. One can verify that colim

I
(f ∗

ij: f
∗
i

�� f ∗
j )I = (f ′

i : f
∗
i

�� f) in (A ↓ C).

2.7. Remarks.

(a) One can compare Proposition 2.6 to Corollary 2.44 (and its proof) in [AR, 94], which
shows that if C is λ-accessible and A is α-presentable, then (A ↓ C) is β-accessible
for any β sharply greater than λ and α.

(b) As opposed to what we erroneously claimed in [H1, 98], we do not know if Proposition
2.6 holds in every λ-accessible category. As a consequence, all categories in [H1, 98]
should be assumed to have pushouts.

We now consider some generalizations of the concept of purity.

2.8. Definition. Let C be a λ-accessible category C with pushouts, K a full subcate-
gory of C. Let f :A �� B be a morphism in C.

(a) f is a K-epi if for all pairs B
g ��

h
�� K, K ∈ K and gf = hf imply g = h.

(b) ([AS, 04]) f is Kλ-pure if for every commutative square

A B
f

��

C

A

m

��

C Dh �� D

B

n

��

where h is a K-epi in Cλ, there exists d:D �� A such that dh = m.

(c) f is strongly Kλ-pure if for every factorization A h �� D n �� B of f , h is a split
mono whenever it is a λ-presentable K-epi.

2.9. Remarks.

(a) If one replaces, in 2.8(b), the condition “h is a K-epi in Cλ” by “h is a λ-presentable
K-epi”, the definition obtained is equivalent to the one in (c). This is completely
analogous to the equivalence of strong monos and extremal monos in categories with
pushouts (take K = C).

(b) For K empty, every morphism in C is K-epi, and the (strongly) Kλ-pure morphisms
are just the (strongly) λ-pure morphisms of ([H1, 98]) [AR, 94]. Recall from [H1, 98]
(but see Remark 2.7(b) above) that in the context of our definition, f :A �� B is
strongly λ-pure if and only if it is the λ-directed colimit in (A ↓ C) of split monos. As
a consequence, they are just the same than the λ-pure morphisms. For the context
in which K-purity and strong K-purity are equivalent, see Proposition 2.11 below.
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(c) In general λ-accessible categories, strong purity is not equivalent to purity (as de-
fined in [AR, 94]): [AHT, 96] provides an example of an ω-pure morphism in a
finitely accessible category, which is not a strong mono. From the description of
the category, the morphism is easily seen to be finitely presentable. Hence it is not
strongly ω-pure, otherwise it would be a split mono.

2.10. Examples.

(a) In the category of abelian groups, where λ-purity was originally defined, L. Fuchs
([Fu, 70]) calls a subgroup G of A λ-pure if G is a direct summand of any group B
such that G ≤ B ≤ A and |B/G| < λ. Note first that the condition |B/G| < λ can
be replaced by B/G being λ-generated: this is clear for λ > ω, and follows from
standard results in abelian group theory for λ = ω. Also known are the facts that an
abelian group G is a direct summand of its extension B if and only if the embedding
is a split mono, and that λ-generated abelian groups are necessarily λ-presentable.
Using 2.2(b), we see that Fuchs’ definition corresponds to our formulation of strong
purity (i.e., 2.8(c) with K empty).

(b) Let C be the category StrΣ of all Σ-structures and Σ-homomorphisms, where Σ
is a (multi-sorted) λ-ary signature. It is well-known that the λ-pure morphisms in
C are the homomorphisms reflecting the λ-ary positive primitive (or pp-) formulas,
i.e., the existentially quantified conjunctions of less than λ atomic formulas. One
can compare this with the embeddings (reflecting the atomic formulas), and the λ-
elementary embeddings (reflecting all the λ-ary formulas).
More generally, using the usual syntactic translation of presentability in this context
(see [AR, 94] or [H, 04]), as well as the syntactic characterization of epimorphisms
in locally λ-presentable categories (see [H2, 98]), one can prove that for a reflective
subcategory K of C closed under λ-directed colimits, a morphism f :A �� B is
Kλ-pure (or, equivalently, strongly Kλ-pure: see the next proposition) iff for every
set φ of less than λ atomic formulas in Σ such that K |= ∀x∃≤1y∃z (∧φ(x ,y , z )),
and for every string a in A, the condition

B |= ∃yz (∧φ[f(a),y , z ]) =⇒ A |= ∃yz (∧φ[a ,y , z ])

is satisfied. If K is empty, the condition K |= ∀x∃≤1y∃z (∧φ(x ,y , z )) is void, and
we obtain the above characterization of λ-purity.
This actually applies if C is any variety of Σ-structures. For example, if C is the
category of abelian groups and K is the subcategory of all groups with trivial 2-
torsion, then a subgroup A of B is (strongly) Kω-pure iff every element of A which
has a 2n-th root in B for some positive integer n, must have one in A itself. This
follows from the fact that K |= ∀x∃≤1y(2n · y = x) for all n.

In 2.10(b), we stated in particular that for sufficiently nice subcategories K of varieties,
the Kλ-pure morphisms are always strongly so. The following result is more precise:
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2.11. Proposition. Let K be a full subcategory of a locally λ-presentable category
closed under products and λ-directed colimits. Then the Kλ-pure morphisms and the
strongly Kλ-pure morphisms coincide.

Proof. That a strongly Kλ-pure morphism is Kλ-pure is true for every subcategory
K of any λ-accessible category with pushouts. This follows easily from the fact that the
pushout of a λ-presentable K-epi is also a λ-presentable K-epi, and because morphisms
in Cλ are λ-presentable.

To prove the reverse implication, we first show that under the conditions of the propo-
sition, any λ-presentable K-epi is the pushout of a K-epi in Cλ.

Let f :A �� B be a λ-presentable K-epi. By Theorem 2.3, there exists a diagram as
in the statement of Lemma 2.5, with f ′ and B′ replaced by f and B. We show that one
of the fi’s must be a K-epi.

Suppose not. Then for each i ∈ I, there exist distinct morphisms ui, vi:Bi
���� Ki

with Ki ∈ K, such that uifi = vifi. We will use the categorical version of the standard
model-theoretic construction of reduced product (with respect to a λ-complete filter: see
[CK, 90] or [H, 04]). For each i ∈ I, let i∗ = {j ∈ I | j ≥ i}. Consider the set

F = {D ⊆ I | D ⊇ i∗ for some i ∈ I}.

The diagram (πi,j:
∏

k∈i∗
Kk

��
∏

k∈j∗
Kk)I of the canonical projections (i ≤ j) between

the products is λ-directed, and we will denote by (πi:
∏

k∈i∗
Kk

��
∏

F Kk)I its colimit

diagram (
∏

F Kk is just the reduced product with respect to the λ-complete filter F ).
For i ∈ I, the set of all ukni,k:Bi

�� Bk
�� Kk, k ≥ i, induces a morphism u′i:Bi

��
∏

k∈i∗
Kk, and similarly for v′i, defined from the vkni,k’s. Let ti:Ai

��
∏

k∈i∗
Kk be

the morphism u′ifi = v′ifi. The ti’s, u
′
i’s and v′i’s respectively induce morphisms t, u′, v′

between the colimits, as in the diagram:

Ak Bkfk

��

Ai

Ak

mi,k

��

Ai Bi
fi �� Bi

Bk

ni,k

��
Ak

A

mk

��

Bk

B

nk

��
A B

f ��

Bi Ki

ui ��Bi Kivi

��

Bk Kk

uk ��Bk Kkvk

��

Ai

∏

k∈i∗
Kk

ti
���

��
��

��
��

Ai Bi
fi �� Bi

∏

k∈i∗
Kk

Bi

∏

k∈i∗
Kk

u′
i



��
��

��
��

�
Bi

∏

k∈i∗
Kk

v′
i

��

��
��

��
�

Ai

A

mi

��

Bi

B

ni

��

∏

k∈i∗
Kk

∏
F Kk

πi

��

B

∏
F Kk

u′

��

B

∏
F Kk

v′
��

A B
f

��

∏
F Kk

A

��
t

∏
F Kk

B

Clearly u′i �= v′i, since ui �= vi. But we actually have more: u′kni,k �= v′kni,k for all
k ≥ i, because of the top left pushout square. Now u′f = t = v′f implies u′ = v′,
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since
∏

F Kk ∈ K and f is K-epi. Hence πiu
′
i = πiv

′
i. But Bi is λ-presentable, and∏

F Kk = colim
j≥i

(
∏

k∈j∗
Kk), so there must exist j ≥ i such that πi,ju

′
i = πi,jv

′
i. This means

u′jni,j = v′jni,j, a contradiction.

The proposition now follows easily, using again the fact that λ-presentable K-epis are
preserved by pushouts.

The details of the proof show that the closure conditions in the statement of the
proposition could actually be relaxed to the closure under λ-complete reduced products.

2.12. Facts. For convenience, we collect a few facts about purity, some of them
already mentioned. References are given for most. The others are obvious or left as
straightforward exercises.
Let C be a λ-accessible category with pushouts, K any full subcategory of C. Then

(1) the following implications hold:

λ-pure ⇒ strongly Kλ-pure ⇒ Kλ-pure;

(2) if α ≥ λ, then (any sort of) α-purity implies (the same sort of) λ-purity;

(3) all three types of purity are closed under composition ([AR, 94] and [H, 04]);

(4) for any α, the (multiple) equalizer of any set of morphisms with codomain in K is
strongly Kα-pure;

(5) λ-pure morphisms are regular monos ([AHT, 96]);

(6) the λ-pure morphisms with domain A are precisely the λ-directed colimits in (A ↓ C)
of split monos ([H1, 98]);

(7) λ-pure morphisms are stable under pushouts ([AHT, 96]);

(8) the class of all Kλ-pure morphisms in C is closed under λ-directed colimits in C2

(adapt the proof of [AR, 94], 2.30);

(9) for each object A in C, the class of all strongly Kλ-pure morphisms from A in C is
closed under λ-directed colimits in (A ↓ C) (adapt the proof of [H, 04], 2.3(b)).

(10) the right-hand implication in (1) is an equivalence if C has and K is closed under
products and λ-directed colimits (Proposition 2.11 above);

(11) all three types of purity are closed under products in C2 (use pushouts);

(12) if C has finite copowers, Kλ-pure morphisms are monos for every K ([AS, 04]).

Accordingly, in the right context, we will speak of (Kλ-) pure subobjects. Note finally
that λ-pure subobjects are sometimes called λ-algebraically closed subobjects (for example
in [Fa, 75] and [H, 04]).
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3. Injectivity, orthogonality, reflectivity: earlier results

In this section, we briefly survey a body of known facts, in order to provide the context
for our main results (in Section 4).

Recall that an object K in C is injective with respect to (respectively orthogonal to) a
morphism f :A �� B if

C(f,K): C(B,K) �� C(A,K)

is surjective (respectively bijective). We write A ⊥ f to mean that A is orthogonal to
f . For a class M of morphisms in C, Inj(M) (resp. M⊥) denotes the class of all the
objects which are injective with respect to (resp. orthogonal to) all the morphisms in M.
A class of objects of the form Inj(M) (resp. M⊥) is called an injectivity class (resp. an
orthogonality class). Some of the following might be less familiar:

3.1. Definition. A class K of objects in C is a λm-injectivity class (resp. a λ-injectivity
class) if K = Inj(M) for some class M of λ-presentable morphisms (resp. of morphisms in
Cλ). λm-orthogonality classes and λ-orthogonality classes are defined similarly, replacing
Inj(M) by M⊥.

3.2. Related Characterizations. Our main Theorem (4.1) will complete the
following array of known results:
Let K be a class of objects in a locally λ-presentable category C. Then,

(1) ([RAB, 02]) K is a λ-injectivity class in C if and only if it is closed under
(i) products, (ii) λ-pure subobjects, and (iii) λ-directed colimits.

(2) ([H1, 98]) K is a λm-injectivity class in C if and only if it is closed under
(i) products, and (ii) λ-pure subobjects.

(3) ([AS, 04]) K is a λ-orthogonality class in C if and only if it is closed under
(i) products, (ii) Kλ-pure subobjects, and (iii) λ-directed colimits.

Note that in statement (3), “products” can be replaced by “limits”, since by 2.12 (4),
closure under Kλ-pure subobjects and products implies closure under all limits.

3.3. Remarks.

(a) Lemma 3.6 in [H, 04] showed how a class M of λm-morphisms such that K = Inj(M),
can be replaced by a class (and hence, a set) of morphisms in Cλ when K is closed
under λ-directed colimits. This lemma was interpreted as a compactness-type result,
and gave a different proof of the Rosický-Adámek-Borceux characterization (3.2(1))
above.
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(b) One may feel that closure under Kλ-pure subobjects is not a very pleasant property,
as the definition of K-purity depends on K globally. But this unpleasant feature
might be unavoidable, at least in the finitary case, if one recalls that there is no
possible uniform syntactic characterization of subcategories of varieties of finitary
structures closed under limits and directed colimits. The latter means the follow-
ing: given a finitary signature Σ, H. Volger showed in [V, 79] that every class of
Σ-structures, closed in StrΣ under limits and directed colimits, is finitarily axioma-
tizable, but that no set ∆ of (first-order, finitary) sentences exists such that a class
of structures is closed under these operators if and only if it can be axiomatized by
a subset of ∆. [V, 79] does provide a syntactic characterization for these classes,
but its formulation involves, as expected, a “global” property of the theory.

(c) Note however that there is a simple uniform syntactic characterization of orthogo-
nality classes in StrΣ. Those are the ones definable by classes of (L∞(Σ)-) sentences
of the form

∀x (∧φ(x ) �� ∃!y(∧ψ(x ,y))),

where φ and ψ are sets (of any cardinality) of atomic formulas. These subcategories
correspond to the prevarieties of [AS, 04], except that here we do not allow Σ to be
a proper class (in order for the ambient category to be locally presentable). If Σ is
λ-ary, the λm-orthogonality classes and the λ-orthogonality classes are those among
them for which the cardinality of ψ, respectively of φ and ψ, are smaller than λ.
Only in the latter case the classes of sentences are actually sets (of Lλ(Σ)-sentences).
More details can be found [AR, 94], [AS, 04] and [H, 04].

3.4. Orthogonality vs Reflectivity.

(a) One sees easily that for any subcategory of any category, we have

reflective ⇒ orthogonal ⇒ limit-closed.

Orthogonality classes have generated a fair amount of literature in the last 30 years
or so, in particular concerning the conditions under which the arrows above can be
reversed. In the context of locally presentable categories, note first that under the
Weak Vopenka’s Principle (a large-cardinal axiom), limit-closed subcategories are
automatically α-orthogonal for some α (and hence reflective). In particular, both
arrows above are equivalences under this assumption. Note also that this Principle
is actually equivalent to the implication on the right being reversible (see [AR, 94]).

(b) The so-called “Orthogonal Subcategory Problem” is about the left arrow in (a):
characterize the classes M of morphisms such that (the corresponding full subcate-
gory) M⊥ is reflective. In the seminal paper [FK, 72] of Freyd and Kelly, one of the
main theorems implies that, in a locally presentable category C, if M is the union
of a (small) set and of a class of epis from some proper factorization system in C,
then M⊥ is reflective. In particular, λ-orthogonality classes are reflective.
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(c) The characterizations in 3.2(3) and Theorem 4.1 are about the right arrow in (a):
what closure conditions should be added to reverse this implication? First note
that adding closure under α-directed colimits for some α implies reflectivity (see
[AR, 94]), and hence orthogonality. However, from the result of Volger already
mentioned in 3.3(b), there exist reflective subcategories of locally finitely presentable
categories which are closed under directed colimits, and not ω-orthogonal (but note
that the proof of the main result in [HR, 01] shows that they must be ω1-orthogonal).
The main result in [HR, 01] states that no such counterexample exists for higher
cardinalities. The remaining problem of characterizing the ω-orthogonality classes
was finally solved in [AS, 04] (see 3.2(3)). We can summarize all this as follows (for
a subcategory K of a locally λ-presentable category):

ω-orthogonal ⇔ [limits, Kω-pure subobjects, directed colimits]-closed

max(λ, ω1)-orthogonal ⇔ [limits, λ-directed colimits]-closed

Note that closure under limits and directed colimits alone does not imply closure
under Kω-pure subobjects, since it does not imply ω-orthogonality, a crucial fact
proved by H. Volger from the same example in [V, 79] (p. 37) used to prove the
result mentioned in 3.3(b). However, we did not find an example showing that
closure under limits and Kω-pure subobjects does not imply closure under directed
colimits. (Closure under limits and strongly Kω-pure subobjects does not imply
closure under directed colimits: see 4.3(c) below).

4. Main results

4.1. Theorem. Let K be a class of objects in a locally λ-presentable category C. Then
K is a λm-orthogonality class in C if and only if it is closed under

(i) products, and

(ii) strongly Kλ-pure subobjects.

Proof. That the closure conditions are necessary is a straightforward exercise. To
show that they are sufficient, we follow the same path than the one in [AS, 04] for the
λ-orthogonality case. The proof will flow in a more natural way here, but we must show
first that the conditions still imply that K is reflective. This is a consequence of the
following lemma, which we will use again later:

4.2. Lemma. Let C be a λ-accessible category with pushouts, and K be a subcategory
of C closed under α-pure subobjects, for some α ≥ λ. Then the inclusion functor of K in
C satisfies the Solution Set Condition.

Proof. Let A ∈ C. Using Theorem 2.33 of [AR, 94], one can find γ large enough
so that A is γ-presentable, C is γ-accessible, K is closed under γ-pure subobjects, and
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any morphism f :A �� B factorizes through a γ-pure morphism f ′:A′ �� B with A′

γ-presentable (see [AR, 94]). Then the set

SA = {f :A �� K | K ∈ K, K is γ-presentable in C}
is easily seen to be a solution set for A.

End of the proof of Theorem 4.1:
From 2.12 (4), K is closed under limits, and hence is reflective in C, by the lemma.

Let M be the class of all λ-presentable K-epis f such that K ⊥ f for all K in K. We
prove that for A ∈ M⊥, the reflection ηA:A �� rA in K is strongly Kλ-pure. This will
show that M⊥ ⊆ K, and hence that M⊥ = K.

Consider then any factorization A h �� D n �� rA of ηA, with h a λ-presentable K-epi.
Then h ∈ M. Indeed, any g:A �� K ∈ K extends (uniquely) to some g′: rA �� K
such that g′ηA = g, and g′n is then unique such that (g′n)h = g, since h is a K-epi. But
then 1A factorizes through h (since A ∈ M), i.e., h is a split mono.

4.3. Remarks.

(a) The Adámek-Sousa characterization of λ-orthogonality classes (3.2(3) above) can be
obtained from Theorem 4.1. The same Lemma 3.6 of [H, 04] used in the injectivity
case (see 3.3(a)) actually holds if all the morphisms in its statement are replaced
by K-epis, with essentially the same proof. As a consequence, the replacement can
be done in the same way if K = M⊥ (instead of Inj(M)). The proof of the lemma
is rather technical, so this certainly does not provide a simpler proof of 3.2(3).
However, it may help organizing a body of related results, and clarifying the role of
each closure operator.

(b) Theorem 4.1 shows in particular that M⊥ is reflective for every class M of λ-
presentable morphisms. It would be interesting to see if the Freyd-Kelly theorem
refered to in 3.4(b), or the related results in W. Tholen’s [T, 83], could be generalized
as to include this case. A related problem is the following: among the factorization
systems (E,M) determining the λm-orthogonality class M⊥ = K as a reflective
subcategory, is there one for which E and M can be constructed in a natural way
from the λ-presentable K-epis and the strongly Kλ-pure morphisms respectively?

(c) 3.3(c) provides an easy way to construct examples. In the category of groups, let K
be the class of all groups in which any element which has a p-root for all odd primes
p must have a unique square root. K is definable by the sentence

∀xx2x3...( ∧
i>1

x = xpi

i
�� ∃!y(x = y2)),

where pi is the i-th prime number. By 3.3(c), K is an ωm- (and ω1-) orthogonality
class, hence closed under strongly Kω-pure subobjects and under Kω1-pure subob-
jects. However it is not closed under directed colimits (and hence not ω-orthogonal):
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the group of rational numbers with odd denominators in reduced form is not in K,
but it is the direct limit of its subgroups Ai = {a/pk2

2 p
k3
3 ...p

ki
i | a, kj ∈ Z}, i ≥ 2,

which are all in K.
Hoping to exhibit a λm-orthogonality class which is not a small-orthogonality class
(i.e., not α-orthogonal for any α), one could try writing down a proper class of
sentences as in 3.3(c). However, by 3.4(a), one could not prove, without negating
the Vopenka’s Principle, that this class is not equivalent to a set of such sentences.

If K and N are subcategories of C, Π(N ) and Ks
λ(N ) will denote respectively the class

of all products and the class of all strongly Kλ-pure subobjects of the members of N .

4.4. Theorem. Let K be a subcategory of a locally λ-presentable category C. Then
Ks

λ(Π(K)) is the λm-orthogonality hull of K.

Proof. Let N = Ks
λ(Π(K)). Using Theorem 4.1, we need to prove that:

(a) Π(N ) ⊆ N ,
(b) N s

λ(N )) ⊆ N , and
(c) N ⊆ S for every λm-orthogonality class S containing K.

(a) This follows from the fact that the product of a set of strongly Kλ-pure morphisms is
also strongly Kλ-pure (Facts 2.12(11)).
(b) We first show that a morphism is K-epi if and only if it is N -epi. That N -epis are
K-epis is trivial from K ⊆ N . Let g:A �� D be a K-epi, and u, v:D ���� N ∈ N
be morphisms such that ug = vg. Then there exists a strongly Kλ-pure morphism h:N

��
∏

i∈I

Ki for some Ki’s in K. If πi:
∏

i∈I

Ki
�� Ki is the canonical projection, then

πihug = πihvg implies πihu = πihv for each i ∈ I (since g is a K-epi), which implies
hu = hv, and hence u = v since h is mono, by 2.12 (12).
Now, the fact that K-epi = N -epi implies that strongly Kλ-pure = strongly Nλ-pure. Let
then A be in N s

λ(N ). There exist B ∈ N and a diagram

A B
f �� B

∏

i∈I

Ki
g ��

with f strongly Nλ-pure, g strongly Kλ-pure, and Ki ∈ K for each i. Hence both mor-
phisms are strongly Kλ-pure, so that by the Fact 2.12 (3), gf is also strongly Kλ-pure.
We conclude that A ∈ Ks

λ(Π(K)) = N .
(c) If S is an λm-orthogonality class containing K, then it contains Π(K), and hence
Ss

λ(Π(K)), by Theorem 4.1. But strongly Kλ-pure morphisms are obviously strongly Sλ-
pure, and hence S contains Ks

λ(Π(K)) = N
4.5. Corollary. Let K be a subcategory of a locally λ-presentable category C. Then

(1) K is an orthogonality class if and only if
(i) it is closed under products, and (ii) ∩

α≥λ
Ks

α(K) = K.

(2) ∩
α≥λ

Ks
α(Π(K)) is the orthogonality hull of K.
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Proof. (1)(⇒) Let K = M⊥. Orthogonality classes are closed under all limits, as
mentioned above, and ∩α≥λKs

α(K) ⊇ K is clear. We need to show that ∩α≥λKs
α(K) ⊆ K.

Note that the conclusions of the Theorems 4.4 and 4.1 clearly hold for any α ≥ λ. Let
A ∈ ∩α≥λKs

α(K). Now, any given m:C �� D in M is α-presentable for α large enough.
We show that A ⊥ m. There exists a strongly Kα-pure morphism f :A �� K for some
K ∈ K, so that for any g:C �� A, fg factorizes through m, by a unique h:D �� K.
We form the pushout (g′,m′) of g and m, and let n be the induced morphism:

A Pm′
��

C

A

g

��

C Dm �� D

P

g′

��
A

K

f

�������������������� P

K

n

��

D

K

h

���
��

��
��

��
��

��
��

��
�

m′ being α-presentable, it has a left inverse r, and rg′m = rm′g = g. We only need to
show that rg′ is unique to factorize g through m. We use the fact that f is mono (see
2.12 (12)): if hm = (rg′)m for some h:D �� A, then fhm = f(rg′)m, which implies
fh = f(rg′) because m is K-epi. Hence h = rg′.

(⇐) K being closed under products, we have K = ∩α≥λKs
α(K) = ∩α≥λKs

α(Π(K)), i.e.,
by Theorem 4.4, an intersection of orthogonality classes, and hence an orthogonality class
itself.
(2) This is proved from (1) in the same way that Theorem 4.4 is proved from Theorem
4.1

4.6. Remark. One can compare Corollary 4.5 to the characterization given in Ex-
ercise 2.o of [AR, 94]. Correctly restated (personal communication from the authors),
it says that the orthogonality hull of a subcategory K of a locally presentable category
C is

⋂
α∈Ord K(α), where K(α) is the smallest subcategory of C containing K and closed

under limits and α-directed colimits in C. This is proved using mainly the facts that each
K(α) is a small-orthogonality class, and that every orthogonality class is the intersection
of small-orthogonality classes.

For the rest of the paper, we briefly consider cone-orthogonality in locally λ-presentable
categories. An object K in C is injective with respect to the cone c = (ci:C �� Di)I

if every g:C �� K factorizes through c (i.e., through at least one of the ci’s). K is
orthogonal to c if every g:C �� K factorizes through exactly one ci, and furthermore this
factorization is unique. A λm-cone (λ-cone) is a cone made of λ-presentable morphisms
(resp. of morphisms in Cλ). If M is a class of (λm-, λ-) cones, Inj(M) and M⊥ will be
called (λm-, λ-) cone-injectivity and cone-orthogonality classes respectively.

Example 3.1 of [RAB, 02] shows that classes closed under λ-pure subobjects and λ-
directed colimits are not necessarily λ-cone-injectivity classes. In contrast, Theorem 4 of
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[H1, 98] proves that λm-cone-injectivity classes are precisely the ones closed under λ-pure
subobjects (the characterization is actually proved in every λ-accessible category with
pushouts).

Using the same technique than in [H1, 98], one can show that for every classes K and
N of objects in C, Ks

λ(N ) = Inj(M) for a class M of cones made of λ-presentable K-epis.
(One can use this to give another proof of Theorem 4.1, without using the fact that K is
reflective.) As a consequence, a class K closed under strongly Kλ-pure subobjects comes
close to be a λm-cone-orthogonality class: what is missing is that a given morphism may
factorize through several branches of the same cone of M. The expected cure would
be to add closure under pullbacks. Note that Lemma 4.2 implies that such a K, closed
under strongly Kλ-pure subobjects and pullbacks, will be multireflective in C. However,
we were not able to deduce (nor to disprove) that this was enough to insure that K is a
λm-cone-orthogonality class.

As for λ-cone-orthogonality, a natural conjecture from the characterization of λ-
orthogonality in [AS, 04] (3.2(3) above), would be that they are the classes closed under
(i) pullbacks, (ii) Kλ-pure subobjects, and (iii) λ-directed colimits. However this is not
true, the same Example 3.1 of [RAB, 02] being actually a counterexample. First, the
category B described there is easily found to be closed (in the category StrΣ of all Σ-
structures) under pullbacks. Also, every morphism in StrΣ is a B-epi, for the simple
reason that there are no two distinct morphisms from any given Σ-structure to any object
in B. Hence purity and B-purity are the same. Finally, the fact that B is not a ω-cone-
injectivity class (proved there) implies that it is not a ω-cone-orthogonality class either
(see [AR, 94], 4.23).

Hence the following three problems remain:

4.7. Open Problems. In locally λ-presentable categories, characterize, by closure
properties:

(1) the λm-cone-orthogonality classes,

(2) the λ-cone-orthogonality classes, and

(3) the cone-orthogonality classes.
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