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SOME ALGEBRAIC APPLICATIONS OF GRADED CATEGORICAL
GROUP THEORY

A.M. CEGARRA AND A.R. GARZÓN

ABSTRACT. The homotopy classification of graded categorical groups and their homo-
morphisms is applied, in this paper, to obtain appropriate treatments for diverse crossed
product constructions with operators which appear in several algebraic contexts. Precise
classification theorems are therefore stated for equivariant extensions by groups either
of monoids, or groups, or rings, or rings-groups or algebras as well as for graded Clif-
ford systems with operators, equivariant Azumaya algebras over Galois extensions of
commutative rings and for strongly graded bialgebras and Hopf algebras with operators.
These specialized classifications follow from the theory of graded categorical groups after
identifying, in each case, adequate systems of factor sets with graded monoidal functors
to suitable graded categorical groups associated to the structure dealt with.

1. Introduction

Graded categorical groups provide a suitable categorical setting for the treatment of an
extensive list of subjects with recognized mathematical interest. Let us briefly recall
that, if Γ is a group, then a Γ-graded categorical group is a groupoid G equipped with
a grading functor gr : G → Γ and with a graded monoidal structure, by graded functors
⊗ : G ×

Γ
G → G and I : Γ → G, such that for each object X, there is an object

X ′ with a 1-graded arrow X ⊗ X ′ → I (see Section 2 for the details). These graded
categorical groups were originally considered by Fröhlich and Wall in [20] to study Brauer
groups in equivariant situations (see also [18, 19, 21]). Indeed, the principal examples in
that context are either the Picard, or the Azumaya or the Brauer Γ-graded categorical
groups defined by a commutative ring on which the group Γ acts by automorphisms.
Several other examples of graded categorical groups that deal with algebraic problems
are considered in this paper, but there are also interesting instances arising in algebraic
topology (see [4, 6]). Furthermore, in the same way which was dealt with by Sinh the
ungraded case [36], homotopy classifications theorems for graded categorical groups and
their homomorphisms have been shown in [6]. From these general results derive then the
utility of graded categorical group theory either in equivariant homotopy theory or group
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extensions with operators. In this article, our goal is to state several theorems solving a
selected list of classification problems of equivariant algebraic nature and to prove them
by using also the above quoted abstract results on the homotopy classification of graded
categorical groups and their homomorphisms.

The equivariant classification results we obtain along the paper mainly concern com-
mutative rings on which an action by automorphisms from a group Γ is given. These
so-called Γ-rings are a classical subject of investigation in Algebra as either the 14th
Hilbert’s problem and the invariant theory, or even the more recent equivariant algebraic
K-theory, make clear (cf. [31]). More precisely, the most striking Γ-rings we consider as
a matter of study are central simple Γ-algebras over a field or, more generally, central
separable Γ-algebras over a commutative ring k, whose classes are indeed the elements
of the equivariant Brauer group of k (see [17, 18, 19, 20, 21]). Azumaya Γ-algebras are
also in the heart of Long’s Brauer groups [28] (cf. [2, chapter VI]). If R is a commutative
Γ-ring and R/k is a Galois extension, with Galois group G, splitting a central separable
Γ-algebra A, then A represents, in the equivariant Brauer group, the same element than a
strongly G-graded Γ-algebra whose 1-component is R, that is, a (G,R)-graded Γ-Clifford
system. This is the reason why we pay attention to these last kind of Γ-rings. Moreover,
in the particular case that the Picard group of R vanishes, then the structure of such
Azumaya Γ-algebras is precisely that of a Γ-equivariant crossed product algebra of R by
G and this justifies its separate study in Section 5. When the ground ring k = Z then,
the possibility of offering an unified treatment of that theory together with the one of
extensions of groups with operators motivates the study about Γ-RINGS-GROUPS we
carry out in Section 4.

The plan of this paper is briefly as follows. In the second section we summarize what
will be needed in the paper regarding graded categorical groups theory and also on the
equivariant cohomology theory of groups with operators studied in [5]. Theorem 2.2,
in the second section, shows a classification of the homotopy classes of graded monoidal
functors between graded categorical groups with discrete domain. It is of special relevance
because suitable specializations of it lead to the classification of several kinds of systems of
factor sets for the diverse types of “crossed product constructions with operators” studied
throughout the subsequent sections.

In the third section we deal with the general problem of equivariant perfect Rédei
extensions of monoids by groups when a group of operators Γ is acting on both structures
(also called equivariant monoid coextensions of groups). This problem includes that of
group extensions with operators studied in [6, 37]. We develop here an equivariant factor
set theory for equivariant extensions of Γ-monoids by Γ-groups. Since these equivariant
factor sets become graded monoidal functors from the discrete graded categorical group
associated with the group to the holomorph graded categorical group of the monoid, we
can deduce the desired cohomological classification for equivariant perfect extensions of a
Γ-monoid by a Γ-group from the categorical results.

The next section is devoted to the classification of extensions of RINGS-GROUPS with
operators. Our results extend to the equivariant case the theory developed by Hacque in
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[24, 25] and they are directly applicable both to the theory of Γ-group extensions and to the
theory of crossed product Γ-rings. We explain a theory of mixed crossed products with
operators that reveals how graded monoidal functors, from discrete graded categorical
groups to the graded categorical groups of holomorphisms of Γ-RINGS-GROUPS, are the
most suitable systems of data to construct the survey of all equivariant extensions of any
RING-GROUP with operators by a group with operators.

In the following section we focus our attention on the classification of graded Clifford
systems (also called strongly graded algebras) with operators, which were introduced
by Dade [12, 13] to develop Clifford’s theory axiomatically. The key in obtaining that
classification lies in the fact that giving a graded Γ-Clifford system is equivalent to giving
a graded monoidal functor from discrete graded categorical groups to Γ-graded Picard
categorical groups of Γ-algebras. Our results for equivariant graded Clifford systems
are then used in three subsections, where we deal respectively with equivariant crossed
product algebras, equivariant central graded Clifford systems and Azumaya algebras with
operators over Galois extensions of commutative rings as well. In the two last cases, the
classification theorems are reformulated in terms of certain equivariant cohomology exact
sequences.

The last section is dedicated to the classification of strongly graded Γ-bialgebras and
strongly graded Hopf Γ-algebras. Our results here parallel the non-equivariant case stud-
ied in [8, 3] and they are obtained, from the general theory outlined in the second section,
in a similar way to that previously run for equivariant Clifford systems.

2. On graded categorical groups

The beginning of this section is devoted to recalling the definition and some basic facts
concerning the cohomology of groups with operators and graded categorical groups. Then,
we will derive, from general results established in [6], a classification theorem for homotopy
classes of graded monoidal functors between graded categorical groups whose domain is
discrete. This result is what is needed for the applications set forth in the next sections.

Hereafter Γ is a fixed group. Let us recall that a Γ-group G means a group G enriched
with a left Γ-action by automorphisms, and that a Γ-equivariant module over a Γ-group
G is a Γ-module A, that is, an abelian Γ-group, endowed with a G-module structure such
that σ(xa) = (σx)(σa) for all σ ∈ Γ, x ∈ G and a ∈ A [5, Definition 2.1]. The abelian groups
of Γ-equivariant derivations from a Γ-group G into equivariant G-modules define a left-
exact functor Der

Γ
(G,−) from the category of equivariant G-modules to the category of

abelian groups, whose right derived functors lead to the equivariant cohomology functors
H∗

Γ
(G,−). More specifically, the cohomology groups of a Γ-group G with coefficients in

an equivariant G-module A are [5, (3)]:

Hn
Γ
(G,A) =

(
Rn−1Der

Γ
(G,−)

)
(A), n ≥ 1,

and H0
Γ
(G,A) = 0.
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We shall recall from [5] that the cohomology groups Hn
Γ
(G,A), for n ≤ 3, can be

computed as the cohomology groups of the Whitehead [37] truncated cochain complex

0 → C 1
Γ
(G,A)

∂−→ C 2
Γ
(G,A)

∂−→ Z 3
Γ
(G,A) → 0 ,

in which C 1
Γ
(G,A) consists of normalized maps c : G → A, C 2

Γ
(G,A) consists of nor-

malized maps c : G 2 ∪ (G × Γ) → A and Z 3
Γ
(G,A) consists of all normalized maps

c : G 3 ∪ (G 2 × Γ) ∪ (G× Γ 2) → A satisfying the following 3-cocycle conditions:

c(x, y, zt) + c(xy, z, t) = xc(y, z, t) + c(x, yz, t) + c(x, y, z) ,

σc(x, y, z) + c(xy, z, σ) + c(x, y, σ) = c(σx, σy, σz) + (σx)c(y, z, σ) + c(x, yz, σ) ,

σc(x, y, τ) + c(τx, τy, σ) + c(x, σ, τ) + (στx)c(y, σ, τ) = c(x, y, στ) + c(xy, σ, τ) ,

σc(x, τ, γ) + c(x, σ, τγ) = c(x, στ, γ) + c(γx, σ, τ) ,

for x, y, z, t ∈ G, σ, τ, γ ∈ Γ. For each c ∈ C 1
Γ
(G,A), the coboundary ∂c is given by

(∂c)(x, y) = xc(y) − c(xy) + c(x) ,

(∂c)(x, σ) = σc(x) − c(σx) ,

and for c ∈ C 2
Γ
(G,A), ∂c is given by

(∂c)(x, y, z) = xc(y, z) − c(xy, z) + c(x, yz) − c(x, y) ,

(∂c)(x, y, σ) = σc(x, y) − c(σx, σy) − (σx)c(y, σ) + c(xy, σ) − c(x, σ) ,

(∂c)(x, σ, τ) = σc(x, τ) − c(x, στ) + c(τx, σ).

Next, we regard the group Γ as a category with exactly one object, say ∗, where
the morphisms are the members of Γ and the composition law is the group operation:
∗ σ→ ∗ τ→ ∗ = ∗ τσ→ ∗.

A Γ-grading on a category G [20] is a functor gr : G → Γ. For any morphism f in G

with gr(f) = σ, we refer to σ as the grade of f , and we say that f is an σ-morphism. The
grading is stable if, for any object X of G and any σ ∈ Γ, there exists an isomorphism
X

∼→ Y with domain X and grade σ; in other words, the grading is a cofibration in the
sense of Grothendieck [23]. Suppose (G, gr) and (H, gr) are stably Γ-graded categories.
A graded functor F : (G, gr) → (H, gr) is a functor F : G → H preserving grades of
morphisms. If F ′ : (G, gr) → (H, gr) is also a graded functor, then a graded natural
equivalence θ : F → F ′ is a natural equivalence of functors such that all isomorphisms
θ

X
: FX

∼→ F ′X are of grade 1.
For a Γ-graded category (G, gr), we write G ×

Γ
G for the subcategory of the product

category G×G whose morphisms are those pairs of morphisms of G with the same grade;
this has an obvious grading, which is stable if and only if gr is.

A Γ-graded monoidal category [20] (see [34, Chapter I, §4.5] for the general notion of
fibred monoidal category) G = (G, gr,⊗, I, a, l, r), is a stably Γ-graded category (G, gr)
together with graded functors

⊗ : G ×
Γ

G → G , I : Γ → G ,
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and graded natural equivalences

a : (−⊗−) ⊗− ∼−→ −⊗ (−⊗−) ,

l : I gr(−) ⊗− ∼−→ id
G
, r : −⊗ I gr(−)

∼−→ id
G
,

such that for any objects X,Y, Z, T ∈ G, the following two coherence conditions hold:

a
X,Y,Z⊗T

a
X⊗Y,Z,T

= (X ⊗ a
Y,Z,T

) a
X,Y ⊗Z,T

(a
X,Y,Z

⊗ T ) ,

(X ⊗ l
Y
) a

X,I,Y
= r

X
⊗ Y .

If G,H are Γ-graded monoidal categories, then a graded monoidal functor

F = (F,Φ,Φ∗) : G → H ,

consists of a graded functor F : G → H, natural isomorphisms of grade 1,

Φ = Φ
X,Y

: FX ⊗ FY
∼−→ F (X ⊗ Y ) ,

and an isomorphism of grade 1 (natural with respect to the elements σ ∈ Γ)

Φ∗ : I
∼−→ FI

(where I = I(∗)) such that, for all objects X,Y, Z ∈ G, the following coherence conditions
hold:

Φ
X,Y ⊗Z

(FX ⊗ Φ
Y,Z

) a
FX,FY,FZ

= F (a
X,Y,Z

) Φ
X⊗Y,Z

(Φ
X,Y

⊗ FZ) , (1)

F (r
X
) Φ

X,I
(FX ⊗ Φ∗) = r

FX
, F (l

X
) Φ

I,X
(Φ∗ ⊗ FX) = l

FX
.

Suppose F ′ : G → H is also a graded monoidal functor. A homotopy (or graded
monoidal natural equivalence) θ : F → F ′ of graded monoidal functors is a graded natural
equivalence θ : F

∼→ F ′ such that, for all objects X,Y ∈ G, the following coherence
conditions hold:

Φ′
X,Y

(θ
X
⊗ θ

Y
) = θ

X⊗Y
Φ

X,Y
, θ

I
Φ∗ = Φ′

∗ . (2)

For later use, we state here the lemma below [6, Lemma 1.1].

2.1. Lemma. Every graded monoidal functor F = (F,Φ,Φ∗) : G → H is homotopic to
a graded monoidal functor F ′ = (F ′,Φ′,Φ′

∗) with F ′I = I and Φ′
∗ = id

I
.

A Γ-graded monoidal category, H = (H, gr,⊗, I, a, l, r) is said to be a Γ-graded cate-
gorical group if every morphism is invertible; that is, H is a groupoid, and for any object
X there is an object X ′ with a 1-morphism X ⊗X ′ → I. In subsequent sections several
examples of Γ-graded categorical groups will be discussed. However, we shall describe now
an elementary example, the discrete Γ-graded categorical group defined for any Γ-group
G, which will be frequently used in this paper.

Let G be a Γ-group. Then, the discrete Γ-graded categorical group disΓG has the
elements of G as objects and their morphisms σ : x → y are the elements σ ∈ Γ with
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σx = y. Composition is multiplication in Γ and the grading gr : dis
Γ
G→ Γ is the obvious

map gr(σ) = σ. The graded tensor product is given by

(x
σ→ y) ⊗ (x′ σ→ y′) = (xx′ σ→ yy′) ,

and the graded unit I : Γ → disΓG by

I(∗ σ→ ∗) = (1
σ→ 1) ;

the associativity and unit isomorphisms are identities.
Each Γ-graded categorical group H has two associated homotopy groups, which we

shall describe below (see [6, Proposition 1.2] for details):

π0H = the Γ-group of 1-isomorphism classes of the objects in H, where multiplication
is induced by tensor product, [X] [Y ] = [X ⊗ Y ], and the Γ-action is defined by
σ[X] = [Y ] whenever there exists a morphism X → Y in H of grade σ.

π1H = the Γ-equivariant π0H-module of 1-automorphism in H of the unit object I, where
the operation is composition, the Γ-action is σu = I(σ) u I(σ)−1, and the structure
of π0H-module is as follows : if [X] ∈ π0H and u ∈ π1G, then [X]u is determined by
the formula

δ(u) = γ([X]u),

where

Aut1(X) π1H
δ
∼�� γ

∼ �� Aut1(X) (3)

are the isomorphisms defined respectively by δ(u) = r (X ⊗ u) r−1 and γ(u) =
l (u⊗X) l−1.

Thus, for example, if G is any Γ-group, then π0disΓG = G, as a Γ-group, while
π1disΓG = 0.

For each Γ-group G and each Γ-graded categorical group H, let

[disΓG,H]

denote the set of homotopy classes of graded monoidal functors from disΓG to H. There
is a canonical map

π0 : [disΓG,H] −→ Hom
Γ
(G, π0H) [F ] 	→ π0F , (4)

where Hom
Γ
(G, π0H) is the set of equivariant homomorphisms from the Γ-group G to the

Γ-group π0H. We refer to a Γ-group homomorphism ρ : G → π0H as realizable whenever
it is in the image of the above map π0 , that is, if ρ = π0F for some graded monoidal
functor F : disΓG→ H. The map (4) produces a partitioning

[disΓG,H] =
⊔
ρ

[disΓG,H; ρ] ,
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where, for each ρ ∈ Hom
Γ
(G, π0H), [disΓG,H; ρ] = π−1

0
(ρ) is the set of homotopy classes

of realizations of ρ.
When an equivariant homomorphism ρ : G→ π0H is specified, it is possible that there

is no graded monoidal functor that realizes ρ, and this leads to a problem of obstructions
which (even in a more general form) is solved in [6, Theorem 3.2] by means of a 3-
dimensional equivariant group cohomology class Obs(ρ). Next we outline this theory for
this particular case.

Let ρ : G → π0H be any given Γ-group homomorphism. Then, π1H is, via ρ, a Γ-
equivariant G-module and so the equivariant cohomology groups Hn

Γ
(G, π1H) are defined.

The obstruction cohomology class

Obs(ρ) ∈ H3
Γ
(G, π1H) (5)

is represented by any 3-cocycle cρ ∈ Z3
Γ
(G, π1H) built as follows. For each x ∈ G, let us

choose an object F (x) ∈ ρ(x), with F (1) = I. Since ρ(xy) = ρ(x)ρ(y), for each x, y ∈ G,
we can select a 1-morphism Φx,y : F (x) ⊗ F (y) → F (xy), with Φ1,y = l and Φx,1 = r.
Furthermore, since ρ(σx) = σρ(x), for each x ∈ G and σ ∈ Γ, we can also select an
σ-morphism Φx,σ : F (x) → F (σx), with Φ1,σ = I(σ) and Φx,1 = id. Then, the map

cρ : G3 ∪ (G2 × Γ) ∪ (G× Γ2) −→ π1H (6)

is determined, for all x, y, z ∈ G and σ, τ ∈ Γ, by the commutativity of the diagrams in
H, (

F (x) ⊗ F (y)
) ⊗ F (z)

a

��

Φx,y⊗id �� F (xy) ⊗ F (z)
Φxy,z �� F (xyz)

γ
(
cρ(x,y,z)

)
���
�
�

F (x) ⊗ (
F (y) ⊗ F (z)

) id⊗Φy,z �� F (x) ⊗ F (yz)
Φx,yz �� F (xyz) ,

F (xy)
Φxy,σ ��

γ
(
cρ(x,y,σ)

)
���
�
�

F (σx σy)

Φ−1
σx,σy

��
F (xy)

Φ−1
x,y �� F (x) ⊗ F (y)

Φx,σ⊗Φy,σ �� F (σx) ⊗ F (σy) ,

F (x)
Φx,τ ��

γ
(
cρ(x,σ,τ)

)
���
�
�

F (τx)

Φτx,σ

��
F (x)

Φx,στ �� F (στx) ,

where the γ’s are the isomorphisms defined in (3). The fact that cρ is an equivariant
3-cocycle, whose cohomology class

Obs(ρ) = [cρ] ∈ H3
Γ
(G, π1H)

only depends on ρ, follows from [6, Theorem 3.2]. Also, as a consequence of this theorem,
the following is true:



222 A.M. CEGARRA AND A.R. GARZÓN

2.2. Theorem. Let G be a Γ-group and let H be a Γ-graded categorical group. Then,

(i) A Γ-group homomorphism ρ : G → π0H is realizable, that is, [disΓG,H; ρ] 
= ∅, if,
and only if, its obstruction Obs(ρ) vanishes.

(ii) If Obs(ρ) = 0, then there is a bijection

[disΓG,H; ρ] ∼= H2
Γ
(G, π1H). (7)

The bijection (7), which is non-natural, can be described as follows (see [6] for details).
By hypothesis, and using Lemma 2.1, there is a strictly unitary graded monoidal functor
(F,Φ) : disΓG → H realizing the equivariant homomorphism ρ. Then, once we have
fixed such a (F,Φ), the bijection (7) associates to any equivariant 2-cohomology class
[c] ∈ H2

Γ
(G, π1H), represented by a 2-cocycle c : G2 ∪ (G×Γ) → π1H, the homotopy class

of the strictly unitary graded monoidal functor (c · F, c · Φ) : disΓG → H, where c · F is
the graded functor sending a morphism σ : x → y of disΓG to the dotted morphism in
the commutative diagram in H

F (x)
(c·F )(σ) �����������

F (σ) ����
��

��
��

�
F (y)

F (y) ,
γ
(
c(x,σ)

)�����������

(γ is the isomorphism (3)), and the natural isomorphisms (c · Φ)x,y, for x, y ∈ G, are the
dotted morphisms in the commutative diagrams

F (x) ⊗ F (y)
(c·Φ)x,y ������������

Φx,y �������������
F (xy)

F (xy) .
γ
(
c(x,y)

)�����������

3. Equivariant extensions of monoids by groups

If M is any monoid and G is a group, then a perfect Schreier extension of M by G is a
sequence of monoids and homomorphisms

E : M
i� N

p
� G (8)

which is exact in the sense that i is injective, p is surjective and i(M) = p−1(1) and,
moreover, such that the congruence on N defined by p is perfect, that is, p−1(x)p−1(y) =
p−1(xy), for all x, y ∈ G. Observe that, since 1 ∈ p−1(x)p−1(x−1) for all x ∈ G, the
monoid N contains at least one unit ux such that p(ux) = x. Hence, since the map of
multiplication by ux establishes a bijection i(M) ∼= p−1(x), it follows that M ∼= i(M) is a
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normal divisor of N (cf. [22]) whose congruence on N coincides with the one defined by
p. Therefore, N/M ∼= G.

The study of Schreier extensions of monoids goes back to Redei [33], and a precise
classification theorem for perfect Schreier extensions of monoids by groups was stated in
[7, 4.2]. Below, our goal is to study equivariant extensions of monoids by groups when a
given group of operators is acting on both structures.

If Γ is a fixed group of operators, then a Γ-monoid is a monoid endowed with a Γ-action
by automorphisms. An equivariant perfect Schreier extension (hereafter, an equivariant
extension for short) of a Γ-monoid M by a Γ-group G is a perfect Schreier extension E as
in (8) such that N is also a Γ-monoid and maps i and p are equivariant. Thus, M can
be identified with an equivariant normal divisor of N and N/M ∼= G as Γ-groups. Two
such extensions E and E ′ are equivalent whenever there exists an equivariant isomorphism
g : N → N ′ such that gi = i′ and p′g = p, and we denote by

ExtΓ(G,M)

the set of equivalence classes of equivariant extensions of the Γ-monoid M by the Γ-group
G. This set is pointed by the class of the Γ-monoid product M ×G.

Next, we shall explain an equivariant factor set theory for equivariant extensions of
Γ-monoids M by Γ-groups G. Then, an equivariant factor set for an equivariant ex-
tension will be an appropriate set of data to rebuild (by an appropriate crossed product
construction) the equivariant extension up to equivalence. Furthermore, as we will see
later, these equivariant factor sets are essentially the same as graded monoidal functors
from the discrete Γ-graded categorical group disΓG to the Γ-graded categorical group of
holomorphims of the Γ-monoid M , HolΓ(M). Thanks to that observation, we will able to
use Theorem 2.2 in this context. To do so, we begin by describing the graded categorical
group HolΓ(M) and then we will state Theorem 3.1 below, in which proof we include the
precise notion of equivariant factor set.

Let M be any Γ-monoid. Then, the group Aut(M) of all monoid automorphisms of
M is a Γ-group under the diagonal Γ-action, f 	→ σf , where σf : m 	→ σf( σ

−1
m), and the

map
C : M∗ → Aut(M),

sending each unit u of M to the inner automorphism given by conjugation with u, Cu :
m 	→ umu−1, is a Γ-group homomorphism. The holomorph Γ-graded categorical group
of the Γ-monoid M , HolΓ(M), has the elements of the Γ-group Aut(M) as objects, and
a morphism of grade σ ∈ Γ is a pair (u, σ) : f → g, where u ∈ M∗, with σf = Cug. The
composition of morphisms is given by

f
(u,σ) �� g

(v,τ) �� h = f
(τu v,τσ) �� h , (9)

the graded tensor product is(
f

(u,σ) �� g
) ⊗ (

f ′ (u′,σ) �� g′
)

= ff ′ (u g(u′),σ) �� gg′ , (10)
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and the graded unit I : Γ → HolΓ(M) is defined by I(σ) = idM
(1,σ) �� idM . The associa-

tivity and unit constraints are identities.

3.1. Theorem. (Equivariant crossed products theory for monoids with operators) For
any Γ-monoid M and any Γ-group G, there is a bijection

Σ :
[
disΓG,HolΓ(M)

] ∼= ExtΓ(G,M) , (11)

between the set of homotopy classes of graded monoidal functors from disΓG to HolΓ(M)
and the set of equivalence classes of equivariant extensions of M by G.

Proof. By Lemma 2.1, every graded monoidal functor is homotopic to a given (F,Φ,Φ∗)
in which FI = I and Φ∗ = idI , and so we can restrict our attention to this kind of graded
monoidal functors, (F,Φ) : disΓG → HolΓ(M). Then, let us start by observing that the
data describing such a graded monoidal functor consist of a pair of maps (f, ϕ), where

f : G −→ Aut(M) , ϕ : G2 ∪ (G× Γ) −→M∗ , (12)

such that we write F (x) = fx, F
(
x σ �� σx

)
= fx

(ϕ(x,σ),σ)�� fσx and Φx,y = fxfy
(ϕ(x,y),1) �� fxy ,

for all x, y ∈ G and σ ∈ Γ. When we attempt to write the conditions of (F,Φ) being
a graded monoidal functor in terms of (f, ϕ), then we find the following conditions for
(f, ϕ):

f1 = id, ϕ(x, 1) = 1 = ϕ(1, y) , (13)

fxfy = Cϕ(x,y) fxy ,
σfx = Cϕ(x,σ) fσx , (14)

ϕ(x, y) ϕ(xy, z) = fx(ϕ(y, z)) ϕ(x, yz) , (15)

σϕ(x, y) ϕ(xy, σ) = ϕ(x, σ) fσx

(
ϕ(y, σ)

)
ϕ(σx, σy) , (16)

ϕ(x, στ) = σϕ(x, τ) ϕ(τx, σ) , (17)

for all x, y, z ∈ G, σ, τ ∈ Γ. To prove this in full several verifications are needed, but they
are straightforward: conditions (14) say that (ϕ(x, y), 1) and (ϕ(x, σ), σ) are, respectively,
morphisms in HolΓM ; (15) expresses the coherence condition (1), while (16) means that
the isomorphisms Φx,y are natural and (17) that F preserves the composition of mor-
phisms. The normalization condition (13) says that F preserves both identities and the
unit object.

We call an equivariant factor set, or a non-abelian 2-cocycle of the Γ-group G with
coefficients in the Γ-monoid M , any pair (f, ϕ) as in (12) satisfying the conditions (13)-
(17). We should stress that when Γ = 1 (the trivial group), a factor set is just the same
as a Redei system of factor sets for a Schreier extension of the monoid M by the group
G [33, 16]. In particular, when M is a group, we have precisely a Schreier factor system
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for a group extension [35]. Furthermore, if M and G are any two Γ-groups, then such a
pair (f, ϕ) is a Schreier system of factor sets for an equivariant group extension of M by
G [6].

Suppose now that (f ′, ϕ′) describes another graded monoidal functor (F ′,Φ′) : disΓG→
HolΓM . Then, any homotopy θ : F → F ′ is given by a map

g : G→M∗,

such that one writes θx = fx
(g(x),1) �� f ′

x for all x ∈ G. In terms of map g, the conditions
for θ to be a homotopy are:

g(1) = 1 (18)

fx = Cg(x) f
′
x , (19)

ϕ(x, y) g(xy) = g(x) f ′
x

(
g(y)

)
ϕ′(x, y) , (20)

ϕ(x, σ) g(σx) = σg(x) ϕ′(x, σ) , (21)

for all x, y ∈ G, σ ∈ Γ. Condition (19) expresses that θx is a morphism in Hol
Γ
(M) from

fx to f ′
x, (21) is the naturalness of θ and (20) and (18) say that the coherence conditions

(2) hold.

We now are ready to prove bijection (11).
Every equivariant factor set (f, ϕ) as in (12) gives rise to an equivariant crossed product

extension of M by G,

Σ(f, ϕ) : M
i� M×

f,ϕ
G

p
� G , (22)

in which M×
f,ϕ
G is Rédei’s Schreier product monoid defined in [33]; that is, it is the carte-

sian product set M ×G, with multiplication given by (m,x)(n, y) = (mfx(n)ϕ(x, y), xy).
This multiplication is associative and unitary thanks to equalities (14), (16) and (13).
The Γ-action on M×

f,ϕ
G is given by σ(m,x) = (σmϕ(x, σ), σx) which, owing to (14), (16)

and (17), satisfies the required conditions in order for M×
f,ϕ
G to be a Γ-monoid. The Γ-

equivariant monoid homomorphisms i and p are given by i(m) = (m, 1) and p(m,x) = x.
Since (m,xy) = (mϕ(x, y)−1, x)(1, y) ∈ p−1(x)p−1(y), we see that p−1(xy) = p−1(x)p−1(y),
and therefore the congruence is perfect. Thus, Σ(f, ϕ) is an equivariant extension of the
Γ-monoid M by the Γ-group G.

Suppose (f ′, ϕ′) is another equivariant factor set. If there is a Γ-monoid isomorphism,
say g : M×

f,ϕ
G ∼= M×

f ′,ϕ′G, establishing an equivalence between the corresponding
equivariant crossed product extensions of M by G, then we can write g in the form
g(m,x) = g(m, 1)g(1, x) = (m, 1)(g(x), x) = (mg(x), x) for a map g : G→M∗. Since
g((1, x)(m, 1)) = g(fx(m), x) = (fx(m) g(x), x), while g(1, x)g(m, 1) = (g(x) f ′

x(m), x),
it follows that fx = Cg(x) f

′
x; that is, (19) holds. Analogously, we see that (20) follows

from the equality g((1, x)(1, y)) = g(1, x)g(1, y) and (21) from the equality g(σ(1, x)) =
σg(1, x). Therefore, g defines a homotopy between (the graded monoidal functors defined
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by) (f ′, ϕ′) and (f, ϕ). Conversely, if (f, ϕ) and (f ′, ϕ′) are made homotopic by a g : G→
M∗, thus satisfying (18)-(21), then they lead to isomorphic equivariant crossed product
extensions, just by the map g : (m,x) 	→ (mg(x), x), as we can see by retracing our steps.

Finally, we prove that any equivariant extension of M by G, E : M
i� N

p
� G,

has an associated equivariant factor set, that is, it is equivalent to an equivariant crossed
product like (22), for some equivariant factor set (f, ϕ). To do so, there is no loss of
generality in assuming that i is the inclusion map. Let us choose then, for each x ∈ G,
a unit ux ∈ p−1(x) ∩ N∗. We take u1 = 1. Hence, the maps m 	→ mux establish
bijections M = p−1(1) ∼= p−1(x), for all x ∈ G. Since p(uxuy) = xy = p(uxy) and
p(σux) = σx = p(uσx), it follows that there are unique elements ϕ(x, y), ϕ(x, σ) ∈ M ,
such that ux uy = ϕ(x, y)uxy and σux = ϕ(x, σ)uσx, for all x, y ∈ G and σ ∈ Γ. Note
that ϕ(x, y), ϕ(x, σ) ∈ M∗ since the ux are units. Moreover, each x ∈ G induces an
automorphism fx of M , fx : m 	→ uxmu−1

x , and this pair of maps

f : G→ Aut(M), ϕ : G2 ∪ (G× Γ) →M∗ ,

is actually an equivariant factor set. Indeed, conditions (13) and (14) follow immediately
from the definition of (f, ϕ). To observe the remaining conditions (15)-(17), note that
every element of N has a unique expression of the form mux, with m ∈ M and x ∈ G.
Because uxm = fx(m)ux, it follows that the Γ-monoid structure of N can be described,
in terms of the Γ-group structure of G, the Γ-monoid structure of M and the pair (f, ϕ),
by (mux) (m′uy) = mfx(m

′)ϕ(x, y)uxy and σ(mux) = σm ϕ(x, σ) uσx. Then, (15) fol-
lows from the associative law ux(uyuz) = (uxuy)uz in M , (16) follows from the equality
σ(uxuy) = σux

σuy, while (17) is a consequence of the equality τ (σux) = τσux. Hence, (f, ϕ)
defines an equivariant factor set, whose associated equivariant crossed product extension
Σ(f, ϕ) is equivalent to E by the existence of the Γ-monoid isomorphism M×

f,ϕ
G ∼= N ,

(m,x) 	→ mux.

Let us now observe that, for any Γ-monoid M , the homotopy groups of the Γ-graded
categorical group HolΓ(M) are:

π0HolΓ(M) = Coker
(
M∗ C−→ Aut(M)

)
= Aut(M)/In(M) = Out(M) , the group of

outer automorphisms of M , which is a Γ-group with action σ[f ] = [σf ], where σf :
m 	→ σf( σ

−1
m),

π1HolΓ(M) = Ker
(
M∗ C−→ Aut(M)

)
= Z(M)∗ the abelian group of units in the centre

of the monoid M , which is a Γ-submonoid of M and a Γ-equivariant Out(N)-module
with action [f ]u = f(u), f ∈ Aut(M), u ∈ Z(M)∗.

Then, owing to bijection (11) and map (4), each equivalence class [E ] of an equivariant
extension E : M � N � G of the Γ-monoid M by the Γ-group G, determines a Γ-
equivariant group homomorphism

ρ
[E]

: G→ Out(M) ,
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by ρ
[E]

(x) = [fx], where (f, ϕ) is any equivariant factor set for E . A pair (M,ρ), where M
is a Γ-monoid and ρ : G→ Out(M) is a Γ-group homomorphism, is termed an equivariant
G-kernel for an equivariant monoid extension (or an equivariant collective character of G
in M , cf. [14, 25, 7]), and an equivariant extension of an equivariant G-kernel (M,ρ) is
an equivariant extension E of M by G that realizes ρ, that is, with ρ

[E]
= ρ. We denote

by
ExtΓ

(
G, (M,ρ)

)
the set of equivalence classes of such equivariant extensions of (M,ρ). Hence, there is a
canonical partition

ExtΓ(G,M) =
⊔
ρ

ExtΓ
(
G, (M,ρ)

)
.

Since, for each equivariant homomorphism ρ : G → Out(M), the bijection (11) restricts
to a bijection Σ :

[
disΓG,HolΓ(M); ρ

] ∼= ExtΓ
(
G, (M,ρ)

)
, Theorem 2.2 i) shows, in this

particular case, a necessary and sufficient condition for the set ExtΓ
(
G, (M,ρ)

)
to be

non-empty in terms of a 3-dimensional equivariant cohomology class (5)

Obs(M,ρ) ∈ H3
Γ
(G,Z(M)∗) ,

of the Γ-group G with coefficients in the equivariant G-module Z(M)∗, where the G-action
is via ρ (i.e., xu = ρ(x)u). We refer to this invariant as the obstruction of the equivariant
G-kernel, and it is not hard to see that the general construction (6) of an equivariant
3-cocycle cρ, representing in this case the cohomology class Obs(M,ρ), particularizes as
follows. In each automorphism class ρ(x), x ∈ G, let us choose an automorphism fx of
M ; in particular, we select f1 = id

M
. Since fxfy ∈ ρ(xy) and fσx ∈ σρ(x), for x, y ∈ G

and σ ∈ Γ, we can select elements ϕ(x, y), ϕ(x, σ) ∈M∗, such that fxfy = Cϕ(x,y) fxy and
σfx = Cϕ(x,σ) fσx, with ϕ(x, 1) = 1 = ϕ(1, y) = ϕ(1, σ). Then, the pair of maps

f : G→ Aut(M), ϕ : G2 ∪ (G× Γ) →M∗ ,

satisfies conditions (13) and (14), although (15)-(17) need not be satisfied. The measure-
ment of such a lack is precisely given by the equivariant 3-cocyle

cρ : G3 ∪ (G2 × Γ) ∪ (G× Γ2) −→ Z(M)∗

determined by the equations:

cρ(x, y, z) ϕ(x, y) ϕ(xy, z) = fx(ϕ(y, z))ϕ(x, yz) ,

cρ(x, y, σ) σϕ(x, y) ϕ(xy, σ) = ϕ(x, σ) fσx(ϕ(y, σ)) ϕ(σx, σy) ,

cρ(x, σ, τ) ϕ(x, στ) = σϕ(x, τ) ϕ(τx, σ) ,

(23)

for x, y, z ∈ G, σ, τ ∈ Γ.
If Obs(M,ρ) = 0, so that there exists an equivariant crossed product extension Σ(f, ϕ)

of M by G that realizes ρ, then Theorem 2.2 ii) states the existence of a bijection
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H2
Γ

(
G,Z(M)∗

) ∼= ExtΓ
(
G, (M,ρ)

)
. In this case, such a bijection associates to any equiv-

ariant 2-cohomology class represented by a 2-cocycle c : G2 ∪ (G × Γ) → Z(M)∗, the
equivalence class of the equivariant crossed product monoid extension Σ(f, c · ϕ), where
(c · ϕ)(x, y) = c(x, y)ϕ(x, y) and (c ·ϕ)(x, σ) = c(x, σ)ϕ(x, σ), for all x, y ∈ G and σ ∈ Γ.

In summary, we have the following classification theorem for equivariant perfect Schreier
extensions of a Γ-monoid by a Γ-group.

3.2. Theorem. Let M be a Γ-monoid and G a Γ-group.
(i) There is a canonical partition ExtΓ(G,M) =

⊔
ρ ExtΓ

(
G, (M,ρ)

)
, where, for each

Γ-equivariant homomorphism ρ : G → Out(M), Ext
Γ

(
G, (M,ρ)

)
is the set of classes of

equivariant extensions of the equivariant G-kernel (M,ρ).

(ii) Each equivariant G-kernel (M,ρ) invariably determines a 3-dimensional cohomol-
ogy class Obs(M,ρ) ∈ H3

Γ

(
G,Z(M)∗

)
.

(iii) An equivariant G-kernel (M,ρ) is realizable, that is, ExtΓ
(
G, (M,ρ)

) 
= ∅, if and
only if its obstruction Obs(M,ρ) vanishes.

(iv) If the obstruction of an equivariant G-kernel, (M,ρ), vanishes, then there is a
bijection ExtΓ

(
G, (M,ρ)

) ∼= H2
Γ

(
G,Z(M)∗

)
.

To end this section, we should remark that the treatment of group extensions with
operators as expounded in [6] (cf. [37]), is particularized from the above by requiring
simply that the Γ-monoid M be a Γ-group.

4. Equivariant extensions of RINGS-GROUPS

Let us briefly recall from [25] that a RING-GROUP is a pair [R,M ] consisting of a unitary
ring R together with a subgroup M of the group R∗ of all units in R. A morphism of
RINGS-GROUPS f : [R,M ] → [S,N ] is then a ring homomorphism f : R → S such
that f(M) ⊆ N . If [R,M ] is any RING-GROUP and G is a group, then an extension of
[R,M ] by G is a pair

E =
(
[R,M ]

i� [S,N ], N
p
� G

)
, (24)

in which i is an injective RING-GROUP morphism and p is a surjective group homomor-
phism, such that the following conditions hold:

i) The action of N on S by inner automorphisms is restricted to an action of N on R.

ii) M
i� N

p
� G is an extension of groups.

iii) S decomposes as a direct sum of subgroups S = ⊕x∈GSx, where, for each x ∈ G,
Sx = Rp−1(x)R is the (R,R)-subbimodule of S generated by the set of elements of
N mapped by p to x.
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For any group M , isomorphism classes of extensions of the RING-GROUP [Z(M),M ]
by a group G are in bijection with isomorphism classes of group extensions of M by G;
while for any ring R, isomorphism classes of extensions of the RING-GROUP [R,R∗] by
a group G are in bijection with isomorphism classes of crossed product rings of R by G
[25, Example 1.6].

Here, we deal with RINGS-GROUPS with operators and their equivariant extensions
by a group with the same operators. Let Γ be any fixed group. Then a Γ-RING-GROUP
is a RING-GROUP [R,M ] on which Γ acts by RING-GROUP automorphisms, that is,
a homomorphism Γ → Aut[R,M ] is given. Note that R is then a Γ-ring and M is an
equivariant subgroup of the Γ-group of units R∗.

Given a Γ-RING-GROUP [R,M ] and a Γ-group G, then an equivariant extension of
[R,M ] by G is an extension E of the RING-GROUP [R,M ] by the group G, say (24), in
which [S,N ] is endowed with a Γ-action, that is, [S,N ] is a Γ-RING GROUP, such that
both maps i : R � S and p : N � G are equivariant. We denote by

ExtΓ
(
G, [R,M ]

)
the set of isomorphism classes of Γ-equivariant extensions of [R,M ] by G.

Next we show a cohomological solution for the problem of classifying all equivariant
RING-GROUP extensions for any prescribed pair

(
G, [R,M ]

)
. The treatment is parallel

to the known theory [24, 25] in the case in which Γ = 1, the trivial group. However,
the proofs here bear only an incidental similarity with those by Hacque, since we derive
the results on equivariant RING-GROUP extensions from the results obtained on the
classification of graded categorical groups, that is, from Theorem 2.2.

Our conclusions can be summarized as follows.

If [R,M ] is a Γ-RING-GROUP, then the group Aut[R,M ] of all RING-GROUP au-
tomorphisms of [R,M ] is also a Γ-group under the diagonal Γ-action, σf : r 	→ σf(σ

−1
r),

and the map C : M → Aut[R,M ] sending each element m ∈ M into the inner auto-
morphism given by conjugation with m, Cm : r 	→ mrm−1, is a Γ-group homomorphism.
Then, the centre-group [24, Definition 2.3] of [R,M ], Z[R,M ] = Ker(C), and the group of
outer automorphisms Out[R,M ] = Aut[R,M ]/In[R,M ] = Coker(C), are both Γ-groups.
Furthermore, Z[R,M ] is a Γ-equivariant Out[R,M ]-module with action [f ]m = f(m).

If (24) is any equivariant extension of the Γ-RING-GROUP [R,M ] by the Γ-group G,
then the assignment to each n ∈ N of the operation of conjugation by n in S restricted
to R, that is, the mapping n 	→ ρn ∈ Aut[R,M ] such that iρn(r) = n i(r)n−1, r ∈ R,
induces an equivariant homomorphism (which depends only on the isomorphism class of
E),

ρ
[E]

: G→ Out[R,M ].

A pair
(
[R,M ], ρ : G → Out[R,M ]

)
, where [R,M ] is a Γ-RING-GROUP and ρ is an

equivariant homomorphism of groups, is termed an equivariant collective character of the
Γ-group G in [R,M ] (cf. [25, Section 2]).

We state the following theorem:
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4.1. Theorem. Let [R,M ] be a Γ-RING-GROUP and let G be a Γ-group.
(i) There is a canonical partition

ExtΓ
(
G, [R,M ]

)
=

⊔
ρ

ExtΓ
(
G, [R,M ]; ρ

)
,

where, for each equivariant collective character ρ : G → Out[R,M ], ExtΓ
(
G, [R,M ]; ρ

)
is the set of isomorphism classes of equivariant extensions E that realize ρ, that is, such
that ρ

[E]
= ρ.

(ii) Each equivariant collective character invariably determines a 3-dimensional equiv-
ariant cohomology class

T(ρ) ∈ H3
Γ

(
G,Z[R,M ]

)
,

of G with coefficients in the centre-group of the RING-GROUP (with respect to the Γ-
equivariant G-module structure on Z[R,M ] obtained via ρ). This invariant is called the
“Teichmüller obstruction” of ρ.

(iii) An equivariant collective character ρ is realizable, that is, ExtΓ
(
G, [R,M ]; ρ

) 
= ∅,
if and only if its obstruction vanishes, that is, T(ρ) = 0.

(iv) If the obstruction of an equivariant collective character ρ : G → Out[R,M ] van-
ishes, then there is a bijection

ExtΓ
(
G, [R,M ]; ρ

) ∼= H2
Γ

(
G,Z[R,M ]

)
.

As we will show later, Theorem 4.1 is a specialization of Theorem 2.2 for the particular
Γ-graded categorical group H = HolΓ[R,M ], the holomorph graded categorical group of
the Γ-RING-GROUP [R,M ], which is defined below similarly to the holomorph graded
categorical group of a Γ-monoide (see Section 3). The objects of HolΓ[R,M ] are the
elements of the Γ-group Aut[R,M ]. A morphism of grade σ ∈ Γ from f to g is a pair
(m,σ) : f → g, where m ∈ M , with σf = Cm g. The composition of morphisms is
given by equality (9), the graded tensor product is given by equality (10) and the graded

unit I : Γ → HolΓ[R,M ] is defined by I(σ) = id
R

(1,σ)−→ id
R
. The associativity and unit

constraints are identities.

We develop next the device of mixed crossed products for equivariant extensions of
RINGS-GROUPS by groups, such as Hacque did in [25] in the non-equivariant case. These
constructions allow us to show how the graded monoidal functors disΓG → HolΓ[R,M ]
are the appropriate systems of data to construct the manifold of all equivariant extensions
of [R,M ] by G.

4.2. Theorem. (Structure of equivariant extensions of RINGS-GROUPS) For any
Γ-RING-GROUP [R,M ] and Γ-group G, there is a bijection

Σ :
[
disΓG,HolΓ[R,M ]

] ∼= ExtΓ
(
G, [R,M ]

)
, (25)
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between the set of homotopy classes of graded monoidal functors from disΓG to HolΓ[R,M ]
and the set of equivalence classes of equivariant extensions of [R,M ] by G.

Proof. This is quite parallel to the proof of Theorem 3.1, to which we refer for some
details. First, observe that the data describing a strictly unitary graded monoidal functor
(F,Φ) : disΓG→ HolΓ[R,M ] consist of a pair of maps (f, ϕ), where

f : G→ Aut[R,M ], ϕ : G2 ∪ (G× Γ) →M,

such that we write F
(
σ : x→ y) = (ϕ(x, σ), σ) : fx → fy and Φx,y = (ϕ(x, y), 1) : fxfy →

fxy, for all x, y ∈ G and σ ∈ Γ. Then, the conditions of (F,Φ) being a graded monoidal
functor in terms of (f, ϕ), are precisely those given by the five equations (13)-(17). A pair
(f, ϕ) describing a graded monoidal functor from disΓG to HolΓ[R,M ], is what we call
an equivariant factor set, or a non-abelian 2-cocycle of a Γ-group G with coefficients in a
Γ-RING-GROUP [R,M ]. Further, if (f ′, ϕ′) is another factor set describing the graded
monoidal functor (F ′,Φ′) : disΓG → HolΓ[R,M ], then any homotopy θ : F → F ′ is given
by a map g : G → M , such that one writes θx = (g(x), 1) : fx → f ′

x, for all x ∈ G. In
terms of this map g, the conditions for θ being a homotopy are those described by the
four equations (18)-(21).

Let us stress that when Γ = 1, the trivial group, then a factor set is exactly a Hacque’s
mixed system of factor sets for a RING-GROUP extension of [R,M ] by G [25]. Partic-
ularly, if M = R∗, then such a pair (f, ϕ) is just a factor set for a crossed product ring
of R by G (cf. [29]). Furthermore, for M and G any two Γ-groups, if one considers the
Γ-RING-GROUP [R,M ] = [Z(M),M ], then a pair (f, ϕ) is a Schreier system of factor
sets for an equivariant group extension of M by G (cf. [6]).

Every equivariant factor set (f, ϕ) provides a Γ-equivariant RING-GROUP extension
of [R,M ] by G,

Σ(f, ϕ) :

(
[R,M ]

i� [R

f,ϕ
G,M×

f,ϕ
G], M×

f,ϕ
G

p
� G

)
, (26)

which we term an equivariant mixed crossed product extension. In it, the crossed product
ring R


f,ϕ
G = ⊕xR×{x} is the free left R-module with basis {(1, x), x ∈ G}, with

multiplication according to the rule (r, x) (s, y) = (r fx(s)ϕ(x, y), xy), and the crossed
product group M×

f,ϕ
G is the subgroup M × G ⊆ (

R

f,ϕ
G

)∗
. The Γ-action on [R


f,ϕ

G,M×
f,ϕ
G] is given by σ(r, x) = (σr ϕ(x, σ), σx) and the equivariant homomorphisms i

and p are defined by i(r) = (r, 1) and p(r, x) = x, respectively. Note that, for each x ∈ G,
Rp−1(x)R = R× {x}.

If (f ′, ϕ′) is another equivariant factor set such that there is an equivariant RING-
GROUP isomorphism, say g : [R


f ′,ϕ′G,M×
f ′,ϕ′G] → [R


f,ϕ
G,M×

f,ϕ
G], establishing an

isomorphism between the corresponding equivariant mixed crossed product extensions
Σ(f ′, ϕ′) and Σ(f, ϕ), then we can write g(r, x) = (rg(x), x) for a map g : G→M sat-
isfying the equalities (18)-(21). And conversely, the existence of a map g : G → M
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satisfying such equations implies that Σ(f ′, ϕ′) and Σ(f, ϕ) are isomorphic equivariant
RING-GROUP extensions, just by the map g : (r, x) 	→ (r g(x), x). Hence, the equivariant
mixed crossed product construction induces an injective map Σ :

[
disΓG,HolΓ[R,M ]

] −→
ExtΓ

(
G, [R,M ]

)
.

To complete the proof of the theorem, it only remains to prove that every equivariant

extension of [R,M ] by G, say E =
(
[R,M ]

i� [S,N ], N
p
� G

)
, has an associated equivari-

ant factor set, that is, it is isomorphic to an equivariant mixed crossed product extension
Σ(f, ϕ) for some (f, ϕ) as above. To do so, we assume that i is the inclusion map, and,
for each x ∈ G, let us choose a representative ux ∈ N , with u1 = 1. Then, there are
unique elements ϕ(x, y), ϕ(x, σ) ∈M , such that ux uy = ϕ(x, y)uxy and σux = ϕ(x, σ)uσx.
Moreover, each x ∈ G induces an automorphism fx of [R,M ], fx : r 	→ ux r u

−1
x . The pair

of maps so defined (f : G → Aut[R,M ], ϕ : G2 ∪ (G× Γ) → M) is actually an equivari-
ant factor set, which we recognize as an equivariant factor set for the given equivariant
RING-GROUP extension by the existence of the Γ-equivariant RING-GROUP isomor-
phism g : [R


f,ϕ
G,M×

f,ϕ
G] → [S,N ],

∑
x(rx, x) 	→ ∑

x rx ux. It is straightforward to
see that g is an equivariant RING-GROUP homomorphism. To prove that it is actu-
ally an isomorphism, let us recall that S = ⊕xSx with Sx = Rp−1(x)R. Since for each
x ∈ G, p−1(x) = uxM = Mux, we have Sx = RuxMR = uxRMR = uxR = Rux. It
follows that the set {ux, x ∈ G} is a basis of S as a left R-module and therefore the map
g : R


f,ϕ
G→ S is a bijection, which clearly restricts to a bijection between M×

f,ϕ
G and

N .

The bijection (25) is all one needs to obtain, from Theorem 2.2, the classification of
equivariant RING-GROUP extensions as stated in Theorem 4.1. Indeed, for any Γ-RING-
GROUP [R,M ], the homotopy groups of the Γ-graded categorical group HolΓ[R,M ] are

π0HolΓ[R,M ] = Coker
(
M

C−→ Aut[R,M ]
)

= Out[R,M ],

π1HolΓ[R,M ] = Ker
(
M

C−→ Aut[R,M ]
)

= Z[R,M ],

and the Teichmüller obstruction T(ρ) ∈ H3
Γ

(
G,Z[R,M ]

)
in part (ii) of Theorem 4.1,

of any equivariant collective character ρ : G → Out[R,M ], is defined to be precisely the
cohomology class Obs(ρ) in (5) for the particular graded categorical group here considered
H = HolΓ[R,M ].

Moreover, for any factor set (f, ϕ) describing a graded monoidal functor F : disΓG→
HolΓ[R,M ], we have π0F = ρ

[Σ(f,ϕ)]
. Therefore, bijection (25) provides, by restriction,

bijections Σ :
[
disΓG,HolΓ[R,M ]; ρ

] ∼= ExtΓ
(
G, [R,M ]; ρ

)
, for any equivariant collective

character ρ : G → Out[R,M ]. Hence, parts (iii) and (iv) of Theorem 4.1 follow from
Theorem 2.2.

For any given equivariant collective character ρ : G → Out[R,M ], the general con-
struction of a representative equivariant 3-cocycle cρ of the Teichmüller obstruction T(ρ)
in (6) works in this case as follows. In each automorphism class ρ(x), x ∈ G, let us
choose an automorphism fx of [R,M ]; in particular, select f1 = id

R
. Then, for x, y ∈ G
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and σ ∈ Γ, we can select elements ϕ(x, y), ϕ(x, σ) ∈ M such that fxfy = Cϕ(x,y) fxy and
σfx = Cϕ(x,σ) fσx, with ϕ(x, 1) = 1 = ϕ(1, y) = ϕ(1, σ). Then, the equivariant 3-cocycle

cρ : G3 ∪ (G2 × Γ) ∪ (G× Γ2) −→ Z[R,M ]

is determined by the three equations (23).
If T(ρ) = 0, so that there exists an equivariant mixed crossed product extension

Σ(f, ϕ) that realizes ρ, then the bijection ExtΓ
(
G, [R,M ]; ρ

) ∼= H2
Γ

(
G,Z[R,M ]

)
associates

to any 2-cohomology class represented by a 2-cocycle c : G2 ∪ (G × Γ) → Z[R,M ], the
isomorphism class of the equivariant mixed crossed product Σ(f, c·ϕ), where (c·ϕ)(x, y) =
c(x, y)ϕ(x, y) and (c · ϕ)(x, σ) = c(x, σ)ϕ(x, σ), for all x, y ∈ G and σ ∈ Γ.

As a final comment here, we shall stress that, similarly as in the non-equivariant case
(cf. [25]), the theory presented of equivariant RING-GROUP extensions particularizes on
the one hand to the theory of equivariant extensions of groups with operators as stated
in [6] (just by considering the RINGS-GROUPS with operators [Z(M),M ] for any group
with operators M), and, on the other hand, to the theory of crossed product rings with
operators (simply by considering the RINGS-GROUPS with operators [R,R∗] for any ring
with operators R).

5. Graded Clifford systems with operators

Throughout this section, k is a unitary commutative ring and all algebras are unitary k-
algebras. Further, Γ is a fixed group of operators and a Γ-algebra is an algebra provided
with a Γ-action by automorphisms (σ, r) 	→ σr.

A graded Clifford system (over k) is a triple
(
S, {Sx}x∈G, G

)
, where S is an algebra, G

is a group and {Sx}x∈G is a family of k-submodules of S, one for each x ∈ G, such that
S =

⊕
x∈G Sx and SxSy = Sxy for all x, y ∈ G. A morphism of graded Clifford systems is

a pair (h, α) :
(
S, {Sx}x∈G, G

) → (
S ′, {S ′

x}x∈G′ , G′), where h : S → S ′ is a homomorphism
of algebras and α : G → G′ is a homomorphism of groups, such that h(Sx) ⊆ S ′

α(x) for

all x ∈ G. Graded Clifford systems were introduced and applied by E. Dade [12] to
develop Clifford’s theory axiomatically, but they have also been extensively studied with
the terminology of strongly graded algebras [13] or with that of generalized crossed product
algebras [32]. Our goal in this section is the classification of graded Clifford systems
S on which a group of operators Γ acts by automorphisms; that is, a homomorphism
Γ → Aut

(
S, {Sx}x∈G, G

)
is given. In such a case, we refer to

(
S, {Sx}x∈G, G

)
as a graded

Γ-Clifford system.
Whenever

(
S, {Sx}x∈G, G

)
is a graded Γ-Clifford system, then G is a Γ-group and S

is a Γ-algebra. Furthermore, the 1-component S1 is a Γ-subalgebra of S and then it is
natural to see S as an equivariant extension of the Γ-algebra S1 by the Γ-group G. More
precisely, we establish the notion below:

5.1. Definition. Let R be a Γ-algebra and G a Γ-group. A (G,R)-graded Γ-Clifford
system is a pair (S, j

S
), where S =

(
S, {Sx}x∈G, G

)
is a graded Γ-Clifford system such that
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the Γ-action on G is the given one, that is, σSx = Sσx, and j
S

: R ∼= S1 is an isomorphism
of Γ-algebras.

The most basic example is the group algebra R(G) =
⊕

x∈GR × {x} , which is a
Γ-algebra with the action σ(r, x) = (σr, σx), but also, equivariant crossed products of
Γ-algebras by Γ-groups (considered in Subsection 5.4), yield examples of (G,R)-graded
Γ-Clifford systems.

If (S, jS) and (T , jT ) are two (G,R)-graded Γ-Clifford systems, by a morphism h :
(S, jS) → (T , jT ) we mean a Γ-equivariant homomorphism of algebras h : S → T , so
that h(σs) = σh(s) for σ ∈ Γ and s ∈ S, which is grade-preserving, in the sense that
h(Sx) ⊆ Tx for all x ∈ G, and such that hj

S
= j

T
. It follows from [13, Corollary 2.10]

that such a morphism is always an isomorphism and

CliffΓ
k (G,R)

will denote the set of isomorphism classes of (G,R)-graded Γ-Clifford systems, for any
prescribed Γ-algebra R and Γ-group G.

The general results about abstract graded categorical groups can be used now to
obtain an appropriate treatment of the equivariant graded Clifford systems. The key for
such a treatment lies in the observation we will detail below that giving a (G,R)-graded
Γ-Clifford system is essentially the same as giving a Γ-graded monoidal functor from the
discrete Γ-graded categorical group disΓG to the Γ-graded Picard categorical group, of the
Γ-algebra R, denoted here by

PicΓ
k(R) ,

which is an example of Γ-graded categorical group originally considered by Fröhlich and
Wall in [20]. This graded categorical group, canonically built from any Γ-algebra R, has,
as objects, the invertible (R,R)-bimodules over k. A morphism P → P ′ in PicΓ

k(R), of
grade σ ∈ Γ, is a pair (ϕ, σ), where ϕ : P

∼→ P ′ is an isomorphism of k-modules with
ϕ(rp) = σr ϕ(p) and ϕ(pr) = ϕ(p) σr for all r ∈ R and p ∈ P . The composition of (ϕ, σ)
with another morphism (ϕ′, σ′) : P ′ → P ′′ is given by (ϕ′, σ′)(ϕ, σ) = (ϕ′ϕ, σ′σ). The
graded monoidal product ⊗ : PicΓ

k(R)×
Γ
PicΓ

k(R) → PicΓ
k(R) is defined by the usual tensor

product of bimodules

(P
(ϕ,σ) �� P ′) ⊗ (Q

(ψ,σ) �� Q′) = (P ⊗R Q
(ϕ⊗Rψ,σ) �� P ′ ⊗R Q

′) ,

and the graded unit I : Γ → PicΓ
k(R) is defined by I(σ) = (σ, σ) : R → R, r 	→ σr.

The associativity and unit 1-graded constraints are the usual isomorphisms for the tensor
product of bimodules.

Now, suppose that a Γ-group G and a Γ-algebra R are given. Then, a strictly unitary
Γ-graded monoidal functor (F,Φ) : disΓG → PicΓ

k(R) consists of: i) a family of invertible
(R,R)-bimodules Fx, x ∈ G; ii) isomorphisms of k-modules

Fx,σ : Fx
∼→ Fσx, σ ∈ Γ, x ∈ G, (27)
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such that Fx,σ(r a) = σr Fx,σ(a) and Fx,σ(a r) = Fx,σ(a)
σr, for any r ∈ R and a ∈ Fx; and

iii) isomorphisms of (R,R)-bimodules

Φx,y : Fx ⊗R Fy
∼→ Fxy, x, y ∈ G, (28)

such that the following conditions hold:

F1 = R, Fx,1 = idFx , F1,σ = idR, Φx,1 : a⊗ r 	→ a r, Φ1,y : r ⊗ a 	→ r a,

Fx,τσ = F σx,τ Fx,σ ,

Φx,yz (idFx ⊗R Φy,z) = Φxy,z (Φx,y ⊗R idFz) ,

Fxy,σ Φx,y = Φσx,σy (Fx,σ ⊗R Fy,σ) .

Thus, such a graded monoidal functor should be termed an equivariant factor set,
since when Γ = 1, this is exactly a factor set in the sense of Kanzaki [27]. Indeed, for any
graded monoidal functor (F,Φ), the family of the invertible (R,R)-bimodules Fx, x ∈ G,
together with the isomorphisms of bimodules Φx,y, x, y ∈ G, is actually a Kanzaki factor
set and so (F,Φ) gives rise to a generalized crossed product algebra in his sense; that is,
Σ(F,Φ) =

⊕
x∈G Fx, where the product of the elements a ∈ Fx and b ∈ Fy is defined

by a b = Φx,y(a ⊗ b). Moreover, thanks to the isomorphisms Fx,σ, the group Γ acts on
Σ(F,Φ) by the rule σa = Fx,σ(a) if a ∈ Fx. In this way, Σ(F,Φ) =

(
Σ(F,Φ), {Fx}, G

)
,

together with the identity R = F1, is a (G,R)-graded Γ-Clifford system, which we refer to
as the generalized crossed product (G,R)-graded Γ-Clifford system with equivariant factor
set (F,Φ).

Suppose now that F ′ = (F ′,Φ′) : dis
Γ
G → PicΓ

k(R) is another strictly unitary graded
monoidal functor. Then, a homotopy θ : (F,Φ) → (F ′,Φ′) consists of a family of (R,R)-
bimodule isomorphisms θx : Fx

∼→ F ′
x, x ∈ G, satisfying that θ1 = idR, θσx Fx,σ =

F ′
x,σ θx and θxy Φx,y = Φ′

x,y (θx ⊗R θy), for all x, y ∈ G and σ ∈ Γ. Therefore, it is
clear that giving such a homotopy is equivalent to giving an isomorphism of Γ-algebras,
Σ(F,Φ)

∼−→ Σ(F ′,Φ′), a 	→ θx(a), a ∈ Fx, which establishes an isomorphism of (G,R)-
graded Γ-Clifford systems θ : (Σ(F,Φ), idR)

∼−→ (Σ(F ′,Φ′), idR).

Moreover, any (G,R)-graded Γ-Clifford system (S, j
S
) , S =

(
S, {Sx}x∈G, G

)
, is ac-

tually isomorphic to a generalized crossed product (G,R)-graded Γ-Clifford system for a
certain equivariant factor set (F,Φ). Indeed, up to an isomorphism, we can assume that
R = S1 and j

S
= idR. By [32, Proposition 2.5], for any x, y ∈ G, the canonical multiplica-

tion map Φx,y : Sx⊗R Sy ∼= Sxy, a⊗ b 	→ a b, is a (R,R)-bimodule isomorphism and each
component Sx is an invertible (R,R)-bimodule. Furthermore, the Γ-action on S deter-
mines, for all x ∈ G and σ ∈ Γ, isomorphisms of k-modules Fx,σ : Sx ∼= Sσx, a 	→σa, and it
is straightforward to see that, in this way, we have a strictly unitary graded monoidal func-
tor (F,Φ) : disΓG→ PicΓ

k(R), with Fx = Sx for each x ∈ G, whose associated generalized
crossed product (G,R)-graded Γ-Clifford system (Σ(F,Φ), idR) is exactly (S, idR).

All in all, we state the following:
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5.2. Theorem. For any Γ-algebra R and any Γ-group G, the mapping carrying any
strictly unitary graded monoidal functor to the associated generalized crossed product
(G,R)-graded Γ-Clifford system, induces a bijection

Σ :
[
disΓG,PicΓ

k(R)
] ∼= CliffΓ

k (G,R) , (29)

between the set of homotopy classes of graded monoidal functors from disΓG to PicΓ
k(R)

and the set of isomorphism classes of (G,R)-graded Γ-Clifford systems.

Now, let us remark that, for any Γ-algebra R, the homotopy groups of the Γ-graded
categorical group PicΓ

k(R) are:

π0PicΓ
k(R) = Pick(R), the Γ-group of isomorphism classes [P ] of invertible (R,R)-

bimodules over k, where the multiplication is induced by the tensor product, [P ] [Q] =
[P ⊗R Q], and the Γ-action is given by

σ[P ] = [σPσ] , (30)

where σPσ denotes the invertible (R,R)-bimodule which is the same k-module as P
with R-actions r · p = σ−1

r p and p · r = p σ−1
r, for r ∈ R and p ∈ P ;

π1PicΓ
k(R) = Z(R)∗, the Γ-equivariant Pick(R)-module of all units in the center of R. The

Γ-action is given by restriction of the one on R and the action of Pick(R) on Z(R)∗

is given by the restriction to Z(R)∗ of Bass’ homomorphism Pick(R) → Autk(Z(R))
[1], that is, for each [P ] ∈ Pick(R) and u ∈ Z(R)∗, [P ]u is the element in Z(R)∗

uniquely determined by the equality [P ]u p = p u for all p ∈ P .

Every (G,R)-graded Γ-Clifford system (S =
(
S, {Sx}x∈G, G

)
, j

S
) induces a Γ-equivariant

homomorphism (which depends only on its isomorphism class [S])

χ[S,j
S

] : G→ Pick(R), x 	→ [Sx] , x ∈ G .

Hence, there is a canonical map

χ : CliffΓ
k (G,R) −→ HomΓ(G,Pick(R)) , (31)

where HomΓ(G,Pick(R)) is the set of Γ-equivariant group homomorphisms of G into
Pick(R), which clearly makes this diagram commutative:

[
disΓG,PicΓ

k(R)
] Σ ��

π0 �����������������
CliffΓ

k (G,R)

χ
		��������������

HomΓ(G,Pick(R)) .

(32)

We say that any Γ-equivariant group homomorphism ρ : G→ Pick(R) is an equivariant
generalized collective character of the Γ-group G in the Γ-algebra R, and we say that a



SOME ALGEBRAIC APPLICATIONS OF GRADED CATEGORICAL GROUP THEORY 237

(G,R)-graded Γ-Clifford system (S, j
S
) realizes such an equivariant generalized collective

character ρ whenever χ[S,j
S

] = ρ. The map χ provides a partitioning

CliffΓ
k (G,R) =

⊔
ρ

CliffΓ
k (G,R; ρ) ,

where CliffΓ
k (G,R; ρ) is the set isoclasses of (G,R)-graded Γ-Clifford systems that realize

each Γ-equivariant generalized collective character ρ : G → Pick(R). Due to the com-
mutativity of triangle (32), bijection (29) restricts to bijections Σ :

[
disΓG,PicΓ

k(R); ρ
] ∼=

CliffΓ
k (G,R; ρ), and then Theorem 2.2 i) shows here a necessary and sufficient condition

for the set CliffΓ
k (G,R; ρ) to be non-empty in terms of a 3-dimensional equivariant coho-

mology class (5)
T(ρ) ∈ H3

Γ
(G,Z(R)∗) (33)

of the Γ-group G with coefficients in the equivariant G-module Z(R)∗, where the G-action
is via ρ (i.e., xu = ρ(x)u). We refer to this invariant as the Teichmüller obstruction of ρ
since its construction, outlined below, has a clear precedent in the Teichmüller cocycle
map BrG(R) → H3(G,R∗), defined for any finite Galois field extension R/k with group G.
The general construction (6) of an equivariant 3-cocycle cρ representing the cohomology
class T(ρ) particularizes as follows. In each isomorphism class ρ(x), x ∈ G, let us choose
an invertible (R,R)-bimodule Px; in particular, select P1 = R. Since ρ is a Γ-equivariant
homomorphism, we can select (R,R)-bimodule isomorphisms Φx,y : Px ⊗R Py ∼= Pxy and
Φx,σ : σ(Px)σ ∼= Pσx for every x, y ∈ G and σ ∈ Γ, chosen as the canonical ones whenever
either x, y or σ are identities. For any three elements x, y, z ∈ G, the isomorphisms of
(R,R)-bimodules Φxy,z(Φx,y⊗R idPz) and Φx,yz(idPx ⊗R Φy,z) from Px⊗R Py⊗R Pz to Pxyz
need not coincide, but then there is (cf. [9, Lemma 3.1] for example) a unique element
cρ(x, y, z) ∈ Z(R)∗ such that

cρ(x, y, z) Φxy,z

(
Φx,y(px ⊗ py) ⊗ pz

)
= Φx,yz

(
px ⊗ Φy,z(py ⊗ pz)

)
,

for all px ∈ Px, py ∈ Py and pz ∈ Pz. Analogously, for any x, y ∈ G and σ, τ ∈ Γ, there
are unique elements cρ(x, y, σ) and cρ(x, σ, τ) in Z(R)∗ such that

cρ(x, y, σ) Φσx,σy

(
Φx,σ(px) ⊗ Φy,σ(py)

)
= Φxy,σ

(
Φx,y(px ⊗ py)

)
cρ(x, σ, τ) Φx,στ (px) = Φτx,σ

(
Φx,τ (px)

)
.

The resulting map is exactly the equivariant 3-cocycle

cρ : G3 ∪ (G2 × Γ) ∪ (G× Γ2) −→ Z(R)∗. (34)

If T(ρ) = 0, then Theorem 2.2 ii) states the existence of a bijection

H2
Γ

(
G,Z(R)∗

) ∼= CliffΓ
k

(
G,R; ρ

)
, (35)

that can be described as follows. Once we have chosen any (G,R)-graded Γ-Clifford system(
(S, {Sx}x∈G, G), j

S

)
that realizes ρ, then the bijection associates to any equivariant 2-

cohomology class represented by a 2-cocycle c : G2 ∪ (G × Γ) → Z(R)∗ the class of the
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(G,R)-graded Γ-Clifford system
(
(c
S, {Sx}x∈G, G), j

S

)
, where c
S is the same k-module

as S with product sx 
 sy = c(x, y)sxsy and Γ-action σ 
 sx = c(x, σ) σx, for all sx ∈ Sx,
sy ∈ Sy and σ ∈ Γ.

In summary, we have the following classification theorem:

5.3. Theorem. Let R be a Γ-algebra and G a Γ-group.
(i) There is a canonical partition CliffΓ

k (G,R) =
⊔
ρ CliffΓ

k (G,R; ρ), where ρ varies in
the range of the set of Γ-equivariant generalized collective characters of G in R.

(ii) Each Γ-equivariant generalized collective character ρ invariably determines a 3-
dimensional cohomology class T(ρ) ∈ H3

Γ

(
G,Z(R)∗

)
of G with coefficients in the group

of units of the centre of R (with respect to the equivariant G-module structure on Z(R)∗

obtained via ρ).

(iii) An equivariant generalized collective character ρ : G→ Pick(R) is realizable, that
is, CliffΓ

k (G,R; ρ) 
= ∅, if, and only if, its Teichmüller obstruction vanishes.

(iv) If the obstruction of an equivariant generalized collective character, ρ, vanishes,
then there is a bijection

CliffΓ
k (G,R; ρ) ∼= H2

Γ

(
G,Z(R)∗

)
.

In the three next subsections we shall emphasize the interest of Theorem 5.3 by ex-
plaining some of its applications.

5.4. Equivariant crossed product algebras. If R is any Γ-algebra and G is
a Γ-group, then a Γ-equivariant crossed product algebra of R by G is a (G,R)-graded
Γ-Clifford system

(
(S, {Sx}x∈G, G), j : R ∼= S1

)
such that every component Sx, x ∈ G, is

a free left R-module of rank one. Let

ExtΓ
k (G,R)

denote the set of isomorphism classes of equivariant crossed product algebras of R by G.
Thus, ExtΓ

k (G,R) ⊆ CliffΓ
k (G,R), and we shall characterize this subset of CliffΓ

k (G,R) by
means of equivariant collective characters as follows.

Let us recall Bass’ group exact sequence [1, Chap. II, (5.4)]

1 → Z(R)∗ → R∗ C→ Autk(R)
δ→ Pick(R) , (36)

in which C maps each unit u of R to the inner automorphism Cu : r 	→ u r u−1, and δ
carries each algebra automorphism f of R to the class of the invertible (R,R)-bimodule
Rf , the underlying left R-module R with the right R-action via f , that is, r · r′ = r f(r′).
Actually, since R is a Γ-algebra, sequence (36) is of Γ-groups, where Γ acts both on Z(R)∗

and R∗ by restriction, on Autk(R) by the diagonal action, that is, σf : r 	→ σ(f(σ
−1
r)),

and the Γ-action on Pick(R) is the one considered before, that is, σ[P ] = [σPσ], where σPσ
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is the same k-module as P with R-actions r · p = σ−1
r p and p · r = p σ−1

r. To see that δ
is a Γ-equivariant map, let us observe that the map r 	→ σ−1

r establishes an isomorphism
of (R,R)-bimodules Rσf

∼= σ(Rf )σ, for all f ∈ Autk(R) and σ ∈ Γ, and so, δ(σf) = σδ(f).
Then, there is an induced Γ-group embedding

Outk(R)
δ
↪→ Pick(R) ,

of the group of outer automorphisms of the algebra R, Outk(R) = Autk(R)/In(R), into
the Picard group Pick(R). By [1, Chap. II, (5.3)] we know the image of δ, namely

Im(δ) =
{
[P ] ∈ Pick(R) | P ∼= R as left R-modules

}
,

and therefore we have a cartesian square

ExtΓ
k (G,R)

� � in ��

��

CliffΓ
k (G,R)

χ

��
HomΓ

(
G,Outk(R)

)
� � δ∗ �� HomΓ

(
G,Pick(R)

)
,

(37)

where χ is the map (31). If any Γ-equivariant homomorphism

ρ : G→ Outk(R)

is termed a Γ-equivariant collective character of the Γ-group G in the Γ-algebra R, then
equivariant crossed product algebras of R by G are exactly those (G,R)-graded Γ-Clifford
systems that realize equivariant collective characters. The equivariant collective character

χ
[S,j]

: G→ Outk(R)

realized by any equivariant crossed product algebra of R by G,
(
(S, {Sx}x∈G, G), j : R ∼=

S1

)
, is built as follows. Since each component Sx is an invertible (R,R)-bimodule iso-

morphic to R as left R-module, there must exist a fx ∈ Autk(R) and an isomorphism of
(R,R)-bimodules over k, ψx : Rfx

∼= Sx, and therefore χ
[S,j]

(x) = [fx]. Observe that if we
write ux = ψx(1), then Sx = Rux = uxR. Further, from SxSx−1 = R 1 = Sx−1Sx it follows
that uxRux−1 = R 1 = ux−1Rux and therefore there exist a, b ∈ R such that 1 = uxaux−1 =
ux−1bux, whence each ux is a unit of S. Since r ux = ψx(r) = ψx

(
1 · f−1

x (r)
)

= ux f
−1
x (r),

we conclude that fx(r) = ux r u
−1
x for all r ∈ R and x ∈ G. Hence, the equivariant

collective character χ
[S,j]

maps every x ∈ G to the class of the automorphism of R given
by conjugation by ux in S.

Equivariant factor sets, or strictly unitary Γ-graded monoidal functors (F,Φ) : disΓG→
PicΓ

k(R), for equivariant crossed product algebras of R by G have a particulary simple re-
formulation (well-known for Γ = 1, cf. [29]), namely, they consist of pairs of maps (f, ϕ),
where

f : G −→ Autk(R) , ϕ : G2 ∪ (G× Γ) −→ R∗ , (38)
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subject to the conditions (13)-(17). Moreover, two such factor sets (f, ϕ) and (f ′, ϕ′) are
equivalent, that is, they define homotopic graded monoidal functors if, and only if, there
is a map g : G → R∗ such that the equalities (18)-(21) hold. By the bijection (29), the
equivariant crossed product algebra defined by a factor set (38) is R


f,ϕ
G =

⊕
x R×{x},

the free left R-module with basis {(1, x), x ∈ G}, with multiplication according to the
rule (r, x) (s, y) = (r fx(s)ϕ(x, y), xy), on which Γ acts by σ(r, x) = (σr ϕ(x, σ), σx).

Since the square (37) is cartesian, Theorem 5.3 gives the following classification theo-
rem for equivariant crossed product algebras.

5.5. Theorem. Let R be a Γ-algebra and G a Γ-group.
(i) There is a canonical partition ExtΓ

k (G,R) =
⊔
ρ ExtΓ

k

(
G,R; ρ

)
, where, for each Γ-

equivariant collective character ρ : G → Outk(R), ExtΓ
k

(
G,R; ρ

)
is the set of classes of

equivariant crossed products of R by G that realize ρ.

(ii) Each equivariant collective character ρ : G→ Outk(R) determines a 3-dimensional
cohomology class T(ρ) ∈ H3

Γ

(
G,Z(R)∗

)
, of G with coefficients in the equivariant G-module

of the units in the centre of R (with respect to the Γ-equivariant G-module structure on
Z(R)∗ obtained via ρ). This invariant is called the “Teichmüller obstruction” of ρ.

(iii) An equivariant collective character ρ is realizable, that is, ExtΓ
k

(
G,R; ρ

) 
= ∅, if
and only if its obstruction vanishes.

(iv) If the obstruction of an equivariant collective character, ρ, vanishes, then there is
a bijection ExtΓ

k

(
G,R; ρ

) ∼= H2
Γ

(
G,Z(R)∗

)
.

Remarks.

i) The equivariant action of the Γ-group Outk(R) on the Γ-module Z(R)∗ in Theorem
5.5 is given by [f ]u = f(u). Indeed, since δ[f ]u 1 = [Rf ]u 1 = 1 · u = 1 f(u) = f(u),
the action is the one obtained via the embedding δ : Outk(R) ↪→ Pick(R).

ii) The construction (34) of an equivariant 3-cocycle cρ ∈ T(ρ), for any given equivariant
generalized collective character, particularizes to any equivariant collective character
as follows. Let us choose an automorphism fx ∈ ρ(x) for each x ∈ G, with f1 = id

R
.

Then, we select normalized maps (f : G → Autk(R), ϕ : G2 ∪ (G × Γ) → R∗)
such that fxfy = Cϕ(x,y) fxy and σfx = Cϕ(x,σ) fσx, for all x, y ∈ G and σ ∈ Γ. The
equivariant 3-cocycle

cρ : G3 ∪ (G2 × Γ) ∪ (G× Γ2) −→ Z(R)∗

is then determined by the three equations (23).

Finally, we should comment that for any Γ-ring R and any Γ-group G,

ExtΓ
Z
(G,R) = ExtΓ

(
G, [R,R∗]

)
,
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as one can easily check by seeing that an equivariant factor set for an equivariant crossed
product ring of R by G is the same as an equivariant factor set for an equivariant RING-
GROUP extension of [R,R∗] by G. Hence, Theorem 5.5 for k = Z is the same as Theorem
4.1 restricted to those RINGS-GROUPS in which the group is the full group of units.

5.6. Central graded Clifford systems with operators. This example is
motivated by Dade’s classification of graded Clifford systems over a field k for which the
1-component is 1-dimensional over k. In [12, Section 14], he shows that such a (G, k)-
graded Clifford system is essentially the same as a central group extension of k∗ by group
G. In other words, there is a natural bijection H2(G, k∗) ∼= Cliffk(G, k) between the
2nd cohomology group of G with coefficients in the trivial G-module k∗ and the set of
isomorphism classes of (G, k)-graded Clifford systems over k.

Suppose R to be any commutative Γ-ring and G a Γ-group. A (G,R)-graded Γ-Clifford
system (S, j) =

(
(S, {Sx}x∈G, G), j : R ∼= S1

)
is termed central whenever S1 is central in

S. Let
CliffΓ

cen(G,R)

denote the subset of CliffΓ
Z
(G,R) consisting of isomorphism classes of central (G,R)-graded

Γ-Clifford systems. Observe that, when Γ = 1, Cliff1
cen(G,R) = CliffR(G,R).

The set CliffΓ
cen(G,R) is actually an abelian group under the operation

[S, j][S ′, j′] = [
(
S ⊗ S ′, {Sx ⊗R S

′
x}x∈G, G), j ⊗ j′] ,

where S ⊗ S ′ =
⊕

x∈G(Sx ⊗R S
′
x) , with multiplication (sx ⊗ s′x)(sy ⊗ s′y) = sxsy ⊗ s′xs

′
y

and Γ-action σ(sx ⊗ s′x) = σsx ⊗ σs′x, and j ⊗ j′ is the composition R ∼= R ⊗R R ∼=
S1 ⊗R S

′
1. The class of the group ring R(G) =

⊕
x∈GR × {x}, on which Γ-acts by

σ(r, x) = (σr, σx), is the identity element of CliffΓ
cen(G,R), and the inverse is given by

[S, j]−1 =
[
(Sop, {Sx−1}x∈G, G), j : R ∼= S1

]
, where Sop is the opposite ring of S.

Below, as a consequence of Theorem 5.3, we obtain a generalization of the afore-
mentioned Dade’s theorem. Let Hn

Γ
(G,R∗) denote the nth cohomology group of the

Γ-group G with coefficients in the Γ-equivariant trivial G-module R∗ and recall from [5,
Theorem 3.3] that H2

Γ
(G,R∗) is isomorphic to the abelian group of classes of equivariant

central extensions of R∗ by G.

5.7. Theorem. Let R be a commutative Γ-ring and G a Γ-group. There exists an exact
sequence of abelian groups

0 �� H2
Γ
(G,R∗) Σ �� CliffΓ

cen(G,R)
χ �� Hom

Γ
(G,PicR(R)) T �� H3

Γ
(G,R∗) , (39)

in which the homomorphism ∆ is defined by means of the equivariant crossed product
construction, that is,

Σ[ϕ] =
[
(R 
ϕ G, {R× {x}}x∈G, G), j : R ∼= R× {1}] ,
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where R
ϕG is the twisted group ring R
ϕG =
⊕

x∈GR×{x} whose multiplication is given
by (r, x)(r′, x′) = (rr′ψ(x, x′), xx′) and on which Γ-acts by σ(r, x) = (σrψ(x, σ),σx). The
homomorphisms χ and T are given, respectively, by restricting the equivariant generalized
collective character map (31) and the Teichmüller obstruction map (33).

Proof. It is straightforward to check that the maps Σ, χ and T in the sequence
are certainly group homomorphisms. As for the exactness in the first two points, let us
consider the bijection (35) when one chooses the Γ-group ring R(G), in the bijection,
as a representative (G,R)-graded Γ-Clifford system that realizes the trivial equivariant

generalized collective character. In this case, the bijection simply says that H2
Γ

(
G,R∗) Σ∼=

CliffΓ
Z

(
G,R; 0

)
. In addition, since a (G,R)-graded Γ-Clifford system that realizes the zero

collective character is necessarily central, CliffΓ
Z

(
G,R; 0

)
= Ker(χ), whence the exactness

in the first two points of the sequence follows. Part (iii) of Theorem 5.3 directly gives the
exactness in the remaining point.

When R is a field, but also when R is any commutative algebra with PicR(R) = 0 (for
instance a principal ideal domain, a local algebra, . . . ), then CliffΓ

cen(G,R) ∼= H2
Γ
(G,R∗),

and Dade’s result follows. We should also remark that the construction of the above exact
sequence (39) is quite similar to the corresponding part of the seven-term exact sequence
of Chase-Harrison-Rosenberg about the Auslander-Goldman-Brauer group relative to a
Galois extension of commutative rings [11] (cf. with exact sequence (45) in the next
subsection, also with Miyashita’s generalized seven term exact sequences [30]).

5.8. Equivariant Azumaya algebras over Galois extensions with opera-

tors. Throughout this paragraph, R is a commutative k-algebra such that R ⊇ k is a
Galois extension with finite Galois group G ⊆ Autk(R) and, in addition, we assume that
R is a Γ-algebra through a given homomorphism Γ → G. The Galois group G is then a
Γ-group by the diagonal action (σ, x) 	→ σx, where σx(r) = σ(x(σ

−1
r)).

An R/k-Azumaya algebra [26] is a pair (A, j) consisting of an Azumaya k-algebra (i.e.
central separable) A and a maximal commutative embedding j : R ↪→ A. When A is
endowed with a Γ-action by algebra automorphisms such that j is Γ-equivariant, then
the pair (A, j) is called a Γ-equivariant R/k-Azumaya algebra. Two such algebras, (A, j)
and (A′, j′) are isomorphic whenever there exists a Γ-equivariant isomorphism of algebras
φ : A ∼= A′ which respects the embeddings of R, that is, φj = j′. Let

B̂r
Γ
(R/k)

denote the corresponding set of isomorphism classes.

If (A, j) is any equivariant R/k-Azumaya algebra and, for each x ∈ G, we let

Ax = {a ∈ A | x(r) a = a r for all r ∈ R} . (40)
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Then, by [27, Proposition 3] or [2, Theorem I 2.15], it holds thatA = ⊕x∈GAx, AxAy = Axy
for all x, y ∈ G and A1 = j(R) ∼= R. Moreover, for any σ ∈ Γ and x ∈ G,

σAx = {σa | x(r) a = a r, r ∈ R} = {a | x(r) σ−1
a = σ−1

a r, r ∈ R}
= {a | x(σ−1

r) σ
−1
a = σ−1

a σ
−1
r, r ∈ R} = {a | σ(x(σ−1

r)
)
a = a r, r ∈ R}

= {a | σx(r) a = a r, r ∈ R} = Aσx .

Hence,
(
(A, {Ax}x∈G, G), j : R ∼= A1

)
is a (G,R)-graded Γ-Clifford system over k.

And conversely, if
(
(A, {Ax}x∈G, G), j : R ∼= A1

)
is any (G,R)-graded Γ-Clifford sys-

tem over k such that

x(r) ax = ax r for all x ∈ G, r ∈ R and ax ∈ Ax , (41)

then it follows from [27, Proposition 2] that (A, j) is an equivariant R/k-Azumaya algebra.
Thus, equivariant R/k-Azumaya algebras are the same as (G,R)-graded Γ-Clifford

systems such that equalities (41) hold. Next we shall characterize the subset B̂r
Γ
(R/k) ⊆

CliffΓ
k (G,R) by means of the generalized collective character map (31). To do so, let us

recall Bass’ split exact sequence of groups [1, II, (5.4)]

1 → PicR(R) in �� Pick(R)
h ��

Autk(R) → 1
δ

�� , (42)

in which δ : f 	→ [Rf ] is the homomorphism already recalled in sequence (36), and h
maps the class of any invertible (R,R)-bimodule [P ] ∈ Pick(R) to the automorphism
h([P ]) = hP ∈ Autk(R) such that hP (r) p = p r for all r ∈ R and p ∈ P . Let

ξ : Pick(R) −→ PicR(R), [P ] 	→ [ξP ] , (43)

be the map that assigns to each class of an invertible (R,R)-bimodule P the class of
the (R,R)-bimodule ξP which is the same P as left R-module but with right R-action
p · r = rp. Thus, ξ[P ] = [P ⊗R Rh−1

P
] = [P ][RhP

]−1 = [P ]
(
δh([P ]))−1.

Sequence (42) is actually of Γ-groups. Indeed, when we recalled sequence (36), we
showed that δ is a Γ-equivariant homomorphism. Homomorphism h is also equivariant
since, from equalities hP (σ

−1
r) p = p σ−1

r in P , it follows that the equalities σhP (σ
−1
r)·p = p·r

hold in σPσ, which means that σhP = hσPσ . Thus, σh([P ]) = h(σ[P ]) according to the
Γ-action (30) on Pick(R). Hence, the abelian group PicR(R) is a Γ-equivariant Autk(R)-
module, on which Γ acts by (30), and Autk(R) acts in a similar way by

f[P ] = [fPf ] ,

where fPf ∼= Rf⊗RP⊗RRf−1 is the same k-module as P with r ·p = f−1(r) p = p f−1(r) =
p · r, for r ∈ R and p ∈ P . In particular, since G is a Γ-subgroup of Autk(R), PicR(R) is
also a Γ-equivariant G-module.
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Now, if ρ : G → Pick(R), say ρ(x) = [Ax], is any equivariant generalized collective
character of the Γ-group G in the Γ-algebra R, then the equalities (41) hold if and only
if hρ = in : G ↪→ Autk(R). Moreover, since map (43) induces an isomorphism of abelian
groups [5, Proposition 2.5]

{ρ ∈ Hom
Γ
(G,Pick(R)) | hρ(x) = x, x ∈ G} ∼= Der

Γ
(G,PicR(R)), ρ 	→ ξ ρ ,

where Der
Γ
(G,PicR(R)) is the abelian group of Γ-equivariant derivations from G into

PicR(R), we conclude that there is a cartesian square

B̂r
Γ
(R/k)

� � in ��

χ̂

��

CliffΓ
k (G,R)

χ

��
Der

Γ

(
G,PicR(R)

)
� � �� HomΓ

(
G,Pick(R)

)
,

(44)

where χ is the map (31) and χ̂ : [A, j] 	→ χ̂
[A,j]

, where χ̂
[A,j]

(x) = [ξAx] for each x ∈
G. Hence, equivariant R/k-Azumaya algebras are the same as (G,R)-graded Γ-Clifford
systems over k that realize equivariant derivations from G into PicR(R).

The set B̂r
Γ
(R/k) has a canonical structure of abelian group under the operation

[A, j][A′, j′] = [A⊗ A′, j ⊗ j′] ,

where A ⊗ A′ =
⊕

x∈G ξAx ⊗R A
′
x, in which, for each x ∈ G, Ax and A′

x are defined by
(40) and ξAx by (43), with multiplication given by the chain of isomorphisms:

ξAx ⊗R A
′
x ⊗R ξAy ⊗R A

′
y
∼= ξAx ⊗R x(ξAy)x ⊗R A

′
x ⊗R A

′
y

∼= ξ(Ax⊗RAy) ⊗R A
′
x ⊗R A

′
y
∼= ξAxy ⊗R A

′
xy ,

that is, (ax⊗a′x)(ay⊗a′y) = axay⊗a′xa′y. The Γ-action is given by σ(ax⊗a′x) = σax⊗σa′x, and
j⊗j′ is the composition R ∼= R⊗RR ∼= A1⊗RA

′
1 = ξA1⊗RA

′
1. The class of the skew group

algebra R
G =
⊕

x∈GR×{x} , whose multiplication is given by (r, x)(r′, y) = (r x(r′), xy)

and on which Γ-acts by σ(r, x) = (σr, σx), gives the identity element of B̂r
Γ
(R/k), and the

inverse is given by
[A, j]−1 = [Aop, j] ,

where Aop is the opposite Γ-algebra of A (observe that, for any x ∈ G, Aopx = Ax−1 with
r · ax−1 = ax−1 r = x−1(r) ax−1 and ax−1 · r = r ax−1 , and then, A ⊗ Aop ∼= R 
 G by the
map

∑
x ax ⊗ bx−1 	→ ∑

x(axbx−1 , x)).
Then, we have:

5.9. Theorem. Let R/k be a Galois extension of commutative rings with finite Galois
group G ⊆ Autk(R) and suppose that an action of a group Γ on R by automorphisms in
G is given. Then, there exists an exact sequence of abelian groups

0 �� H2
Γ
(G,R∗) Σ �� B̂r

Γ
(R/k)

χ̂ �� Der
Γ

(
G,PicR(R)

) ˆT �� H3
Γ
(G,R∗) , (45)
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in which the homomorphism Σ is defined by means of the equivariant crossed product
construction, that is

Σ[ϕ] =
[
R 
in,ϕ G, j : R ∼= R× {1}] ,

where R 
in,ϕ G is the crossed product algebra R 
in,ϕ G =
⊕

x∈GR × {x}, whose multi-
plication is given by (r, x)(r′, x′) = (r x(r′)ϕ(x, x′), xx′) and on which Γ-acts by σ(r, x) =
(σr ϕ(x, σ), σx). The homomorphism χ̂ is that given in (44) and T̂ is the Teichmüller ob-
struction map (33) restricted to Der

Γ

(
G,PicR(R)

)
; that is, for any Γ-derivation d : G →

PicR(R), T̂(d) = T(ρd), where ρd : G → Pick(R) is the equivariant homomorphism given
by ρd(x) = d(x)[Rx].

Proof. To check that maps Σ, χ̂ and T̂ are group homomorphisms is routine. The
exactness in the two first points means that Σ establishes a bijection between H2

Γ
(G,R∗)

and Ker(χ̂), but this is just bijection (35),

H2
Γ

(
G,R∗) ∆∼= CliffΓ

k

(
G,R; ρ0

)
= χ−1(ρ0) = Ker(χ̂),

when one chooses the skew Γ-group algebra R 
 G, in the bijection, as the representative
(G,R)-graded Γ-Clifford system that realizes the equivariant generalized collective char-
acter ρ0 corresponding to the zero derivation 0 : G→ Pick(R). Part (iii) of Theorem 5.3
directly gives the exactness in the remaining point.

Exact sequence (45) in the above theorem extends the sequence in [10, Theorem 2.1].

6. Strongly graded bialgebras and Hopf algebras with operators

Throughout this section, k is a unitary commutative ring and all algebras and coalgebras
are over k. Recall that a bialgebra (R,∆, ε) is an algebra R enriched with a coalgebra
structure such that the comultiplication ∆ : R → R ⊗k R and the counit ε : R → k are
algebra maps.

A strongly graded bialgebra [8, Definition 6.4])
(
(S,∆, ε), {Sx}x∈G, G

)
is a graded Clif-

ford system over k in which S is endowed with a bialgebra structure such that every com-
ponent Sx is a subcoalgebra. A morphism of strongly graded bialgebras is a morphism
(h, α) between the underlying graded Clifford systems such that h is also a coalgebra
homomorphism. Strongly graded bialgebras were classified in [8, Section 6] as a specific
application of the general treatment of graded monoidal categories.

Hereafter, Γ is a fixed group of operators and a Γ-bialgebra means a bialgebra provided
with a Γ-action by bialgebra automorphisms (σ, r) 	→ σr. Our goal in this section is
the classification of strongly graded bialgebras on which a group of operators Γ acts by
automorphisms, that is, the classification of strongly graded Γ-bialgebras.

Similarly to what happens with graded Γ-Clifford systems, if
(
(S,∆, ε), {Sx}x∈G, G

)
is a strongly graded Γ-bialgebra, then G is a Γ-group, (S,∆, ε) is a Γ-bialgebra and its
1-component S1 is a Γ-subbialgebra. Then, we shall regard

(
(S,∆, ε), {Sx}x∈G, G

)
as
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an equivariant extension of the Γ-bialgebra (S1,∆, ε) by the Γ-group G. More precisely,
if (R,∆, ε) is any Γ-bialgebra and G is a Γ-group, then a strongly (G, (R,∆, ε))-graded
Γ-bialgebra is a pair (S, j

S
), where S =

(
(S,∆, ε), {Sx}x∈G, G

)
is a strongly graded Γ-

bialgebra, such that the Γ-action on G is the given one, that is, σSx = Sσx for all x ∈ G
and σ ∈ Γ, and j

S
: (R,∆, ε) ∼= (S1,∆, ε) is an isomorphism of Γ-bialgebras.

The most striking example is, for (R,∆, ε) any given Γ-bialgebra, the group bialgebra
R(G) =

⊕
x∈GR× {x} (where the multiplication is given by (r, x)(r′, x′) = (rr′, xx′) and

the comultiplication, using Sweedler’s notation, by ∆(r, x) =
∑

(r)(r(1), x)⊗(r(2), x), which

is a Γ-bialgebra with the action σ(r, x) = (σr, σx). However, equivariant crossed products
of (R,∆, ε) and G also yield examples of equivariant strongly graded bialgebras. Note
that the underlying graded algebra of a strongly graded Γ-bialgebra is a graded Γ-Clifford
system as defined in Section 5.

Two strongly (G, (R,∆, ε))-graded Γ-bialgebras, (S, jS) and (T , jT ), are isomorphic if
there exists a Γ-equivariant isomorphism of Γ-bialgebras h : (S,∆, ε) ∼= (T,∆, ε) which is
grade-preserving. We denote by

ExtΓ
k

(
G, (R,∆, ε)

)
the set of isomorphism classes of strongly (G, (R,∆, ε))-graded Γ-bialgebras.

The classification of strongly graded Γ-bialgebras parallels the non-equivariant case
(i.e., when Γ is the trivial group) studied in [8]. Let (R,∆, ε) be any Γ-bialgebra. Then,
the group

Pick(R,∆, ε)

of isomorphism classes of invertible (R,R)-coalgebras [8, Definition 6.3] is a Γ-group with
action given by σ[P ] = [σPσ], where σPσ is the invertible (R,R)-coalgebra which is the same
coalgebra as P but with (R,R)-actions r ·p = σ−1

r p and p·r = p σ−1
r for r ∈ R and p ∈ P .

Note that, since every invertible (R,R)-coalgebra is an invertible (R,R)-bimodule, there
is an obvious equivariant homomorphism, from the Γ-group Pick(R,∆, ε) to the Γ-group
Pick(R) of the underlying Γ-algebra as considered in Section 5, which is neither injective
nor surjective in general. Moreover, the centre of the bialgebra Z(R,∆, ε) [8, Definition
6.2], which is the multiplicative submonoid of R consisting of all group-like elements of R
as a coalgebra that belong to the centre of R as an algebra, that is,

Z(R,∆, ε) = {u ∈ R | ∆(u) = u⊗ u, ε(u) = 1, and ur = ru for all r ∈ R} ,
is a Γ-monoid in the obvious way. Therefore, the group of units of Z(R,∆, ε), denoted by
Z(R,∆, ε)∗, is a Γ-module. In fact, Z(R,∆, ε)∗ is actually a Γ-equivariant Pick(R,∆, ε)-
module, where the action of Pick(R,∆, ε) on Z(R,∆, ε)∗ (see [8]) is determined by the
equalities [P ]u p = p u, for any invertible (R,R)-coalgebra P , any u ∈ Z(R,∆, ε)∗ and
p ∈ P .

Every strongly (G, (R,∆, ε))-graded Γ-bialgebra (S =
(
(S,∆, ε), {Sx}x∈G, G

)
, j

S
) in-

duces a Γ-equivariant homomorphism (which depends only on its isomorphism class
[S, j

S
])

χ
[S,j

S
]
: G→ Pick(R,∆, ε), x 	→ [Sx] , x ∈ G ,
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and so there is a canonical map

χ : ExtΓ
k (G, (R,∆, ε)) −→ HomΓ(G,Pick(R,∆, ε)) .

We call any Γ-equivariant group homomorphism ρ : G→ Pick(R,∆, ε) an equivariant
generalized collective character of the Γ-group G in the Γ-bialgebra (R,∆, ε). We also
say that a strongly (G, (R,∆, ε))-graded Γ-bialgebra (S, j

S
) realizes such an equivariant

generalized collective character ρ whenever χ
[S,j

S
]
= ρ. Map χ provides a partitioning

ExtΓ
k

(
G, (R,∆, ε)

)
=

⊔
ρ

ExtΓ
k (G, (R,∆, ε); ρ) ,

where, for each Γ-equivariant homomorphism ρ : G→ Pick(R,∆, ε), ExtΓ
k (G, (R,∆, ε); ρ)

is the set of isoclasses of strongly (G, (R,∆, ε))-graded Γ-bialgebras that realize ρ.
Now we state the following:

6.1. Theorem. (Classification of strongly graded bialgebras with operators)
Let (R,∆, ε) be a Γ-bialgebra and G a Γ-group.

(i) Each Γ-equivariant generalized collective character ρ invariably determines a 3-
dimensional cohomology class T(ρ) ∈ H3

Γ

(
G,Z(R,∆, ε)∗

)
of G with coefficients in the

equivariant G-module of all group-like central units of (R,∆, ε) (with respect to the G-
module structure on Z(R,∆, ε)∗ obtained via ρ). This invariant is called the obstruction
of ρ.

(ii) An equivariant generalized collective character ρ is realizable, that is, the set
ExtΓ

k (G, (R,∆, ε); ρ) is non-empty if, and only if, its obstruction vanishes.

(iii) If the obstruction of an equivariant generalized collective character, ρ, vanishes,
then there is a bijection

ExtΓ
k (G, (R,∆, ε); ρ)

∼= H2
Γ

(
G,Z(R,∆, ε)∗

)
.

As in the examples studied in the previous sections, this classification theorem for the
strongly graded bialgebras with operators will follow from the general theory in Section
2, once we are able to identify, up to isomorphisms, strongly graded Γ-bialgebras with
Γ-graded monoidal functors from the discrete Γ-graded categorical group disΓG to the
Γ-graded Picard categorical group of a Γ-bialgebra (R,∆, ε)

PicΓ
k (R,∆, ε) ,

which is defined in a similar way to the Γ-graded categorical group PicΓ
k (R) of the under-

lying Γ-algebra R. The objects of PicΓ
k (R,∆, ε) are the invertible (R,R)-coalgebras and

the morphisms are pairs (ϕ, σ) where ϕ is an isomorphism of coalgebras. Composition and
the graded tensor product are defined much as for PicΓ

k (R), in such a way that, omitting
the coalgebra structure, one has a graded monoidal functor PicΓ

k (R,∆, ε) → PicΓ
k (R).

Then we have:
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6.2. Theorem. For any Γ-bialgebra (R,∆, ε) and any Γ-group G, there is a bijection

Σ :
[
disΓG,PicΓ

k (R,∆, ε)
] ∼= ExtΓ

k (G, (R,∆, ε)) , (46)

between the set of homotopy classes of graded monoidal functors from disΓG to PicΓ
k (R,∆, ε)

and the set of isomorphism classes of strongly
(
G, (R,∆, ε)

)
-graded Γ-bialgebras.

Proof. It is parallel to the proof for Theorem 5.2 and so we will omit some straight-
forward details. First we observe that a strictly unitary Γ-graded monoidal functor
(F,Φ) : disΓG → PicΓ

k (R,∆, ε) is the same as a strictly unitary Γ-graded monoidal func-
tor (F,Φ) : disΓG → PicΓ

k (R) in which every Fx is an invertible (R,R)-coalgebra and
the isomorphisms (27) and (28) are of (R,R)-coalgebras. Such a graded monoidal func-
tor (F,Φ) is now termed an equivariant factor set of the Γ-group G in the Γ-bialgebra
(R,∆, ε) and it gives rise to a generalized crossed product bialgebra Σ(F,Φ) =

⊕
x∈G Fx

which is the direct sum (= coproduct) coalgebra of the coalgebras Fx, where the product
of the elements a ∈ Fx and b ∈ Fy is defined by a b = Φx,y(a ⊗ b). Further, owing to
the isomorphisms Fx,σ, group Γ acts on Σ(F,Φ) by the rule σa = Fx,σ(a) if a ∈ Fx. In
this way, Σ(F,Φ) =

(
(Σ(F,Φ),∆, ε), {Fx}, G

)
, together with the identity R = F1, is a

strongly (G, (R,∆, ε))-graded Γ-bialgebra.
If F ′ = (F ′,Φ′) : disΓG → PicΓ

k (R,∆, ε) is another strictly unitary graded monoidal
functor, then it is straightforward to see that giving a homotopy θ : (F,Φ) → (F ′,Φ′) is
equivalent to giving an isomorphism of Γ-bialgebras, Σ(F,Φ)

∼−→ Σ(F ′,Φ′), a 	→ θx(a),
a ∈ Fx, which establishes an isomorphism of strongly (G, (R,∆, ε))-graded Γ-bialgebras
θ : (Σ(F,Φ), idR)

∼−→ (Σ(F ′,Φ′), idR).
Moreover, any strongly (G, (R,∆, ε))-graded Γ-bialgebra is actually isomorphic to a

generalized crossed product (G, (R,∆, ε))-graded Γ-bialgebra for a certain equivariant fac-
tor set (F,Φ). In fact, given any (S, j

S
), S =

(
(S,∆, ε), {Sx}x∈G, G

)
, we can assume, up

to isomorphism, that R = S1 and j
S

= idR. For any x, y ∈ G, the canonical multipli-
cation map Φx,y : Sx ⊗R Sy → Sxy, a ⊗ b 	→ a b is a (R,R)-coalgebra isomorphism and
each component Sx is an invertible (R,R)-coalgebra [8, Proposition 6.4 and Corollary 6.1].
Furthermore, the Γ-action on S determines, for all x ∈ G and σ ∈ Γ, isomorphisms of coal-
gebras Fx,σ : Sx → Sσx, a 	→σa, and it is plain to see that (F,Φ) : disΓG→ PicΓ

k (R,∆, ε),
with Fx = Sx for each x ∈ G, is a strictly unitary graded monoidal functor whose as-
sociated generalized crossed product (G, (R,∆, ε))-graded Γ-bialgebra (Σ(F,Φ), idR) is
exactly (S, idR).

The classification of strongly (G, (R,∆, ε))-graded bialgebras with operators stated in
Theorem 6.1 is now a consequence of Theorem 2.2 and the above bijection (46). Indeed,
for any Γ-bialgebra (R,∆, ε), the homotopy groups of the Γ-graded categorical group
PicΓ

k (R,∆, ε) are π0PicΓ
k (R,∆, ε) = Pick(R,∆, ε) and π1PicΓ

k (R,∆, ε) = Z(R,∆, ε)∗ and
the obstruction T(ρ) ∈ H3

Γ

(
G,Z(R,∆, ε)∗

)
in part (i) of Theorem 6.1, of any equiv-

ariant generalized collective character ρ : G → Pick(R,∆, ε), is defined in the same
way as (33) for equivariant generalized collective characters of Γ-groups in Γ-algebras.
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Furthermore, for any equivariant factor set (F,Φ) of the Γ-group G in the Γ-bialgebra
(R,∆, ε), π0F = χ

[Σ(F,Φ),idR]
, and then bijection (46) provides, by restriction, bijections

Σ :
[
disΓG,PicΓ

k (R,∆, ε); ρ
] ∼= ExtΓ

k (G, (R,∆, ε); ρ) for any equivariant generalized char-
acter ρ : G → Pick(R,∆, ε). Hence, parts (ii) and (iii) of Theorem 6.1 follow from
Theorem 2.2.

By [3, Theorem 1.1], Theorem 6.1 applies to the classification of strongly graded Hopf
Γ-algebras over a field k with 1-component of finite dimension, that is, strongly graded
Γ-bialgebras

(
(S,∆, ε), {Sx}x∈G, G

)
where (S,∆, ε) is a Hopf algebra whose antipode map

ξ : S → S satisfies that ξ(Sx) ⊆ Sx−1 for all x ∈ G, and S1 is finite dimensional over
k. Indeed, when (R,∆, ε) is any finite dimensional Hopf Γ-algebra, then every strongly
graded Γ-bialgebra whose 1-component is isomorphic to (R,∆, ε) is necessarily a strongly
graded Hopf Γ-algebra and, therefore, for any Γ-group G, ExtΓ

k

(
G, (R,∆, ε)

)
is exactly

the set of isomorphism classes of strongly (G, (R,∆, ε))-graded Hopf Γ-algebras.
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[21] A. Fröhlich, C.T.C. Wall, Equivariant Brauer groups, Contemp. Math. 272 (2000),
57-71.

[22] H. Grassmann, On Schreier extensions of finite semigroups, Algebraic theory of semi-
groups (Proc. Sixth Algebraic Conf., Szeged, 1976), Colloq. Math. Soc. Jnos Bolyai,
20, North-Holland, Amsterdam-New York (1979), 219-224.

[23] A. Grothendieck, Catégories fibrées et déscente, (SGA I, expos VI), Springer Lecture
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