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CHANGE OF BASE, CAUCHY COMPLETENESS AND
REVERSIBILITY

ANNA LABELLA AND VINCENT SCHMITT

ABSTRACT. We investigate the effect on Cauchy complete objects of the change of base
2-functor V-Cat →W-Cat induced by a two-sided enrichment V → W. We restrict our
study to the case of locally partially ordered bases. The reversibility notion introduced
in [Wal82] is extended to two-sided enrichments and Cauchy completion. We show that a
reversible left adjoint two-sided enrichment F : V → W between locally partially ordered
reversible bicategories induces an adjunction F∼ a F∼ : V-SkCRcCat ⇀ W-SkCRcCat
between sub-categories of skeletal and Cauchy-reversible complete enrichments. We give
two applications: sheaves over locales and group actions.

1. Introduction

Our motivation for the study of the change of base for enrichments over bicategories
originated with the two following facts. Sheaves over a locale have been characterised as
Cauchy complete enrichments over bicategories [Wal81]. Any continuous map f : X → Y
yields an adjunction between categories of sheaves f∗ a f ∗ : Sh(Y ) ⇀ Sh(X). From
this we hoped to find a categorical generalisation in terms of enrichments of the later
adjunction.

Our first problem was to define a good notion of base morphism F : V → W . We had
in mind that such a morphism should induce a 2-adjunction between 2-categories of enrich-
ments, say F@ a F@ : V-Cat ⇀W-Cat . This question was largely answered in [KLSS99]
with the introduction of the so-called two-sided enrichments. To explain partly these
results, we should start from the definition of MonCat , the category of monoidal functors
between monoidal categories [Ben63], and enrichments over them [EiKe66], [Law73]. A
monoidal functor F : V → W induces a 2-functor F@ : V-Cat → W-Cat . MonCat is
equipped with a 2-categorical structure by defining 2-cells in it as monoidal natural trans-
formations ([EiKe66]). The process (−)@ of sending V to V-Cat and F to F@ extends to a
2-functor from MonCat to 2-Cat . Adjunctions in MonCat were characterised in [Kel74].
Moving to the case of enrichments over bicategories, several notions of ”morphism” be-
tween bicategories were proposed in the literature, but no analogous 2-functor (−)@ was
known in this situation.

Two-sided enrichments are a slight generalisation of monoidal functors and Bénabou’s
lax functors [Ben67]. With these new morphisms of bicategories one obtained a bicategory
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Base together with the expected pseudo-functor (−)@ : Base→ 2-Cat . Introducing some
3-cells on Base, one eventually gets a tricategory Caten such that the 2-categories of
enrichments are representable V-Cat ∼= Caten(1,V) (1 is the unit bicategory). These new
morphisms of bicategories could be seen as a two-sided version of the usual enrichments
over bicategories, hence their name. Adjunctions in Caten — of particular interest in
this paper — are as follows: left adjoint two-sided enrichments are exactly the pseudo
functors with “local right adjoints”. This notion of local adjunction is slightly more general
than the one in [BePo88]. To complete the picture, let us recall the following results. The
cartesian product of bicategories extends to a pseudo-functor Caten×Caten → Caten that
makes Caten into a monoidal tricategory. Caten has a closed structure Caten(V×W ,Z) ∼=
Caten(V , Conv(W ,Z)). Eventually two-sided enrichments are also just enrichments since
thus Caten(V ,W) ∼= Conv(V ,W)-Cat .

Our second problem was to understand the effect of change of base F@ for a two-sided
enrichment F , on the skeletality and Cauchy completeness of objects. This is the object
of this paper. The idea is that the adjunction V-Cat → W-Cat given by an adjoint 2-
sided enrichment F : V → W should also “behave well” with respect to the skeletality and
Cauchy completeness of objects. One may hope for some (categorical) connection between
the sub-2-categories of skeletal and Cauchy complete objects respectively of V-Cat and
W-Cat .

Our investigation may be summarised as follows. We restrict our study to the case
when the base bicategories are locally partially ordered. This is both for convenience and
because our purpose was to give a satisfying categorical generalisation of the adjunction
between categories of sheaves. First we look for conditions on a two-sided enrichment
F that ensure that it preserves skeletality, Cauchy completion, Morita equivalence and
so on... We introduce the “super” two-sided enrichments. They generalise the super
monoidal functors used by one of the authors to code uniformly continuous maps from
enriched functors [Sc01]. They are more general than left adjoint two-sided enrichments
and enjoy nice properties. It was known from [KLSS99] that a two-sided enrichment F
induces a normal lax functor between bicategories of modules F] : V-Mod → W-Mod .
For any super F , F] : V-Mod → W-Mod preserves adjoints and F@ : V-Cat → W-Cat
preserves the Morita equivalence. Eventually we extend the notion of reversibility defined
for enrichments in [Wal82] to two-sided enrichments and to the Cauchy completion. Most
familiar examples of enrichments over locally partially ordered bicategories (sheaves and
group actions) enjoy a nice property of symmetry, called reversibility. As pointed out
by Kasangian [BeWal82] a Cauchy completion of a reversible enrichment fails in general
to be reversible. This fact forces us to define a completion for reversible enrichments
that preserves reversibility. This is the so-called Cauchy-reversible completion. Thus
we get the desired generalisation: an adjoint pair in Caten F a G : V ⇀ W where
F is reversible induces some adjunction between sub-categories of skeletal and Cauchy-
reversible complete objects V-SkCRcCat ⇀ W-SkCRcCat . An instance of this theorem
is also the classical result in group theory that a group morphism f : H → G induces an
adjunction between categories of group actions f∗ a f ∗ : H-Set ⇀ G-Set .
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This paper is organised as follows. Section 2 recalls basics of the theory of enrichments
over locally partially ordered bicategories. This makes the paper self-contained and allows
later comparisons with the reversible case. (Anyway, we refer the reader to [Kel82] for
the fundamentals of enriched category theory). Section 3 treats the change of base for
enrichments and the connection with two-sided enrichments in the case when the base
categories are locally partially ordered. We begin by recalling some elements of the theory
of two-sided enrichments developed in [KLSS99]: the definition of the tricategory Caten,
the connection with enrichments, the characterisation of adjoints in Caten, and the change
of base. Then we present the various new results of our investigation into the effect of the
change of base bicategories on skeletality, and Cauchy completeness of enrichments. The
super two-sided enrichments are introduced. Section 4 is devoted to the development of
the theory in the reversible case. The notion of reversibility is defined for bicategories,
(two-sided) enrichments, enriched modules, completion, etc. We retrace all the steps of
the theory. Two detailed examples are given, namely sheaves on locales and group actions.

2. Basic enriched category theory

2.1. Definition. A bicategory V is locally partially ordered (respectively locally pre-
ordered), when for any objects a and b, the homset V(a, b) is a partial order (respectively
a preorder).

Further on in this section, V will denote a locally partially ordered bicategory that is
moreover:
- biclosed: i.e. for any arrow f : u → v and any object w of V , the functors f ◦ − :
V(w, u) → V(w, v) and − ◦ f : V(v, w) → V(u,w) are adjoints.
- locally cocomplete: i.e. each homset V(u, v) is cocomplete.
For any object v, Iv stands for the identity in v.

2.2. Definition. [V-categories] An enrichment A over V, also called a V-category, is a
set Obj(A) — the objects of A, with two mappings (−)A+ : Obj(A) −→ Obj(V) (sometimes
just written (−)+) and A(−,−) : Obj(A)×Obj(A) −→ Arrows(V) that satisfy:
- (enr − i) for any objects a,b of A, A(a, b) : a+ −→ b+;
- (enr − ii) for any object a of A, Ia+ ≤ A(a, a);
- (enr − iii) for any objects a,b,c of A, A(b, c) ◦ A(a, b) ≤ A(a, c).
Given V-categories A and B, a V-functor f from A to B is a map f : Obj(A) −→ Obj(B)
such that:
- (fun− i) (−)A+ = (−)B+ ◦ f ;
- (fun− ii) for any objects a, b of A, A(a, b) ≤ B(fa, fb).
Given V-functors f, g : A → B there is a unique V-natural transformation from f to g,
when for any object a of A, Ia+ ≤ B(fa, ga).

2.3. Proposition. V-categories, V-functors and V-natural transformations form a lo-
cally preordered 2-category denoted V-Cat.
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For any object u in V , û will denote the enrichment on V , with one object say ∗, with
∗+ = u and û(∗, ∗) = Iu. If B is a V-category, for any object b in B, b : b̂+ → B will
denote the V-functor sending ∗ to b.

2.4. Definition. [V-modules] Given two V-categories A and B, a V-module ϕ from A
to B — denoted ϕ : A ◦ // B — is a map ϕ : Obj(B) × Obj(A) → Arrows(V) such
that:
- (mod− i) for all objects a of A, and b of B, ϕ(b, a) is an arrow b+ → a+ in V.
- (mod− ii) for all objects a, a′ of A, and b of B, A(a, a′) ◦ ϕ(b, a) ≤ ϕ(b, a′);
- (mod− iii) for all objects a ∈ Obj(A), and b, b′ of B, ϕ(b, a) ◦B(b′, b) ≤ ϕ(b′, a).

For any two V-modules ϕ : A ◦ // B and ψ : B ◦ // C , their composite ψ • ϕ :

A ◦ // C is defined by ψ•ϕ(c, a) =
∨
b∈Obj(B)ϕ(b, a)◦ψ(c, b). The set V-Mod(A,B) of V-

modules from A to B is partially ordered by ϕ ≤ ψ ⇔ ∀(b, a) ∈ Obj(B)×Obj(A), ϕ(b, a) ≤
ψ(b, a).

2.5. Proposition. V-categories and V-modules with partial orders defined above, con-
stitute a locally partially ordered bicategory denoted V-Mod.

In V-Mod , the identity in A is the module with underlying map A(−,−) : Obj(A) ×
Obj(A) → Arrows(V) sending (y, x) to A(y, x). For any V-categories A and B, a V-
module ϕ : A ◦ // B has right adjoint ψ : B ◦ // A if and only if A(−,−) ≤ ψ • ϕ
and ϕ • ψ ≤ B(−,−). For any left adjoint module ϕ, ϕ̃ will denote its (unique!) right
adjoint. Any V-functor f : A → B corresponds to a pair of adjoint modules f� a f �,
f� : A ◦ // B , f � : B ◦ // A , as follows: for all objects a of A, and b of B, f�(b, a) =
B(b, fa), f �(a, b) = B(fa, b).

Further on V-AMod will denote the locally partially ordered bicategory with:
- objects V-categories,
- arrows: left adjoint V-modules;
- 2-cells: partial orders inherited from V-Mod .

There is a 2-functor JV : V-Cat → V-Mod as follows. It is the identity on objects, and
is the map (−)� on arrows sending any V-functor f to the V-module f�. Note that for
any V-categories A and B, for any V-functors f, g : A→ B, f ⇒ g if and only if f� ≤ g�.

2.6. Definition. [Skeletality, Cauchy completeness] Let B be a V-category. B is called
skeletal if and only if for any V-category A, the map (−)� : V-Cat(A,B) → V-AMod(A,B)
is injective. B is called Cauchy complete if and only if for any V-category A, the map
(−)� : V-Cat(A,B) → V-AMod(A,B) is surjective.

2.7. Observation. For any V-category B, the following assertions are equivalent:
- B is skeletal;
- For any object u of V, the map (−)� : V-Cat(û, B) → V-AMod(û, B) is injective;
- For any objects a and b of B, if a+ = b+, Ia+ ≤ B(a, b) and, Ia+ ≤ B(b, a) then a = b.

2.8. Proposition. A V-category B is Cauchy complete when for any object u of V, the
map (−)� : V-Cat(û, B) → V-AMod(û, B) is surjective (i.e. for any object u of V and
any left adjoint V-module ϕ : û ◦ // B , ϕ = b� for some object b of B with b+ = u).
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Proof. Suppose that ϕ : A ◦ // B has right adjoint ϕ̃. Then for any object a of A,

ϕ • a� : â+ ◦ // B and a� • ϕ̃ : B ◦ // â+ are adjoints. For any objects a of A and b of
B,

ϕ • a�(b, ∗) =
∨

a′∈Obj(A)

A(a′, a) ◦ ϕ(b, a′) = ϕ(b, a)

and
a� • ϕ̃(∗, b) =

∨
a′∈Obj(A)

ϕ̃(a′, b) ◦ A(a, a′) = ϕ̃(a, b).

By assumption, for any object a of A, there is a V-functor fa : â+ → B such that
(fa)� = ϕ • a� and (fa)

� = a� • ϕ̃. This means that for any objects a of A and b of B,
ϕ(b, a) = B(b, fa(∗)) and ϕ̃(a, b) = B(fa(∗), b). Let f denote the map from Obj(A) to
Obj(B) sending a to fa(∗). f defines a V-functor from A to B since for any objects a,a′

of A,

B(fa, fa′) =
∨
b∈Obj(B)B(b, fa′) ◦B(fa, b)

=
∨
b∈Obj(B) ϕ(b, a′) ◦ ϕ̃(a, b)

= ϕ̃ • ϕ(a, a′)
≥ A(a, a′).

We define the following locally partially ordered bicategories.

- V-SkCcCat , with:
- objects: skeletal and Cauchy complete V-categories,
- arrows and 2-cells: inherited from V-Cat .

- V-SkCcAMod , with:
- objects: skeletal and Cauchy complete V-categories,
- arrows and 2-cells: inherited from V-AMod .

2.9. Proposition. The restriction of JV on V-SkCcCat is an isomorphism onto
V-SkCcAMod.

2.10. Definition. [Cauchy completion] Let A be a V-category. The Cauchy completion
of A is the V-category Ā defined as follows. Its objects are the left adjoint V-modules of
the form ϕ : û ◦ // A , u ranging in Obj(V). For any object ϕ of Ā with ϕ : û ◦ // A ,
ϕ+ = u. For convenience we will consider modules in Obj(Ā) as well as their adjoints,
as maps with domains A. For any objects ϕ,ψ of Ā, Ā(ϕ, ψ) = (ϕ̃ • ψ)(∗, ∗).

Let us check that the Ā of 2.10 is a well defined V-category. Ā trivially satisfies
(enr − i). Let us show that it satisfies (enr − ii). Let ϕ : û ◦ // A be an object of Ā,
then

Ā(ϕ, ϕ) =
∨
a∈Obj(A) ϕ(a) ◦ ϕ̃(a)

= ϕ̃ • ϕ(∗, ∗)
≥ Iu.
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Let us show that Ā satisfies (enr − iii). Let ϕ, ψ, γ be objects of Ā. Then

Ā(γ, ψ) ◦ Ā(ϕ, γ) = (
∨
a∈Obj(A) ψ(a) ◦ γ̃(a)) ◦ (

∨
a′∈Obj(A) γ(a

′) ◦ ϕ̃(a′))
=

∨
a,a′∈Obj(A) ψ(a) ◦ γ̃(a) ◦ γ(a′) ◦ ϕ̃(a′)

≤ ∨
a,a′∈Obj(A) ψ(a) ◦ A(a′, a) ◦ ϕ̃(a′)

=
∨
a∈Obj(A) ψ(a) ◦ ϕ̃(a)

= Ā(ϕ, ψ).

Let A be a V-category with Cauchy completion Ā. For any objects a of A and ϕ of Ā,
Ā(a�, ϕ) = ϕ(a) and Ā(ϕ, a�) = ϕ̃(a). The map iA : Obj(A) → Obj(Ā), sending a to a�
is a V-functor from A to Ā since for any object a of A, (a�)+ = a+, and for any objects
a,b of A, Ā(a�, b�) =

∨
c∈Obj(A)A(c, b) ◦ A(a, c) = A(a, b).

2.11. Remark. For any V-category A,
- A is skeletal if and only if the map iA : Obj(A) → Obj(Ā) is injective;
- A is Cauchy complete if and only the map iA is onto.

2.12. Proposition. For any V-category A, Ā is skeletal.

Proof. Suppose that ϕ, ψ are some objects of Ā such that ϕ+ = ψ+ = u and, (i)
Iu ≤ Ā(ϕ, ψ) and, (ii) Iu ≤ Ā(ψ, ϕ). The inequation (i) is equivalent to (1û)� ≤ ϕ̃ • ψ
which is equivalent to ϕ ≤ ψ since ϕ a ϕ̃. Similarly, (ii) is equivalent to ψ ≤ ϕ. Therefore
ϕ = ψ.

2.13. Lemma. Let A be a V-category and, Γ : û ◦ // Ā be some V-module where u is an

object of V. For any object ϕ of Ā, ϕ̃ denoting its adjoint, Γ(ϕ) =
∨
a∈Obj(A)Γ(a�) ◦ ϕ̃(a).

Proof. Let a be some object of A,

Γ(a�) =
∨
ψ∈Obj(Ā) Γ(ψ) ◦ Ā(a�, ψ),

=
∨
ψ∈Obj(Ā) Γ(ψ) ◦ ψ(a).

Therefore, for any object ϕ of Ā,

∨
a∈Obj(A) Γ(a�) ◦ ϕ̃(a) =

∨
a∈Obj(A)(

∨
ψ∈Obj(Ā) Γ(ψ) ◦ ψ(a)) ◦ ϕ̃(a)

=
∨
ψ∈Obj(Ā) Γ(ψ) ◦ Ā(ϕ, ψ)

= Γ(ϕ).

2.14. Proposition. For any V-category A, Ā is Cauchy complete.

Proof. Given a left adjoint module Γ : û ◦ // Ā with u an object of V . We define

the maps γ, γ′ : Obj(A) → Arrows(V) respectively by γ(a) = Γ(a�) and γ′(a) = Γ̃(a�).
We are going to show that γ is an object of Ā and Γ = Ā(−, γ). It is immediate that γ
and γ′ are modules respectively from û to A and from A to û. Let us show that γ a γ′.
According to 2.13 (and its dual!),
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ϕ∈Obj(Ā) Γ(ϕ) ◦ Γ̃(ϕ) =

∨
ϕ∈Obj(Ā)

∨
a,b∈Obj(A) Γ(a�) ◦ ϕ̃(a) ◦ ϕ(b) ◦ Γ̃(b�)

≤ ∨
a,b∈Obj(A) Γ(a�) ◦ A(b, a) ◦ Γ̃(b�)

=
∨
a,b∈Obj(A) Γ(a�) ◦ Ā(b�, a�) ◦ Γ̃(b�)

=
∨
a∈Obj(A) Γ(a�) ◦ Γ̃(a�).

Since Γ a Γ̃,

Iu ≤
∨
ϕ∈Obj(Ā) Γ(ϕ) ◦ Γ̃(ϕ)

=
∨
a∈Obj(A) Γ(a�) ◦ Γ̃(a�)

=
∨
a∈Obj(A) γ(a) ◦ γ′(a)

and for any objects a,b of A,

γ • γ′(a, b)= γ′(b) ◦ γ(a)
= Γ̃(b�) ◦ Γ(a�)

= Γ ◦ Γ̃(a�, b�)
≤ Ā(a�, b�)
= A(a, b).

Now, since γ is an object of Ā, 2.13 shows that Γ = Ā(−, γ).
2.15. Lemma. For any V-category A, iA� : A ◦ // Ā and iA

� : Ā ◦ // A are inverse
modules.

Proof. For any object ϕ of Ā, the maps Ā(−, ϕ) and Ā(ϕ,−) — sending respectively
an object ψ of Ā to Ā(ψ, ϕ) and to Ā(ϕ, ψ) — define modules. Therefore, for any objects
a, b of A,

(iA
� • iA�)(a, b) =

∨
ϕ∈Obj(Ā) Ā(ϕ, b�) ◦ Ā(a�, ϕ)

= Ā(a�, b�)
= A(a, b).

For any objects ϕ, ψ of Ā,

(iA� • iA�)(ϕ, ψ) =
∨
a∈Obj(A) Ā(a�, ψ) ◦ Ā(ϕ, a�)

=
∨
a∈Obj(A) ψ(a) ◦ ϕ̃(a)

= Ā(ϕ, ψ).

According to this,

2.16. Proposition. V-AMod and V-SkCcAMod are equivalent. There is a 2-functor
S : V-AMod → V-SkCcCat which is an equivalence of 2-categories. S is defined on
objects by S(A) = Ā and on arrow by S(ϕ) = fϕ where for any left adjoint V-module
ϕ : A ◦ // B , fϕ is the unique V-functor f : Ā → B̄ satisfying f� • iA� = iB� • ϕ. The
inclusion 2-functor V-SkCcCat → V-Cat is a right 2-adjoint.

The left 2-adjoint of the inclusion V-SkCcCat → V-Cat sends a V-category A to Ā
and the unit takes value iA : A→ Ā in A.

According to 2.12 and 2.15, the following is coherent
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2.17. Definition. [Morita equivalence] Two V-categories A and B are Morita equiva-
lent when one of the following equivalent assertions is satisfied:
(i) Their Cauchy completions are isomorphic in V-Cat;
(ii) They are isomorphic in V-Mod.

3. Change of base

The study of the change of base for enrichments over bicategories yielded the concept
of two-sided enrichments (see [KLSS99] for the general treatment). We will specify the
theory in the particular and simpler case when the base bicategories for enrichments are
locally partially ordered (3.1-3.5). We keep on using the original terminology of [KLSS99].
Section 3.8 presents a study of the effect on the change of base bicategories on skeletality
and Cauchy completeness of enrichments. Super two-sided enrichments are introduced.

3.1. Two-sided enrichments. Caten is the tricategory as follows. Its objects are
locally partially ordered bicategories. An arrow A : V → W in Caten is a two-sided
enrichment. It consists in:
- a span in Set

Obj(A)
(−)A

−

yyssssssssss (−)A
+

%%LLLLLLLLLL

Obj(V) Obj(W)

where Obj(A) is the set of “objects” of A,
- a collection of functors Aa,b : V(a−, b−) → W(a+, b+), (a, b) ranging in Obj(A)2, that
satisfy the coherence conditions (c),(u) below.
(c) For any objects a,b,c of A, Aa,b(−)◦Ab,c(?) ≤ Aa,c(−◦?), i.e there exists a 2-cell in Po,
the locally partially ordered bicategory of partial orders, monotonous maps with pointwise
ordering, as follows

V(a−, b−)× V(b−, c−)

Aa,b×Ab,c

��

◦V // V(a−, c−)

Aa,c

��
W(a+, b+)×W(b+, c+)

08hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

◦W
// W(a+, c+)

(u) For any object a of A, IWa+
≤ Aa,a(I

V
a−) which corresponds to the 2-cell in Po

1
IVa− // V(a−, a−)

Aa,a

��
1

8@yyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyy

IWa+

// W(a+, a+)
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For any two-sided enrichments V and W , the bicategory Caten(V ,W) is locally par-
tially ordered, as follows. A 2-cell f : A → B : V → W in Caten is called a functor, it
consists in a map f : Obj(A) → Obj(B) such that:
- (−)A− = (−)B− ◦ f ;

- (−)A+ = (−)B+ ◦ f ;

Obj(A)

f

��

(−)A
−

yyssssssssss (−)A
+

%%LLLLLLLLLL

Obj(V) Obj(W)

Obj(B)
(−)B

−

eeKKKKKKKKKK (−)B
+

99rrrrrrrrrr

- for any objects a,b of A, Aa,b ≤ Bfa,fb : V(a−, b−) → W(a+, b+), i.e. there is a 2-cell in
Po

V(a−, b−) ⇓

Aa,b

$$

Bfa,fb

::
W(a+, b+)

2-cells in Caten are ordered as follows. f ≤ g : A→ B : V → W when for any object
a of A, IWa+

≤ Bfa,ga(I
V
a−) : a+ → a+, which corresponds to the 2-cell in Po

1
IVa− // V(a−, a−)

Bfa,ga

��
1

8@yyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyy

IWa+

// W(a+, a+)

The (vertical) composition of the 2-cells f : A → B, g : B → C : V → W is the
composite of the maps on objects f and g. The identity 1A of A : V → V has underlying
map the identity map on Obj(A).

Let A : U → V and B : V → W be two-sided enrichments. Their composite B ◦ A :
U → W has for span the composition of the spans of A and B: its objects are the pairs
(a, b) in Obj(A)×Obj(B) such that a+ = b− and the maps (−)B◦A− and (−)B◦A+ are given
by (a, b)− = a− and (a, b)+ = b+. The functors B ◦ A(a,b),(a′,b′) are the composites

U(a−, a
′
−)

A(a,a′) // V(a+, a
′
−) = V(b−, b

′
−)

B(b,b′) // W(b+, b
′
−) .

The horizontal composition of the 2-cells f : A→ B : U → V and g : C → D : V → W
is the map sending (a, c) ∈ Obj(C ◦ A) to (fa, gc).
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3.2. A closed structure on Caten. The cartesian product of locally partially or-
dered bicategories extends straightforwardly to a pseudo functor Caten×Caten → Caten
that makes Caten into a monoidal tricategory. Caten has a biclosed structure:

Caten(U × V ,W) ∼= Caten(U , Conv(V ,W)).

where Conv(V ,W) is defined as follows:

3.3. Definition. [The bicategory Conv(V,W)] Given two locally partially ordered bi-
categories V, W the locally partially ordered bicategory Conv(V ,W) is defined as follows.
Its objects are ordered pairs (v, w) ∈ Obj(V) × Obj(W). Its arrows (v, w) → (v′, w′)
are functors V(v, v′) → W(w,w′), (i.e. monotonous maps). The partial order on arrows
is pointwise: For any F,G : (v, w) → (v′, w′), F ≤ G when for any h : v → v′ in V,
F (h) ≤ G(h) : w → w′ in W. For any F : (v, w) → (v′, w′) and G : (v′, w′) → (v′′, w′′),
the (horizontal) composite G◦̄F : (v, w) → (v′′, w′′) is the left Kan extension of

V(v, v′)× V(v′, v′′)
F×G // W(w,w′)×W(w′, w′′) ◦W // W(w,w′′)

along V(v, v′)× V(v′, v′′) ◦V // U(v, v′′) , where ◦V , ◦W are the horizontal compositions

respectively of V and W. This means that for any arrow h in V(v, v′′), G◦̄F (h) =∨{G(g) ◦ F (f) | g ◦ f ≤ h}. The identity I(v,w) in (v, w) is the left Kan extension
of IWw : 1 → W(w,w) along IVv : 1 → V(v, v), thus for any f in V(v, v), I(v,w)(f) ={
IWw if f ≥ IVv ,
⊥, the initial element of W(w,w), otherwise.

For any bicategory V , one has an isomorphism in 2-Cat

V ∼= Conv(1,V).

Two-sided enrichments are also just enrichments since for any V , W

Caten(V ,W) ∼= Conv(V ,W)-Cat .

Thus one also gets that for any V , the 2-category V-Cat is representable:

V-Cat ∼= Caten(1,V).

3.4. Adjoints in Caten. Adjoints F a G : V ⇀ W in Caten are (up to isomorphism)
as follows. Obj(F ) = Obj(G) = Obj(V), the span of F is a left adjoint in the bicategory
of spans on Set

Obj(V)
1

yyssssssssss
F

%%LLLLLLLLLL

Obj(V) Obj(W)
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the span of G is its right adjoint

Obj(V)
F

yyrrrrrrrrrr
1

%%KKKKKKKKKK

Obj(W) Obj(V)

and the functors Fu,v : V(u, v) → W(Fu, Fv) have right adjoints Gu,v : W(Fu, Fv) →
V(u, v). Actually, a left adjoint F in Caten may be seen as a 2-functor V → W with
“local (right) adjoints”. In this case, the above family of right adjoints satisfies some
coherence properties. It can be shown that for any lax functor F : V → W such that for
any objects u, v in V , the component Fu,v : V(u, v) →W(Fu, Fv) has right adjoint Gu,v,
these adjoints in their totality satisfy the coherence conditions, on composition:

(1) for all objects u,v,t of V , for all f : Fu→ Fv and g : Fv → Ft,
Gv,t(g) ◦Gu,v(f) ≤ Gu,t(g ◦ f);

and on identities:

(2) for all objects u of V , Iu ≤ Gu,u(IFu).

if and only if F is a 2-functor.

3.5. The change of base for enrichments. Using the representability for V-cat-
egories and the fact that Caten is a tricategory, one has the change of base theorem
for enrichments over bicategories. The composition on the left by any two-sided en-
richment F : V → W , yields a 2-functor F ◦ − : Caten(1,V) → Caten(1,W), and
by the representability result, it corresponds to a 2-functor F@ : V-Cat → W-Cat . In
the same way, with any 2-cells σ : F → G of Caten yields a 2-natural transformation
σ@ : F@ → G@ : V-Cat →W-Cat . Indeed,

3.6. Theorem. There is a pseudo-functor (−)@ from Caten to 2-Cat (the 2-category of
2-categories, 2-functors and 2-natural transformations). It sends a bicategory V to the
2-category V-Cat, its actions on two-sided enrichments and 2-cells are the ones described
above.

The above F@ : V-Cat → W-Cat is now described in terms of enrichments. For any
V-category A, F@A is given by:
- Obj(F@A) = {(a, x) | a ∈ Obj(A), x ∈ Obj(F ), a+ = x−};
- (a, x)F@A

+ = x+;
- F@A((a, x), (b, y)) = Fx,y(A(a, b)).
For any V-functor f : A → B, F@(f) is the W-functor with underlying map (a, x) 7→
(fa, x).

Now if F is moreover a 2-functor, then for any V-category A, F@A is given by:
- Obj(F@A) = Obj(A);
- (a)F@A

+ = F (a+);
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- (F@A)(a, b) = FA(a, b);
and for any V-functor f : A→ B, F@(f) is the W-functor with the same underlying map
as f .

From an adjoint pair F a G in Caten, one gets the adjoint pair F@ a G@ in 2-Cat .
Precisely,

3.7. Theorem. If the 2-functor between locally partially ordered bicategories F : V → W
admits local adjoints Gu,v, (u, v) ranging in Obj(V)2 then the 2-functor F@ admits a right
2-adjoint, denoted F@ and defined on objects as follows.
For any object B of W-Cat, F@B is given by:
- Obj(F@B) = {(b, v) | b ∈ Obj(B), v ∈ Obj(V), b+ = Fv};
- (b, v)+ = v;
- F@B((b, v), (b′, v′)) = Gv,v′(B(b, b′)).

In the case above F@ is just G@, the collection of local adjoints Gu,v defining the right
adjoint G to F in Caten.

3.8. Change of base, skeletality and Cauchy completion. Further on we con-
sider a two-sided enrichment F : V → W where V and W are locally cocomplete and
biclosed.

3.9. Lemma. If F is left adjoint in Caten then for any W-category B, if B is skeletal
then also is F@B.

Proof. Suppose that (b, v), (b′, v) ∈ Obj(F@B) are such that F@B((b, v), (b′, v)) ≥ Iv,
i.e. Gv,vB(b, b′) ≥ Iv. Since Fv,v a Gv,v, B(b, b′) ≥ FIv = IFv. By skeletality of B, b = b′.

3.10. Proposition. There is a lax normal 1 functor F] : V-Mod →W-Mod that extends
F@ in the sense the diagram below commutes:

V-Cat

JV
��

F@ // W-Cat

JW
��

V-Mod
F]

// W-Mod

For any V-module ϕ : A ◦ // B , F](ϕ) : F@A ◦ // F@B is defined by: for all objects
(a, x) of F@A and (b, y) of F@B, F](ϕ)((b, y), (a, x)) = Fy,x(ϕ(b, a)). This is depicted by
the diagram in Cat below:

1
ϕ(b,a)

zzvvvvvvvvvv
F]ϕ(b,a)

''OOOOOOOOOOOOO

V(b+, a+) W((b, y)+, (a, x)+)

V(y−, x−)
Fy,x

// W(y+, x+)

1A lax functor is normal when it strictly preserves identities.
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Proof. Let ϕ : A ◦ // B . For any objects (a, x), (a′, x′) of F@A and (b, y) of F@B,

F@A((a, x), (a′, x′)) ◦ F]ϕ((b, y), (a, x)) = Fx,x′A(a, a′) ◦ Fy,xϕ(b, a)
≤ Fy,x′(A(a, a′) ◦ ϕ(b, a))
≤ Fy,x′(ϕ(b, a′))
= F]ϕ((y, b), (a′, x′)).

Similarly, for any objects (a, x) of F@A and (b, y), (b′, y′) of F@B, F]ϕ((b, y), (a, x)) ◦
F@B((b′, y′), (b, y)) ≤ F]ϕ((b′, y′), (a, x)).

Now given V-module, ϕ : A ◦ // B and ψ : B ◦ // C , for any objects (a, x) of F@A
and (c, z) of F@C,

(F](ψ • ϕ))((c, z), (a, x)) = Fz,x(ψ • ϕ)(c, a),
= Fz,x(

∨
b∈Obj(B) ϕ(b, a) ◦ ψ(c, b)),

≥ ∨
b∈Obj(B) Fz,x(ϕ(b, a) ◦ ψ(c, b))

≥ ∨
(b,y)∈Obj(F@B) Fy,xϕ(b, a) ◦ Fz,yψ(c, b)

= (F]ψ • F]ϕ)((c, z), (a, x)).

By definition F](f�) = (F@f)� for any V-functor f , thus for any V-category A,
F](1A�) = (F@1A)� = (1F@A)�.

3.11. Lemma. Let f : A→ B be a V-functor. Then:
(i) F](f�) a F](f �) in W-Mod;
(ii) If f� is an isomorphism in V-Mod then F](f

�) • F](f�) = 1.

Proof. (i): Results from the facts that for any V-functor f , F](f�) = (F@(f))� and also
F](f

�) = (F@(f))�.
(ii): Suppose f� • f � = 1 and f � • f� = 1. Composing the second equality by F] which is
lax and normal, one gets F](f

�)•F](f�) ≤ F](f
�•f�) = F](1) ≤ 1. Thus F](f

�)•F](f�) = 1
since F](f�) a F](f �).

These later facts motivated the somewhat technical definition below, as we were look-
ing for sufficient conditions on a two-sided enrichment F that ensures that F@ preserves
the Morita equivalence.

3.12. Definition. [Super two-sided enrichments] A two-sided enrichment G : V → W
is super when for any object x of G, and any family of pairs of arrows

x−
fi // ui

gi // x−

in V, i ranging in I, if Ix− ≤
∨
i∈I gi ◦ fi then

Ix+ ≤
∨
{y∈Obj(G)|∃i∈I,ui=y−}Gy,x(gi) ◦Gx,y(fi).

It is straightforward to check that the composition of super two-sided enrichments is
super. Trivially identities are super.
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3.13. Lemma. If F is super then F] : V-Mod →W-Mod preserves adjoints, i.e. for any
ϕ a ϕ̃ in V-Mod, one has the ajoint pair F](ϕ) a F](ϕ̃) in W-Mod.

Proof. Suppose that F is super. Consider a left adjoint ϕ : A ◦ // B in V-Mod .
First let us show that 1 ≤ F](ϕ̃) • F](ϕ). Note that for any object (a, x) of F@A, since
IVa+

≤ ∨
b∈Obj(B)(ϕ(b, a) ◦ ϕ̃(a, b)) one has IWx+

≤ ∨
(b,z)∈Obj(F@B) Fz,xϕ(b, a) ◦ Fx,zϕ̃(a, b).

Thus for any objects (a, x), (a′, y) of F@A.

F@A((a, x), (a′, y)) = Fx,yA(a, a′)
≤ Fx,yA(a, a′) ◦ (

∨
(b,z)∈Obj(F@B) Fz,xϕ(b, a) ◦ Fx,zϕ̃(a, b))

=
∨

(b,z)∈Obj(F@B)((Fx,yA(a, a′) ◦ Fz,xϕ(b, a)) ◦ Fx,zϕ̃(a, b))
≤ ∨

(b,z)∈Obj(F@B)(Fz,yϕ(b, a′)) ◦ Fx,zϕ̃(a, b))
= (F]ϕ̃ • F]ϕ)((a, x), (a′, y)).

Now since F] is lax and normal and ϕ • ϕ̃ ≤ 1, F](ϕ) • F](ϕ̃) ≤ F](ϕ • ϕ̃) ≤ F](1) =
1.

In particular the above F] : V-Mod →W-Mod will preserve inverse pairs of modules,
thus isomorphisms.

3.14. Corollary. If F is super then F] preserves the Morita equivalence, i.e. if the
V-categories A and B are Morita equivalent then also are F@A and F@B.

Further on, we suppose that F has right adjoint G in Caten, i.e. F : V → W is a
2-functor with local adjoints Ga,b, (a, b) ranging in Obj(V)2.

3.15. Proposition. F] : V-Mod →W-Mod is a 2-functor.

Proof. We already know that F] is lax and normal. It remains to show that F] preserves
composition. Let ϕ : A ◦ // B and ψ : B ◦ // C be V-modules. Since F has local right
adjoints, it “preserves local least upper bounds”, therefore for any objects a of A and c
of C,

F](ψ • ϕ)(c, a) = F (
∨
b∈Obj(B) ϕ(b, a) ◦ ψ(c, b)),

=
∨
b∈Obj(B) F (ϕ(b, a) ◦ ψ(c, b))

=
∨
b∈Obj(B) Fϕ(b, a) ◦ Fψ(c, b)

= (F]ψ • F]ϕ)(c, a).

We shall finish with technical lemmas. Their relevance will appear in the next section
treating reversibility.

3.16. Lemma. Let η be the unit of the adjunction F@ a F@. For any left adjoint module
ϕ : A ◦ // B there is a 2-cell in V-Mod:

A

ηA�
��

ϕ // B

qy lllllllllllllll

lllllllllllllll

ηB�
��

F@F@A G]F]ϕ
// F@F@B
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Proof. Let ϕ : A ◦ // B be a right adjoint in V-Mod . Consider some objects a of A
and (v, b) ∈ F@F@B. Then

(ηB� • ϕ)((v, b), a) =
∨
b′∈Obj(B) ϕ(b′, a) ◦Gv,b′+FB(b, b′)

≤ ∨
b′∈Obj(B)Gb′+,a+Fϕ(b′, a) ◦Gv,b′+FB(b, b′)

≤ Gv,a+Fϕ(b, a);

On the other hand,

(G]F]ϕ • ηA�)((v, b), a) =
∨

(a′,v′)∈Obj(F@F@A)Gv′,a+FA(a′, a) ◦Gv,v′Fϕ(b, a′)
≤ ∨

(a′,v′)∈Obj(F@F@A)Gv,a+F (A(a′, a) ◦ ϕ(b, a′))
≤ Gv,a+Fϕ(b, a)

And since (a, a+) ∈ Obj(F@F@A), one has also

Gv,a+Fϕ(b, a) ≤ Ga+,a+FIa+ ◦Gv,a+Fϕ(b, a)
≤ Ga+,a+FA(a, a) ◦Gv,a+Fϕ(b, a)
≤ (G]F]ϕ • ηA�)((v, b), a)

3.17. Lemma. Let A be a Cauchy complete W-category. For any object u of V and any
left adjoint V-module ϕ : û ◦ // F@A , there is a V-functor f : û→ F@A with f� ≥ ϕ.

Proof. Let u be an object of V and ϕ : û ◦ // F@A be a left adjoint V-module.

According to Fact 3.15, F]ϕ : F@û ◦ // F@F
@A is a left adjoint W-module, therefore

also is εA� • F]ϕ : F@û ◦ // A , ε denoting the co-unit of the adjunction F@ a F@ (see
diagram below).

F@A F@F
@A

εA� // A

û

ϕ

OO

F@û

F]ϕ

OO

g�

;;

Since A is Cauchy complete there is some V-functor g : F@û→ A such that g� = εA�•F]ϕ.
η denoting the unit of the adjunction F@ a F@, let us see that theW-functor f = F@g◦ηû :
û→ F@A — see diagram below — satisfies f� ≥ ϕ.

û

f ##FF
FF

FF
FF

FF
ηû // F@F@û

F@g
��

F@û

g

��
F@A A

The required 2-cell results from the pasting of diagrams in V-Mod :
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-

? ?

�
�

�
�

�
��

-

Z
Z

Z
Z

Z
Z

Z
Z

Z~ ?

�
�

�
�

�
�

�
�

�
�

�
��

û

(I)

F@F@û

ϕ

F@F@F@A
G]F]ϕ

(ηF@A)�ηû�

(II)

F@A

(F@εA)�(F@g)�

F@A

2-cell (I) is given by 3.16, and 2-cell (II) is given by the laxity of G].

4. Reversibility

In this section we will restrict the theory of two-sided enrichments over locally partially
ordered bicategories to the symmetric case. We extend the notion of reversibility of
[Wal82] to two-sided enrichments, modules, and completion. Definitions will allow to
rebuild the complete theory in this special case. They will be also illustrated by two
examples: sheaves over locales and action groups. Eventually we study the effect of
the change of bases on the completeness and skeletality of enrichments in the reversible
context. The main result is theorem 4.34.

4.1. Reversible enrichments.

4.2. Definition. A 2-category V is reversible when there are isomorphisms of categories
su,v : V(u, v) ∼= V(v, u) for all objects u and v of V, and these isomorphisms satisfy the
conditions:
- rev − (i) : su,v ◦ sv,u = 1, for any objects u and v;
- rev − (ii) : for any objects u,v,w the diagram (in Cat) below commutes:

V(v, w)× V(u, v)

∼=
��

◦u,v,w // V(u,w)

su,w

��

V(u, v)× V(v, w)

su,v×sv,w

��
V(v, u)× V(w, v)◦w,v,u

// V(w, u)

where ◦ is the horizontal composition in V;
- rev − (iii) : for any object v the diagram below commutes
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1
Iv // V(v, v)

sv,v

��
1

Iv
// V(v, v)

Further on V is a reversible locally partially ordered biclosed and cocomplete bicate-
gory.

4.3. Definition. [reversible enrichments] A V-category A is reversible when for any
objects a, b of A, A(b, a) = sa+,b+(A(a, b)).

Let A and B be V-categories. If B is reversible then the preorder V-Cat(A,B), denoted
here ⇒, is an equivalence since for any V-functors f, g : A→ B,

f ⇒ g if and only if for all object a of A, Ia+ ≤ B(fa, ga),
- - - - - - - - - - - - - - - - - - - - - , s(Ia+) ≤ s(B(fa, ga))
- - - - - - - - - - - - - - - - - - - - - , Ia+ ≤ B(ga, fa)
if and only if g ⇒ f .

4.4. Observation. If B above is moreover skeletal then⇒ is the identity on V-Cat(A,B).

4.5. Proposition. Let A and B be reversible V-categories.
(1) If ϕ : A ◦ // B is a V-module then the map defined on Obj(A) × Obj(B) sending
(a, b) to the arrow sb+,a+(ϕ(b, a)) defines a V-module ϕs : B ◦ // A .
(2) If ϕ is left adjoint then ϕs is right adjoint with (ϕ̃)s a ϕs.

Proof. Assertion (1) is straightforward. Let us see (2) : Suppose that ϕ is left adjoint.
From 1 ≤ ϕ̃ • ϕ, i.e. for any objects a, a′ of A,

A(a, a′) ≤
∨

b∈Obj(B)

ϕ(b, a′) ◦ ϕ̃(a, b)

one gets by applying s(a+,a′+) on both sides of the inequality that for any a, a′,

A(a′, a) ≤
∨

b∈Obj(A)

(ϕ̃)s(b, a) ◦ ϕs(a′, b),

i.e. 1 ≤ ϕs • (ϕ̃)s. Similarly one gets from (ϕ̃)s • ϕs ≤ 1 that ϕ • ϕ̃ ≤ 1.

There are reversible enrichments with non-reversible Cauchy completions. A very
simple example (due to S. Kasangian) may be found in [BeWal82]. This motivates the
notion of Cauchy-reversible completeness defined further.

4.6. Definition. [Reversible modules] A V-module ϕ between reversible V-categories is
reversible when it has right adjoint ϕs.

4.7. Remark. If f is a V-functor between reversible V-categories then the V-module f�
is reversible.
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4.8. Definition. [Cauchy-reversible completeness] A reversible V-category B is Cauchy-
reversible complete when one of the following two equivalent assertions holds:
(i) For any reversible V-module ϕ : A ◦ // B , ϕ = f� for some V-functor f : A→ B;
(ii) For any object u of V and any reversible V-module ϕ : û ◦ // B , ϕ = b� for some
object b of B with b+ = u.

Let us prove the equivalence of assertions (i) and (ii) of the previous definition.
(i) ⇒ (ii): immediate.
(ii) ⇒ (i): Note that for some reversible module ϕ : A ◦ // B , for any object a of A,
ϕ • a� a a� • ϕs = (ϕ • a�)s. Then one concludes analogously as for 2.8.

Clearly, any reversible Cauchy complete V-category is also a Cauchy-reversible com-
plete one.

4.9. Definition. [Cauchy-reversible completion] Let A be a reversible V-category with
Cauchy completion Ā. As, the Cauchy-reversible completion of A is the reversible V-
category where Obj(As) ⊆ Obj(Ā), is the set of reversible V-modules of the form ϕ :

û ◦ // A , u ranging in Obj(V). The maps As(−,−) and (−)+ of As are the restrictions
of the maps Ā(−,−) and (−)+ of Ā.

From 2.10, it is immediate that the above data defines a V-category As. As is moreover
reversible as shown below. Let ϕ : û ◦ // A , ψ : v̂ ◦ // A be reversible adjoints, then

Ā(ϕ, ψ) =
∨
a∈Obj(A) ψ(a) ◦ ϕs(a)

=
∨
a∈Obj(A) sv,u(ϕ(a) ◦ ψs(a))

= sv,u(
∨
a∈Obj(A) ϕ(a) ◦ ψs(a))

= sv,u(Ā(ψ, ϕ)).

Let A, Ā and, As be as in 4.8. The map iA : Obj(A) → Obj(Ā) takes values in
Obj(As). Thus it defines a V-functor from A to As further on denoted jA.

An immediate consequence of 2.12 is

4.10. Proposition. For any reversible V-category A, As is skeletal.

Adapting the proof of 2.13 one shows

4.11. Lemma. Let A be a reversible V-category and, Γ : û ◦ // As be some V-module
where u is an object of V. For any object ϕ of As, Γ(ϕ) =

∨
a∈Obj(A)Γ(a�) ◦ ϕs(a).

4.12. Proposition. For any reversible V-category A, As is Cauchy-reversible complete.

Proof. Merely an adaptation of the proof of 2.14. Given Γ : û ◦ // As a reversible V-
module. One checks that the maps γ : Obj(A) → Arrows(V) given by for any a ∈ Obj(A),

γ(a) = Γ(a�)

defines a reversible module from û to A with adjoint γ′ given by for any object a of A,

γ′(a) = Γs(a�).

Then according to 4.11, Γ = As(−, γ).
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4.13. Lemma. For any reversible V-category A, jA� : A ◦ // As and jA
� : As ◦ // A

are inverse reversible modules.

Proof. The proof that (jA)� and (jA)� are inverse modules is the one for 2.15. Since As

is reversible, jA
� = (jA�)

s.

We define the following 2-categories.

- V-RCat with:
- objects: reversible V-categories,
- arrows and 2-cells: inherited from V-Cat .

- V-SkCRcCat with:
- objects: skeletal and Cauchy-reversible complete V-categories,
- arrows and 2-cells: inherited from V-Cat .

- V-RMod with:
- objects: reversible V-categories,
- arrows: reversible V-modules,
- 2-cells: inherited from V-Mod .

According to 4.13,

4.14. Proposition. V-SkCRcCat and V-RMod are 2-equivalent. The 2-equivalence S ′ :
V-RMod → V-SkCRcCat is defined on objects by S ′(A) = As and on arrows by S ′(ϕ) = fϕ
where for any reversible V-module ϕ : A ◦ // B , fϕ : As → Bs is the unique V-functor
f satisfying (fϕ)� • jA� = jB� •ϕ. The inclusion 2-functor V-SkCRcCat → V-RCat has a
left 2-adjoint.

According to 4.4, V-SkCRcCat and V-RMod are locally discrete, i.e. the only 2-cells
are identies. Therefore we shall sometimes consider them just as categories. Skeletal and
Cauchy-reversible complete V-categories form a reflective subcategory of the underlying
category of V-RCat . The left adjoint of the inclusion sends a reversible V-category A to
As and, the unit takes value jA : A→ As in A.

We may define,

4.15. Definition. [Morita reversible equivalence] Two reversible V-categories A and B
are Morita reversible equivalent when one of the following equivalent assertions is satis-
fied:
(i) Their Cauchy-reversible completions are isomorphic in V-Cat;
(ii) They are isomorphic in V-RMod.

Note that if two reversible V-categories are Morita reversible equivalent then they are
Morita equivalent.

4.16. Examples. Further on we give two examples of reversible enrichments on locally
partially ordered bicategories. Note that for the second example, the reversibility isomor-
phisms are not identities.
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4.17. Example. [Sheaves][Wal81]

To any locale L corresponds a locally partially ordered bicategory CL given by:
- objects are the u ∈ L;
- arrows from u to v are the w ∈ L with w ≤ u ∧ v;
- the partial order on CL(u, v) is that of L;
- the composition of arrows is the intersection;
- the unit in u is u.
Such a CL is locally cocomplete and biclosed. It is also reversible where the isomorphisms
su,v are the identity maps CL(u, v) → CL(v, u).

If L is a locale, Sh(L) will denote the category of sheaves on L. In [Wal81], the
following result is proved.

4.18. Theorem. Given a locale L, Sh(L) is equivalent to the category of reversible skele-
tal Cauchy complete CL-enrichments.

The equivalence J above is defined as follows. For any sheaf F on L, J(F ) is the
enrichment over CL where:
- Obj(J(F )) is the set of partial sections of F ;
- For any section s, s+ is its domain dom(s);
- For any sections s, s′, J(F )(s, s′) =

∨{u ≤ dom(s) ∧ dom(s′) | sbu = s′bu} — sbu
denotes the restriction of s to u ≤ dom(s). If h : F → G is a morphism of Sh(L), J(h) is
the map that sends any partial section s ∈ Fu to h(s) ∈ Gu.

In this case it happens that Cauchy-reversible complete enrichments are Cauchy com-
plete. This is due to

4.19. Proposition. For any locale L, any left adjoint CL-module is reversible.

Proof. Let u ∈ L and ϕ : û ◦ // A be some left adjoint module with ϕ a ϕ̃. Then the
map ψ given by: ψ(s) = ϕ(s)∧ ϕ̃(s) defines a module ψ : û ◦ // A with itself as adjoint.
Since ψ ≤ ϕ and ψ ≤ ϕ̃, ϕ = ψ = ϕ̃.

So we may reformulate 4.18

4.20. Theorem. Given a locale L, Sh(L) is equivalent to the category of skeletal Cauchy-
reversible complete CL-enrichments.

4.21. Example. [Group actions]

Let α be an action of the group G on the set X. We note for such an action:
- 〈σ, x〉α (or simply 〈σ, x〉), the image of x ∈ X by α(σ) for σ ∈ G,
- “·”, the composition law of G,
- u, the neutral element of G.
Such an action will be denoted (G,X, α) or simply (X,α).

Given a group G, G-Set denotes the category with objects actions of G on sets and
with arrows action preserving maps i.e. f : (Z, β) → (X,α) is an arrow of G-Set when
the underlying map f : Z → X makes the following diagram commute:
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G× Z
β //

1×f
��

Z

f

��
G×X α

// X

If α is an action of G on X, the locally partially ordered bicategory Cα is defined as
follows:
- Objects are the x ∈ X;
- Arrows from x to x′ are the subsets of {σ ∈ G | 〈σ, x〉 = x′};
- the partial order on Cα(x, x′) is the inclusion;
- the composition L′ ◦ L of L : x→ x′ and L′ : x′ → x′′ is {τ · σ | σ ∈ L and τ ∈ L′};
- the unit at x is {u}.
Clearly Cα is locally cocomplete and biclosed. Cα is reversible with isomorphisms s:
sx,x′(L) = {σ−1 | σ ∈ L}, for any L : x→ x′.

4.22. Lemma. Let α be an action of a group G on a set X and A be a reversible enrich-
ment on Cα.

(1) For any a0 ∈ Obj(A) and any σ0 ∈ G, the map ϕ given by

(∗) ∀a ∈ Obj(A), ϕ(a) = {σ0} ◦ A(a, a0)

defines a left adjoint module ϕ : x̂ ◦ // A where x = 〈σ0, (a0)+〉, with right adjoint ϕ̃
given by

∀a ∈ Obj(A), ϕ̃(a) = A(a0, a) ◦ {σ0
−1}.

Conversely for any x ∈ X and any left adjoint module ϕ : x̂ ◦ // A there is some
a0 ∈ Obj(A) and some σ0 ∈ G such that x = 〈σ0, (a0)+〉 and the map ϕ is given by
formulae (∗) above.

(2) If ϕ, ψ : x̂ ◦ // A are left adjoint modules given by:

∀a ∈ Obj(A), ϕ(a) = {σ0} ◦ A(a, a0)

and
∀a ∈ Obj(A), ψ(a) = {τ0} ◦ A(a, a′0)

where σ0, τ0 ∈ G and a0, a
′
0 ∈ Obj(A), then ϕ = ψ if and only if (σ0, a0) ∼ (τ0, a

′
0), ∼

being the equivalence relation on G×X:

∀σ, σ′ ∈ G, ∀a, a′ ∈ Obj(A), (σ, a) ∼ (σ′, a′) ⇔ (σ′)
−1 · σ ∈ A(a, a′).

Proof. (1) : Let a0 ∈ Obj(A), σ0 ∈ G, and ϕ be the map on Obj(A) defined by
ϕ(a) = {σ0} ◦ A(a, a0). For short, let x = 〈σ0, (a0)+〉. Actually ϕ defines a module

x̂ ◦ // A . ϕ satisfies (mod− i) since for any a ∈ Obj(A), ϕ(a) is an object of Cα(a+, x).
ϕ satisfies (mod− ii) since for any a ∈ Obj(A), {u} ◦ϕ(a) ⊆ ϕ(a). ϕ satisfies (mod− iii),
since for any a, a′ ∈ Obj(A),
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ϕ(a) ◦ A(a′, a) = {σ0} ◦ A(a, a0) ◦ A(a′, a)
⊆ {σ0} ◦ A(a′, a0)
= ϕ(a′).

Analogously one shows that the map sending any a ∈ Obj(A) to A(a0, a) ◦ {σ0
−1} defines

a module ϕ̃ : A ◦ // x̂ . ϕ̃ is right adjoint to ϕ as shown below.
Since u ∈ ⋃

a∈Obj(A)A(a, a0) ◦ A(a0, a),

{u} ⊆{a0, a0}
⊆⋃

a∈Obj(A){σ0} ◦ A(a, a0) ◦ A(a0, a) ◦ {σ0
−1}

=
⋃
a∈Obj(A) ϕ(a) ◦ ϕ̃(a).

For any a, a′ ∈ Obj(A),

ϕ̃(a) ◦ ϕ(a′)= A(a0, a) ◦ {σ0
−1} ◦ {σ0} ◦ A(a′, a0)

⊆ A(a′, a).

Now consider some x ∈ X, and some left adjoint module ϕ : x̂ ◦ // A with right
adjoint ϕ̃. Then {u} ⊆ ⋃

a∈Obj(A) ϕ(a)◦ϕ̃(a). This implies that there are some a0 ∈ Obj(A)
and some σ0 ∈ ϕ(a0) with σ0

−1 ∈ ϕ̃(a0). For this a0, 〈σ0, (a0)+〉 = x. Let ψ : x̂ ◦ // A
be the left adjoint module defined by ∀a ∈ Obj(A), ψ(a) = {σ0} ◦ A(a, a0). Then for any
a ∈ Obj(A),

ψ(a) = {σ0} ◦ A(a, a0)
⊆ ϕ(a0) ◦ A(a, a0)
⊆ ϕ(a).

Thus ψ ≤ ϕ. Analogously for any a ∈ Obj(A), A(a0, a) ◦ {σ0
−1} ⊆ ϕ̃(a) i.e. ψ̃ ≤ ϕ̃.

Therefore ψ = ϕ.
(2) : First let us check that ∼ is an equivalence relation. It is reflexive since for

any object a of A, u−1 · u = u ∈ A(a, a). It is symmetric. If (σ, a) ∼ (σ′, a′) then
σ′−1.σ ∈ A(a, a′), thus σ−1.σ′ ∈ A(a′, a) since A is reversible. It is transitive. Suppose
(σ, a) ∼ (σ′, a′) and (σ′, a′) ∼ (σ′′, a′′). Then (σ′)−1 ·σ ∈ A(a, a′) and (σ′′)−1 ·σ′ ∈ A(a′, a′′).
Thus σ′′−1 · σ ∈ A(a′, a′′) ◦ A(a, a′) ⊆ A(a, a′′).

Consider further on ϕ, ψ : x̂ ◦ // A , σ0, σ
′
0 ∈ G and, a0, a

′
0 ∈ Obj(A) such that

∀a ∈ Obj(A), ϕ(a) = {σ0}◦A(a, a0) and ψ(a) = {σ′0}◦A(a, a′0). First, suppose (σ0, a0) ∼
(σ′0, a

′
0) i.e., σ′0

−1 · σ0 ∈ A(a0, a
′
0). Then for any a ∈ Obj(A),

ϕ(a) = {σ0} ◦ A(a, a0)

= {σ′0} ◦ {σ′0
−1 · σ0} ◦ A(a, a0)

⊆ {σ′0} ◦ A(a0, a
′
0) ◦ A(a, a0)

⊆ {σ′0} ◦ A(a, a′0)
= ψ(a),

then ϕ ≤ ψ. Since σ′0 = σ0 ·γ−1 and then γ−1 ∈ A(a′0, a0), one obtains analogously ψ ≤ ϕ.
Now suppose ϕ = ψ. Then for any a ∈ Obj(A), {σ0} ◦A(a, a0) = {σ′0} ◦A(a, a′0). For

a = a0, we get {σ0} ⊆ {σ′0} ◦A(a0, a
′
0), i.e. there is γ ∈ A(a0, a

′
0), such that σ0 = σ′0 · γ.
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4.23. Corollary. Let α be an action of the group G on a set X and A be a reversible
enrichment on Cα. Any left adjoint module ϕ : x̂ ◦ // A has right adjoint ϕs.

4.24. Proposition. Let (X,α) be an action of the group G. The category of skeletal
and Cauchy-reversible complete enrichments on Cα is equivalent to the category G-Set ↓ α
of objects over α. Precisely the equivalence J : G-Set ↓ α ∼= Cα-SkCRcCat is given by:
- For any f : (Z, β) → (X,α) in G-Set, J(f) is the enrichment with set of objects Z,
and such that for any z ∈ Z, z+ = f(z), and for any z, z′ ∈ Z, J(f)(z, z′) is the set
{σ ∈ G | 〈σ, z〉β = z′};
- For any arrow 〈f1, h, f2〉 of G-Set ↓ α with f1 : (Z1, β1) → (X,α) and f2 : (Z2, β2) →
(X,α), J(h) is the Cα-functor from J(f1) to J(f2) defined by the map h : Z1 → Z2.
J has adjoint J ′ defined on objects as follows. For any skeletal Cauchy-reversible complete
enrichment A on Cα, J ′(A) is the action (Obj(A), β) where for any σ ∈ G and any
a ∈ Obj(A), 〈σ, a〉β is the unique a′ such that σ ∈ A(a, a′).

Proof. Let us check that given f : (Z, β) → (X,α), J(f) is a skeletal Cauchy-reversible
complete Cα-enrichment.
- It satisfies (enr − i): Since f is a morphism of G-Set , for any z ∈ Z and any σ ∈ G,
〈σ, f(z)〉α = f(〈σ, z〉β). Therefore for any z, z′ ∈ Z,

J(f)(z, z′) = {σ ∈ G | 〈σ, z〉β = z′}
⊆ {σ ∈ G | 〈σ, f(z)〉α = f(z′)}

i.e. J(f)(z, z′) is an object of Cα(z+, z
′
+).

- J(f) satisfies (enr − ii) since for any z ∈ Z, {u} ⊆ J(f)(z, z).
- It trivially satisfies (enr − iii).
- J(f) is trivially reversible.
- J(f) is skeletal since for any z, z′ ∈ Z, u ∈ J(f)(z, z′) ⇒ z = z′.
- Let us show that it is Cauchy complete. Consider a module ϕ : x̂ ◦ // J(f) with right
adjoint ϕ̃. According to Lemma 4.22 there are some z0 ∈ Z and some σ0 ∈ ϕ(z0) such
that ϕ(z) = {σ0} ◦ J(f)(z, z0). Let z1 = 〈σ0, z0〉β. Then f(z1) = 〈σ0, f(z0)〉 = x. We are
going to show that ϕ = z1�. z1� ≤ ϕ since for any z ∈ Z,

J(f)(z, z1) = {σ0} ◦ J(f)(z, z0)
⊆ ϕ(z0) ◦ J(f)(z, z0)
⊆ ϕ(z).

Analogously z1
� ≤ ϕ̃ since for any z ∈ Z, J(f)(z1, z) = J(f)(z0, z)◦{σ0

−1}. Thus z1� = ϕ.
Let us check that given some arrow 〈f1, h, f2〉 of G-Set ↓ (X,α), J(h) is a well defined

Cα-functor. Suppose f1 : (Z1, β1) → (X,α) and f2 : (Z2, β2) → (X,α). h is an arrow of
G-Set that makes the following diagram in G-Set commute:

(Z1, β1)

f1 %%JJJJJJJJJ
h // (Z2, β2)

f2yyttttttttt

(X,α)
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Since h is an arrow of G-Set , for any z, z′ ∈ Z1, J(f1)(z, z
′) ⊆ J(f2)(hz, hz

′) and the map
h : Z1 → Z2 defines a Cα-functor from J(f1) to J(f2).

Now it is straightforward to check that J as defined above is a functor from G-Set ↓
(X,α) to Cα-Cat .

Let us check that given some skeletal reversible Cauchy complete enrichment A on Cα,
J ′(A) = (Obj(A), β) is a well defined object of G-Set ↓ (X,α).

First we need to prove the property (∗):
Given x ∈ X, a0 ∈ Obj(A) and σ0 ∈ G such that 〈σ0, (a0)+〉 = x, there is a unique
a1 ∈ Obj(A) with σ0 ∈ A(a0, a1). It satisfies (a1)+ = x.

Let x, a0, and σ0 be as above and ϕ : x̂ ◦ // A be the left adjoint module defined by
ϕ(a) = {σ0} ◦ A(a, a0). Due to the Cauchy completeness of A, there is an a1 ∈ Obj(A)
such that ϕ = a1�. Such an a1 satisfies therefore (a1)+ = x and σ0 ∈ A(a0, a1). Due to
skeletality, such an a1 is unique.

According to (∗), β : G × Obj(A) → Obj(A) is a well defined map. β defines indeed
an action of G on Obj(A), as shown below (for short we omit the subscript β).
- For any a ∈ Obj(A), 〈u, a〉 = a since u ∈ A(a, a).
- For any a ∈ Obj(A) and any g1, g2 ∈ G, {g1} ⊆ A(a, 〈g1, a〉) and
{g2} ⊆ A(〈g1, a〉, 〈g2, 〈g1, a〉〉). Therefore

g2 · g1 ∈ A(〈g1, a〉, 〈g2, 〈g1, a〉〉 ◦ A(a, 〈g1, a〉)
⊆A(a, 〈g2, 〈g1, a〉〉),

proving 〈g2 · g1, a〉 = 〈g2, 〈g1, a〉〉.
Since by definition for any a, a′ ∈ Obj(A), A(a, a′) = {σ ∈ G | 〈σ, a〉β = a′}, it is clear

that (−)+ defines an arrow of G-Set from (Obj(A), β) above to (X,α).
In order to prove that J is an equivalence of category with adjoint J ′ we must prove

J ′ ◦J ∼= 1 and J ◦J ′ ∼= 1. It is immediate to see that the two natural isomorphisms above
are identities.

We found convenient to present now the following result that we shall use later (4.38).

4.25. Lemma. If A is a reversible enrichment on Cα with (reversible) Cauchy completion
Ā, then J(Ā) is isomorphic to the arrow of G-Set

f : ((G×Obj(A))/ ∼, δ) → (X,α)

where:
- ∼ is the equivalence on G×Obj(A) defined in Lemma 4.22-(2);
- G acts on (G×Obj(A))/ ∼ as follows:

〈τ, [(σ, z)]〉δ = [(τ · σ, z)];

- for any a ∈ Obj(A) and any σ ∈ G,

f([(σ, a)]) = 〈σ, a+〉α
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Proof. First, let us show that the maps δ and f are well defined. Suppose (σ, a) ∼ (σ′, a′)
for some σ, σ′ ∈ G and some a, a′ ∈ Obj(A). By definition σ′−1 · σ ∈ A(a, a′). Thus for
any τ ∈ G, (τ · σ′)−1τ · σ = σ′−1 · σ ∈ A(a, a′), showing (τ · σ, a) ∼ (τ · σ′, a′). Also
〈σ′−1σ, a+〉α = (a′)+ and 〈σ, a+〉α = 〈σ′, (a′)+〉α. Trivially δ defines an action of G on
(G×Obj(A))/ ∼ that is preserved by f .

Further on, let Ā denote the Cauchy completion of A. According to Lemma 4.22-
(2), the map h : (G × X)/ ∼→ Obj(Ā) sending [(σ0, a0)] to ϕ such that ∀a, ϕ(a) =
{σ0} ◦ A(a, a0) is well defined and is a bijection.

According to 4.24, in order to conclude, it is enough to show that h defines an isomor-
phism of Cα-Cat from J(f) to Ā. f ◦h = (−)+ since for any ϕ : x̂ ◦ // A = h([(σ0, a0)]),
ϕ+ = x = 〈σ0, (a0)+〉α = f([(σ0, a0)]). For any σ, σ′ ∈ G and any a, a′ ∈ Obj(A),

J(f)([σ, a], [σ′, a′]) = {τ ∈ G | 〈τ, [σ, a]〉δ = [σ′, a′]}
= {τ ∈ G | [τ · σ, a] = [σ′, a′]}
= {τ ∈ G | σ′−1 · τ · σ ∈ A(a, a′)}
= {σ′} ◦ A(a, a′) ◦ {σ−1}
= {σ′} ◦ ∨

b∈Obj(A)(A(b, a′) ◦ A(a, b)) ◦ {σ−1}
= Ā(h([σ, a]), h([σ′, a′])).

4.26. Change of base, reversibility and completions. If U and V are reversible
then Conv(U ,V) may be provided with a reversible structure. The isomorphism s(u,v),(u′,v′) :
Conv(U ,V)((u, v), (u′, v′)) ∼= Conv(U ,V)((u′, v′), (u, v)) sends any functor F : (u, v) →
(u′, v′) to the functor F s : (u′, v′) → (u, v) such that

U(u, u′) F // V(v, v′)

sV
v,v′

��
U(u′, u)

F s
//

sU
u′,u

OO

V(v′, v)

and any σ : F → G : (u, v) → (u′, v′) to σs : F s → Gs = sVv,v′ ◦ σ ◦ sUu′,u.
The s(u,v),(u′,v′) are trivially idempotent. To see that Conv(U ,V) satisfies rev − (ii)

and rev − (iii), we will need the following lemma. Its proof is left to the reader.

4.27. Lemma. Given functors M : A → B, T : A → C, M ′ : A′ → B′, T ′ : A′ → C ′ and
isomorphisms sA,A′ : A → A′, sB,B′ : B → B′ and, sC,C′ : C → C ′ such that:
- the left Kan extension L of T along M and the left Kan extension L′ of T ′ along M ′

exist,
- sB,B′ ◦M = M ′ ◦ sA,A′,
- sC,C′ ◦ T = T ′ ◦ sA,A′,
then L′ ◦ sB,B′ ∼= sC,C′ ◦ L.



212 ANNA LABELLA AND VINCENT SCHMITT

b b
b

b

b

b
-

-

















�


















�

Q
Q

Q
Q

QQs

Q
Q

Q
Q

QQs

]
.......................................................................................................................................................................................

]
.......................................................................................................................................................................................

Q
Q

Q
Q

QQs

A

C

A′

C ′

B′

B

M ′

T

T ′

M

sA,A′ sB,B′

L′

L

sC,C′

That Conv(U ,V) satisfies rev − (ii) is equivalent to the fact that for any functors F :
U(u, u′) → V(v, v′) and G : U(u′, u′′) → V(v′, v′′) the diagram below (in Cat) commutes

U(u, u′′) G◦̄F //

sU
u,u′′

��

V(v, v′′)

sV
v,v′′

��
U(u′′, u)

F s◦̄Gs
// V(v′′, v)

To see that it holds, just apply 4.27 with:

- M = U(u, u′)× U(u′, u′′) ◦U // U(u, u′′) ,

- T = U(u, u′)× U(u′, u′′)
F×G // V(v, v′)× V(v′, v′′) ◦V // V(v, v′′) ,

- M ′ = U(u′′, u′)× U(u′, u) ◦U // U(u′′, u) ,

- T ′ = U(u′′, u′)× U(u′, u)
Gs×F s

// V(v′′, v′)× V(v′, v) ◦V // V(v′′, v) ,
and isomorphisms:

- U(u, u′)× U(u′, u′′)
∼= // U(u′, u′′)× U(u, u′)

su′,u′′×su,u′ // U(u′′, u′)× U(u′, u) ,

- U(u, u′′)
su,u′′ // U(u′′, u) ,

- V(v, v′′)
sv,v′′ // V(v′′, v) .

That Conv(U ,V) satisfies rev − (iii) is equivalent to the fact that for any objects u
of U and v of V the following diagram commutes.

U(u, u)

sUu,u

��

I(u,v) // V(v, v)

sVv,v

��
U(u, u)

I(u,v)

// V(v, v)

.

This results from applying 4.27 with:

- M = 1
IUu // U(u, u) ,
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- T = 1
IVv // V(v, v) ,

- M ′ = 1
IUu // U(u, u) ,

- T ′ = 1
IVv // V(v, v) ,

and isomorphisms 1 : 1 → 1, su,u and, sv,v.

4.28. Definition. A two-sided enrichment F : V → W between reversible locally par-
tially ordered bicategories is reversible when for any objects x, y of F the following diagram
commutes

V(x−, y−)
Fx,y //

sVx−,y−
��

W(x+, y+)

sWx+,y+
��

V(y−, x−)
Fy,x

// W(y+, x+)

By definition for reversible locally partially ordered bicategories U and V , the isomor-
phism

Caten(U ,V) ∼= Conv(U ,V)-Cat

sends exactly reversible two-sided enrichments to reversible enrichments. Also, if V is
reversible the composite isomorphism

V-Cat ∼= Conv(1,V)-Cat ∼= Caten(1,V)

sends bijectively reversible enrichments onto reversible two-sided enrichments. Note that
reversible enrichments form a subcategory of Caten. Thus for any reversible two-sided
enrichment F : V → W, the corresponding change of base F@ : V → W preserves the
reversibility of objects.

Further on V and W will denote two locally partially ordered reversible cocomplete
and biclosed bicategories.

Using 3.13, it is straightforward to check that

4.29. Observation. Given a reversible super two-sided enrichment F : V → W, the lax
functor F] : V-Mod → W-Mod defined in 3.15 preserves the reversibility of arrows: for
any reversible V-module ϕ, F](ϕ) is reversible.

According to this and 4.15

4.30. Proposition. For any super reversible two-sided enrichment F : V → W, F@

preserves the Morita reversible equivalence: if the reversible V-categories A and B are
Morita reversible equivalent then also are F@A and F@B.

Further on, we consider some adjunction F a G : V ⇀ W in Caten, say F is a
2-functor with local right adjoints Ga,b : W(Fa, Fb) → V(a, b).

4.31. Lemma. F is reversible if and only if G is.

To prove this, we need
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4.32. Lemma. Given objects a, b of V, if s : V(a, b) → V(b, a) and s′ : W(Fa, Fb) →
W(Fb, Fa) are functors then

Fb,a ◦ s ≤ s′ ◦ Fa,b ⇔ s ◦Ga,b ≤ Gb,a ◦ s′.

Proof. (⇒) Consider some arrow ofW , α : Fa→ Fb. Since Fa,b a Ga,b, Fa,bGa,b(α) ≤ α.
Therefore s′Fa,bGa,b(α) ≤ s′(α). By assumption, Fb,a ◦ s ≤ s′ ◦ Fa,b thus Fb,asGa,b(α) ≤
s′Fa,bGa,b(α) ≤ s′(α). Then, since Fb,a a GFb,Fa, sGa,b(α) ≤ Gb,as

′(α) (see the diagram in
W(Fb, Fa) below where subscripts a,b are omitted).

s′(α) FGs′(α)oo

s′FG(α)

OO

FsG(α)oo

OO

(⇐) Consider some arrow of V , α : a → b. Since Fa,b a Ga,b, α ≤ Ga,bFa,b(α).
Therefore s(α) ≤ sGa,bFa,b(α). By assumption s ◦ Ga,b ≤ Gb,a ◦ s′, thus sGa,bFa,b(α) ≤
Gb,as

′Fa,b(α). Then since Fb,a a Gb,a, Fb,as(α) ≤ s′Fa,b(α) (see the diagram in V(b, a)
below).

s(α)

��

// GFs(α)

��
sGF (α) // Gs′F (α)

Proof of 4.31. As consequence of 4.32, one has that for any objects a, b of V , the
following diagram (in Cat) commutes

W(Fa, Fb)

sWFa,Fb

��

Ga,b // V(a, b)

sVa,b

��
W(Fb, Fa)

Gb,a

// V(b, a)

if and only the diagram

V(a, b)

sVa,b

��

Fa,b// W(Fa, Fb)

sWFa,Fb

��
V(b, a)

Fb,a

// W(Fb, Fa)

commutes.
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Further on, we suppose that the left adjoint F is reversible.

4.33. Lemma. If A is a Cauchy-reversible complete W-category then F@A is Cauchy-
reversible complete.

Proof. First we can show that for any object v of V and any reversible V-module
ϕ : v̂ ◦ // F@A , there is a V-functor f : v̂ → F@A with f� ≥ ϕ. The proof of this merely

an adaptation of the proof of 3.17. Let v be an object of V and ϕ : v̂ ◦ // F@A be a

reversible V-module. According to 4.29, F]ϕ : F@v̂ ◦ // F@F
@A is reversible. Then also

is εA� • F@ϕ : F@v̂ ◦ // A . Due to the Cauchy-reversible completeness of A, there is a
V-functor g : F@v̂ → A such that g� = εA� • F]ϕ. Then one concludes as for 3.17. Indeed
for the f determined above f� = ϕ, since the category V-RMod(v̂, F@A) is discrete.

Since F@ and F@ preserves the reversibility of objects and F@ preserves the skeletality
and the Cauchy-reversible completeness of objects (3.9, 4.33), one deduces from 3.7 and
4.14 the existence for any skeletal and Cauchy-reversible complete V-category A of a
natural isomorphism in B:

V-SkCRcCat(A,F@B) ∼=B W-SkCRcCat((F@A)s, B).

Let us sum up

4.34. Theorem. For any reversible left adjoint F : V → W in Caten, the functor
F∼ : W-SkCRcCat → V-SkCRcCat{

B 7→ F@B,
f : B → B′ 7→ F@f : F@B → F@B′

has a left adjoint F∼ defined on objects by F∼A = (F@A)s.

4.35. Examples (continued). Now we give two applications of theorem 4.34.

4.36. Example. [Geometric morphisms]

Let f : L→ H be a continuous map of locales, with corresponding frame morphisms
f− : H → L. It corresponds to a 2-functor F : CH → CL that preserves reversibility. F
sends any object u to f−u; Fu,v sends any morphisms w : u → v (i.e. w ≤ u ∧ v) to
f−w : f−u→ f−v. Fu,v has a right adjoint Gu,v, defined for any w ≤ f−u ∧ f−v by

Gu,v(w) =
∨
{w′ ≤ u ∧ v | f−w′ ≤ w}.

According to this and 4.20, we may apply 4.34 to retrieve the following well known result.

4.37. Theorem. Any continuous map of locales f : L → H yields an adjunction f∗ a
f ∗ : Sh(H) ⇀ Sh(L), where f∗ and f ∗ are respectively the inverse and direct image
functors. f ∗ is the following. Let f− denote the frame morphism corresponding to f . For
any sheaf A : Lop → Set, and any open v of H,

(f ∗A)(v) = A(f−(v)).
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For any sheaves A,B : Lop → Set and any natural transformation h : A→ B, f ∗h is the
natural transformation defined in each open v of H by

(f ∗h)v = hf−v : A(f−(v)) → B(f−(v)).

To see this, it is enough to check that given such an f : L → H, if F∼ denotes the
right adjoint of 4.34 for the F defined above, then f ∗ is F∼ up to the equivalence of 4.20.
Which is immediate.

4.38. Example. [Group actions]

Recall that any group morphism ϕ : G→ H induces an adjoint pair ϕ∗ a ϕ∗ : G-Set ⇀
H-Set . ϕ∗ is named the extension functor) and ϕ∗, the restriction functor. Actually ϕ∗

has also a right adjoint named the induction functor.
For any object (Y, β) of H-Set , ϕ∗((Y, β)) is the set Y with action{

G× Y → Y,
(σ, y) 7→ 〈ϕ(σ), y〉β.

An arrow from (Y1, β1) to (Y2, β2) of H-Set with underlying map p : Y1 → Y2 has image
by ϕ∗, the arrow of G-Set (from ϕ∗((Y1, α1)) to ϕ∗((Y2, α2)) ) with underlying map p.

For any object (X,α) of G-Set , its image by ϕ∗ is the contracted product H ∧G (X,α)
defined as follows. Its underlying set is

(H ×X)/ ∼

with ∼ the equivalence defined by

∀τ, τ ′ ∈ H, ∀x, x′ ∈ X, (τ, x) ∼ (τ ′, x′) ⇔ ∃σ ∈ G, 〈σ, x〉α = x′, τ = τ ′ · ϕ(σ).

Our purpose is to show the later adjunction may be retrieved as an instance of 4.34.
Precisely, considering a category Grp-Set of group actions, described below, we will
show that any arrow of Grp-Set , (ϕ, f) : (G,X, α) → (H, Y, β) yields an adjunction
(ϕ, f)∼ a (ϕ, f)∼ with (ϕ, f)∼ : G-Set ↓ (G,X, α) → H-Set ↓ (H, Y, β). The previ-
ous pair ϕ∗ a ϕ∗ corresponding then to the adjunct pair (ϕ, 1{∗})∼ a (ϕ, 1{∗})

∼ with
(ϕ, 1{∗})∼ : (G, {∗}, !G) → (H, {∗}, !H), {∗} denoting the one-point set, 1{∗}, the identity
map on this set, and !G and !H , the respective unique actions of G and H on this set.

The category Grp-Set of group actions is as follows. Objects are group actions. Arrows
from (G,X, α) to (H, Y, β) are the pairs (ϕ, f) where ϕ : G → H is a group morphism,
f : X → Y is a map and, the following diagram commutes:

G×X
α //

ϕ×f
��

X

f

��
H × Y

β
// Y
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Consider an arrow (ϕ, f) : (G,X, α) → (H, Y, β). It corresponds to a 2-functor F :
Cα → Cβ that preserves reversibility. F sends any object x to f(x) and, Fx,x′ sends any
arrow L : x→ x′ — i.e. L ⊆ {σ ∈ G | 〈σ, x〉α = x′} to the arrow

ϕ(L) = {ϕ(σ) | σ ∈ L} : f(x) → f(x′).

F has local right adjoints: for any x, x′ ∈ X, Gx,x′ , the right adjoint to Fx,x′ , is defined
for any L ⊆ {τ ∈ H | 〈τ, f(x)〉β = f(x′)} by

Gx,x′(L) = ϕ−1(L) ∩ {σ ∈ G | 〈σ, x〉α = x′}.

Therefore we may apply 4.34 together with 4.24 and 4.25 to obtain the following result.

4.39. Theorem. Any arrow (ϕ, f) : (G,X, α) → (H, Y, β) of Grp-Set yields some ad-
junction (ϕ, f)∼ a (ϕ, f)∼ : G-Set ↓ α ⇀ H-Set ↓ β, described below.
- If h : (Z, γ) → (Y, β) is an arrow of H-Set, its image by (ϕ, f)∼ is the arrow of G-Set,
π2 : (Z×h,fX, δ) → (X,α), with

Z×h,fX = {(z, x) | h(z) = f(x)},

for any (z, x) ∈ Z×h,fX,

π2((z, x)) = x,

and for any σ ∈ G and any (z, x) ∈ Z×h,fX,

〈σ, (z, x)〉δ = (〈ϕ(σ), z〉γ, 〈σ, x〉α).

- (ϕ, f)∼ is defined on arrows as follows. Considering the following commuting diagram
in H-Set:

(Z1, γ1)

h1 $$JJJJJJJJJ

p // (Z2, γ2)

h2zzttttttttt

(Y, β)

.

the image by (ϕ, f)∼ of the arrow 〈h1, p, h2〉 of H-Set ↓ (Y, β) has underlying arrow in
G-Set

p′ : (Z1 ×(h1,f) X, δ1) → (Z2 ×(h2,f) X, δ2)

where for any (z, x) ∈ Z1 ×(h1,f) X,

p′((z, x)) = (p(z), x)

— see the commuting diagram in G-Set below where for i = 1, 2, (ϕ, f)∼(hi) = π2 :
(Zi ×(hi,f) X, δ1) → (X,α).
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(Z1 ×(h1,f) X, δ1)

π2 ''PPPPPPPPPPPP

p′ // (Z2 ×(h2,f) X, δ2)

π2wwnnnnnnnnnnnn

(X,α)

- (ϕ, f)∼ is defined on objects of G-Set ↓ (X,α) as follows. For any arrow g : (Z, γ) →
(X,α) of G-Set, (ϕ, f)∼(g) is the arrow

h : ((H × Z)/ ∼, δ) → (Y, β)

of H-Set where ∼ is the equivalence on H × Z defined by

∀τ, τ ′ ∈ H, ∀z, z′ ∈ Z, ( (τ, z) ∼ (τ ′, z′) ⇔ ∃σ ∈ G, 〈σ, z〉 = z′, τ = τ ′ · ϕ(σ) )

for any τ, κ ∈ H and z ∈ Z,

〈κ, [(τ, z)]〉δ = [(κ · τ, z)]

for any τ ∈ H and z ∈ Z,
h([(τ, z)]) = 〈τ, f ◦ g(z)〉β.

References

[Ben63] J. Bénabou, Catégories avec multiplication, C. R. Acad. Sci. Paris 256 (1963),
1887-1890.

[Ben67] J. Bénabou, Introduction to bicategories, Lecture Notes in Math. 47 (1967),
1-77.

[BePo88] R.Betti, A.J. Power, On local adjointness of distributive categories, Boll. Un.
Mat. Ital. (7) 2-B (1988), 931-947.

[BeWal82] R. Betti, R.F.C. Walters, The symmetry of the Cauchy completion of a cate-
gory, Lecture Notes in Math. 962 (1982), 7-12.

[EiKe66] S. Eilenberg, G.M. Kelly, Closed Categories, Proceedings of the conference on
Categorical Algebra at La Jolla, Springer 1966, 421-562.

[Kel74] G.M. Kelly, Doctrinal adjunction, Lecture Notes in Math. 420 (1974), 257-280

[Kel82] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Mathemat-
ical Society Lecture Notes Series 64, Cambridge University Press 1982.

[KLSS99] G.M. Kelly, A. Labella, V.Schmitt, R.Street, Categories enriched on two sides,
Communication at Category Theory 99 - Coimbra 99. J. Pure Appl. Algebra
168 (2002), 53-98.



CHANGE OF BASE, CAUCHY COMPLETENESS AND REVERSIBILITY 219

[Law73] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend.
Sem. Mat. Fis. di Milano 43 (1973), 135-166

[Sc01] V. Schmitt, Applying enriched categories to quasi-uniform spaces, submitted.

[Wal81] R.F.C. Walters, Sheaves and Cauchy complete categories, 3e Colloque sur les
catégories, Amiens, juillet 80, Cah. Top. Géom. Diff. XXII (1981).
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