СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
SIBIRSKII MATEMATICHESKII ZHURNAL


Том 52 (2011), Номер 1, с. 70-80

Двирный А. И., Слынько В. И.
Устойчивость решений дифференциальных уравнений с импульсным воздействием в критических случаях

Предложен новый подход к построению кусочно дифференцируемой функции Ляпунова для некоторых классов нелинейных нестационарных систем дифференциальных уравнений с импульсным воздействием в критическом случае. Предложенный подход позволил получить новые достаточные условия устойчивости по Ляпунову решений этого класса систем.

Dvirnyi A. I., Slyn’ko V. I.
Stability of solutions to impulsive differential equations in critical cases

We propose a new approach to constructing a piecewise differentiable Lyapunov function for some classes of nonlinear nonstationary systems of impulsive differential equations in the critical case. This approach allows us to obtain new sufficient conditions for the Lyapunov stability of solutions to this class of systems.

Полный текст статьи / Full texts:

Адрес редакции:
пр. Коптюга, 4,
Новосибирск 630090
Телефон: (383-2) 333-493
E-mail: smz@math.nsc.ru