Khabirov S. V.
A property of the defining equations for the Lie algebra in the group classification problem for wave equations
We solve the group classification problem for nonlinear hyperbolic systems of differential equations. The admissible continuous group of transformations has the Lie algebra of dimension less than 5. This main statement follows from the principal property of the defining equations of the admissible Lie algebra: the commutator of two solutions is a solution. Using equivalence transformations we classify nonlinear systems in accordance with the well-known Lie algebra structures of dimension 3 and 4.