СИБИРСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
SIBIRSKII MATEMATICHESKII ZHURNAL


Том 48 (2007), Номер 3, с. 556–576

Гуда С. А., Юдович В. И.
Совместная задача о вращении твердого тела в вязкой жидкости под действием упругой силы

Исследуются крутильные колебания тела вращения внутри сосуда, заполненного вязкой несжимаемой жидкостью, под действием момента упругой силы. Доказывается асимптотическая устойчивость состояния покоя. Используются два подхода: прямой метод Ляпунова и метод линеаризации. Глобальная асимптотическая устойчивость устанавливается при помощи однопараметрического семейства функционалов Ляпунова. Затем исследуются малые колебания системы жидкость-тело. Показано, что линеаризованный оператор задачи о вращении тела в жидкости можно реализовать как операторную матрицу, получаемую добавлением двух скалярных строк и двух столбцов к оператору Стокса. Таким образом, этот оператор является двумерным окаймлением оператора Стокса и наследует многие его свойства, в частности, дискретность спектра. Задача на собственные значения для линеаризованного оператора сводится к решению дисперсионного уравнения. Исследование уравнения показывает, что все собственные значения расположены внутри правой (устойчивой) полуплоскости. На основе этого затем проводится обоснование линеаризации. С применением абстрактной теоремы В. И. Юдовича доказывается асимптотическая устойчивость в шкале функциональных пространств, бесконечная дифференцируемость решений и затухание всех их производных со временем.

Guda S. A., Yudovich V. I.
The coupled problem of a solid oscillating in a viscous fluid under the action of an elastic force

The torsional oscillations are studied of a solid of revolution under the action of elastic torque inside a container with a viscous incompressible fluid. We prove the asymptotic stability of the static equilibrium. We use the two approaches: the direct Lyapunov and linearization methods. The global asymptotic stability is established using a one-parameter family of Lyapunov functionals. Then small oscillations are studied of the fluid-solid system. The linearized operator of the problem of a solid oscillating in a fluid can be realized as an operator matrix obtained by appending two scalar rows and two columns to the Stokes operator. This operator is therefore a two-dimensional bordering of the Stokes operator and inherits many properties of the latter; in particular, the spectrum is discrete. The eigenvalue problem for the linearized operator is reduced to solving a dispersion equation. Inspection of the equation shows that all eigenvalues lie inside the right (stable) half-plane. Basing on this, we justify the linearization. Using an abstract theorem of Yudovich, we prove the asymptotic stability in a scale of function spaces, the infinite differentiability of solutions, and the decay of all their derivatives in time.

Полный текст статьи / Full texts:

Адрес редакции:
пр. Коптюга, 4,
Новосибирск 630090.
Телефон: (383-2) 333-493
E-mail: smz@math.nsc.ru