Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 251 -- 263

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ON THE DISTRIBUTION OF DEDEKIND SUMS

Kurt Girstmair

Abstract. Dedekind sums have applications in quite a number of fields of mathematics. Therefore, their distribution has found considerable interest. This article gives a survey of several aspects of the distribution of these sums. In particular, it highlights results about the values of Dedekind sums, their density and uniform distribution. Further topics include mean values, large and small (absolute) values, and the behaviour of Dedekind sums near quadratic irrationals. The present paper can be considered as a supplement to the survey article [9].

2010 Mathematics Subject Classification: 11R20.
Keywords: Dedekind sums; distribution of Dedekind sums.

Full text

References

  1. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, New York, 1976. MR0422157. Zbl 0332.10017.

  2. T. Asai, Some arithmetic on Dedekind sums, J. Math. Soc. Japan 38 (1986), 163--172. MR0816230. Zbl 0571.10010.

  3. M. Atiyah, The logarithm of the Dedekind η-function, Math. Ann. 278 (1987), 335--380. MR0909232. Zbl 0648.58035.

  4. W. D. Banks, I. E. Shparlinski, Fractional parts of Dedekind sums, Int. J. Number Th. 12 (2016), 1137--1147. MR3498618. Zbl 06589268.

  5. Ph. Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 16, A923--A926. MR0434934. Zbl 0347.10007.

  6. M. Beck, S. Robins, Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra (2nd ed.), Springer, New York, 2015. MR3410115. Zbl 1339.52002.

  7. B. C. Berndt, R. J. Evans, Dedekind sums and class numbers, Monatsh. Math. 84 (1977), 265--273. MR0466022. Zbl 0366.10006.

  8. R. W. Bruggeman, Dedekind sums and Fourier coefficients of modular forms, J. Number Th. 36 (1990), 289--321. MR1077709. Zbl 0723.11018.

  9. R. W. Bruggeman, On the distribution of Dedekind sums, Contemp. Math. 166 (1994), 197--210. MR1284062. Zbl 0810.11025.

  10. J. B. Conrey, E. Fransen, R. Klein, Mean values of Dedekind sums, J. Number Th. 56 (1996), 214--226. MR1373548. Zbl 0851.11028.

  11. U. Dieter, Beziehungen zwischen Dedekindschen Summen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 109--125. MR0087700. Zbl 0078.07002.

  12. K. Girstmair, Zones of large and small values for Dedekind sums, Acta Arith. 109 (2003), 299--308. MR1980264. Zbl 1041.11030.

  13. K. Girstmair, Continued fractions and Dedekind sums: Three-term relations and distribution, J. Number Th. 119 (2006), 66--85. MR2228950. Zbl 1225.11054.

  14. K. Girstmair, Dedekind sums in the vicinity of quadratic irrationals, J. Number Th. 132 (2012), 1788--1792. MR2922346. Zbl 1269.11043.

  15. K. Girstmair, Approximation of rational numbers by Dedekind sums, Int. J. Number Th. 10 (2014), 1241--1244. MR3231412. Zbl 1296.11027.

  16. K. Girstmair, On the fractional parts of Dedekind sums, Int. J. Number Th. 11 (2015), 29--38. MR2862053. Zbl 1261.53023. MR3280940, Zbl 1310.11049.

  17. K. Girstmair, On the values of Dedekind sums, J. Number Th. 178 (2017), 11--18. MR3646823. Zbl 06728906.

  18. K. Girstmair, Dedekind sums in the p-adic number field, Int. J. Number Th. 14 (2018), 527--533. MR3761508. Zbl 06837492.

  19. K. Girstmair, On the moduli of a Dedekind sum, to appear in Int. J. Number Th. arXiv math: 1808.02263.

  20. K. Girstmair, J. Schoissengeier, On the arithmetic mean of Dedekind sums, Acta Arith. 116 (2005), 189--198. MR2110395. Zbl 1080.11035.

  21. D. Hickerson, Continued fractions and density results for Dedekind sums, J. reine angew. Math. 290 (1977), 113--116. MR0439725. Zbl 0341.10012.

  22. R. Kirby, P. Melvin, Dedekind sums, μ-invariants and the signature cocycle, Math. Ann. 299 (1994), 231--267. MR1275766. Zbl 0809.11027.

  23. D. E. Knuth, Notes on generalized Dedekind sums, Acta Arith. 33 (1977), 297--325. MR0485660. Zbl 0326.10007.

  24. D. E. Knuth, The Art of Computer Programming, vol. 2 (3rd ed.), Addison-Wesley, Upper Saddle River (NJ), 1998. MR3077153. Zbl 0895.65001.

  25. W. Kohnen, A short note on Dedekind sums, Ramanujan J. 45 (2018), 491--495. MR3749755. Zbl 06837795.

  26. M. Kural, Dedekind sums with even denominators. arXiv math: 1801.00517.

  27. B. Liehl, Über die Teilnenner endlicher Kettenbrüche, Arch. Math. (Basel) 40 (1983), 139--147. MR0720904. Zbl 0492.10006.

  28. C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über Quadratischen Zahlkörpern, Akademie-Verlag, Berlin, 1957. MR0088510. Zbl 0079.06001.

  29. G. Myerson, On the values of Dedekind sums, Math. Z. 189 (1985), 337--341. MR0783560. Zbl 0545.10006.

  30. G. Myerson, Dedekind sums and uniform distribution, J. Number Th. 28 (1988), 233--239. MR0932372. Zbl 0635.10033.

  31. G. Myerson, N. Phillips, Lines full of Dedekind sums, Bull. London Math. Soc. 36 (2004), 547--552. MR2069018. Zbl 1060.11025.

  32. C. Nagasaka, Exceptional values of the Dedekind symbol, J. Number Th. 24 (1986), 174--180. MR0863652. Zbl 0595.10009.

  33. A. A. Panov, The mean for a sum of elements in a class of finite continued fractions, Mat. Zametki 32 (1982), 593--600 (in Russian). MR0684601. Zbl 0509.10009.

  34. H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445--463. MR0079615. Zbl 0071.04201.

  35. H. Rademacher, E. Grosswald, Dedekind Sums, Mathematical Association of America, 1972. MR0357299. Zbl 0251.10020.

  36. A. Rockett, P. Szüsz, Continued Fractions, Word Scientific, Singapore, 1992. MR1188878. Zbl 0925.11038.

  37. H. Saito, On missing trace values for the eta-multipliers, J. Number Th. 25 (1987), 313--327. MR0880465. Zbl 0611.10014.

  38. H. Salié, Zum Wertevorrat Dedekindscher Summen, Math. Z. 72 (1959/60), 61--75. MR0106871. Zbl 0085.26804.

  39. R. Sczech, Dedekind sums and power residue symbols, Compos. Math. 59 (1986), 89--112. MR0850124. Zbl 0604.10010.

  40. G. Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010), 335--365. MR2580678. Zbl 1192.14033.

  41. I. Vardi, A relation between Dedekind sums and Kloosterman sums, Duke J. Math. 55 (1987), 189--197. MR0883669. Zbl 0623.10025.

  42. I. Vardi, Dedekind sums have a limiting distribution, Internat. Math. Res. Notices 1993, 1--12. MR1201746. Zbl 0785.11028.

  43. D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149--172. MR0357333. Zbl 0237.10025.

  44. W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hung. 86 (2000), 275--289. MR1756252. Zbl 0963.11049.


Kurt Girstmair
Institut für Mathematik,
Universität Innsbruck,
Technikerstr. 13/7
A-6020 Innsbruck, Austria.
e-mail: Kurt.Girstmair@uibk.ac.at

http://www.utgjiu.ro/math/sma