n-manifolds"> n-manifold; Ricci tensors; Curvature tensors."> n-manifolds">

Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 237 -- 250

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SOME RESULTS OF η-RICCI SOLITONS ON (LCS)n-MANIFOLDS

S. K. Yadav, S. K. Chaubey and D. L. Suthar

Abstract. In this paper, we consider an η -Ricci soliton on the (LCS)n-manifolds (M, φ , ξ , η , g) satisfying certain curvature conditions likes: R(ξ , X) · S= 0 and W 2(ξ, X) · S=0. We show that on the (LCS)n-manifolds (M,φ ,ξ ,η ,g), the existence of η -Ricci soliton implies that (M, g) is a quasi-Einstein. Further, we discuss the existence of Ricci solitons with the potential vector field ξ. In the end, we construct the non-trivial examples of η -Ricci solitons on the (LCS)n-manifolds.

2010 Mathematics Subject Classification: 53C15; 53C21; 53C25.
Keywords: η -Ricci soliton; Quasi-Einstein; (LCS)n-manifold; Ricci tensors; Curvature tensors.

Full text

References

  1. C. S. Bagewadi and G. Ingalahalli, Ricci soliton in Lorentzian α -Sasakian manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 28(2012), no. 1, 59-68. MR2942704. Zbl 1265.53036.

  2. C. S. Bagewadi, G. Ingalahalli and S. R. Ashoka, A Study of Ricci soliton in Kenmotsu manifolds, ISRN Geometry, (2013). Article ID 412593, 6 pages. MR3092012. Zbl 1266.53032.

  3. C. L. Bejan and M. Crasmareanu, Second order parallel tensor and Ricci solitons in 3-dimensional normal paracontact geometry, Anal. Global Anal. Geom. DOI:10.1007/s10455-014-9414-4. MR3239277. Zbl 1312.53049.

  4. C. Calin and M. Crasmareanu, Eta-Ricci soliton on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. 57(2012), no. 1, 55-63. MR3051979. Zbl 1389.53084.

  5. C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci soliton in f-Kenmotsu manifolds, Bull. Malaysian Math. Sci. Soc. 33(2010), no. 3, 361-368. MR2732157. Zbl 1204.53024.

  6. G. Calvaruso and D. Perrone, Geometry of H-paracontact metric manifolds. Publ. Math. Debrecen 86 (2015), no. 3-4, 325–346. MR3346090. Zbl 1374.53111.

  7. S. Chandra, S. K. Hui and A. A. Shaikh, Second order parallel tensors and Ricci solitons on (LCS)n-manifolds, Commun. Korean Math. Soc. 30(2015), no. 2, 123-130. MR3346486. Zbl 1338.53055.

  8. S. K. Chaubey and A. A. Shaikh, On 3-dimensional lorentzian concircular structure manifolds, Commun. Korean Math. Soc., (2018) https://doi.org/10.4134/CKMS.c180044.

  9. S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math. (2018) https://doi.org/10.1515/apam-2018-0032.

  10. S. K. Chaubey, On special weakly Ricci-symmetric and generalized Ricci-recurrent trans-Sasakian manifolds, Thai Journal of Mathematics, 18 (2018), no. 3 (in press).

  11. S. K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl. 3 (2011), no. 4, 50–58. MR 2955373. Zbl 1314.53127.

  12. S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afr. Mat. (2018). https://doi.org/10.1007/s13370-018-0631-z.

  13. S. K. Chaubey, K. K. Baishya and M. Danish Siddiqi, Existence of some classes of N(k)-quasi Einstein manifolds, Bol. Soc. Paran. Mat., doi:10.5269/bspm.41450.

  14. S. K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math. 42 (2012), no. 1, 67-79. MR2986147. Zbl 1313.53060.

  15. S. K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta Universitatis (NI\breveS) Ser. Math. Inform. 32 (2017), no. 3 , 369–385. MR3719806.

  16. T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta. 69 (1996), 344-347. MR1440692. Zbl 0865.53039.

  17. B. Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19(2014), no. 1, 13-21. MR3223305.

  18. J. T. Cho and M. Kimura, Ricci soliton and real hypersurfaes in a complex space form, Tohoku Math. J. 61(2009), no. 2, 205-212. MR2541405. Zbl 1172.53021.

  19. B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, 77, AMS, Providence, RI, USA (2006). MR2274812.

  20. R. S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, AMS (1988). MR954419. Zbl 0663.53031.

  21. C. He and M. Zhu, The Ricci soliton on Sasakian manifold, arXiv: 1109.4404v2. (2011). MR3719806. Zbl 1265.53036.

  22. S. K. Hui, R. S. Lemence and D. Chakraborty, Ricci solitons on Ricci pseudosymmetric (LCS)n-manifolds, Honam Mathematical journal, 40 (2018), 325-346. MR3821461.

  23. S. K. Hui, R. Prasad and T. Pal, Ricci solitons on submanifolds of (LCS)n-manifolds, Ganita, 68 (2018), no. 1, 53-63. MR3814887.

  24. S. K. Hui and M. Atceken, Contact warped product semi-slant submanifolds of (LCS)n -manifolds, Acta Univ. Sapientiae Math. 3(2011), no. 2, 212-224. MR2915836. Zbl 1260.53081.

  25. S. K. Hui, On φ -pseudo symmetries of (LCS)n-manifolds, Kyungpook Math. J. 53(2013), no. 2, 285-294. MR3078089. Zbl 1286.53038.

  26. G. Ingalahalli and C. S. Bagewadi, Ricci soliton on α -Sasakian manifolds, ISRN Geometry, Article ID 421384, (2012), 13 pages. http://dx.doi.org/10.5402/2012/421384.

  27. K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata Univ. Nature. Sci. 12 (1989), 151-156.

  28. I. Mihai and R. Rosca, On Lorentzian para-Sasakian manifolds, Classical Anal. (1992), 155-169, W.S. Publ., Singapore.

  29. D. Narain and S. Yadav, On weak Symmetric of Lorentzian concircular structure manifolds, CUBO A Mathematical Journal 15 (2013), no. 2, 33-42. MR3114862. Zbl 1279.53017.

  30. B. O'Neill, Semi Riemannian geometry with applications to relativity, Academic Press, New York, (1983).

  31. G. P. Pokhariyal, S. Yadav and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differential Geometry-Dynamical Systems 20 (2018), pp. 138-158. MR3847743. Zbl 1395.53089.

  32. G. P. Pokhariyal and R. S. Mishra, The curvature tensor and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.

  33. A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), 305-314. MR1983436. Zbl 1054.53056.

  34. A. A. Shaikh, T. Basu and S. Eyasmin, On locally φ -symmetric(LCS)n -manifolds, Int. J. Pure Appl. Math. 41 (2007), no. 8, 1161-1170. MR2384602. Zbl 1136.53030.

  35. A. A. Shaikh, Some results on (LCS)n-manifolds, J. Korean Math. Soc. 46 (2009), no. 3, 449-461. MR2515129. Zbl 1193.53094.

  36. A. A. Shaikh, T. Basu and S. Eyasmin, On the existence of ℑecurrent (LCS)n-manifolds, Extr. Math. 23 (2008), no. 1, 71-83. Zbl 1165.53013.

  37. R. Sharma, Certain results on K-contact and (\kappa ,μ )-contact manifolds, J. of Geometry, 89 (2008), 138-147. MR2457028. Zbl 1175.53060.

  38. M. M. Tripathi, Ricci solitons in contact metric manifolds, (2008) http//arxiv.org/abs/0801.4222.

  39. S. Yadav, D. L. Suthar and P. K. Dwivedi, Some results on (LCS)2n+1 -manifolds , International journal of Mathematics, Engineering & Technology 6 (2013), 73-84.

  40. S. Yadav, P. K. Dwivedi and D. L. Suthar, On (L\kern 1pt C\kern 1pt S)2n+1 - manifolds satisfying certain conditions on the concircular curvature tensor, Thai Journal of Mathematics 9 (2011), 597-603. MR2862053. Zbl 1261.53023.

  41. S. K. Yadav, D. L. Suthar and M. Hailu, On extended generalized ℑecurrent (LCS)2n+1-manifolds, Bol. Soc. Paran. Mat. (3s.) v. 37 (2019), no. 2, 9-21. MR3845155.

  42. S. K. Yadav, S. K. Chaubey and D. L. Suthar, Some geometric properties of η-Ricci solitons and gradient Ricci solitons on (lcs)n-manifolds, CUBO A Mathematical Journal, 19 (2017), no. 2, 33-48. MR3800489.

  43. S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain results on almost Kenmotsu (\kappa, μ, ν)-spaces, Konuralp Journal of Mathematics 6 (2018), no. 1, 128-133. MR3800439.



S. K. Yadav
Department of Mathematics, Poornima College of Engineering, Jaipur, 302022, Rajasthan, India.
e-mail: prof_sky16@yahoo.com

S. K. Chaubey
Section of Mathematics, Department of Information Technology, Shinas College of Technology, Oman.
e-mail: sk22_math@yahoo.co.in

D. L. Suthar
Department of Mathematics, Wollo University, P. O. Box: 1145, Dessie, South Wollo, Ethopia.
e-mail: dlsuthar@gmail.com



http://www.utgjiu.ro/math/sma