Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 11 (2016), 107 -- 134

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ÉTUDE GÉOMÉTRIQUE ET TOPOLOGIQUE DU FLOT GÉODÉSIQUE SUR LE GROUPE DES ROTATIONS
(GEOMETRIC AND TOPOLOGICAL STUDY OF THE GEODESIC FLOW ON THE ROTATION GROUP)

Ahmed Lesfari

Abstract. The aim of this survey paper is to investigate the algebraic complete integrability of Euler-Arnold's body description of the four dimensional rigid body, or equivalently of geodesics in SO(4) using left-invariant metrics that arise from inertia tensors, namely non-degenerate maps Λ : so(4)→ so(4)* ≡ so(4) together with the canonical inner product associated to the Killing form. Algebraic complete integrability is motivated by Arnold-Liouville's classical notion of complete integrability : one extends the value of space and time coordinates from ℝ to ℂ, and then the regular invariant manifolds are complex instead of real tori; in addition one demands such complex tori to be projective. Using different methods, as systematized by Adler-Haine-van Moerbeke-Mumford, to study the integrability of the geodesic flow on the rotation group, we will see that the linearization is carried on an abelian surface and each time a Prym variety appears related to this problem.

2010 Mathematics Subject Classification: 37J35, 14H40, 14H70.
Keywords: integrable systems, Jacobians, Prym varieties.

Full text

References

  1. M. Adams, J. Harnad and E. Previato, Isospectral Hamiltonian Flows in Finite and Infinite Dimensions. I. Generalized Moser Problem and Moment Maps into Loop Algebras, Commun. Math. Phys., 117 (1988), 451-500. MR0953833(MR89k:58112). Zbl 0659.58022.

  2. M. Adams, J. Harnad and J. Hurtubise, Isospectral Hamiltonian Flows in Finite and Infinite Dimensions II. Integration of Flows, Commun. Math. Phys., 134 (1990), 555-585. MR1086744(MR92a:58055). Zbl 0717.58051.

  3. M. Adler, On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation, Invent. Math., 50 (1979), 219-248. MR520927(80i:58026) Zbl 0393.35058.

  4. M. Adler, P. and van Moerbeke, Completely integrable systems, Euclidean Lie algebras and curves, Adv. in Math., 38 (1980), 267-317. MR597729(MR83m:58041). Zbl 0455.58017.

  5. M. Adler, P. and van Moerbeke, Linearization of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in Math., 38 (1980), 318-379. MR0597729(MR83m:58042). Zbl 0455.58010.

  6. M. Adler, P., van Moerbeke and P. Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004. MR2095251(2006d:37106). Zbl 1083.37001.

  7. E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of algebraic curves I, Springer-Verlag, 1994. MR0770932(86h:14019).

  8. V.I. Arnold, Mathematical methods in classical mechanics, Springer-Verlag, Berlin-Heidelberg- New York, 1978. MR0690288(MR57:14033b). Zbl 0386.70001.

  9. A.I. Belokolos and V.Z. Enol'skii, Isospectral deformations of elliptic potentials, Russ. Math. Surveys, 44 (1989), 155-156. MR1040275(91c:58046).

  10. L.A. Dikii, Hamiltonian systems connectes with the rotation group, Funct. Anal. Appl., 6 (1972), 83-84. MR0312527(47:1084). Zbl 0288.58004.

  11. P.A. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience 1978. MR0507725(80b:14001). Zbl 0408.14001.

  12. P.A. Griffiths, Linearizing flows and a cohomological interpretation of Lax equations, Amer. J. of Math., 107 (1985), 1445-1483. MR0815768. Zbl 0585.58028.

  13. L. Haine, Geodesic flow on SO(4) and Abelian surfaces, Math. Ann., 263 (1983), 435-472. MR0707241. Zbl 0521.58042.

  14. B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math., 34 (1979), 195-338. MR0550790(MR82f:58045).

  15. S. Kowalewski, Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12 (1889), 177-232. .

  16. P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure and Appl. Math., 21 (1968), 467-490. MR0235310. Zbl 0162.41103.

  17. A. Lesfari, Abelian surfaces and Kowalewski's top, Ann. Scient. Éc. Norm. Sup., Paris, 4e série, 21 (1988), 193-223. MR0956766(89k:58125). Zbl 0667.58019.

  18. A. Lesfari, Geodesic flow on SO(4), Kac-Moody Lie algebra and singularities in the complex t-plane, Publ. Mat., Barc., 43(1) (1999), 261-279. MR1697525(2000f:37078). Zbl 0968.35010.

  19. A. Lesfari, Le système différentiel de Hénon-Heiles et les variétés Prym, Pacific J. Math., 212(1) (2003), 125-132. MR2016973. Zbl 1070.37040.

  20. A. Lesfari, Prym varieties and applications, J. Geom. Phys., 58(9) (2008), 1063-1079. MR2451270. Zbl 1149.14045.

  21. A. Lesfari, Introduction à la géométrie algébrique complexe, Hermann, Paris 2015. Zbl 1327.14001.

  22. S.V. Manakov, A remark on the integration of the Euler equations of the dynamics of an n-dimensional rigid body, Functional Anal. Appl, 10 (1976), 93-94. MR0455031. Zbl 03535638.

  23. A.S. Mishchenko and A.T. Fomenko, The Euler equations on finite-dimensional Lie groups, Math. USSR-Izv, 42 (1978), 371-389. MR0482832.

  24. J. Moser, Geometry of quadrics and spectral theory, Chern Sympos., Springer-Verlag, pp. 147-188, 1980. MR0609560. Zbl 0455.58018.

  25. J. Moser, Various aspects of integrable Hamiltonian systems, Progress in Math. 8, 223-289, Birkhäuser-Verlag, 1980. MR0589592.

  26. D. Mumford, Prym varieties I, in Contributions to Analysis (L.V. Ahlfors, I. Kra, B. Maskit, L. Niremberg, eds.), Academic Press, New-York, 325-350, 1974. MR0379510. Zbl 316.14010.

  27. D. Mumford, Tata Lectures on Theta II, Progress in Math., Birkhäuser, Boston, 1984. MR0742776(MR86b:14017). Zbl 0549.14014.

  28. W. Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent. Math., 59 (1980), 13-51. MR0575079. Zbl 0474.58009.

  29. P. van Moerbeke and D. Mumford, The spectrum of difference operators and algebraic curves, Acta Math., 143 (1979), 93-154. MR0533894. Zbl 0502.58032.

  30. P. Vanhaecke, Integrable systems in the realm of algebraic geometry, Lecture Notes in Math., 1638, Springer-Verlag, Second edition 2001. MR1850713. Zbl 0997.37032.



Ahmed Lesfari
Département de Mathématiques,
Faculté des Sciences, Université Chouaïb Doukkali,
B.P. 20, El-Jadida, Maroc.
e-mail: lesfariahmed@yahoo.fr


http://www.utgjiu.ro/math/sma