Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 10 (2015), 159 -- 168
This work is licensed under a Creative Commons Attribution 4.0 International License.SOME COMMON FIXED POINT THEOREMS USING IMPLICIT RELATION IN 2-BANACH SPACES
M. Pitchaimani and D. Ramesh Kumar
Abstract. In this article, we study the existence and uniqueness of a common fixed point of family of self mappings satisfying implicit relation on a 2-Banach space. We also prove well-posedness of a common fixed point problem.
2010 Mathematics Subject Classification: 47H10; 54H25.
Keywords: common fixed point; asymptotically T-regular; well-posedness; 2-Banach space.
References
M. Abbas, H. Aydi, On common fixed point of generalized contractive mappings in metric spaces, Surveys in Mathematics and its Applications, 7 (2012) 39-47. MR2981738.
M. A. Ahmed, A common fixed point theorem for expansive mappings in 2-metric spaces and its application, Chaos, Solitons and Fractals, 42(5) (2009) 2914-2920. MR2560004. Zbl 1198.54068.
M. Akkouchi, Well-posedness of the fixed point problem for certain asymptotically regular mappings, Annalas Mathematicae Silesianae, 23 (2009) 43-52. MR2741844 . Zbl 1234.54049.
M. Akkouchi, V. Popa, Well-posedness of the fixed point problem for mappings satisfying an implicit relations, Demonstratio Mathematica, 43(4) (2010) 923-929. MR2761650 . Zbl 1238.54018.
Lj. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. (Beograd), 12(26) (1971) 19-26. MR0309092 (46#8203). Zbl 0234.54029.
S. Gähler, 2-metric Raume and ihre topologische strucktur, Math. Nachr., 26 (1963) 115-148. MR0162224 (28#5423). Zbl 0117.16003.
S. Gähler, Uber die unifromisieberkeit 2-metrischer Raume, Math. Nachr., 28 (1965) 235-244. MR0178452 (31#2709). Zbl 0142.39804.
K. Iseki, Fixed point theorems in 2-metric space, Math. Seminar. Notes, Kobe Univ., 3 (1975) 133-136. MR0405395 (53#9189).
B. K. Lahiri, Well-posedness and certain classes of operators, Demonstratio Mathematica, 38 (2005) 169-176. MR2123731 (2005k:47121). Zbl 1159.47305.
S. N. Lal, A. K. Singh, An analogue of Banach's contraction principle for 2-metric spaces, Bull. Austral. Math. Soc., 18(1) (1978) 137-143. MR0645161 (58#31029). Zbl 0385.54028.
S. V. R. Naidu, J. R. Prasad, Fixed point theorems in 2-metric spaces, Indian J. Pure. Appl. Math., 17(8) (1986) 974-993. MR0856334 (87i:54096).
W. G. Park, Approximate additive mapping in 2-Banach spaces and related topics, J. Math. Anal. Appl., 376(1) (2011) 193-202. MR2745399. Zbl 1213.39028.
M. Pitchaimani, D. Ramesh kumar, Common and coincidence fixed point theorems for asymptotically regular mappings in 2-Banach Space, Nonlinear Func. Anal. Appl., (Accepted).
S. Reich, A. T. Zaslawski, Well-posedness of fixed point problems, Far East J. Math. sci, Special volume, part III (2001) 393-401. MR1888108 (2003d:54058).
B. E. Rhoades, Contraction type mappings on a 2-metric space, Math. Nachr., 91 (1979) 151-155. MR0563606 (81b:54047). Zbl 0424.54038.
M. Saha, D. Dey, Fixed point of expansive mappings in a 2-Banach space, Int. J. Math. Sci. Eng. Appl., 4(4) (2010) 355-362. MR2768749.
G. S. Saluja, On common fixed point theorems under implicit relation in 2-Banach spaces, Nonlinear Func. Anal. Appl., 20(2) (2015) 215-221. Zbl 1321.47121.
G. S. Saluja, Existence results of unique fixed point in 2-Banach spaces, Int. J. Math. Combin., 1 (2014) 13-18. Zbl 1325.47130.
G. S. Saluja, On common fixed point theorems satisfying implicit relation in 2-Banach spaces, Bull. Kerala Math. Assoc., 12(1) (2015) 77-85.
T. Veerapandi, S. Anil Kumar, Common fixed point theorems of a sequence of mappings on Hilbert space, Bull. Cal. Math. Soc., 91(4) (1999) 299-308. MR1748540 (2000k:47089). Zbl 0956.54023.
A. White, 2-Banach spaces, Math. Nachr., 42 (1969) 43-60. MR0257716(41#2365). Zbl 0185.20003.
M. Pitchaimani D. Ramesh Kumar University of Madras, University of Madras, Chepauk, Chennai - 600005, Chepauk, Chennai - 600005, Tamil Nadu, India. Tamil Nadu, India. E-mail: mpitchaimani@yahoo.com E-mail: rameshkumard14@gmail.com