Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 10 (2015), 23 -- 40
This work is licensed under a Creative Commons Attribution 4.0 International License.ON THE REGULARITY OF MILD SOLUTIONS TO COMPLETE HIGHER ORDER DIFFERENTIAL EQUATIONS ON BANACH SPACES.
Nezam Iraniparast and Lan Nguyen
Abstract. For the complete higher order differential equation u(n)(t)=Σk=0n-1Aku(k)(t)+f(t), t∈ R (*) on a Banach space E, we give a new definition of mild solutions of (*). We then characterize the regular admissibility of a translation invariant subspace al M of BUC(R, E) with respect to (*) in terms of solvability of the operator equation Σj=0n-1AjXal Dj-Xal Dn = C. As application, almost periodicity of mild solutions of (*) is proved.
2010 Mathematics Subject Classification: Primary 34G10; 34K06; Secondary 47D06.
Keywords: Abstract complete higher differential equations; mild solutions; operator equations; almost periodic functions.
References
Arendt W., Rabiger F., Sourour A., Spectral properties of the operator equation AX-XB=Y, Quart. J. Math. Oxford 45:2 (1994), 133--149.MR1280689(95g:47060). Zbl 0826.47013.
Arendt, W., Batty, C. J. K.: Almost periodic solutions of first- and second-order Cauchy problems, J. Differential Equations 137 (1997), no. 2, 363--383. MR1456602(98g:34099). Zbl 0879.34046.
Daleckii J., Krein M. G.: Stability of solutions of differential equations on Banach spaces, Amer. Math. Soc., Providence, RI, 1974. MR0352639(50 \sharp5126). Zbl 0960.43003.
Erdelyi I., Wang S. W. A local spectral theory for closed operators, Cambridge Univ. Press, London (1985). MR1880990(2002j:34091). Zbl 0577.47035.
Katznelson Y.: An Introduction to harmonic analysis, Dover Pub., New York 1976. MR2039503(2005d:43001). Zbl 1055.43001.
Levitan B.M., Zhikov V.V.: Almost periodic functions and differential equations. Cambridge Univ. Press, London 1982. MR0690064(84g:34004). Zbl 0499.43005.
Lizama C.: Mild almost periodic solutions of abstract differential equations, J. Math. Anal. Appl. 143 (1989), 560--571. MR1022555(91c:34064). Zbl 0698.47035.
Cioranescu I., Lizama C.: Spectral properties of cosine operator functions, Aequationes Mathematicae 36 (1988), 80--98. MR0959795(89i:47071). Zbl 0675.47029.
Nguyen, L.: On the Mild Solutions of Higher Order Differential Equations in Banach spaces, Abstract and Applied Analysis. 15 (2003) 865--880. MR2010941(2004h:34111). Zbl 1076.34065.
Pruss J.: On the spectrum of C0-semigroup, Trans. Amer. Math. Soc. 284, 1984, 847--857 . MR0743749(85f:47044). Zbl 0572.47030.
Pruss J.: Evolutionary integral equations and applications, Birkhäuser, Berlin 2012. MR1238939(94h:45010). Zbl 1258.45008.
Rosenblum M.: On the operator equation BX-XA=Q, Duke Math. J. 23 (1956), 263--269. MR0079235(18,54d). Zbl 0073.33003.
Ruess, W.M., Vu Quoc Phong: Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations 122 (1995), 282--301. MR1355893(96i:34143). Zbl 0837.34067.
Schüler E.: On the spectrum of cosine functions, J. Math. Anal. Appl. 229 (1999), 376--398. MR1666408(2000c:47086). Zbl 0921.34073.
Schüler E., Vu Q. P.: The operator equation AX-XB=C, admissibility and asymptotic behavior of differential equations, J. Differential Equations, 145(1998), 394-419. MR1621042(99h:34081). Zbl 0918.34059.
Schüler E., Vu Q. P.: The operator equation AX-XD2=-δ0 and second order differential equations in Banach spaces, Semigroups of operators: theory and applications (Newport Beach, CA, 1998), 352--363, Progr. Nonlinear Differential Equations Appl., 42, Birkhauser, Basel, 2000. MR1790559(2001j:47020). Zbl 0998.47009.
Schweiker S.: Mild solution of second-order differenttial equations on the line, Math. Proc. Cambridge Phil. Soc. 129 (2000), 129--151. MR1757784(2001d:34092). Zbl 0958.34043.
Vu Quoc Phong: The operator equation AX-XB=C with unbounded operators A and B and related abstract Cauchy problems, Math. Z. 208 (1991), 567--588. MR1136476(93b:47035). Zbl 0726.47029.
Vu Quoc Phong: On the exponential stability and dichotomy of C0-semigroups, Studia Mathematica 132, No. 2 (1999), 141--149. MR1669694(2000j:47076). Zbl 0926.47026.
Nezam Iraniparast Lan Nguyen Department of Mathematics, Department of Mathematics, Western Kentucky University, Western Kentucky University, Bowling Green KY 42101, USA. Bowling Green KY 42101, USA E-mail: nezam.iraniparast@wku.edu E-mail: lan.nguyen@wku.edu