Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 127 -- 136

EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTION TO A SINGULAR ELLIPTIC PROBLEM

Dragoş-Pătru Covei

Abstract. In this paper we obtain existence results for the positive solution of a singular elliptic boundary value problem. To prove the main results we use comparison arguments and the method of sub-super solutions combined with a procedure which truncates the singularity.

2010 Mathematics Subject Classification: 35J60; 35J15; 35J05.
Keywords: Nonlinear elliptic equation; Singularity; Existence; Regularity.

Full text

References

  1. H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z. 150 (1976), no. 3, 281--295. MR430526(55 #3531). Zbl 0331.35026 .

  2. D. Arcoya, J. Carmona, T. Leonori, P. J. Martinez-Aparicio, L. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations, J. Differential Equations 246 (2009), no. 10, 4006--4042. MR2514734(2010h:35137). Zbl 1173.35051.

  3. D. Arcoya, S. Barile, P. J. Martinez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl. 350 (2009), no. 1, 401--408. MR2476925(2010a:35046). Zbl 1161.35013.

  4. C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math. 58 (1992), 9--24. MR1226934(94c:35081). Zbl 0802.35038.

  5. K.-S. Cheng and W.-M. Ni, On the structure of the conformal scalar curvature equation on N, Indiana Univ. Math. J. 41 (1992), no. 1, 261--278. MR1226934(93g:35040). Zbl 0764.35037.

  6. D.-P. Covei, A Lane-Emden-Fowler Type Problem With Singular Nonlinearity, J. Math. Kyoto Univ. 49 (2009), no. 2, 325--338. MR2571844 (2010k:35178). Zbl 1184.35133 .

  7. M. G. Crandall, P. H. Rabinowitz and L. C. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193--222.  MR0427826 (55 #856). Zbl 1184.35133.

  8. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp. MR1814364 (2001k:35004). Zbl 1042.35002

  9. G. Dincă, Metode variaţionale şi aplicaţii, Editura Tehnică, Bucureşti, 1980 (in Romanian).

  10. J. B. Keller, Electrohydrodynamics I. The Equilibrium of a Charged Gas in a Container, J. Rational Mech. Anal. 5 (1956), 715--724. MR0081748 (18,442f). Zbl 0070.44207.

  11. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London 1968 xviii+495 pp. MR0244627 (39 #5941). Zbl 0164.13002.

  12. A. C. Lazer and P. J. McKenna, On a problem of Bieberbach and Rademacher, Nonlinear Anal. 21 (1993), no. 5, 327--335. MR1237124 (95b:35070). Zbl 0833.35052.

  13. C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245--272. Academic Press, New York, 1974. MR0358078  (50 #10543). Zbl 0298.35018

  14. W.-M. Ni, On the elliptic equation Δ u+K(x)u(N+2)/(N-2)=0, its generalizations, and applications in geometry, Invent. Math. 66 (1982), no. 2, 343--352. MR656628  (84g:58107). Zbl 0496.35036.

  15. E. S. Noussair, On the existence of solutions of nonlinear elliptic boundary value problems, J. Differential Equations 34 (1979), no. 3, 482--495. MR0555323  (81c:35053). Zbl 0435.35037.

  16. S. I. Pohozaev (Pokhozhaev), The Dirichlet problem for the equation Δ u=u2, (Russian) Dokl. Akad. Nauk SSSR 138 (1961), 305--308. MR0126059  (23 #A3356). Zbl 0100.30802 .

  17. Z. Wen-Shu, Existence and multiplicity of weak solutions for singular semilinear elliptic equation, J. Math. Anal. Appl. 346 (2008), no. 1, 107--119. MR2428276  (2009m:35174). Zbl 1155.35379



Dragoş-Pătru Covei
Constantin Brâncuşi University of Târgu-Jiu
Str. Grivitei, No. 3, Târgu-Jiu, Gorj, Romania.
e-mail: covdra@yahoo.com
http://www.utgjiu.ro/math/dcovei/

http://www.utgjiu.ro/math/sma