Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 117 -- 126

COMMON FIXED POINTS BY A GENERALIZED ITERATION SCHEME WITH ERRORS

Safeer Hussain Khan

Abstract. In this paper, we introduce a generalized iteration scheme with errors for convergence to common fixed points of two nonexpansive mappings. This scheme contains a wide variety of existing iteration schemes as its special cases. The main feature of this scheme is that its special cases can handle both strong convergence like Halpern-type and weak convergence like Ishikawa-type iteration schemes. Our main theorem will in particular generalize a recent result by Kim and Xu [9].

2010 Mathematics Subject Classification: 47H10; 54H25.
Keywords: Generalized iteration scheme; Common fixed point; Nonexpansive mapping; Weak convergence; Strong convergence.

Full text

References

  1. R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., 47 (1973), 341--355. MR341223 (49 #5973). Zbl 0274.47030 .

  2. I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer, Dordrecht, 1990. MR1079061 (91m:46021). Zbl 0712.47043.

  3. G. Das and J.P. Debata, Fixed points of quasinonexpansive mappings, Indian J. Pure Appl. Math., 17 (1986), 1263--1269. MR868962 (88b:47078). Zbl 0605.47054.

  4. A.Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22 (1975), 81--86. MR390847 (52 #11670). Zbl 0314.47031.

  5. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957--961. MR218938 (36 #2022). Zbl 0177.19101.

  6. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147--150. MR336469 (49 #1243). Zbl 0286.47036.

  7. S.H.Khan, Estimating common fixed points of two nonexpansive mappings by strong convergence, Nihonkai.Math.J., 11(2) (2000), 159-165. MR1802246 (2001j:47066). Zbl 1012.47042.

  8. S.H.Khan and H.Fukhar, Weak and Strong Convergence of a Scheme with errors for Two Nonexpansive Mappings, Nonlinear Anal.,TMA, 61(8) (2005),1295--1301. MR2135811 (2005k:47118). Zbl 1086.47050 .

  9. T.H Kim. and H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear. Anal., 61 (2005), 51--60. MR2122242 (2005i:47096). MR2122242 (2005i:47096). Zbl 1091.47055.

  10. L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194(1) (1995), 114--125. MR1353071 (97g:47069). Zbl 0872.47031.

  11. W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953), 506--510. MR0054846 (14,988f). Zbl 0050.11603.

  12. S.Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl.,44 (1973), 57--70. MR328689 (14,988f). Zbl 0275.47034.

  13. S.Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl.,75 (1980), 287--292. MR0576291 (82a:47050). Zbl 0437.47047.

  14. N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 129 (1997), 3641--3645. MR1415370 (98e:47088). Zbl 0888.47034.

  15. K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl.,178 (1993), 301--308. MR1238879 (94g:47076). Zbl 0895.47048.

  16. Y. Xu, Ishikawa and Mann iterative processes with error for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., 224 (1998), 91--101. MR1632966 (99g:47144). Zbl 0936.47041.




Safeer Hussain Khan
Department of Mathematics, Statistics and Physics, Qatar University,
Doha 2713, State of Qatar.
e-mail: safeerhussain5@yahoo.com

http://www.utgjiu.ro/math/sma