Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 67 -- 88

Fluorescence-enhanced optical tomography in small volume: Telegrapher and Diffusion models

Ranadhyr Roy

Abstract. Small animal fluorescence-enhanced optical tomography has possibility for restructuring drug discovery and preclinical investigation of drug candidates. However, accurate modeling of photon propagation in small animals is critical to quantitatively obtain accurate tomographic images. The diffusion approximation is commonly used for biomedical optical diagnostic techniques in turbid large media where absorption is low compared to scattering system. Unfortunately, this approximation has significant limitations to accurately predict radiative transport in turbid small media and also in a media where absorption is high compared to scattering systems. A radiative transport equation (RTE) is best suited for photon propagation in human tissues. However, such models are quite expensive computationally. To alleviate the problems of the high computational cost of RTE and inadequacies of the diffusion equation in a small volume, we use telegrapher equation (TE) in the frequency domain for fluorescence-enhanced optical tomography problems. The telegrapher equation can accurately and efficiently predict ballistic as well as diffusion-limited transport regimes which could simultaneously exist in small animals. The accuracy of telegrapher-based model is tested by comparing with the diffusion-based model using stimulated data in a small volume. This work demonstrates the use of the telegrapher-based model in small animal optical tomography problems.

2010 Mathematics Subject Classification:
Keywords: Fluorescence-enhanced optical tomography; Small animals optical tomography; Diffusion equation; Radiative transport equation; Telegrapher equation; High absorption; Small scattering.

Full text

References

  1. G. S. Abdoulaev and A. H. Hielscher Three-dimensional optical tomography with the equation of radiative transfer, J. Electronic Imaging 12 (2003), 594-601.

  2. R. Aronson and N. Corngold, The photon diffusion coefficient in an absorbing media, J. Opt. Soc. Am. A. 16 (1999), 1066-1071.

  3. E. D. Aydin, C. R. E. de Oliveira, A. J. H. Goddard, A finite element-spherical harmonics radiation transport model for photon migration in turbid media, J. Quant. Spectrosc. Radiat. Transfer 84 (2004), 247-260.

  4. A. Bluestone, Y. M. Stewart, J. Lasker, G. S. Abdoulaev and A. H. Hielscher, Three-dimensional optical tomographic brain imaging in small animals, part I: hypercapnia, J. Biomed Opt. 9 (2004a), 1046-1062.

  5. A. Bluestone, Y. M. Stewart, J. Lasker, G. S. Abdoulaev and A. H. Hielscher, Three-dimensional optical tomographic brain imaging in small animals, part II: unilateral carotid occlusion, J. Biomed Opt. 9 (2004b), 1063-1073.

  6. P. R. Contag, Whole-animal cellular and molecular imaging to accelerate drug development, Drug Discov Today 7 (2002), 555562.

  7. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg and A. G. Yodh, Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia, J. Cereb Blood Flow Metab 23 (2003), 911-924.

  8. O. Dorn, A transport-backtransport method for optical tomography, Inverse Problems 14 (1998), 1107-1130. MR1654607(99i:78010). Zbl 0992.78002.

  9. J. J. Duderstadt and W. R. Martin, Transport Theory, John Wiley & Sons, New York (1979).

  10. D. J. Durian and J. Rudnick, Photon migration at short times and distances and in cases of strong absorption, J. Opt. Soc. Am. A. 14 (1997), 235-245.

  11. D. J. Durian and J. Rudnick, Spatially resolved backscattering: implementation of extrapolation boundary condition and exponential source, J. Opt. Soc. Am. A. 16 (1999), 837-844.

  12. R. Elaloufi, R. Carminati, and J. J. Greffet, Time dependent transport through scattering media: From radiative transfer to diffusion, J. Opt. A. Pure Appl. Opt. 4 (2002), S103-S108.

  13. T. Feng, P. Edstrom and M. Gulliksson, Levenberg-Marquardt methods for parameter estimation problems in the radiative transfer equation, Inverse Probl. 23 (2007), 879-891. MR2329921(2008f:85007). Zbl 1134.65092.

  14. E. E. Graves, R. Weissleder and V. Ntziachristos, Fluorescence molecular imaging of small animal tumor models, Curr. Mol. Med. 4 (2004), 419-430.

  15. A. H. Hielscher, R. E. Alcouffe and R. L. Barbour, Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues, Phys. Med. Biol. 43 (1998), 1285-1302.

  16. A. Ishimaru, Wave propagation and scattering in random, Repr. of the 1978 orig. (English) [B] Oxford: Oxford Univ. Press. New York, NY: IEEE Press, 1997. MR1626707(99g:78019). Zbl 0873.65115.

  17. A. Ishimaru, Diffusion of light in turbid media, Appl. Opt. 28 (1989), 2210-2215.

  18. A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing and J. McGhee, Radiative transport-based frequency-domain fluorescence tomography, Phys. Med. Biol. 53 (2008), 2069-2088.

  19. A. D. Kim and I. Ishimaru, Optical diffusion of continuous wave, pulsed and density waves in scattering media and comparison with radiative transfer, Appl. Opt. 37 (1998), 5313-5319.

  20. A. D. Klose, U. Netz, J. Beuthan and A. H. Hielscher, Optical tomography using the time-independent equation of radiative transfer, Part 1: forward model, J. Quant Spectr. Radiat. Transf. 72 (2002), 691-713.

  21. A. K. Klose, V. Ntziachristos and A. H. Hielscher, The inverse source problem based on the radiative transfer equation in molecular optical imaging, J. Comput. Phys. 202 (2005), 323-345. Zbl 1061.65143

  22. P. A. Lemieux, M. U. Vera and D. J. Durian, Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering, Physical Review E 57 (1998), 4498-4515.

  23. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri and G. Zaccanti, Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation, Phys. Med. Biol. 45 (2000), 1359-1373.

  24. K. Mitra and S. Kumar, Development and comparison of models for light-pulse transport through scattering-absorption media, Appl. Opt. 38 (1999), 188-196.

  25. V. Ntziachristos and R. Weissleder, Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation, Opt Lett. 26 (2001), 893.

  26. S. V. Patwardhan, S. R. Bloch, Achilefu and Culver, Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice, Opt. Express 13 (2005), 2564-2577.

  27. A. Polishchuck, Y. Gutman, S. M. Lax and R. R. Alfano, Photon-density modes beyond the diffusion approximation; scalar wave-diffusion equation, J. Opt. Soc. Am. A. 14 (1997), 230-234.

  28. J. M. Porra, J. Masoliver and G. H. Weis, When the telegraphers equation furnishes a better approximation to the transport equation than the diffusion approximation, Phys. Rev. E., 55 (1997), 7771-7774.

  29. J. C. Rasmussen, A. Josh, T. Pan, T. Wareing, T. McGhee and E. M. Sevick-Muraca, Radiative transport in fluorescence-enhanced frequency domain photon migration, Med. Phys. 33 (2006), 4685-4700.

  30. K. Ren, G. Abdoulaev, G. Bal and A. H. Hielscher, Algorithm for solving the equation of radiative transfer in the frequency domain, Optics Letts. 29 (2004), 578-580.

  31. K. Ren, G. Bal and A. H. Hielscher, Transport- and diffusion-based optical tomography in small domains: a comparative study, Appl. Opt. 46 (2007), 6669-6679.

  32. J. Ripoll and V. Ntziachristos, Iterative boundary method for diffuse optical tomography, J. Opt. Soc. Am A. 20 (2003), 1103-1110.

  33. R. Roy, A. B. Thompson, A. Godavarty, E. M. Sevick-Muraca, Tomographic fluorescence-imaging in tissue phantom: a novel reconstruction algorithm and imaging geometry, IEEE Trans of Medical Imaging 24 (2005), 137-154.

  34. R. Roy, A. Godavarty, E. M. Sevick-Muraca, Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries and PMBF/CONTN method, Journal of Biomedical Optics 11 (2006).

  35. R. Roy, A. Godavarty, E. M. Sevick-Muraca, Fluorescence-enhanced three-dimensional lifetime tomography: a phantom study, Phys. Med. Biol. 52 (2007), 4155-4170.

  36. R. Roy, A. Godavarty and E. M. Sevick-Muraca, Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media, IEEE Trans of Medical Imaging 22 (2003), 824-836.

  37. R. B. Schulz, J. Ripoll and V. Ntziachristos, Noncontact optical tomography of turbid media, Opt Lett. 28 (2003), 1701-1703.

  38. R. B. Schulz, J. Ripoll and V. Ntziachristos, Experimental fluorescence tomography of tissue with noncontact measurements, IEEE Trans Med Imaging 23 (2004), 492-500.

  39. A. M. Siegel, J. P. Culver, J. B. Madeville and D. A. Boas, Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation, Phys Med Biol. 48 (2003), 1391-1403.

  40. V. Y. Soloviev and L. V. Krasnosselskaia, Consideration of a spread-out source in problems of near-infrared optical tomography, Appl. Opts. 45 (2006) 4765-4775.

  41. L. Vanel, P. Lemieux and D. J. Durain, Diffusing-wave spectroscopy for arbitrary geometry: numerical analysis by a boundary-element method, Appl. Opts. 40 (2001), 4179-4186.

  42. R. Weissleder and U. Mahmood, Molecular imaging, Radiology 219 (2001), 316-333.

  43. H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen and J. F. Dunn, Magnetic-resonance-imaging coupled broadband near-infrared tomography system for small animal brain studies, Appl. Opt. 44 (2005), 2177-2188.

  44. J. P. You, C. K. Hayakawa and V. Venugopalan, Frequency domain photon migration in the approximation: Analysis of ballistic, transport and diffuse regimes, Phys Rev. E. 72 (2005), 021903.

  45. Z. Q. Zhang, I. P. Jones I. P., H. P. Schriemer, J. H. Page, D. A. Weitz and P. Sheng, Wave transport in random media: The ballistic to diffusive transition, Phys. Rev. E. 60 (1999), 4843-4850.

  46. X. Zhang and Z. Q. Zhang, Wave transport through thin slabs of random media with internal refection; Ballistic to diffusive transition, Phys. Rev. E. 66 (2002), 016612.



Ranadhyr Roy Department of Mathematics,
The University of Texas-Pan American,
1201 West University, Edinburg, Tx, 78541, USA.
e-mail: rroy@utpa.edu




http://www.utgjiu.ro/math/sma